1
|
Singh DP, Pathak R, Chintalaramulu N, Pandit A, Kumar A, Ebenezer PJ, Kumar S, Duplooy A, White ME, Jambunathan N, Dharmakumar R, Francis J. Caveolin-1 knockout mitigates breast cancer metastasis to the lungs via integrin α3 dysregulation in 4T1-induced syngeneic breast cancer model. Cancer Gene Ther 2024; 31:1658-1668. [PMID: 39244591 PMCID: PMC11567888 DOI: 10.1038/s41417-024-00821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 09/09/2024]
Abstract
Caveolin-1 (Cav-1) is a critical lipid raft protein playing dual roles as both a tumor suppressor and promoter. While its role in tumorigenesis, progression, and metastasis has been recognized, the explicit contribution of Cav-1 to the onset of lung metastasis from primary breast malignancies remains unclear. Here, we present the first evidence that Cav-1 knockout in mammary epithelial cells significantly reduces lung metastasis in syngeneic breast cancer mouse models. In vitro, Cav-1 knockout in 4T1 cells suppressed extracellular vesicle secretion, cellular motility, and MMP secretion compared to controls. Complementing this, in vivo analyses demonstrated a marked reduction in lung metastatic foci in mice injected with Cav-1 knockout 4T1 cells as compared to wild-type cells, which was further corroborated by mRNA profiling of the primary tumor. We identified 21 epithelial cell migration genes exhibiting varied expression in tumors derived from Cav-1 knockout and wild-type 4T1 cells. Correlation analysis and immunoblotting further revealed that Cav-1 might regulate metastasis via integrin α3 (ITGα3). In silico protein docking predicted an interaction between Cav-1 and ITGα3, which was confirmed by co-immunoprecipitation. Furthermore, Cav-1 and ITGα3 knockdown corroborated its role in metastasis in the cell migration assay.
Collapse
Affiliation(s)
- Dhirendra Pratap Singh
- Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rashmi Pathak
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Naveen Chintalaramulu
- Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abhishek Pandit
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Avinash Kumar
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Philip J Ebenezer
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Sanjay Kumar
- Department of Biological Sciences Louisiana State University, Baton Rouge, LA, USA
| | - Alexander Duplooy
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Mary Evelyn White
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
| | - Nithya Jambunathan
- Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rohan Dharmakumar
- Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joseph Francis
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
2
|
GE WEN, LI YA, RUAN YUTING, WU NINGXIA, MA PEI, XU TONGPENG, SHU YONGQIAN, WANG YINGWEI, QIU WEN, ZHAO CHENHUI. IL-17 induces NSCLC cell migration and invasion by elevating MMP19 gene transcription and expression through the interaction of p300-dependent STAT3-K631 acetylation and its Y705-phosphorylation. Oncol Res 2024; 32:625-641. [PMID: 38560562 PMCID: PMC10972722 DOI: 10.32604/or.2023.031053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 04/04/2024] Open
Abstract
The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer (NSCLC). Although researchers have disclosed that interleukin 17 (IL-17) can increase matrix metalloproteinases (MMPs) induction causing NSCLC cell metastasis, the underlying mechanism remains unclear. In the study, we found that IL-17 receptor A (IL-17RA), p300, p-STAT3, Ack-STAT3, and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17. p300, STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3, Ack-STAT3 and MMP19 level as well as the cell migration and invasion. Mechanism investigation revealed that STAT3 and p300 bound to the same region (-544 to -389 nt) of MMP19 promoter, and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity, p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17. Meanwhile, p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact, synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion. Besides, the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300, STAT3 or MMP19 gene plus IL-17 treatment, the nodule number, and MMP19, Ack-STAT3, or p-STAT3 production in the lung metastatic nodules were all alleviated. Collectively, these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation, which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.
Collapse
Affiliation(s)
- WEN GE
- Department of Immunology, Nanjing Medical University, Nanjing, 210000, China
- Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, 210000, China
| | - YA LI
- Department of Immunology, Nanjing Medical University, Nanjing, 210000, China
- Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, 210000, China
| | - YUTING RUAN
- Department of Immunology, Nanjing Medical University, Nanjing, 210000, China
- Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, 210000, China
| | - NINGXIA WU
- Department of Immunology, Nanjing Medical University, Nanjing, 210000, China
- Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, 210000, China
| | - PEI MA
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - TONGPENG XU
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - YONGQIAN SHU
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - YINGWEI WANG
- Department of Immunology, Nanjing Medical University, Nanjing, 210000, China
- Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, 210000, China
| | - WEN QIU
- Department of Immunology, Nanjing Medical University, Nanjing, 210000, China
- Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, 210000, China
| | - CHENHUI ZHAO
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210000, China
| |
Collapse
|
3
|
Villalobo A. Ca 2+ Signaling and Src Functions in Tumor Cells. Biomolecules 2023; 13:1739. [PMID: 38136610 PMCID: PMC10741856 DOI: 10.3390/biom13121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Signaling by calcium ion (Ca2+) plays a prominent role in cell physiology, and these mechanisms are frequently altered in tumor cells. In this review, we consider the interplay of Ca2+ signaling and the functions of the proto-oncogene non-receptor tyrosine kinase c-Src in tumor cells, and the viral oncogenic variant v-Src in transformed cells. Also, other members of the Src-family kinases are considered in this context. The role of Ca2+ in the cell is frequently mediated by Ca2+-binding proteins, where the Ca2+-sensor protein calmodulin (CaM) plays a prominent, essential role in many cellular signaling pathways. Thus, we cover the available information on the role and direct interaction of CaM with c-Src and v-Src in cancerous cells, the phosphorylation of CaM by v-Src/c-Src, and the actions of different CaM-regulated Ser/Thr-protein kinases and the CaM-dependent phosphatase calcineurin on v-Src/c-Src. Finally, we mention some clinical implications of these systems to identify mechanisms that could be targeted for the therapeutic treatment of human cancers.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
