1
|
Meng K, Li Y, Yuan X, Shen HM, Hu LL, Liu D, Shi F, Zheng D, Shi X, Wen N, Cao Y, Pan YL, He QY, Zhang CZ. The cryptic lncRNA-encoded microprotein TPM3P9 drives oncogenic RNA splicing and tumorigenesis. Signal Transduct Target Ther 2025; 10:43. [PMID: 39865075 PMCID: PMC11770092 DOI: 10.1038/s41392-025-02128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Emerging evidence demonstrates that cryptic translation from RNAs previously annotated as noncoding might generate microproteins with oncogenic functions. However, the importance and underlying mechanisms of these microproteins in alternative splicing-driven tumor progression have rarely been studied. Here, we show that the novel protein TPM3P9, encoded by the lncRNA tropomyosin 3 pseudogene 9, exhibits oncogenic activity in clear cell renal cell carcinoma (ccRCC) by enhancing oncogenic RNA splicing. Overexpression of TPM3P9 promotes cell proliferation and tumor growth. Mechanistically, TPM3P9 binds to the RRM1 domain of the splicing factor RBM4 to inhibit RBM4-mediated exon skipping in the transcription factor TCF7L2. This results in increased expression of the oncogenic splice variant TCF7L2-L, which activates NF-κB signaling via its interaction with SAM68 to transcriptionally induce RELB expression. From a clinical perspective, TPM3P9 expression is upregulated in cancer tissues and is significantly correlated with the expression of TCF7L2-L and RELB. High TPM3P9 expression or low RBM4 expression is associated with poor survival in patients with ccRCC. Collectively, our findings functionally and clinically characterize the "noncoding RNA"-derived microprotein TPM3P9 and thus identify potential prognostic and therapeutic factors in renal cancer.
Collapse
Affiliation(s)
- Kun Meng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, 441100, Xiangyang, China
| | - Yuying Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiaoyi Yuan
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hui-Min Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Ling Hu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Danya Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Fujin Shi
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Dandan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xinyu Shi
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nengqiao Wen
- Department of Pathology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yun Cao
- Department of Pathology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yun-Long Pan
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Peng Y, Li J, Niu K, Wang M, Chen Y, Tong C, Feng Q. Bmlark is essential for embryonic development. BMC Genomics 2024; 25:1179. [PMID: 39633273 PMCID: PMC11619667 DOI: 10.1186/s12864-024-11107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Transcription factor lark has been demonstrated to play multiple functions in Drosophila, but the function of this gene in embryonic development remains to be elucidated. RESULTS In this study, the CRISPR/Cas9 gene-editing method was used to construct a Bmlark mutant strain of Bombyx mori to investigate the roles of this gene. The results showed that the homozygous mutant Bmlark-/- was lethal. The Bmlark-/- embryos showed obvious developmental defects, such as defective sclerotization and melanization of the exoskeleton. A transcriptomic comparison of Bmlark-/- and wild-type embryos showed that the differentially expressed genes were mainly enriched in the structure and metabolic processes of chitin and cuticles. While the expression levels of chitin metabolism-related enzyme genes did not significantly change, in the mutant embryos compared to the wild-type embryos, the expression levels of 63 putative cuticle protein genes showed significant differences. Among which, 35 genes were downregulated and 28 genes were upregulated. The expression levels of the transcription factor BmPOUM2 and eight wing disc cuticle protein genes (WCP) also changed. BmPOUM2, WCP5, WCP9, WCP10, WCP11 were downregulated and WCP1, WCP2, WCP3, WCP6 were upregulated in Bmlark-/- embryos. While the expression level of TH in the tyrosine-mediated pigmentation pathway was upregulated in the mutant embryos, the expression levels of the four key pigment synthesis genes DDC, aaNAT, Laccase2A, and yellow-f2 were significantly downregulated. CONCLUSIONS The expression levels of 63 putative cuticle protein genes, eight WCP genes, and five pigment synthesis genes significantly changed in Bmlark mutant B. mori compared to those of the wildtype. These results suggest that Bmlark is essential for normal development of cuticle and tyrosine-mediated melanization in silkworm embryos.
Collapse
Affiliation(s)
- Yuling Peng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- National Demonstration Center for Experimental Biology Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin Li
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Kangkang Niu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Man Wang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yanfei Chen
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Chunmei Tong
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- School of Life Sciences, Zhaoqing University, Zhaoqing, 526061, China
| | - Qili Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
3
|
Guo J, Gong C, Wang H. PURPL Promotes M2 Macrophage Polarization in Lung Cancer by Regulating RBM4/xCT Signaling. Crit Rev Eukaryot Gene Expr 2024; 34:59-68. [PMID: 38842204 DOI: 10.1615/critreveukaryotgeneexpr.2024052788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Lung cancer is the most common malignancy worldwide. Long non-coding RNA (lncRNA) p53 upregulated regulator of P53 levels (PURPL) is abnormally in various cancers. However, the reports on its roles in lung cancer are limited. The purpose of present study is to investigate the potentials of lncRNA PURPL in lung cancer. PURPL and mRNA expression was determined using real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). The location of PURPL was detected using RNA fluorescence in situ hybridization (FISH) assay. Protein expression was detected using western blot. Cellular functions were determined using flow cytometry. The interaction between PURPL and RNA-binding motif 4 (RBM4) was confirmed using RNA immunoprecipitation (RIP) assay. PURPL was overexpressed in lung cancer cells and patients. Overexpressed PURPL promoted M2 macrophage polarization and suppressed ferroptosis. Additionally, PURPL maintained the mRNA stability of cystine glutamate reverse transporter (xCT) via regulating RBM4. xCT knockdown antagonized the effects of overexpressed PURPL and inhibited M2 macrophage polarization via inducing macrophage ferroptosis. PURPL/RBM4/xCT axis promoted M2 macrophage polarization in lung cancer. Therefore, PURPL may be a potential target of lung cancer.
Collapse
Affiliation(s)
- Jipeng Guo
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Chongwen Gong
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hao Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
4
|
Li D, Yu W, Lai M. Towards understandings of serine/arginine-rich splicing factors. Acta Pharm Sin B 2023; 13:3181-3207. [PMID: 37655328 PMCID: PMC10465970 DOI: 10.1016/j.apsb.2023.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 09/02/2023] Open
Abstract
Serine/arginine-rich splicing factors (SRSFs) refer to twelve RNA-binding proteins which regulate splice site recognition and spliceosome assembly during precursor messenger RNA splicing. SRSFs also participate in other RNA metabolic events, such as transcription, translation and nonsense-mediated decay, during their shuttling between nucleus and cytoplasm, making them indispensable for genome diversity and cellular activity. Of note, aberrant SRSF expression and/or mutations elicit fallacies in gene splicing, leading to the generation of pathogenic gene and protein isoforms, which highlights the therapeutic potential of targeting SRSF to treat diseases. In this review, we updated current understanding of SRSF structures and functions in RNA metabolism. Next, we analyzed SRSF-induced aberrant gene expression and their pathogenic outcomes in cancers and non-tumor diseases. The development of some well-characterized SRSF inhibitors was discussed in detail. We hope this review will contribute to future studies of SRSF functions and drug development targeting SRSFs.
Collapse
Affiliation(s)
- Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Maode Lai
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
5
|
Haque N, Will A, Cook AG, Hogg JR. A network of DZF proteins controls alternative splicing regulation and fidelity. Nucleic Acids Res 2023; 51:6411-6429. [PMID: 37144502 PMCID: PMC10325889 DOI: 10.1093/nar/gkad351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/06/2023] Open
Abstract
Proteins containing DZF (domain associated with zinc fingers) modules play important roles throughout gene expression, from transcription to translation. Derived from nucleotidyltransferases but lacking catalytic residues, DZF domains serve as heterodimerization surfaces between DZF protein pairs. Three DZF proteins are widely expressed in mammalian tissues, ILF2, ILF3 and ZFR, which form mutually exclusive ILF2-ILF3 and ILF2-ZFR heterodimers. Using eCLIP-Seq, we find that ZFR binds across broad intronic regions to regulate the alternative splicing of cassette and mutually exclusive exons. ZFR preferentially binds dsRNA in vitro and is enriched on introns containing conserved dsRNA elements in cells. Many splicing events are similarly altered upon depletion of any of the three DZF proteins; however, we also identify independent and opposing roles for ZFR and ILF3 in alternative splicing regulation. Along with widespread involvement in cassette exon splicing, the DZF proteins control the fidelity and regulation of over a dozen highly validated mutually exclusive splicing events. Our findings indicate that the DZF proteins form a complex regulatory network that leverages dsRNA binding by ILF3 and ZFR to modulate splicing regulation and fidelity.
Collapse
Affiliation(s)
- Nazmul Haque
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892, USA
| | - Alexander Will
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892, USA
| |
Collapse
|
6
|
Bonner EA, Lee SC. Therapeutic Targeting of RNA Splicing in Cancer. Genes (Basel) 2023; 14:1378. [PMID: 37510283 PMCID: PMC10379351 DOI: 10.3390/genes14071378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
RNA splicing is a key regulatory step in the proper control of gene expression. It is a highly dynamic process orchestrated by the spliceosome, a macro-molecular machinery that consists of protein and RNA components. The dysregulation of RNA splicing has been observed in many human pathologies ranging from neurodegenerative diseases to cancer. The recent identification of recurrent mutations in the core components of the spliceosome in hematologic malignancies has advanced our knowledge of how splicing alterations contribute to disease pathogenesis. This review article will discuss our current understanding of how aberrant RNA splicing regulation drives tumor initiation and progression. We will also review current therapeutic modalities and highlight emerging technologies designed to target RNA splicing for cancer treatment.