| |
Collapse
|
4
|
Xiong H, Ren S, Chen J, Yang X, Liu Y, Xu Z, Guo J, Jiang T, Yuan M, Liu Y, Zhang G, Li W, Machens HG, Chen Z. Knockdown of long noncoding RNA SAN rejuvenates aged adipose-derived stem cells via miR-143-3p/ADD3 axis. Stem Cell Res Ther 2023; 14:213. [PMID: 37605290 PMCID: PMC10441736 DOI: 10.1186/s13287-023-03441-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Senescent adipose-derived stem cells (ASCs) exhibit reduced therapeutic efficacy during wound healing. Transcriptional regulation factors including long noncoding RNAs (lncRNAs) reportedly have essential roles in stem cell aging. However, the mechanisms of which lncRNAs influence mesenchymal stem cell aging and how it works need further investigation. METHODS The expression patterns of lncRNA senescence-associated noncoding RNA (SAN) and miR-143-3p in ASCs obtained from old and young volunteer donors were detected by quantitative polymerase chain reaction. ASCs with overexpression or knockdown of SAN and γ-adducin (ADD3) were constructed by lentiviral transduction. Mimic and inhibitor were used to manipulate the cellular level of miR-143-3p in ASCs. The effects of these RNAs on ASCs proliferation, migration and cellular senescence were examined by EdU, transwell and senescence-activated β-galactosidase (SA-β-gal) staining assays. Wound scratch and tube formation assays were conducted to evaluate the capacities of ASCs in promoting fibroblasts migration and endothelial cells angiogenesis. Furthermore, dual-luciferase assays and rescue experiments were performed to identify the RNA interactions. Finally, the therapeutic effects of SAN-depleted aged ASCs were evaluated in a skin injury model. RESULTS The lncRNA SAN (NONHSAT035482.2) was upregulated in aged ASCs; it controlled cellular senescence in ASCs. lncRNA SAN knockdown in ASCs led to ASC functional enhancement and the inhibition of cellular senescence; it also promoted the effects of conditioned medium (CM) on endothelial cell tube formation and fibroblast migration. Mechanistic analysis showed that SAN serves as a sponge for miR-143-3p, thereby regulating the expression of ADD3. The application of SAN-depleted aged ASCs increased re-epithelialization, collagen deposition, neovascularization and led to accelerated skin wound closure, compared with transplantation of aged ASCs. CONCLUSION The lncRNA SAN mediates ASC senescence by regulating the miR-143-3p/ADD3 pathway, providing a potential target for rejuvenation of senescent ASCs and enhancement of wound repair.
Collapse
Affiliation(s)
- Hewei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhao Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Meng Yuan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yang Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guolei Zhang
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, 81675, Munich, Germany
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
5
|
Abstract
Biliary atresia (BA) is the most prevalent serious liver disease of infancy and childhood, and the principal indication for liver transplantation in pediatrics. BA is best considered as an idiopathic panbiliary cholangiopathy characterized by obstruction of bile flow and consequent cholestasis presenting during fetal and perinatal periods. While several etiologies have been proposed, each has significant drawbacks that have limited understanding of disease progression and the development of effective treatments. Recently, modern genetic analyses have uncovered gene variants contributing to BA, thereby shifting the paradigm for explaining the BA phenotype from an acquired etiology (e.g., virus, toxin) to one that results from genetically altered cholangiocyte development and function. Herein we review recently reported genetic contributions to BA, highlighting the enhanced representation of variants in biological pathways involving ciliary function, cytoskeletal structure, and inflammation. Finally, we blend these findings as a new framework for understanding the resultant BA phenotype as a developmental cholangiopathy.
Collapse
Affiliation(s)
- Dominick J Hellen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia
| | - Saul J Karpen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
6
|
Jiang Y, Shi C, Tian S, Zhi F, Shen X, Shang D, Tian J. Comprehensive molecular characterization of hypertension-related genes in cancer. CARDIO-ONCOLOGY 2022; 8:10. [PMID: 35513851 PMCID: PMC9069779 DOI: 10.1186/s40959-022-00136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/29/2022] [Indexed: 11/14/2022]
Abstract
Background During cancer treatment, patients have a significantly higher risk of developing cardiovascular complications such as hypertension. In this study, we investigated the internal relationships between hypertension and different types of cancer. Methods First, we comprehensively characterized the involvement of 10 hypertension-related genes across 33 types of cancer. The somatic copy number alteration (CNA) and single nucleotide variant (SNV) of each gene were identified for each type of cancer. Then, the expression patterns of hypertension-related genes were analyzed across 14 types of cancer. The hypertension-related genes were aberrantly expressed in different types of cancer, and some were associated with the overall survival of patients or the cancer stage. Subsequently, the interactions between hypertension-related genes and clinically actionable genes (CAGs) were identified by analyzing the co-expressions and protein–protein interactions. Results We found that certain hypertension-related genes were correlated with CAGs. Next, the pathways associated with hypertension-related genes were identified. The positively correlated pathways included epithelial to mesenchymal transition, hormone androgen receptor, and receptor tyrosine kinase, and the negatively correlated pathways included apoptosis, cell cycle, and DNA damage response. Finally, the correlations between hypertension-related genes and drug sensitivity were evaluated for different drugs and different types of cancer. The hypertension-related genes were all positively or negatively correlated with the resistance of cancer to the majority of anti-cancer drugs. These results highlight the importance of hypertension-related genes in cancer. Conclusions This study provides an approach to characterize the relationship between hypertension-related genes and cancers in the post-genomic era. Supplementary Information The online version contains supplementary material available at 10.1186/s40959-022-00136-z.
Collapse
|
7
|
Activin A is a novel chemoattractant for migration of microglial BV2 cells. J Neuroimmunol 2022; 371:577929. [DOI: 10.1016/j.jneuroim.2022.577929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/08/2022] [Accepted: 07/09/2022] [Indexed: 11/19/2022]
|
8
|
Lechuga S, Cartagena‐Rivera AX, Khan A, Crawford BI, Narayanan V, Conway DE, Lehtimäki J, Lappalainen P, Rieder F, Longworth MS, Ivanov AI. A myosin chaperone, UNC-45A, is a novel regulator of intestinal epithelial barrier integrity and repair. FASEB J 2022; 36:e22290. [PMID: 35344227 PMCID: PMC9044500 DOI: 10.1096/fj.202200154r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 01/01/2023]
Abstract
The actomyosin cytoskeleton serves as a key regulator of the integrity and remodeling of epithelial barriers by controlling assembly and functions of intercellular junctions and cell-matrix adhesions. Although biochemical mechanisms that regulate the activity of non-muscle myosin II (NM-II) in epithelial cells have been extensively investigated, little is known about assembly of the contractile myosin structures at the epithelial adhesion sites. UNC-45A is a cytoskeletal chaperone that is essential for proper folding of NM-II heavy chains and myofilament assembly. We found abundant expression of UNC-45A in human intestinal epithelial cell (IEC) lines and in the epithelial layer of the normal human colon. Interestingly, protein level of UNC-45A was decreased in colonic epithelium of patients with ulcerative colitis. CRISPR/Cas9-mediated knock-out of UNC-45A in HT-29cf8 and SK-CO15 IEC disrupted epithelial barrier integrity, impaired assembly of epithelial adherence and tight junctions and attenuated cell migration. Consistently, decreased UNC-45 expression increased permeability of the Drosophila gut in vivo. The mechanisms underlying barrier disruptive and anti-migratory effects of UNC-45A depletion involved disorganization of the actomyosin bundles at epithelial junctions and the migrating cell edge. Loss of UNC-45A also decreased contractile forces at apical junctions and matrix adhesions. Expression of deletion mutants revealed roles for the myosin binding domain of UNC-45A in controlling IEC junctions and motility. Our findings uncover a novel mechanism that regulates integrity and restitution of the intestinal epithelial barrier, which may be impaired during mucosal inflammation.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and ImmunityLerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | - Alexander X. Cartagena‐Rivera
- Section on MechanobiologyNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMarylandUSA
| | - Afshin Khan
- Department of Inflammation and ImmunityLerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | - Bert I. Crawford
- Department of Inflammation and ImmunityLerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | - Vani Narayanan
- Department of Biomedical EngineeringVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Daniel E. Conway
- Department of Biomedical EngineeringVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jaakko Lehtimäki
- Institute of Biotechnology and Helsinki Institute of Life SciencesUniversity of HelsinkiHelsinkiFinland
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life SciencesUniversity of HelsinkiHelsinkiFinland
| | - Florian Rieder
- Department of Inflammation and ImmunityLerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery InstituteCleveland Clinic FoundationClevelandOhioUSA
| | - Michelle S. Longworth
- Department of Inflammation and ImmunityLerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | - Andrei I. Ivanov
- Department of Inflammation and ImmunityLerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| |
Collapse
|
9
|
P-Cadherin Regulates Intestinal Epithelial Cell Migration and Mucosal Repair, but Is Dispensable for Colitis Associated Colon Cancer. Cells 2022; 11:cells11091467. [PMID: 35563773 PMCID: PMC9100778 DOI: 10.3390/cells11091467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 12/16/2022] Open
Abstract
Recurrent chronic mucosal inflammation, a characteristic of inflammatory bowel diseases (IBD), perturbs the intestinal epithelial homeostasis resulting in formation of mucosal wounds and, in most severe cases, leads to colitis-associated colon cancer (CAC). The altered structure of epithelial cell-cell adhesions is a hallmark of intestinal inflammation contributing to epithelial injury, repair, and tumorigenesis. P-cadherin is an important adhesion protein, poorly expressed in normal intestinal epithelial cells (IEC) but upregulated in inflamed and injured mucosa. The goal of this study was to investigate the roles of P-cadherin in regulating intestinal inflammation and CAC. P-cadherin expression was markedly induced in the colonic epithelium of human IBD patients and CAC tissues. The roles of P-cadherin were investigated in P-cadherin null mice using dextran sulfate sodium (DSS)-induced colitis and an azoxymethane (AOM)/DSS induced CAC. Although P-cadherin knockout did not affect the severity of acute DSS colitis, P-cadherin null mice exhibited faster recovery after colitis. No significant differences in the number of colonic tumors were observed in P-cadherin null and control mice. Consistently, the CRISPR/Cas9-mediated knockout of P-cadherin in human IEC accelerated epithelial wound healing without affecting cell proliferation. The accelerated migration of P-cadherin depleted IEC was driven by activation of Src kinases, Rac1 GTPase and myosin II motors and was accompanied by transcriptional reprogramming of the cells. Our findings highlight P-cadherin as a negative regulator of IEC motility in vitro and mucosal repair in vivo. In contrast, this protein is dispensable for IEC proliferation and CAC development.
Collapse
|
10
|
Rana N, Privitera G, Kondolf HC, Bulek K, Lechuga S, De Salvo C, Corridoni D, Antanaviciute A, Maywald RL, Hurtado AM, Zhao J, Huang EH, Li X, Chan ER, Simmons A, Bamias G, Abbott DW, Heaney JD, Ivanov AI, Pizarro TT. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell 2022; 185:283-298.e17. [PMID: 35021065 PMCID: PMC8879997 DOI: 10.1016/j.cell.2021.12.024] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/09/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023]
Abstract
Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.