Collapse
Affiliation(s)
- Elizabeth A. Bonner
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA;
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Stanley C. Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
7
|
González-Montero J, Rojas CI, Burotto M. MAP4K4 and cancer: ready for the main stage? Front Oncol 2023; 13:1162835. [PMID: 37223681 PMCID: PMC10200945 DOI: 10.3389/fonc.2023.1162835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
MAP4K4 is a serine/threonine kinase that belongs to the MAP kinase family and plays a critical role in embryogenesis and cellular migration. It contains approximately 1,200 amino acids and has a molecular mass of 140 kDa. MAP4K4 is expressed in most tissues where it has been examined and its knockout is embryonic lethal due to impaired somite development. Alterations in MAP4K4 function have a central role in the development of many metabolic diseases such as atherosclerosis and type 2 diabetes, but have recently been implicated in the initiation and progression of cancer. For example, it has been shown that MAP4K4 can stimulate the proliferation and invasion of tumor cells by activating pro-proliferative pathways (such as the c-Jun N-terminal kinase [JNK] and mixed-lineage protein kinase 3 [MLK3] pathways), attenuate anti-tumor cytotoxic immune responses, and stimulate cell invasion and migration by altering cytoskeleton and actin function. Recent in vitro experiments using RNA interference-based knockdown (miR) techniques have shown that inhibition of MAP4K4 function reduces tumor proliferation, migration, and invasion, and may represent a promising therapeutic approach in many types of cancer such as pancreatic cancer, glioblastoma, and medulloblastoma, among others. Over the last few years, specific MAP4K4 inhibitors such as GNE-495 have been developed but have not yet been tested in cancer patients. However, these novel agents may be useful for cancer treatment in the future.
Collapse
|
8
|
Chen L, Zhang W, Chen D, Yang Q, Sun S, Dai Z, Li Z, Liang X, Chen C, Jiao Y, Zhi L, Zhao L, Zhang J, Liu X, Zhao J, Li M, Wang Y, Qi Y. RBM4 dictates ESCC cell fate switch from cellular senescence to glutamine-addiction survival through inhibiting LKB1-AMPK-axis. Signal Transduct Target Ther 2023; 8:159. [PMID: 37080995 PMCID: PMC10119322 DOI: 10.1038/s41392-023-01367-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 04/22/2023] Open
Abstract
Cellular senescence provides a protective barrier against tumorigenesis in precancerous or normal tissues upon distinct stressors. However, the detailed mechanisms by which tumor cells evade premature senescence to malignant progression remain largely elusive. Here we reported that RBM4 adversely impacted cellular senescence to favor glutamine-dependent survival of esophageal squamous cell carcinoma (ESCC) cells by dictating the activity of LKB1, a critical governor of cancer metabolism. The level of RBM4 was specifically elevated in ESCC compared to normal tissues, and RBM4 overexpression promoted the malignant phenotype. RBM4 contributed to overcome H-RAS- or doxorubicin-induced senescence, while its depletion caused P27-dependent senescence and proliferation arrest by activating LKB1-AMPK-mTOR cascade. Mechanistically, RBM4 competitively bound LKB1 to disrupt the LKB1/STRAD/MO25 heterotrimeric complex, subsequently recruiting the E3 ligase TRIM26 to LKB1, promoting LKB1 ubiquitination and degradation in nucleus. Therefore, such molecular process leads to bypassing senescence and sustaining cell proliferation through the activation of glutamine metabolism. Clinically, the ESCC patients with high RBM4 and low LKB1 have significantly worse overall survival than those with low RBM4 and high LKB1. The RBM4 high/LKB1 low expression confers increased sensitivity of ESCC cells to glutaminase inhibitor CB-839, providing a novel insight into mechanisms underlying the glutamine-dependency to improve the efficacy of glutamine inhibitors in ESCC therapeutics.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Quan Yang
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Siwen Sun
- Department of Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zhenwei Dai
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Zhengzheng Li
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Xuemei Liang
- Department of Thoracic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Yuexia Jiao
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Lili Zhi
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Xuefeng Liu
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Man Li
- Department of Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Yang Wang
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China.
| | - Yangfan Qi
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
9
|
Jian W, Xue W, Wang T, Yu Y, Cai L, Meng Y, Xia Z, Zhang C. RBM4 inhibits the growth of clear cell renal cell carcinoma by enhancing the stability of p53 mRNA. Mol Carcinog 2023; 62:464-478. [PMID: 36585906 DOI: 10.1002/mc.23499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
RBM4 has been reported as a tumor suppressor gene in cancers, including lung cancer, colon cancer and gastric cancer. However, the role of RBM4 in clear cell renal cell carcinoma (ccRCC) remains unclear. Therefore, the present study investigated the expression and biological function of RBM4 in ccRCC. Analysis of the differential expression of RBM4 and its relationship with clinicopathological features using ccRCC samples data from TCGA database deminstrated that RBM4 expression in tumor samples of ccRCC was lower than that in normal samples, and RBM4 expression was closely related to the survival time of patients. RBM4 overexpression (RBM4-oe) cell lines were constructed to investigate the effect of RBM4 on biological function using CCK-8, EdU, flow cytometry and wound-healing assays. In addition, the regulatory effect of RBM4 on signaling pathways was investigated by GSEA and WB assays. RBM4-oe significantly reduced the proliferation of ccRCC cells by controlling the p53 signaling pathway, inhibited cell cycle progression and promoted apoptosis. In addition, RBM4-oe suppressed the migration and invasion of cells by EMT. Mechanistically, RBM4-oe facilitated the activity of the p53 signaling pathway by enhancing the stability of p53 mRNA. Finally, RBM4-oe markedly inhibited the growth of tumors formed with 786-O cells in vivo. In summary, there findings suggeated that RBM4 inhibits the progression of ccRCC by promoting p53 signaling pathway activity by enhancing the stability of p53 mRNA, suggesting that RBM4 may be a potential target for the treatment of patients.
Collapse
Affiliation(s)
- Wengang Jian
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Xue
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tengda Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongchun Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Licheng Cai
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuyang Meng
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhinan Xia
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Urology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
10
|
Che Y, Bai M, Lu K, Fu L. Splicing factor SRSF3 promotes the progression of cervical cancer through regulating DDX5. Mol Carcinog 2023; 62:210-223. [PMID: 36282044 DOI: 10.1002/mc.23477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023]
Abstract
Aberrant alternative splicing (AS) profoundly affects tumorigenesis and cancer progression. Serine/arginine-rich splicing factor 3 (SRSF3) regulates the AS of precursor mRNAs and acts as a proto-oncogene in many tumors, but its function and potential mechanisms in cervical cancer remain unclear. Here, we found that SRSF3 was highly expressed in cervical cancer tissues and that SRSF3 expression was correlated with prognosis after analyses of the The Cancer Genome Atlas and GEO databases. Furthermore, knockdown of SRSF3 reduced the proliferation, migration, and invasion abilities of HeLa cells, while overexpression of SRSF3 promoted proliferation, migration, and invasion of CaSki cells. Further studies showed that SRSF3 mediated the variable splicing of exon 12 of the transcriptional cofactor DEAD-box helicase 5 (DDX5). Specifically, overexpression of SRSF3 promoted the production of the pro-oncogenic spliceosome DDX5-L and repressed the production of the repressive spliceosome DDX5-S. Ultimately, both SRSF3 and DDX5-L were able to upregulate oncogenic AKT expression, while DDX5-S downregulated AKT expression. In conclusion, we found that SRSF3 increased the production of DDX5-L and decreased the production of DDX5-S by regulating the variable splicing of DDX5. This, in turn promoted the proliferation, migration, and invasion of cervical cancer by upregulating the expression level of AKT. These results reveal the oncogenic role of SRSF3 in cervical cancer and emphasize the importance of the SRSF3-DDX5-AKT axis in tumorigenesis. SRSF3 and DDX5 are new potential biomarkers and therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Yingying Che
- School of Basic Medicine, Qingdao University, Qingdao, China.,Weihai Ocean Vocational College, Weihai, China
| | - Mixue Bai
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kun Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Fu
- School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Jovanovic D, Yan S, Baumgartner M. The molecular basis of the dichotomous functionality of MAP4K4 in proliferation and cell motility control in cancer. Front Oncol 2022; 12:1059513. [PMID: 36568222 PMCID: PMC9774001 DOI: 10.3389/fonc.2022.1059513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
The finely tuned integration of intra- and extracellular cues by components of the mitogen-activated protein kinase (MAPK) signaling pathways controls the mutually exclusive phenotypic manifestations of uncontrolled growth and tumor cell dissemination. The Ser/Thr kinase MAP4K4 is an upstream integrator of extracellular cues involved in both proliferation and cell motility control. Initially identified as an activator of the c-Jun N-terminal kinase (JNK), the discovery of diverse functions and additional effectors of MAP4K4 beyond JNK signaling has considerably broadened our understanding of this complex kinase. The implication of MAP4K4 in the regulation of cytoskeleton dynamics and cell motility provided essential insights into its role as a pro-metastatic kinase in cancer. However, the more recently revealed role of MAP4K4 as an activator of the Hippo tumor suppressor pathway has complicated the understanding of MAP4K4 as an oncogenic driver kinase. To develop a better understanding of the diverse functions of MAP4K4 and their potential significance in oncogenesis and tumor progression, we have collected and assessed the current evidence of MAP4K4 implication in molecular mechanisms that control proliferation and promote cell motility. A better understanding of these mechanisms is particularly relevant in the brain, where MAP4K4 is highly expressed and under pathological conditions either drives neuronal cell death in neurodegenerative diseases or cell dissemination in malignant tumors. We review established effectors and present novel interactors of MAP4K4, which offer mechanistic insights into MAP4K4 function and may inspire novel intervention strategies. We discuss possible implications of novel interactors in tumor growth and dissemination and evaluate potential therapeutic strategies to selectively repress pro-oncogenic functions of MAP4K4.