Collapse
Affiliation(s)
- Nitish Rana
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Departments of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Giuseppe Privitera
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hannah C Kondolf
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Katarzyna Bulek
- Department of Inflammation & Immunity, Learner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Susana Lechuga
- Department of Inflammation & Immunity, Learner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Carlo De Salvo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Daniele Corridoni
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Agne Antanaviciute
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rebecca L Maywald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander M Hurtado
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Junjie Zhao
- Department of Inflammation & Immunity, Learner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Emina H Huang
- Departments of Cancer Biology and Colon & Rectal Surgery, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaoxia Li
- Department of Inflammation & Immunity, Learner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alison Simmons
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon & Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrei I Ivanov
- Department of Inflammation & Immunity, Learner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
Sun M, Xie J, Zhang D, Chen C, Lin S, Chen Y, Zhang G. B7-H3 inhibits apoptosis of gastric cancer cell by interacting with Fibronectin. J Cancer 2022; 12:7518-7526. [PMID: 35003371 PMCID: PMC8734419 DOI: 10.7150/jca.59263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023] Open
Abstract
Anti-apoptosis has been widely accepted as a hallmark of malignancy. B7-H3, a type I transmembrane protein, plays a key role in anti-apoptosis and immune escape, but its regulation during cancer development remains unclear. To investigate how the effect of anti-apoptosis is regulated by B7-H3 in gastric cancer, we stably knocked down B7-H3 gene by shRNA in MGC-803 and MKN-45 cells. The correlation between B7-H3 and Fibronectin (FN) expression were investigated by bioinformatics in public data from TCGA (The Cancer Genome Atlas). Here, we reported that B7-H3 expression is positively correlated with FN in clinical gastric cancer samples, and B7-H3 promoted adhesion and inhibited apoptosis of gastric cancer cell through an FN-dependent pathway. Mechanistically, B7-H3 interacted with FN and subsequently activated PI3K/AKT signaling pathway, a critical mediator of oncogenic signaling. In addition, exogenous FN could inhibit the expression of pro-apoptosis-related proteins such as Caspase 3, Caspase 8, Caspase 9, Bax , p53, Apaf-1 and Cleaved PARP, and upregulated the levels of signal molecule p-PI3K, p-AKT and anti-apoptotic proteins Bcl-2 in B7-H3high group, as compared with those in B7-H3low group. In conclusion, we here for the first time revealed that B7-H3 inhibits apoptosis of gastric cancer cell through regulation of FN-mediated PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Meiyun Sun
- Medical College of Soochow University, 199 Ren ai Road, Suzhou, Jiangsu Province, 215100, China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Ren min Road, Suzhou, Jiangsu Province, 215100, China
| | - Jinjing Xie
- Medical College of Soochow University, 199 Ren ai Road, Suzhou, Jiangsu Province, 215100, China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Ren min Road, Suzhou, Jiangsu Province, 215100, China
| | - Dongze Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Ren min Road, Suzhou, Jiangsu Province, 215100, China
| | - Chunyang Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Ren min Road, Suzhou, Jiangsu Province, 215100, China
| | - Simin Lin
- Medical College of Soochow University, 199 Ren ai Road, Suzhou, Jiangsu Province, 215100, China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Ren min Road, Suzhou, Jiangsu Province, 215100, China
| | - Yan Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Ren min Road, Suzhou, Jiangsu Province, 215100, China
| | - Guangbo Zhang
- Medical College of Soochow University, 199 Ren ai Road, Suzhou, Jiangsu Province, 215100, China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Ren min Road, Suzhou, Jiangsu Province, 215100, China
| |
Collapse
|
12
|
Kiang KMY, Sun S, Leung GKK. ADD3 Deletion in Glioblastoma Predicts Disease Status and Survival. Front Oncol 2022; 11:717793. [PMID: 34970477 PMCID: PMC8712675 DOI: 10.3389/fonc.2021.717793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Loss of heterozygosity (LOH) on chromosome 10 frequently occurs in gliomas. Whereas genetic loci with allelic deletion often implicate tumor suppressor genes, a putative tumor suppressor Adducin3 (ADD3) mapped to chromosome 10q25.2 was found to be preferentially downregulated in high-grade gliomas compared with low-grade lesions. In this study, we unveil how the assessment of ADD3 deletion provides clinical significance in glioblastoma (GBM). By deletion mapping, we assessed the frequency of LOH in forty-three glioma specimens using five microsatellite markers spanning chromosome 10q23-10qter. Data were validated in The Cancer Genome Atlas (TCGA) cohort with 203 GBM patients. We found that allelic loss in both D10S173 (ADD3/MXI1 locus) and D10S1137 (MGMT locus) were positively associated with tumor grading and proliferative index (MIB-1). However, LOH events at only the ADD3/MXI1 locus provided prognostic significance with a marked reduction in patient survival and appeared to have diagnostic potential in differentiating high-grade gliomas from low-grade ones. Furthermore, we showed progressive loss of ADD3 in six out of seven patient-paired gliomas with malignant progression, as well as in recurrent GBMs. These findings suggest the significance of ADD3/MXI1 locus as a promising marker that can be used to refine the LOH10q assessment. Data further suggest the role of ADD3 as a novel tumor suppressor, whereby the loss of ADD3 is indicative of a progressive disease that may at least partially account for rapid disease progression in GBM. This study revealed for the first time the downregulation of ADD3 on the genetic level resulting from copy number deletion.
Collapse
Affiliation(s)
- Karrie Mei-Yee Kiang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Stella Sun
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Wang G, Qi W, Shen L, Wang S, Xiao R, Li W, Zhang Y, Bian X, Sun L, Qiu W. The pattern of alternative splicing in lung adenocarcinoma shows novel events correlated with tumorigenesis and immune microenvironment. BMC Pulm Med 2021; 21:400. [PMID: 34872548 PMCID: PMC8647402 DOI: 10.1186/s12890-021-01776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer deaths worldwide due to the lack of early diagnostic markers and specific drugs. Previous studies have shown the association of LUAD growth with aberrant alternative splicing (AS). Herein, clinical data of 535 tumor tissues and 59 normal tissues were extracted from The Cancer Genome Atlas (TCGA) database. Each sample was analyzed using the ESTIMATE algorithm; a comparison between higher and lower score groups (stromal or immune) was made to determine the overall- and progression-free survival-related differentially expressed AS (DEAS) events. We then performed unsupervised clustering of these DEASs, followed by determining their relationship with survival rate, immune cells, and the tumor microenvironment (TME). Next, two prognostic signatures were developed using bioinformatics tools to explore the prognosis of cases with LUAD. Five OS- and six PFS-associated DEAS events were implemented to establish a prognostic risk score model. When compared to the high-risk group (HRG), the PFS and OS of the low-risk group (LRG) were found to be considerable. Additionally, a better prognosis was found considerably associated with the ESTIMATE score of the patients as well as immune cells infiltration. Our analysis of AS events in LUAD not only helps to clarify the tumorigenesis mechanism of AS but also provides ideas for revealing potential prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Gongjun Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Medcine, Qingdao University, Qingdao, China