Collapse
Affiliation(s)
| | | | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Research, Children’s Research Centre, Division of Oncology, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
12
|
Splicing factor SRSF3 represses translation of p21 cip1/waf1 mRNA. Cell Death Dis 2022; 13:933. [PMID: 36344491 PMCID: PMC9640673 DOI: 10.1038/s41419-022-05371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Serine/arginine-rich splicing factor 3 (SRSF3) is an RNA binding protein that most often regulates gene expression at the splicing level. Although the role of SRSF3 in mRNA splicing in the nucleus is well known, its splicing-independent role outside of the nucleus is poorly understood. Here, we found that SRSF3 exerts a translational control of p21 mRNA. Depletion of SRSF3 induces cellular senescence and increases the expression of p21 independent of p53. Consistent with the expression patterns of SRSF3 and p21 mRNA in the TCGA database, SRSF3 knockdown increases the p21 mRNA level and its translation efficiency as well. SRSF3 physically associates with the 3'UTR region of p21 mRNA and the translational initiation factor, eIF4A1. Our study proposes a model in which SRSF3 regulates translation by interacting with eIF4A1 at the 3'UTR region of p21 mRNA. We also found that SRSF3 localizes to the cytoplasmic RNA granule along with eIF4A1, which may assist in translational repression therein. Thus, our results provide a new mode of regulation for p21 expression, a crucial regulator of the cell cycle and senescence, which occurs at the translational level and involves SRSF3.
Collapse
|
13
|
SRSF3 Restriction Eases Cervical Cancer Cell Viability and Metastasis via Adjusting PI3K/AKT/mTOR Signaling Pathway. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8497078. [PMID: 36237584 PMCID: PMC9529520 DOI: 10.1155/2022/8497078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023]
Abstract
Objective To investigate the effect of SRSF3 on the viability and metastasis of cervical cancer (CC) SiHa and Hela cells. Methods In vitro, HeLa cells and SiHa cells were cultured. In cervical cancer cells, RNA interference technology was utilized to lessen the SRSF3 level, and via RT-PCR utilization, the SRSF3 level in every group of cells was revealed. By employing the CCK-8 method, the OD value was revealed in every group at 24, 48, 72, and 96 h. On the migration of cervical cancer SiHa and HeLa cells via transwell utilizing, the consequence of SRSF3 was surveyed. Through western blotting utilizing, the PI3K/AKT/mTOR signaling pathway-connected proteins levels was revealed. Results In SiHa cells, contrasted to the NC-SiHa group, the SRSF3 level, the number of invasive cells per unit area, the p-PI3K/PI3K level, the p-AKT/AKT level, and the p-mTOR/mTOR level in the si-SRSF3 group were substantially lessened. The OD value at 490 nm of the si-SRSF3 group had no impressive divergence, contrasted to the NC-SiHa group at 24 h. At 48 h, the OD value of the si-SRSF3 group was impressively lessened than that of the NC-SiHa group. This connection was time-dependent. In HeLa cells, the SRSF3 level, the number of invasive cells per unit area, the level of p-PI3K/PI3K, the level of p-AKT/AKT, and the level of p-mTOR/mTOR in the cells of the si-SRSF3 group in the NC-HeLa group were impressively lessened than those in the NC-Hela group. Between the NC-HeLa group and the si-SRSF3 group at 24 h, there was no impressive divergence in the OD value at 490 nm. At 48 h, the OD value of the si-SRSF3 group was impressively lessened than that of the NC-SiHa group. This connection is time-dependent. Conclusion Reducing the SRSF3 level can restrain the viability and metastasis of cervical cancer cells via restraining the PI3K/AKT/mTOR signaling pathway.
Collapse
|
14
|
A novel SRSF3 inhibitor, SFI003, exerts anticancer activity against colorectal cancer by modulating the SRSF3/DHCR24/ROS axis. Cell Death Dis 2022; 8:238. [PMID: 35501301 PMCID: PMC9061822 DOI: 10.1038/s41420-022-01039-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 01/10/2023]
Abstract
As the modulation of serine/arginine-rich splicing factor 3 (SRSF3) may be therapeutically beneficial to colorectal cancer (CRC) treatment, the identification of novel SRSF3 inhibitors is highly anticipated. However, pharmaceutical agents targeting SRSF3 have not yet been discovered. Here, we propose a functional SRSF3 inhibitor for CRC therapy and elucidate its antitumor mechanisms. We found high expression of SRSF3 in 70.6% CRC tissues. Silencing SRSF3 markedly inhibits the proliferation and migration of CRC cells through suppression of its target gene 24-dehydrocholesterol reductase (DHCR24). This is evidenced by the links between SRSF3 and DHCR24 in CRC tissues. The novel SRSF3 inhibitor SFI003 exhibits potent antitumor efficacy in vitro and in vivo, which drives apoptosis of CRC cells via the SRSF3/DHCR24/reactive oxygen species (ROS) axis. Moreover, SFI003 is druggable with suitable pharmacokinetic properties, bioavailability, and tumor distribution. Thus, SRSF3 is a novel potential therapeutic target for CRC. Its inhibitor SFI003 may be developed as an anticancer therapeutic.
Collapse
|
15
|
Chen Y, Yang M, Meng F, Zhang Y, Wang M, Guo X, Yang J, Zhang H, Zhang H, Sun J, Wang W. SRSF3 Promotes Angiogenesis in Colorectal Cancer by Splicing SRF. Front Oncol 2022; 12:810610. [PMID: 35198444 PMCID: PMC8859257 DOI: 10.3389/fonc.2022.810610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
SRSF3, an important member of the serine/arginine-rich protein (SRp) family, is highly expressed in various tumors and plays an important role in tumor cell proliferation, migration and invasion. However, it is still unclear whether SRSF3 is involved in tumor angiogenesis. In this study, we first revealed that SRSF3 regulated the expression of numerous genes related to angiogenesis, including proangiogenic SRF. Then, we confirmed that SRSF3 was highly expressed in colorectal cancer (CRC) and was positively correlated with SRF. Mechanistic studies revealed that SRSF3 directly bound to the “CAUC” motif in exon 6 of SRF and induced the exclusion of introns. Knockdown of SRSF3 significantly reduced the secretion of VEGF from CRC cells. Conditioned medium from SRSF3-knockdown CRC cells significantly inhibited the migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs). In addition, SRF silencing inhibited angiogenesis, while SRF overexpression reversed the antiangiogenic effects of SRSF3 knockdown on tube formation. These findings indicate that SRSF3 is involved in the splicing of SRF and thereby regulates the angiogenesis of CRC, which offers novel insight into antiangiogenic therapy in CRC.
Collapse
Affiliation(s)
- Yinshuang Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Man Yang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fanyi Meng
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yawen Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Mengmeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xuqin Guo
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jie Yang
- Institute of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Hongjian Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Haiyang Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jing Sun
- Institute of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Parker KA, Robinson NJ, Schiemann WP. The role of RNA processing and regulation in metastatic dormancy. Semin Cancer Biol 2022; 78:23-34. [PMID: 33775829 PMCID: PMC8464634 DOI: 10.1016/j.semcancer.2021.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Tumor dormancy is a major contributor to the lethality of metastatic disease, especially for cancer patients who develop metastases years-to-decades after initial diagnosis. Indeed, tumor cells can disseminate during early disease stages and persist in new microenvironments at distal sites for months, years, or even decades before initiating metastatic outgrowth. This delay between primary tumor remission and metastatic relapse is known as "dormancy," during which disseminated tumor cells (DTCs) acquire quiescent states in response to intrinsic (i.e., cellular) and extrinsic (i.e., microenvironmental) signals. Maintaining dormancy-associated phenotypes requires DTCs to activate transcriptional, translational, and post-translational mechanisms that engender cellular plasticity. RNA processing is emerging as an essential facet of cellular plasticity, particularly with respect to the initiation, maintenance, and reversal of dormancy-associated phenotypes. Moreover, dysregulated RNA processing, particularly that associated with alternative RNA splicing and expression of noncoding RNAs (ncRNAs), can occur in DTCs to mediate intrinsic and extrinsic metastatic dormancy. Here we review the pathophysiological impact of alternative RNA splicing and ncRNAs in promoting metastatic dormancy and disease recurrence in human cancers.