| | - Weiwei Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liwei Shen
- Department of Oncology, Women and Children's Hospital, Qingdao University, Qingdao, Shandong, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ruoxi Xiao
- Department of Medcine, Qingdao University, Qingdao, China
| | - Wenqian Li
- Department of Medcine, Qingdao University, Qingdao, China
| | - Yuqi Zhang
- Department of Medcine, Qingdao University, Qingdao, China
| | - Xiaoqian Bian
- Department of Medcine, Qingdao University, Qingdao, China
| | - Libin Sun
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Wills C, He Y, Summers MG, Lin Y, Phipps AI, Watts K, Law PJ, Al-Tassan NA, Maughan TS, Kaplan R, Houlston RS, Peters U, Newcomb PA, Chan AT, Buchanan DD, Gallinger S, Marchand LL, Pai RK, Shi Q, Alberts SR, Gray V, West HD, Escott-Price V, Dunlop MG, Cheadle JP. A genome-wide search for determinants of survival in 1926 patients with advanced colorectal cancer with follow-up in over 22,000 patients. Eur J Cancer 2021; 159:247-258. [PMID: 34794066 PMCID: PMC9132154 DOI: 10.1016/j.ejca.2021.09.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND While genome-wide association studies (GWAS) have identified germline variants influencing the risk of developing colorectal cancer (CRC), there has been limited examination of the possible role of inherited variation as a determinant of patient outcome. PATIENTS AND METHODS We performed a GWAS for overall survival (OS) in 1926 patients with advanced CRC from the COIN and COIN-B clinical trials. For single nucleotide polymorphisms (SNPs) showing an association with OS (P < 1.0 × 10-5), we conducted sensitivity analyses based on the time from diagnosis to death and sought independent replications in 5675 patients from the Study of Colorectal Cancer in Scotland (SOCCS) and 16,964 patients from the International Survival Analysis in Colorectal cancer Consortium (ISACC). We analysed the Human Protein Atlas to determine if ERBB4 expression was associated with survival in 438 patients with colon adenocarcinomas. RESULTS The most significant SNP associated with OS was rs79612564 in ERBB4 (hazard ratio [HR] = 1.24, 95% confidence interval [CI] = 1.16-1.32, P = 1.9 × 10-7). SNPs at 17 loci had suggestive associations for OS and all had similar effects on the time from diagnosis to death. No lead SNPs were independently replicated in the meta-analysis of all patients from SOCCS and ISACC. However, rs79612564 was significant in stage-IV patients from SOCCS (P = 2.1 × 10-2) but not ISACC (P = 0.89) and SOCCS combined with COIN and COIN-B attained genome-wide significance (P = 1.7 × 10-8). Patients with high ERBB4 expression in their colon adenocarcinomas had worse survival (HR = 1.50, 95% CI = 1.1-1.9, P = 4.6 × 10-2). CONCLUSIONS Genetic and expression data support a potential role for rs79612564 in the receptor tyrosine kinase ERBB4 as a predictive biomarker of survival.
Collapse
Affiliation(s)
- Christopher Wills
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Yazhou He
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, China
| | - Matthew G Summers
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Yi Lin
- Epidemiology Department, University of Washington, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Amanda I Phipps
- Epidemiology Department, University of Washington, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katie Watts
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Nada A Al-Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Timothy S Maughan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Richard Kaplan
- MRC Clinical Trials Unit, University College of London, 125 Kingsway, London, WC2B 6NH, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Ulrike Peters
- Epidemiology Department, University of Washington, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Polly A Newcomb
- Epidemiology Department, University of Washington, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Steve Gallinger
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Loic L Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Qian Shi
- Department of Quantitative Science, Mayo Clinic, Rochester, MN, USA
| | | | - Victoria Gray
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Hannah D West
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Valentina Escott-Price
- Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Malcolm G Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Jeremy P Cheadle
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
15
|
Suo Z, Ma X, Ding Y, Zhou Y, Duan X, Fei L, Song J, Ding H. Posttranscriptional inhibition of γ-adducin promotes the proliferation and migration of osteosarcoma cells. TUMORI JOURNAL 2021; 108:600-608. [PMID: 34632867 DOI: 10.1177/03008916211050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The expression of cytoskeleton-related protein γ-adducin (ADD3) was abnormally reduced in some tumors. Functional experiments demonstrated that it could inhibit the malignant progression of lung cancer and glioma, whereas the involvement of ADD3 in osteosarcoma was not clear. This study aimed to investigate the role of ADD3 in osteosarcoma and its upstream regulatory mechanisms. METHODS ADD3 was knocked down by siRNA transfection and the expression level of ADD3 was determined using quantitative real-time PCR assay and Western blot. CCK-8 assay and colony formation were performed to detect the capacity of cell proliferation. Transwell assay and PI and Annexin V-FITC staining were used to determine cell migration and apoptosis, respectively. Luciferase reporter experiment was performed to investigate the interaction between ADD3 and miR-23b-3p. RESULTS Based on gene silencing assays, we showed that knockdown of ADD3 suppressed apoptosis and promoted the proliferation and migration of osteosarcoma cells, revealing inhibitory effects of ADD3 in osteosarcoma. Luciferase reporter gene assays confirmed that miR-23b-3p could bind to the 3'-UTR of ADD3. Upregulation of miR-23b-3p not only inhibited the expression of ADD3, but also released the tumor suppressive role of ADD3 on the proliferation and migration of osteosarcoma cells. CONCLUSIONS Our study found that ADD3 functioned as a tumor suppressor gene during osteosarcoma development. The abnormal upregulation of miR-23b-3p targeted the expression of ADD3 and resulted in accelerated osteosarcoma cell proliferation and migration. Thus, the miR-23b-3p/ADD3 axis contributes to the development of osteosarcoma and ADD3 is a key driver of malignancy.
Collapse
Affiliation(s)
- Zhigang Suo
- Department of Spinal Orthopedics, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, Ningxia, China
| | - Xiucai Ma
- Department of Bone and Soft Tissue Oncology, Gansu Provincial People's Hospital, No. 204 Donggang West Road, Lanzhou City, Gansu Province, China
| | - Yueping Ding
- Department of Obstetrics and Gynecology, Yinchuan First People's Hospital, No. 2 Liqun West Street, Yinchuan, Ningxia, China
| | - Yu Zhou
- Surgery Laboratory, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, Ningxia, China
| | - Xiangguo Duan
- Department of Pharmacy and Medical Laboratory, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, Ningxia, China
| | - Le Fei
- Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, Ningxia, China
| | - Jianmin Song
- Department of Bone and Soft Tissue Oncology, Gansu Provincial People's Hospital, No. 204 Donggang West Road, Lanzhou City, Gansu Province, China
| | - Huiqiang Ding
- Department of Spinal Orthopedics, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, Ningxia, China
| |
Collapse
|
16
|
Human tumor necrosis factor alpha-induced protein eight-like 1 exhibited potent anti-tumor effect through modulation of proliferation, survival, migration and invasion of lung cancer cells. Mol Cell Biochem 2021; 476:3303-3318. [PMID: 33895911 DOI: 10.1007/s11010-021-04060-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer represents one of the most prevalent neoplasms across the globe. Tobacco smoking, exposure to different occupational and environmental carcinogens, and various dietary factors are strongly implicated in the development of lung cancer. The 5-year survival rate of lung cancer is extremely poor which can be attributed to its propensity for early spread, lack of appropriate biomarkers and proper therapeutic strategies for this aggressive neoplasm. Emerging evidence suggests tumor necrosis factor-α-induced protein eight like 1 (TIPE1 or TNFAIP8L1), which functions as a cell death regulator, to hold high prospect as an important biomarker. Interestingly, this protein was found to be significantly downregulated in human lung cancer tissues compared to normal lung tissues. In addition, this protein exerted marked downregulation in different stages and grades of lung tumor. Further knockout of TIPE1 led to the enhancement in proliferation, survival, migration and invasion of NCIH460 human lung cancer cells through modulation of Akt/mTOR/STAT-3 signaling cascade. In addition, TIPE1 was found to be involved in nicotine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, N-nitrosonornicotine and benzo[a]pyrene-mediated lung cancer through enhanced proliferation, survival and migration of lung cancer cells. Altogether, this newly identified protein plays a critical role in lung cancer pathogenesis and possess enormous prospect to serve as an important tool in the effective management of this aggressive neoplasm.
Collapse
|
17
|
Bastrup J, Hansen KH, Poulsen TB, Kastaniegaard K, Asuni AA, Christensen S, Belling D, Helboe L, Stensballe A, Volbracht C. Anti-Aβ Antibody Aducanumab Regulates the Proteome of Senile Plaques and Closely Surrounding Tissue in a Transgenic Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2021; 79:249-265. [DOI: 10.3233/jad-200715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Alzheimer’s disease (AD) is characterized by accumulation of amyloid-β (Aβ) species and deposition of senile plaques (SPs). Clinical trials with the anti-Aβ antibody aducanumab have been completed recently. Objective: To characterize the proteomic profile of SPs and surrounding tissue in a mouse model of AD in 10-month-old tgAPPPS1-21 mice after chronic treatment with aducanumab for four months with weekly dosing (10 mg/kg). Methods: After observing significant reduction of SP numbers in hippocampi of aducanumab-treated mice, we applied a localized proteomic analysis by combining laser microdissection and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of the remaining SPs in hippocampi. We microdissected three subregions, containing SPs, SP penumbra level 1, and an additional penumbra level 2 to follow the proteomic profile as gradient. Results: In the aducanumab-treated mice, we identified 17 significantly regulated proteins that were associated with 1) mitochondria and metabolism (ACAT2, ATP5J, ETFA, EXOG, HK1, NDUFA4, NDUFS7, PLCB1, PPP2R4), 2) cytoskeleton and axons (ADD1, CAPZB, DPYSL3, MAG), 3) stress response (HIST1H1C/HIST1H1D, HSPA12A), and 4) AβPP trafficking/processing (CD81, GDI2). These pathways and some of the identified proteins are implicated in AD pathogenesis. Proteins associated with mitochondria and metabolism were mainly upregulated while proteins associated with AβPP trafficking/processing and stress response pathways were mainly downregulated, suggesting that aducanumab could lead to a beneficial proteomic profile around SPs in tgAPPPS1-21 mice. Conclusion: We identified novel proteomic patterns of SPs and surrounding tissue indicating that chronic treatment with aducanumab could inhibit Aβ toxicity and increase phagocytosis and cell viability.
Collapse
Affiliation(s)
- Joakim Bastrup
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
- Neuroscience, H. Lundbeck A/S, Valby, Denmark
| | | | - Thomas B.G. Poulsen
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | | | | | | | | | - Lone Helboe
- Neuroscience, H. Lundbeck A/S, Valby, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | | |
Collapse
|
18
|
Chen X, Xiang H, Yu S, Lu Y, Wu T. Research progress in the role and mechanism of Cadherin-11 in different diseases. J Cancer 2021; 12:1190-1199. [PMID: 33442417 PMCID: PMC7797656 DOI: 10.7150/jca.52720] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cadherin is an important cell-cell adhesion molecule, which mediates intercellular adhesion through calcium dependent affinity interaction. Cadherin-11 (CDH11, OB-cadherin) is a member of cadherin family, and its gene is situated on chromosome 16q22.1. Increasing lines of researches have proved that CDH11 plays important roles in the occurrence and development of a lot of diseases, such as tumors, arthritis and so on. CDH11 often leads to promoter methylation inactivation, which can induce cancer cell apoptosis, suppress cell motility and invasion, and can inhibit cancer through Wnt/β-catenin, AKT/Rho A and NF-κB signaling pathways. This review focused on the current knowledge of CDH11, including its function and mechanism in different diseases. In this article, we aimed to have a more comprehensive and in-depth understanding of CDH11 and to provide new ideas for the treatment of some diseases.
Collapse
Affiliation(s)
- Xinyi Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyu Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
19
|
Yang P, Yang Y, Sun P, Tian Y, Gao F, Wang C, Zong T, Li M, Zhang Y, Yu T, Jiang Z. βII spectrin (SPTBN1): biological function and clinical potential in cancer and other diseases. Int J Biol Sci 2021; 17:32-49. [PMID: 33390831 PMCID: PMC7757025 DOI: 10.7150/ijbs.52375] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
βII spectrin, the most common isoform of non-erythrocyte spectrin, is a cytoskeleton protein present in all nucleated cells. Interestingly, βII spectrin is essential for the development of various organs such as nerve, epithelium, inner ear, liver and heart. The functions of βII spectrin include not only establishing and maintaining the cell structure but also regulating a variety of cellular functions, such as cell apoptosis, cell adhesion, cell spreading and cell cycle regulation. Notably, βII spectrin dysfunction is associated with embryonic lethality and the DNA damage response. More recently, the detection of altered βII spectrin expression in tumors indicated that βII spectrin might be involved in the development and progression of cancer. Its mutations and disorders could result in developmental disabilities and various diseases. The versatile roles of βII spectrin in disease have been examined in an increasing number of studies; nonetheless, the exact mechanisms of βII spectrin are still poorly understood. Thus, we summarize the structural features and biological roles of βII spectrin and discuss its molecular mechanisms and functions in development, homeostasis, regeneration and differentiation. This review highlight the potential effects of βII spectrin dysfunction in cancer and other diseases, outstanding questions for the future investigation of therapeutic targets. The investigation of the regulatory mechanism of βII spectrin signal inactivation and recovery may bring hope for future therapy of related diseases.