Collapse
Affiliation(s)
- Kimberly A. Parker
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nathaniel J. Robinson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA,Corresponding Author: William P. Schiemann, Case Comprehensive Cancer Center, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106 Phone: 216-368-5763.
| |
Collapse
|
17
|
Xiong J, Chen Y, Wang W, Sun J. Biological function and molecular mechanism of SRSF3 in cancer and beyond. Oncol Lett 2021; 23:21. [PMID: 34858525 PMCID: PMC8617561 DOI: 10.3892/ol.2021.13139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
Serine/arginine-rich splicing factor 3 (SRSF3; also known as SRp20), an important member of the family of SRSFs, is abnormally expressed in tumors, resulting in aberrant splicing of hub genes, such as CD44, HER2, MDM4, Rac family small GTPase 1 and tumor protein p53. Under normal conditions, the splicing and expression of SRSF3 are strictly regulated. However, the splicing, expression and phosphorylation of SRSF3 are abnormal in tumors. SRSF3 plays important roles in the occurrence and development of tumors, including the promotion of tumorigenesis, cellular proliferation, the cell cycle and metastasis, as well as inhibition of cell senescence, apoptosis and autophagy. SRSF3-knockdown significantly inhibits the proliferation and metastatic characteristics of tumor cells. Therefore, SRSF3 may be suggested as a novel anti-tumor target. The other biological functions of SRSF3 and its regulatory mechanisms are also summarized in the current review.
Collapse
Affiliation(s)
- Jian Xiong
- Institute of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu 215009, P.R. China
| | - Yinshuang Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jing Sun
- Institute of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu 215009, P.R. China
| |
Collapse
|
18
|
Alternative splicing of mRNA in colorectal cancer: new strategies for tumor diagnosis and treatment. Cell Death Dis 2021; 12:752. [PMID: 34330892 PMCID: PMC8324868 DOI: 10.1038/s41419-021-04031-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Alternative splicing (AS) is an important event that contributes to posttranscriptional gene regulation. This process leads to several mature transcript variants with diverse physiological functions. Indeed, disruption of various aspects of this multistep process, such as cis- or trans- factor alteration, promotes the progression of colorectal cancer. Therefore, targeting some specific processes of AS may be an effective therapeutic strategy for treating cancer. Here, we provide an overview of the AS events related to colorectal cancer based on research done in the past 5 years. We focus on the mechanisms and functions of variant products of AS that are relevant to malignant hallmarks, with an emphasis on variants with clinical significance. In addition, novel strategies for exploiting the therapeutic value of AS events are discussed.
Collapse
|
19
|
Mehterov N, Kazakova M, Sbirkov Y, Vladimirov B, Belev N, Yaneva G, Todorova K, Hayrabedyan S, Sarafian V. Alternative RNA Splicing-The Trojan Horse of Cancer Cells in Chemotherapy. Genes (Basel) 2021; 12:genes12071085. [PMID: 34356101 PMCID: PMC8306420 DOI: 10.3390/genes12071085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Almost all transcribed human genes undergo alternative RNA splicing, which increases the diversity of the coding and non-coding cellular landscape. The resultant gene products might have distinctly different and, in some cases, even opposite functions. Therefore, the abnormal regulation of alternative splicing plays a crucial role in malignant transformation, development, and progression, a fact supported by the distinct splicing profiles identified in both healthy and tumor cells. Drug resistance, resulting in treatment failure, still remains a major challenge for current cancer therapy. Furthermore, tumor cells often take advantage of aberrant RNA splicing to overcome the toxicity of the administered chemotherapeutic agents. Thus, deciphering the alternative RNA splicing variants in tumor cells would provide opportunities for designing novel therapeutics combating cancer more efficiently. In the present review, we provide a comprehensive outline of the recent findings in alternative splicing in the most common neoplasms, including lung, breast, prostate, head and neck, glioma, colon, and blood malignancies. Molecular mechanisms developed by cancer cells to promote oncogenesis as well as to evade anticancer drug treatment and the subsequent chemotherapy failure are also discussed. Taken together, these findings offer novel opportunities for future studies and the development of targeted therapy for cancer-specific splicing variants.
Collapse
Affiliation(s)
- Nikolay Mehterov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Nikolay Belev
- Medical Simulation and Training Center, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Galina Yaneva
- Department of Biology, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Krassimira Todorova
- Laboratory of Reproductive OMICs Technologies, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.T.); (S.H.)
| | - Soren Hayrabedyan
- Laboratory of Reproductive OMICs Technologies, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.T.); (S.H.)
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: ; Tel.: +359-882-512-952
| |
Collapse
|
20
|
Han L, Lai H, Yang Y, Hu J, Li Z, Ma B, Xu W, Liu W, Wei W, Li D, Wang Y, Zhai Q, Ji Q, Liao T. A 5'-tRNA halve, tiRNA-Gly promotes cell proliferation and migration via binding to RBM17 and inducing alternative splicing in papillary thyroid cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:222. [PMID: 34225773 PMCID: PMC8256553 DOI: 10.1186/s13046-021-02024-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/18/2021] [Indexed: 11/10/2022]
Abstract
Background tRNA-derived small noncoding RNAs (sncRNAs) are mainly categorized into tRNA halves (tiRNAs) and fragments (tRFs). Biological functions of tiRNAs in human solid tumor are attracting more and more attention, but researches concerning the mechanisms in tiRNAs-mediated tumorigenesis are rarely. The direct regulatory relationship between tiRNAs and splicing-related proteins remain elusive. Methods Papillary thyroid carcinoma (PTC) associated tRNA fragments were screened by tRNA fragments deep sequencing and validated by qRT-PCR and Northern Blot in PTC tissues. The biological function of tRNA fragments were assessed by cell counting kit, transwells and subcutaneous transplantation tumor of nude mice. For mechanistic study, tRNA fragments pull-down, RNA immunoprecipitation, Western Blot, Immunofluorescence, Immunohistochemical staining were performed. Results Herein, we have identified a 33 nt tiRNA-Gly significantly increases in papillary thyroid cancer (PTC) based on tRFs & tiRNAs sequencing. The ectopic expression of tiRNA-Gly promotes cell proliferation and migration, whereas down-regulation of tiRNA-Gly exhibits reverse effects. Mechanistic investigations reveal tiRNA-Gly directly bind the UHM domain of a splicing-related RNA-binding protein RBM17. The interaction with tiRNA-Gly could translocate RBM17 from cytoplasm into nucleus. In addition, tiRNA-Gly increases RBM17 protein expression via inhibiting its degradation in a ubiquitin/proteasome-dependent way. Moreover, RBM17 level in tiRNA-Gly high-expressing human PTC tissues is upregulated. In vivo mouse model shows that suppression of tiRNA-Gly decreases RBM17 expression. Importantly, tiRNA-Gly can induce exon 16 splicing of MAP4K4 mRNA leading to phosphorylation of downstream signaling pathway, which is RBM17 dependent. Conclusions Our study firstly illustrates tiRNA-Gly can directly bind to RBM17 and display oncogenic effect via RBM17-mediated alternative splicing. This fully novel model broadens our understanding of molecular mechanism in which tRNA fragment in tumor cells directly bind RNA binding protein and play a role in alternative splicing. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02024-3.
Collapse
Affiliation(s)
- Litao Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hejing Lai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, 200093, China
| | - Yichen Yang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiaqian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhe Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wanlin Liu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Duanshu Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, 200093, China.
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Wang Y, Yu Y, Pang Y, Yu H, Zhang W, Zhao X, Yu J. The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biol 2021; 18:2107-2126. [PMID: 33787465 DOI: 10.1080/15476286.2021.1909320] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The zinc finger CCHC-type (ZCCHC) superfamily proteins, characterized with the consensus sequence C-X2-C-X4-H-X4-C, are accepted to have high-affinity binding to single-stranded nucleic acids, especially single-stranded RNAs. In human beings 25 ZCCHC proteins have been annotated in the HGNC database. Of interest is that among the family, most members are involved in the multiple steps of RNA metabolism. In this review, we focus on the diverged roles of human ZCCHC proteins on RNA transcription, biogenesis, splicing, as well as translation and degradation.
Collapse
Affiliation(s)
- Yishu Wang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Pang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojun Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Zhang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Wang H, Jiang Y. SRp20: A potential therapeutic target for human tumors. Pathol Res Pract 2021; 224:153444. [PMID: 34126370 DOI: 10.1016/j.prp.2021.153444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
As an important member of SR protein family, SRp20 plays a crucial role in alternative splicing. It not only participates in cell cycle regulation, export of mRNA, cleaving of primary microRNAs, homologous recombination-mediated DNA repair, cellular senescence and apoptosis, but also gets involved in the integrity and pluripotency of genome. Alternative splicing maintains a strict balance in the body to ensure the normal physiological function of cells. Once the balance is broken, diseases, even tumors, will follow. Through the analysis of SRp20-related articles, we found that Alzheimer's disease, glaucoma, bipolar disorder and other diseases have a certain relationship with SRp20. More importantly, SRp20 is closely related to the occurrence, proliferation, invasion and metastasis of various tumors, as well as chemotherapy resistance. Some SRp20 inhibitors have shown significant anticancer efficacy, suggesting a potential therapeutic strategy for tumors.