Collapse
Affiliation(s)
- Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Pin Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fang Gao
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chen Wang
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
20
|
Identification of New Genetic Clusters in Glioblastoma Multiforme: EGFR Status and ADD3 Losses Influence Prognosis. Cells 2020; 9:cells9112429. [PMID: 33172155 PMCID: PMC7694764 DOI: 10.3390/cells9112429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GB) is one of the most aggressive tumors. Despite continuous efforts to improve its clinical management, there is still no strategy to avoid a rapid and fatal outcome. EGFR amplification is the most characteristic alteration of these tumors. Although effective therapy against it has not yet been found in GB, it may be central to classifying patients. We investigated somatic-copy number alterations (SCNA) by multiplex ligation-dependent probe amplification in a series of 137 GB, together with the detection of EGFRvIII and FISH analysis for EGFR amplification. Publicly available data from 604 patients were used as a validation cohort. We found statistical associations between EGFR amplification and/or EGFRvIII, and SCNA in CDKN2A, MSH6, MTAP and ADD3. Interestingly, we found that both EGFRvIII and losses on ADD3 were independent markers of bad prognosis (p = 0.028 and 0.014, respectively). Finally, we got an unsupervised hierarchical classification that differentiated three clusters of patients based on their genetic alterations. It offered a landscape of EGFR co-alterations that may improve the comprehension of the mechanisms underlying GB aggressiveness. Our findings can help in defining different genetic profiles, which is necessary to develop new and different approaches in the management of our patients.
Collapse
|
21
|
Pan S, Hu Y, Hu M, Jian H, Chen M, Gan L, Zheng P, He Y, Wang J. Platelet-derived PDGF promotes the invasion and metastasis of cholangiocarcinoma by upregulating MMP2/MMP9 expression and inducing EMT via the p38/MAPK signalling pathway. Am J Transl Res 2020; 12:3577-3595. [PMID: 32774720 PMCID: PMC7407735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Cholangiocarcinoma (CCA) is an aggressive tumour with a poor prognosis due to its late clinical presentation and the lack of effective non-surgical therapies. Previous studies have reported that platelets are implicated in tumour invasion and metastasis, while their role and the underlying mechanism in CCA remain unclear. Here, we show that platelets are hyperactivated in patients with CCA and that platelet-derived growth factor (PDGF) promotes the migration of CCA tumour cells both in vitro and in vivo. Further investigations revealed that PDGF can upregulate the expression of MMP2/MMP9 and induce epithelial-mesenchymal transition (EMT) by activating the p38/MAPK signalling pathway in CCA cells. In addition, the expression of MMP2/MMP9 was associated with lymph node metastasis and poor prognosis in CCA patients after surgical resection. In conclusion, our findings demonstrate that platelets play an important role in facilitating the invasion and metastasis of CCA cells by secreting PDGF, which may provide a novel target for CCA treatment.
Collapse
Affiliation(s)
- Shuguang Pan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical UniversityChongqing 400038, China
| | - Ying Hu
- Oncology Department, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical UniversityChongqing 400038, China
| | - Hongmei Jian
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical UniversityChongqing 400038, China
| | - Lang Gan
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
| | - Ping Zheng
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
| | - Yu He
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical UniversityChongqing 400038, China
| |
Collapse
|
22
|
Augusto L, Martynowicz J, Amin PH, Alakhras NS, Kaplan MH, Wek RC, Sullivan WJ. Toxoplasma gondii Co-opts the Unfolded Protein Response To Enhance Migration and Dissemination of Infected Host Cells. mBio 2020; 11:e00915-20. [PMID: 32636244 PMCID: PMC7343987 DOI: 10.1128/mbio.00915-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 01/04/2023] Open
Abstract
Toxoplasma gondii is an intracellular parasite that reconfigures its host cell to promote pathogenesis. One consequence of Toxoplasma parasitism is increased migratory activity of host cells, which facilitates dissemination. Here, we show that Toxoplasma triggers the unfolded protein response (UPR) in host cells through calcium release from the endoplasmic reticulum (ER). We further identify a novel role for the host ER stress sensor protein IRE1 in Toxoplasma pathogenesis. Upon infection, Toxoplasma activates IRE1, engaging its noncanonical role in actin remodeling through the binding of filamin A. By inducing cytoskeletal remodeling via IRE1 oligomerization in host cells, Toxoplasma enhances host cell migration in vitro and dissemination of the parasite to host organs in vivo Our study has identified novel mechanisms used by Toxoplasma to induce dissemination of infected cells, providing new insights into strategies for treatment of toxoplasmosis.IMPORTANCE Cells that are infected with the parasite Toxoplasma gondii exhibit heightened migratory activity, which facilitates dissemination of the infection throughout the body. In this report, we identify a new mechanism used by Toxoplasma to hijack its host cell and increase its mobility. We further show that the ability of Toxoplasma to increase host cell migration involves not the enzymatic activity of IRE1 but rather IRE1 engagement with actin cytoskeletal remodeling. Depletion of IRE1 from infected host cells reduces their migration in vitro and significantly hinders dissemination of Toxoplasma in vivo Our findings reveal a new mechanism underlying host-pathogen interactions, demonstrating how host cells are co-opted to spread a persistent infection around the body.