Collapse
Affiliation(s)
- Han Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yanxia Jiang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
23
|
Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13061433. [PMID: 33801071 PMCID: PMC8004037 DOI: 10.3390/cancers13061433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The ZNF518B gene, which is up-regulated in colorectal cancer, plays a role in metastasis, but neither the mechanisms involved in this process nor the role of the different isoforms of the gene are known. Here we show that the ratio of these isoforms is related to the relapsing of the disease, and that the protein ZNF518B interacts with enzymes able to introduce epigenetic changes, which may affect the activity of many genes. We also report a list of genes affected in common by ZNF518B and by two of those related enzymes, namely, G9A and EZH2. An in-depth analysis of five of those genes revealed that ZNF518B is involved in the recruitment of the enzymes and in the deposition of the corresponding epigenetic marks. The results highlight the relevance of epigenetic changes in cancer development, and open the possibility of developing therapeutic approaches, as the introduction of epigenetic modifications is reversible. Abstract The ZNF518B gene, which is up-regulated in colorectal cancer, plays a role in cell dissemination and metastasis. It encodes a zinc-finger protein, which interacts with histone methyltransferases G9A and EZH2. The expression of the two major mRNA isoforms 1 (coding for the full protein) and 2 was quantified by RT-qPCR in a cohort of 66 patients. The effects of silencing ZNF518B on the transcriptome of DLD1 and HCT116 cells were analysed by Clariom-S assays and validated by RT-qPCR. The recruitment of methyltransferases and the presence of H3K27me3 were studied by chromatin immunoprecipitation (ChIP). The ratio (isoform 2)/(isoform 1) negatively correlated with the relapsing of disease. The study of the transcriptome of DLD1 and HCT116 cells revealed that many genes affected by silencing ZNF518B are related to cancer. After crossing these results with the list of genes affected by silencing the histone methyltransferases (retrieved in silico), five genes were selected. ChIP analysis revealed that the recruitment of EZH2 is ZNF518B-dependent in KAT2B, RGS4 and EFNA5; the level of H3K27me3 changes in accordance. G9A also binds RGS4 and PADI3 in a ZNF518B-dependent manner. The results highlight the importance of epigenetics in cancer and open a novel therapeutic possibility, as inhibition of histone methyltransferases may reverse the disease-linked histone marks.
Collapse
|
24
|
Zhang C, Chen Y, Li F, Yang M, Meng F, Zhang Y, Chen W, Wang W. B7-H3 is spliced by SRSF3 in colorectal cancer. Cancer Immunol Immunother 2021; 70:311-321. [PMID: 32719950 PMCID: PMC10991627 DOI: 10.1007/s00262-020-02683-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
B7-H3, an important co-inhibitor, is abnormally highly expressed in a variety of malignancies. The antibodies targeting B7-H3 have exhibited beneficial therapeutic effects in clinical trials. Therefore, discovery of the regulatory factors in B7-H3 expression may provide new strategies for tumor therapy. Here, we investigated the splicing factors involved in the splicing of B7-H3. By individual knockdown of the splicing factors in colorectal cancer (CRC) cells, we found that B7-H3 expression was markedly inhibited by SRSF3 and SRSF8, especially SRSF3. Then we found that both SRSF3 and B7-H3 were highly expressed in CRC tissues. Moreover, high-expression of either SRSF3 or B7-H3 was significantly correlated with poor prognosis of patients. The expression of B7-H3 mRNA and protein were evidently reduced by SRSF3 silence, but were enhanced by overexpression of SRSF3 in both HCT-116 and HCT-8 cells. The results from the RNA immunoprecipitation (RIP) assays demonstrated that SRSF3 protein directly binds to B7-H3 mRNA. In addition, we constructed a minigene recombinant plasmid for expressing B7-H3 exons 3-6. We found that SRSF3 contributed to the retention of B7-H3 exon 4. These findings demonstrate that SRSF3 involves in the splicing of B7-H3 by directly binding to its exon 4 and/or 6. It may provide novel insights into the regulatory mechanisms of B7-H3 expression and potential strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Chunxia Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215006, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yinshuang Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Fuchao Li
- Department of Gerontology, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, China
| | - Man Yang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Fanyi Meng
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Yawen Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215006, China.
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Shizhi Street 188, Suzhou, 215006, China.
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215006, China.
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
25
|
Wang L, Shamardani K, Babikir H, Catalan F, Nejo T, Chang S, Phillips JJ, Okada H, Diaz AA. The evolution of alternative splicing in glioblastoma under therapy. Genome Biol 2021; 22:48. [PMID: 33499924 PMCID: PMC7835670 DOI: 10.1186/s13059-021-02259-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background Alternative splicing is a rich source of tumor-specific neoantigen targets for immunotherapy. This holds promise for glioblastomas (GBMs), the most common primary tumors of the adult brain, which are resistant to standard-of-care therapy. Although most clinical trials enroll patients at recurrence, most preclinical studies have been done with specimens from primary disease. There are limited expression data from GBMs at recurrence and surprisingly little is known about the evolution of splicing patterns under therapy. Result We profile 37 primary-recurrent paired human GBM specimens via RNA sequencing. We describe the landscape of alternative splicing in GBM at recurrence and contrast that to primary and non-malignant brain-tissue specimens. By screening single-cell atlases, we identify cell-type-specific splicing patterns and novel splicing events in cell-surface proteins that are suitable targets for engineered T cell therapies. We identify recurrent-specific isoforms of mitogen-activated kinase pathway genes that enhance invasiveness and are preferentially expressed by stem-like cells. Conclusion These studies shed light on gene expression in recurrent GBM and identify novel targets for therapeutic development. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02259-5.
Collapse
Affiliation(s)
- Lin Wang
- Department of Neurological Surgery, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.,Helen Diller Family Comprehensive Cancer Center, 1450, 3rd Street, San Francisco, CA, 94158, USA
| | - Karin Shamardani
- Department of Neurological Surgery, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.,Helen Diller Family Comprehensive Cancer Center, 1450, 3rd Street, San Francisco, CA, 94158, USA
| | - Husam Babikir
- Department of Neurological Surgery, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.,Helen Diller Family Comprehensive Cancer Center, 1450, 3rd Street, San Francisco, CA, 94158, USA
| | - Francisca Catalan
- Department of Neurological Surgery, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.,Helen Diller Family Comprehensive Cancer Center, 1450, 3rd Street, San Francisco, CA, 94158, USA
| | - Takahide Nejo
- Department of Neurological Surgery, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.,Helen Diller Family Comprehensive Cancer Center, 1450, 3rd Street, San Francisco, CA, 94158, USA
| | - Susan Chang
- Department of Neurological Surgery, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.,Helen Diller Family Comprehensive Cancer Center, 1450, 3rd Street, San Francisco, CA, 94158, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.,Helen Diller Family Comprehensive Cancer Center, 1450, 3rd Street, San Francisco, CA, 94158, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.,Helen Diller Family Comprehensive Cancer Center, 1450, 3rd Street, San Francisco, CA, 94158, USA.,Parker Institute for Cancer Immunotherapy , 1 Letterman Dr Suite D3500, Building D, San Francisco, CA, 94129, USA
| | - Aaron A Diaz
- Department of Neurological Surgery, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA. .,Helen Diller Family Comprehensive Cancer Center, 1450, 3rd Street, San Francisco, CA, 94158, USA.
| |
Collapse
|
26
|
Du JX, Zhu GQ, Cai JL, Wang B, Luo YH, Chen C, Cai CZ, Zhang SJ, Zhou J, Fan J, Zhu W, Dai Z. Splicing factors: Insights into their regulatory network in alternative splicing in cancer. Cancer Lett 2020; 501:83-104. [PMID: 33309781 DOI: 10.1016/j.canlet.2020.11.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022]
Abstract
More than 95% of all human genes are alternatively spliced after transcription, which enriches the diversity of proteins and regulates transcript and/or protein levels. The splicing isoforms produced from the same gene can manifest distinctly, even exerting opposite effects. Mounting evidence indicates that the alternative splicing (AS) mechanism is ubiquitous in various cancers and drives the generation and maintenance of various hallmarks of cancer, such as enhanced proliferation, inhibited apoptosis, invasion and metastasis, and angiogenesis. Splicing factors (SFs) play pivotal roles in the recognition of splice sites and the assembly of spliceosomes during AS. In this review, we mainly discuss the similarities and differences of SF domains, the details of SF function in AS, the effect of SF-driven pathological AS on different hallmarks of cancer, and the main drivers of SF expression level and subcellular localization. In addition, we briefly introduce the application prospects of targeted therapeutic strategies, including small-molecule inhibitors, siRNAs and splice-switching oligonucleotides (SSOs), from three perspectives (drivers, SFs and pathological AS). Finally, we share our insights into the potential direction of research on SF-centric AS-related regulatory networks.
Collapse
Affiliation(s)
- Jun-Xian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia-Liang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Yi-Hong Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cong Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cheng-Zhe Cai
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Si-Jia Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Wei Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
27
|
Chen YS, Liu CW, Lin YC, Tsai CY, Yang CH, Lin JC. The SRSF3-MBNL1-Acin1 circuit constitutes an emerging axis to lessen DNA fragmentation in colorectal cancer via an alternative splicing mechanism. Neoplasia 2020; 22:702-713. [PMID: 33142236 PMCID: PMC7586066 DOI: 10.1016/j.neo.2020.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
Altered alternative splicing (AS) events are considered pervasive causes that result in the development of carcinogenesis. Herein, we identified reprogrammed expression and splicing profiles of Muscle blind-like protein 1 (MBNL1) transcripts in tumorous tissues compared to those of adjacent normal tissues dissected from individual colorectal cancer (CRC) patients using whole-transcriptome analyses. MBNL1 transcript 8 (MBNL18) containing exons 5 and 7 was majorly generated by cancerous tissues and CRC-derived cell lines compared with those of the normal counterparts. Interplay between the exonic CA-rich element and upregulated SRSF3 facilitated the inclusion of MBNL1 exons 5 and 7, which encode a bipartite nuclear localization signal (NLS) and conformational NLS. Moreover, abundant SRSF3 interfered with the autoregulatory mechanism involved in utilization of MBNL1 exons 5 and 7, resulting in enrichment of the MBNL18 isoform in cultured CRC cell lines. Subsequently, an increase in the MBNL18 isoform drove a shift in the apoptotic chromatin condensation inducer in nucleus 1-S (Acin1-S) isoform to the Acin1-L isoform, leading to diminished DNA fragmentation in cultured CRC cells under oxidative stress. Taken together, SRSF3-MBNL1-Acin1 was demonstrated to constitute an emerging axis which is relevant to proapoptotic signatures and post-transcriptional events of CRC cells.
Collapse
Affiliation(s)
- Yi-Su Chen
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chao-Wei Liu
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Laboratory Science, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ying Tsai
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hui Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
28
|
Zhou Z, Gong Q, Lin Z, Wang Y, Li M, Wang L, Ding H, Li P. Emerging Roles of SRSF3 as a Therapeutic Target for Cancer. Front Oncol 2020; 10:577636. [PMID: 33072610 PMCID: PMC7544984 DOI: 10.3389/fonc.2020.577636] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ser/Arg-rich (SR) proteins are RNA-binding proteins known as constitutive and alternative splicing (AS) regulators that regulate multiple aspects of the gene expression program. Ser/Arg-rich splicing factor 3 (SRSF3) is the smallest member of the SR protein family, and its level is controlled by multiple factors and involves complex mechanisms in eukaryote cells, whereas the aberrant expression of SRSF3 is associated with many human diseases, including cancer. Here, we review state-of-the-art research on SRSF3 in terms of its function, expression, and misregulation in human cancers. We emphasize the negative consequences of the overexpression of the SRSF3 oncogene in cancers, the pathways underlying SRSF3-mediated transformation, and implications of potential anticancer drugs by downregulation of SRSF3 expression for cancer therapy. Cumulative research on SRSF3 provides critical insight into its essential part in maintaining cellular processes, offering potential new targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qi Gong
- Departments of Pediatrics, Second Clinical Medical College of Qingdao University, Qingdao, China
| | - Zhijuan Lin
- Key Laboratory for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Mengkun Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hongfei Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Lu X, Zhou Y, Meng J, Jiang L, Gao J, Cheng Y, Yan H, Wang Y, Zhang B, Li X, Yan F. RNA processing genes characterize RNA splicing and further stratify colorectal cancer. Cell Prolif 2020; 53:e12861. [PMID: 32596958 PMCID: PMC7445406 DOI: 10.1111/cpr.12861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023] Open
Abstract
Objectives Due to the limited evaluation of the prognostic value of RNA processing genes (RPGs), which are regulators of alternative splicing events (ASEs) that have been shown to be associated with tumour progression, this study sought to determine whether colorectal cancer (CRC) could be further stratified based on the expression pattern of RPGs. Materials and Methods The gene expression profiles of CRCs were collected from TCGA (training set) and three external validation cohorts, representing 1060 cases totally. Cox regression with least absolute shrinkage and selection operator (LASSO) penalty was used to develop an RNA processing gene index (RPGI) risk score. Kaplan‐Meier curves, multivariate Cox regression and restricted mean survival (RMS) analyses were harnessed to evaluate the prognostic value of the RPGI. Results A 22‐gene RPGI signature was developed, and its risk score served as a strong independent prognostic factor across all data sets when adjusted for major clinical variables. Moreover, ASEs for certain genes, such as FGFR1 and the RAS oncogene family, were significantly correlated with RPGI. Expression levels of genes involved in splicing‐ and tumour‐associated pathways were significantly correlated with RPGI score. Furthermore, a combination of RPGI with age and tumour stage resulted in significantly improved prognostic accuracy. Conclusions Our findings highlighted the prognostic value of RPGs for risk stratification of CRC patients and provide insights into specific ASEs associated with the development of CRC.
Collapse
Affiliation(s)
- Xiaofan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yujie Zhou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, P.R. China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China.,Department of Pathology and Urology, University of Rochester Medical Center, Rochester, NY, USA
| | - Liyun Jiang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China.,Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Gao
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yu Cheng
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Hangyu Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yang Wang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Bing Zhang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Xiaobo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, P.R. China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
30
|
Lian H, Wang A, Shen Y, Wang Q, Zhou Z, Zhang R, Li K, Liu C, Jia H. Identification of novel alternative splicing isoform biomarkers and their association with overall survival in colorectal cancer. BMC Gastroenterol 2020; 20:171. [PMID: 32503434 PMCID: PMC7275609 DOI: 10.1186/s12876-020-01288-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 04/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) is an important mechanism of regulating eukaryotic gene expression. Understanding the most common AS events in colorectal cancer (CRC) will help developing diagnostic, prognostic or therapeutic tools in CRC. METHODS Publicly available RNA-seq data of 28 pairs of CRC and normal tissues and 18 pairs of metastatic and normal tissues were used to identify AS events using PSI and DEXSeq methods. RESULT The highly significant splicing events were used to search a database of The Cancer Genome Atlas (TCGA). We identified AS events in 9 genes in CRC (more inclusion of CLK1-E4, COL6A3-E6, CD44v8-10, alternative first exon regulation of ARHGEF9, CHEK1, HKDC1 and HNF4A) or metastasis (decrease of SERPINA1-E1a, CALD-E5b, E6). Except for CHEK1, all other 8 splicing events were confirmed by TCGA data with 382 CRC tumors and 51 normal controls. The combination of three splicing events was used to build a logistic regression model that can predict sample type (CRC or normal) with near perfect performance (AUC = 1). Two splicing events (COL6A3 and HKDC1) were found to be significantly associated with patient overall survival. The AS features of the 9 genes are highly consistent with previous reports and/or relevant to cancer biology. CONCLUSIONS The significant association of higher expression of the COL6A3 E5-E6 junction and HKDC1 E1-E2 with better overall survival was firstly reported. This study might be of significant value in the future biomarker, prognosis marker and therapeutics development of CRC.
Collapse
Affiliation(s)
- Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Aili Wang
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Yuanyuan Shen
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Qian Wang
- Tianjia Genomes Tech CO., LTD., Anhui Chaohu Economic Develop Zone, No. 6 Longquan Road, Hefei, 238014, People's Republic of China
| | - Zhenru Zhou
- Tianjia Genomes Tech CO., LTD., Anhui Chaohu Economic Develop Zone, No. 6 Longquan Road, Hefei, 238014, People's Republic of China
| | - Ranran Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Kun Li
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China.
| | - Hongtao Jia
- Tianjia Genomes Tech CO., LTD., Anhui Chaohu Economic Develop Zone, No. 6 Longquan Road, Hefei, 238014, People's Republic of China.
| |
Collapse
|
31
|
Chen H, Kong Y, Yao Q, Zhang X, Fu Y, Li J, Liu C, Wang Z. Three hypomethylated genes were associated with poor overall survival in pancreatic cancer patients. Aging (Albany NY) 2020; 11:885-897. [PMID: 30710069 PMCID: PMC6382432 DOI: 10.18632/aging.101785] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/15/2019] [Indexed: 01/29/2023]
Abstract
Pancreatic cancer (PC) is a highly malignant cancer with poor prognosis and high mortality. Aberrant DNA methylation plays a critical role in the occurrence, progression and prognosis of malignant tumors. In this study, we employed multiple datasets from APGI, TCGA and GEO to perform Multi-Omics analysis, including DNA methylation and expression profiling analysis. Three differentially expressed genes (SULT1E1, IGF2BP3, MAP4K4) with altered status of DNA methylation were identified and then enrolled into prognostic risk score model using LASSO regression. Univariate cox regression analysis indicated that high risk score was significantly associated with poor prognosis. Multivariate cox regression analysis proved the risk score was an independent prognostic factor for PC. In addition, time-dependent ROC curves indicated good performance of our model in predicting the 1-, 3- and 5-year survival of PC patients. Besides, stratified survival analysis revealed that the risk score model had greater prognostic value for patients of late stage with T3/T4 and N+. Pathway enrichment analysis suggested that these three genes might promote tumor progression by affecting signaling by Rho GTPases and chromosome segregation. In summary, three hypomethylated gene signature were significantly associated with patients' overall survival, which might serve as potential prognostic biomarkers for PC patients.
Collapse
Affiliation(s)
- Huiming Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.,Department of General Surgery, Shaanxi Provincial Rehabilitation Hospital,Xi'an 710065, Shaanxi, China
| | - Yan Kong
- Department of Clinical Laboratory, Liaocheng People's Hospital, Taishan Medical College, Liaocheng 252000, Shandong, China
| | - Qing Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yunong Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jia Li
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
32
|
Wang JL, Guo CR, Sun TT, Su WY, Hu Q, Guo FF, Liang LX, Xu J, Xiong H, Fang JY. SRSF3 functions as an oncogene in colorectal cancer by regulating the expression of ArhGAP30. Cancer Cell Int 2020; 20:120. [PMID: 32308565 PMCID: PMC7149931 DOI: 10.1186/s12935-020-01201-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 04/03/2020] [Indexed: 01/30/2023] Open
Abstract
Background Splicing factor SRSF3 is an oncogene and overexpressed in various kinds of cancers, however, the function and mechanism involved in colorectal cancer (CRC) remained unclear. The aim of this study was to explore the relationship between SRSF3 and carcinogenesis and progression of CRC. Methods The expression of SRSF3 in CRC tissues was detected by immunohistochemistry. The proliferation and invasion rate was analyzed by CCK-8 assay, colony formation assay, transwell invasion assay and xenograft experiment. The expression of selected genes was detected by western blot or real time PCR. Results SRSF3 is overexpressed in CRC tissues and its high expression was associated with CRC differentiation, lymph node invasion and AJCC stage. Upregulation of SRSF3 was also associated with shorter overall survival. Knockdown of SRSF3 in CRC cells activated ArhGAP30/Ace-p53 and decreased cell proliferation, migration and survival; while ectopic expression of SRSF3 attenuated ArhGAP30/Ace-p53 and increases cell proliferation, migration and survival. Targeting SRSF3 in xenograft tumors suppressed tumor progression in vivo. Conclusions Taken together, our data identify SRSF3 as a regulator for ArhGAP30/Ace-p53 in CRC, and highlight potential prognostic and therapeutic significance of SRSF3 in CRC.
Collapse
Affiliation(s)
- Ji-Lin Wang
- 1Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Chun-Rong Guo
- 2The Centre of Teaching and Experiment, Shanghai University of Traditional Chinese Medicine, Pudong District, Shanghai, China
| | - Tian-Tian Sun
- 1Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Wen-Yu Su
- 1Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Qiang Hu
- 1Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Fang-Fang Guo
- 1Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Lun-Xi Liang
- 1Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Jie Xu
- 1Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Hua Xiong
- 1Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Jing-Yuan Fang
- 1Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001 China
| |
Collapse
|
33
|
Che Y, Fu L. Aberrant expression and regulatory network of splicing factor-SRSF3 in tumors. J Cancer 2020; 11:3502-3511. [PMID: 32284746 PMCID: PMC7150454 DOI: 10.7150/jca.42645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing facilitates the splicing of precursor RNA into different isoforms. Alternatively spliced transcripts often exhibit antagonistic functions or differential temporal or spatial expression patterns. There is increasing evidence that alternative splicing, especially by the serine-arginine rich (SR) protein family, leads to abnormal expression patterns and is closely related to the development of cancer. SRSF3, also known as SRp20, is a splicing factor. Through alternative splicing, it plays important roles in regulating various biological functions, such as cell cycle, cell proliferation, migration and invasion, under pathological and physiological conditions. Deregulation of SRSF3 is an essential feature of cancers. SRSF3 is also considered a candidate therapeutic target. Therefore, the involvement of abnormal splicing in tumorigenesis and the regulation of splicing factors deserve further analysis and discussion. Here, we summarize the function of SRSF3-regulated alternative transcripts in cancer cell biology at different stages of tumor development and the regulation of SRSF3 in tumorigenesis.
Collapse
Affiliation(s)
- Yingying Che
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| |
Collapse
|
34
|
Jiménez-Vacas JM, Herrero-Aguayo V, Montero-Hidalgo AJ, Gómez-Gómez E, Fuentes-Fayos AC, León-González AJ, Sáez-Martínez P, Alors-Pérez E, Pedraza-Arévalo S, González-Serrano T, Reyes O, Martínez-López A, Sánchez-Sánchez R, Ventura S, Yubero-Serrano EM, Requena-Tapia MJ, Castaño JP, Gahete MD, Luque RM. Dysregulation of the splicing machinery is directly associated to aggressiveness of prostate cancer. EBioMedicine 2020; 51:102547. [PMID: 31902674 PMCID: PMC7000340 DOI: 10.1016/j.ebiom.2019.11.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dysregulation of splicing variants (SVs) expression has recently emerged as a novel cancer hallmark. Although the generation of aberrant SVs (e.g. AR-v7/sst5TMD4/etc.) is associated to prostate-cancer (PCa) aggressiveness and/or castration-resistant PCa (CRPC) development, whether the molecular reason behind such phenomena might be linked to a dysregulation of the cellular machinery responsible for the splicing process [spliceosome-components (SCs) and splicing-factors (SFs)] has not been yet explored. METHODS Expression levels of 43 key SCs and SFs were measured in two cohorts of PCa-samples: 1) Clinically-localized formalin-fixed paraffin-embedded PCa-samples (n = 84), and 2) highly-aggressive freshly-obtained PCa-samples (n = 42). FINDINGS A profound dysregulation in the expression of multiple components of the splicing machinery (i.e. 7 SCs/19 SFs) were found in PCa compared to their non-tumor adjacent-regions. Notably, overexpression of SNRNP200, SRSF3 and SRRM1 (mRNA and/or protein) were associated with relevant clinical (e.g. Gleason score, T-Stage, metastasis, biochemical recurrence, etc.) and molecular (e.g. AR-v7 expression) parameters of aggressiveness in PCa-samples. Functional (cell-proliferation/migration) and mechanistic [gene-expression (qPCR) and protein-levels (western-blot)] assays were performed in normal prostate cells (PNT2) and PCa-cells (LNCaP/22Rv1/PC-3/DU145 cell-lines) in response to SNRNP200, SRSF3 and/or SRRM1 silencing (using specific siRNAs) revealed an overall decrease in proliferation/migration-rate in PCa-cells through the modulation of key oncogenic SVs expression levels (e.g. AR-v7/PKM2/XBP1s) and alteration of oncogenic signaling pathways (e.g. p-AKT/p-JNK). INTERPRETATION These results demonstrate that the spliceosome is drastically altered in PCa wherein SNRNP200, SRSF3 and SRRM1 could represent attractive novel diagnostic/prognostic and therapeutic targets for PCa and CRPC.
Collapse
Affiliation(s)
- Juan M Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Antonio J León-González
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Sergio Pedraza-Arévalo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Teresa González-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Oscar Reyes
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Department of Computer Sciences, University of Córdoba, Córdoba, Spain
| | - Ana Martínez-López
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Sebastián Ventura
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Department of Computer Sciences, University of Córdoba, Córdoba, Spain
| | - Elena M Yubero-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain; Lipids and Atherosclerosis Unit, Reina Sofia University Hospital, Córdoba, Spain
| | - María J Requena-Tapia
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| |
Collapse
|
35
|
Xu L, Shen J, Jia J, Jia R. Inclusion of hnRNP L Alternative Exon 7 Is Associated with Good Prognosis and Inhibited by Oncogene SRSF3 in Head and Neck Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9612425. [PMID: 31828152 PMCID: PMC6885243 DOI: 10.1155/2019/9612425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/22/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES Alternative splicing is increasingly associated with cancers. HnRNP L is a splicing factor that promotes carcinogenesis in head and neck squamous cell carcinoma (HNSCC) and other cancers. Alternative exon 7 of hnRNP L contains an in-frame stop codon. Exon 7-included transcripts can be degraded via nonsense-mediated decay or encode a truncated hnRNP L protein. Exon 7-excluded transcripts can encode full-length functional hnRNP L protein. HnRNP L has an autoregulation mechanism by promoting the inclusion of its own exon 7. This study aimed to understand the relationship between the alternative splicing of exon 7 and HNSCC. Oncogenic splicing factor SRSF3 has an alternative exon 4 and similar autoregulation mechanism. HnRNP L promotes SRSF3 exon 4 inclusion and then inhibits SRSF3 autoregulation. MATERIALS AND METHODS The relationship between alternative splicing of hnRNP L exon 7 and clinical characteristics of HNSCC in a TCGA dataset was analyzed and confirmed by RT-PCR in a cohort of 61 oral squamous cell carcinoma (OSCC) patients. The regulators of exon 7 splicing were screened in 29 splicing factors and confirmed by overexpression or silencing assay in HEK 293, CAL 27, and SCC-9 cell lines. RESULTS The inclusion of hnRNP L exon 7 was significantly negatively associated with the progression and prognosis of HNSCC, which was confirmed in the cohort of 61 OSCC patients. SRSF3 inhibited exon 7 inclusion and hnRNP L autoregulation and then promoted the expression of full-length functional hnRNP L protein. SRSF3 exon 4 inclusion was correlated with hnRNP L exon 7 inclusion in both HNSCC and breast cancer. HNSCC patients with both low hnRNP L exon 7 and SRSF3 exon 4 inclusion show poor overall survival. CONCLUSIONS Inclusion of hnRNP L alternative exon 7 is associated with good prognosis and inhibited by oncogene SRSF3 in HNSCC.
Collapse
Affiliation(s)
- Lingfeng Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiaoxiang Shen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, Xiamen Stomatology Hospital, Hospital and School of Stomatology, Xiamen Medical University, Xiamen, China
| | - Jun Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Bos PH, Lowry ER, Costa J, Thams S, Garcia-Diaz A, Zask A, Wichterle H, Stockwell BR. Development of MAP4 Kinase Inhibitors as Motor Neuron-Protecting Agents. Cell Chem Biol 2019; 26:1703-1715.e37. [PMID: 31676236 DOI: 10.1016/j.chembiol.2019.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/14/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Disease-causing mutations in many neurodegenerative disorders lead to proteinopathies that trigger endoplasmic reticulum (ER) stress. However, few therapeutic options exist for patients with these diseases. Using an in vitro screening platform to identify compounds that protect human motor neurons from ER stress-mediated degeneration, we discovered that compounds targeting the mitogen-activated protein kinase kinase kinase kinase (MAP4K) family are neuroprotective. The kinase inhibitor URMC-099 (compound 1) stood out as a promising lead compound for further optimization. We coupled structure-based compound design with functional activity testing in neurons subjected to ER stress to develop a series of analogs with improved MAP4K inhibition and concomitant increases in potency and efficacy. Further structural modifications were performed to enhance the pharmacokinetic profiles of the compound 1 derivatives. Prostetin/12k emerged as an exceptionally potent, metabolically stable, and blood-brain barrier-penetrant compound that is well suited for future testing in animal models of neurodegeneration.
Collapse
Affiliation(s)
- Pieter H Bos
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Emily R Lowry
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jonathon Costa
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sebastian Thams
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alejandro Garcia-Diaz
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
37
|
Sun Y, Yan L, Guo J, Shao J, Jia R. Downregulation of SRSF3 by antisense oligonucleotides sensitizes oral squamous cell carcinoma and breast cancer cells to paclitaxel treatment. Cancer Chemother Pharmacol 2019; 84:1133-1143. [PMID: 31515668 DOI: 10.1007/s00280-019-03945-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Paclitaxel (PTX) is widely used in the chemotherapy of many cancers, including breast cancer and oral squamous cell carcinoma (OSCC). However, many patients respond poorly to PTX treatment. The SRSF3 oncogene and several splicing factors play important roles in OSCC tumorigenesis. This study aimed to understand the function of splicing factors in PTX treatment and improve the therapeutic effects of PTX treatment. METHODS Splicing factors regulated by PTX treatment were screened in CAL 27 cell by reverse transcription polymerase chain reaction. The function of SRSF3 in PTX treatment was analyzed by gain-of-function or loss-of-function assay in OSCC cell lines CAL 27 and SCC-9 and breast cancer cell line MCF-7. Alternative splicing of SRSF3 exon 4 in cancer tissues or cells was analyzed by RT-PCR and online program TSVdb. SRSF3-specific antisense oligonucleotide (ASO) SR-3 was used to downregulate SRSF3 expression and enhance the effect of PTX treatment. RESULTS PTX treatment decreased SRSF3 expression, and SRSF3 overexpression rescued the growth inhibition caused by PTX in both OSCC and breast cancer cells. Moreover, we found that PTX treatment could repress SRSF3 exon 4 (containing an in-frame stop codon) exclusion and then decrease the SRSF3 protein expression. Increased exclusion of SRSF3 exon 4 is correlated with poor survival in OSCC and breast cancer patients. SR-3 downregulated SRSF3 protein expression and significantly increased the sensitivity of cancer cells to PTX treatment. CONCLUSIONS SRSF3 downregulation by ASO sensitizes cancer cells to PTX treatment.
Collapse
Affiliation(s)
- Yanan Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079, Wuhan, People's Republic of China
| | - Lingyan Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079, Wuhan, People's Republic of China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079, Wuhan, People's Republic of China.
| | - Jun Shao
- Hubei Cancer Hospital, 116 Zhuodaoquan South Load, 430079, Wuhan, People's Republic of China.
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079, Wuhan, People's Republic of China.
| |
Collapse
|
38
|
Wang WY, Quan W, Yang F, Wei YX, Chen JJ, Yu H, Xie J, Zhang Y, Li ZF. RBM4 modulates the proliferation and expression of inflammatory factors via the alternative splicing of regulatory factors in HeLa cells. Mol Genet Genomics 2019; 295:95-106. [DOI: 10.1007/s00438-019-01606-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022]
|
39
|
Amirkhah R, Naderi-Meshkin H, Shah JS, Dunne PD, Schmitz U. The Intricate Interplay between Epigenetic Events, Alternative Splicing and Noncoding RNA Deregulation in Colorectal Cancer. Cells 2019; 8:cells8080929. [PMID: 31430887 PMCID: PMC6721676 DOI: 10.3390/cells8080929] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) results from a transformation of colonic epithelial cells into adenocarcinoma cells due to genetic and epigenetic instabilities, alongside remodelling of the surrounding stromal tumour microenvironment. Epithelial-specific epigenetic variations escorting this process include chromatin remodelling, histone modifications and aberrant DNA methylation, which influence gene expression, alternative splicing and function of non-coding RNA. In this review, we first highlight epigenetic modulators, modifiers and mediators in CRC, then we elaborate on causes and consequences of epigenetic alterations in CRC pathogenesis alongside an appraisal of the complex feedback mechanisms realized through alternative splicing and non-coding RNA regulation. An emphasis in our review is put on how this intricate network of epigenetic and post-transcriptional gene regulation evolves during the initiation, progression and metastasis formation in CRC.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
- Nastaran Center for Cancer Prevention (NCCP), Mashhad 9185765476, Iran
| | - Hojjat Naderi-Meshkin
- Nastaran Center for Cancer Prevention (NCCP), Mashhad 9185765476, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad 9177949367, Iran
| | - Jaynish S Shah
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia.
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia.
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia.
| |
Collapse
|
40
|
Betancourt LH, Pawłowski K, Eriksson J, Szasz AM, Mitra S, Pla I, Welinder C, Ekedahl H, Broberg P, Appelqvist R, Yakovleva M, Sugihara Y, Miharada K, Ingvar C, Lundgren L, Baldetorp B, Olsson H, Rezeli M, Wieslander E, Horvatovich P, Malm J, Jönsson G, Marko-Varga G. Improved survival prognostication of node-positive malignant melanoma patients utilizing shotgun proteomics guided by histopathological characterization and genomic data. Sci Rep 2019; 9:5154. [PMID: 30914758 PMCID: PMC6435712 DOI: 10.1038/s41598-019-41625-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Metastatic melanoma is one of the most common deadly cancers, and robust biomarkers are still needed, e.g. to predict survival and treatment efficiency. Here, protein expression analysis of one hundred eleven melanoma lymph node metastases using high resolution mass spectrometry is coupled with in-depth histopathology analysis, clinical data and genomics profiles. This broad view of protein expression allowed to identify novel candidate protein markers that improved prediction of survival in melanoma patients. Some of the prognostic proteins have not been reported in the context of melanoma before, and few of them exhibit unexpected relationship to survival, which likely reflects the limitations of current knowledge on melanoma and shows the potential of proteomics in clinical cancer research.
Collapse
Affiliation(s)
| | - Krzysztof Pawłowski
- Lund University, Lund, Sweden.
- Warsaw University of Life Sciences SGGW, Warszawa, Poland.
| | | | - A Marcell Szasz
- Lund University, Lund, Sweden
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter Horvatovich
- Lund University, Lund, Sweden
- University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
41
|
Zhou L, Guo J, Jia R. Oncogene SRSF3 suppresses autophagy via inhibiting BECN1 expression. Biochem Biophys Res Commun 2019; 509:966-972. [PMID: 30654935 DOI: 10.1016/j.bbrc.2019.01.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
Abstract
Autophagy is an evolutionarily conserved cellular catabolic process. Dysfunction in the autophagy pathway has been demonstrated to be associated with many human diseases, including cancer. Alternative splicing of pre-mRNA is also an evolutionarily conserved regulatory mechanism of gene expression. Dysregulation of alternative splicing is increasingly linked to cancer. However, the association between these two cellular conserved processes is unclear. Splicing factors are critical players in the regulation of alternative splicing of pre-mRNA. We analyzed the expression of 28 splicing factors during hypoxia-induced autophagy in three oral squamous cell carcinoma (OSCC) cell lines. We discovered that oncogenes SRSF3 and SRSF1 are significantly downregulated in all three cell lines. Moreover, knockdown of SRSF3 increased autophagic activity, whereas overexpression of SRSF3 inhibited hypoxia-induced autophagy. Loss-of-function and gain-of-function assays also showed that SRSF3 inhibits the expression of p65 and FoxO1 and their downstream target gene BECN1, a key regulator of autophagy. Our results demonstrated that splicing factor SRSF3 is an autophagy suppressor.
Collapse
Affiliation(s)
- Lu Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| |
Collapse
|
42
|
Rebolledo-Jaramillo B, Ziegler A. Teneurins: An Integrative Molecular, Functional, and Biomedical Overview of Their Role in Cancer. Front Neurosci 2018; 12:937. [PMID: 30618566 PMCID: PMC6297388 DOI: 10.3389/fnins.2018.00937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Teneurins are large transmembrane proteins originally identified in Drosophila. Their essential role in development of the central nervous system is conserved throughout species, and evidence supports their involvement in organogenesis of additional tissues. Homophilic and heterophilic interactions between Teneurin paralogues mediate cellular adhesion in crucial processes such as neuronal pathfinding and synaptic organization. At the molecular level, Teneurins are proteolytically processed into distinct subdomains that have been implicated in extracellular and intracellular signaling, and in transcriptional regulation. Phylogenetic studies have shown a high degree of intra- and interspecies conservation of Teneurin genes. Accordingly, the occurrence of genetic variants has been associated with functional and phenotypic alterations in experimental systems, and with some inherited or sporadic conditions. Recently, tumor-related variations in Teneurin gene expression have been associated with patient survival in different cancers. Although these findings were incidental and molecular mechanisms were not addressed, they suggested a potential utility of Teneurin transcript levels as biomarkers for disease prognosis. Mutations and chromosomal alterations affecting Teneurin genes have been found occasionally in tumors, but literature remains scarce. The analysis of open-access molecular and clinical datasets derived from large oncologic cohorts provides an invaluable resource for the identification of additional somatic mutations. However, Teneurin variants have not been classified in terms of pathogenic risk and their phenotypic impact remains unknown. On this basis, is it plausible to hypothesize that Teneurins play a role in carcinogenesis? Does current evidence support a tumor suppressive or rather oncogenic function for these proteins? Here, we comprehensively discuss available literature with integration of molecular evidence retrieved from open-access databases. We show that Teneurins undergo somatic changes comparable to those of well-established cancer genes, and discuss their involvement in cancer-related signaling pathways. Current data strongly suggest a functional contribution of Teneurins to human carcinogenesis.
Collapse
Affiliation(s)
| | - Annemarie Ziegler
- Center for Genetics and Genomics, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|