Collapse
Affiliation(s)
- Leonardo Augusto
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jennifer Martynowicz
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Parth H Amin
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nada S Alakhras
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ronald C Wek
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - William J Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
23
|
Luo C, Wang G, Ying H, Shen J, Gilligan DM. Increased expression of phosphorylated adducin in tumor cells. J Int Med Res 2020; 48:300060520910646. [PMID: 32237935 PMCID: PMC7132819 DOI: 10.1177/0300060520910646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective This preclinical research was designed to study the phosphorylation level of adducin in cancer tissues, healthy tissues, and malignant tumor cells to determine the relationship between adducin and cancer. Methods Western blotting was used to detect the expression level of phospho-adducin in tissues and cell lines. Results Phospho-adducin at Ser662 was detected in all tumor cells and cancer tissues. The main type of phospho-adducin at Ser662 was γ-adducin in healthy lung tissue, and α-adducin in both lung cancer tissue and para-lung cancer tissue. Phosphorylation of adducin at Thr445 was observed in healthy lung tissue, adjacent healthy tissue, and cancer tissue, but was not detected in any other malignant cells. Additionally, more phosphorylation of adducin at Thr445 was seen in cancer tissue than in adjacent healthy tissue. Conclusion The abnormal expression of phospho-adducin at Ser662 and Thr445 may be associated with tumorigenesis, suggesting a novel approach for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Cong Luo
- Department of Abdominal Oncology, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Huang Ying
- Department of Pharmacy, The People's Hospital of Yichun City, Yinchun University, Yichun, China
| | - Jiayu Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Diana M Gilligan
- Department of Medicine and Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
24
|
Kiang KMY, Zhang P, Li N, Zhu Z, Jin L, Leung GKK. Loss of cytoskeleton protein ADD3 promotes tumor growth and angiogenesis in glioblastoma multiforme. Cancer Lett 2020; 474:118-126. [PMID: 31958485 DOI: 10.1016/j.canlet.2020.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Adducin 3 (ADD3) is a crucial assembly factor in the actin cytoskeleton and has been found to be aberrantly expressed in various cancers, including glioblastoma multiforme (GBM). It has previously been studied in array-based studies with controversial findings as to its functional role in glioma. In microarray analyses of 452 glioma specimens, we found significant downregulation of ADD3 in GBM, but not in less malignant gliomas, compared to normal brain tissue, which suggests that its downregulation might underlie critical events during malignant progression. We also found that ADD3 was functionally dependent on cell-matrix interaction. In our in vivo study, the proliferative and angiogenic capacity of ADD3-depleted GBM cells was promoted, possibly through PCNA, while p53 and p21 expression was suppressed, and pro-angiogenic signals were induced through VEGF-VEGFR-2-mediated activation in endothelial cells. With correlative in vitro, in vivo, and clinical data, we provide compelling evidence on the putative tumor-suppressive role of ADD3 in modulating GBM growth and angiogenesis. As a preclinical study, our research offers a better understanding of the pathogenesis of glioma malignant progression for the benefit of future investigations.
Collapse
Affiliation(s)
- Karrie Mei-Yee Kiang
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Pingde Zhang
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ning Li
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Zhiyuan Zhu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Lei Jin
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Gilberto Ka-Kit Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong.
| |
Collapse
|
25
|
Anillin regulates breast cancer cell migration, growth, and metastasis by non-canonical mechanisms involving control of cell stemness and differentiation. Breast Cancer Res 2020; 22:3. [PMID: 31910867 PMCID: PMC6947866 DOI: 10.1186/s13058-019-1241-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Breast cancer metastasis is driven by a profound remodeling of the cytoskeleton that enables efficient cell migration and invasion. Anillin is a unique scaffolding protein regulating major cytoskeletal structures, such as actin filaments, microtubules, and septin polymers. It is markedly overexpressed in breast cancer, and high anillin expression is associated with poor prognosis. The aim of this study was to investigate the role of anillin in breast cancer cell migration, growth, and metastasis. Methods CRISPR/Cas9 technology was used to deplete anillin in highly metastatic MDA-MB-231 and BT549 cells and to overexpress it in poorly invasive MCF10AneoT cells. The effects of anillin depletion and overexpression on breast cancer cell motility in vitro were examined by wound healing and Matrigel invasion assays. Assembly of the actin cytoskeleton and matrix adhesion were evaluated by immunofluorescence labeling and confocal microscopy. In vitro tumor development was monitored by soft agar growth assays, whereas cancer stem cells were examined using a mammosphere formation assay and flow cytometry. The effects of anillin knockout on tumor growth and metastasis in vivo were determined by injecting control and anillin-depleted breast cancer cells into NSG mice. Results Loss-of-function and gain-of-function studies demonstrated that anillin is necessary and sufficient to accelerate migration, invasion, and anchorage-independent growth of breast cancer cells in vitro. Furthermore, loss of anillin markedly attenuated primary tumor growth and metastasis of breast cancer in vivo. In breast cancer cells, anillin was localized in the nucleus; however, knockout of this protein affected the cytoplasmic/cortical events, e.g., the organization of actin cytoskeleton and cell-matrix adhesions. Furthermore, we observed a global transcriptional reprogramming of anillin-depleted breast cancer cells that resulted in suppression of their stemness and induction of the mesenchymal to epithelial trans-differentiation. Such trans-differentiation was manifested by the upregulation of basal keratins along with the increased expression of E-cadherin and P-cadherin. Knockdown of E-cadherin restored the impaired migration and invasion of anillin-deficient breast cancer cells. Conclusion Our study demonstrates that anillin plays essential roles in promoting breast cancer growth and metastatic dissemination in vitro and in vivo and unravels novel functions of anillin in regulating breast cancer stemness and differentiation.
Collapse
|
26
|
Machnicka B, Grochowalska R, Bogusławska DM, Sikorski AF. The role of spectrin in cell adhesion and cell-cell contact. Exp Biol Med (Maywood) 2019; 244:1303-1312. [PMID: 31226892 DOI: 10.1177/1535370219859003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spectrins are proteins that are responsible for many aspects of cell function and adaptation to changing environments. Primarily the spectrin-based membrane skeleton maintains cell membrane integrity and its mechanical properties, together with the cytoskeletal network a support cell shape. The occurrence of a variety of spectrin isoforms in diverse cellular environments indicates that it is a multifunctional protein involved in numerous physiological pathways. Participation of spectrin in cell–cell and cell–extracellular matrix adhesion and formation of dynamic plasma membrane protrusions and associated signaling events is a subject of interest for researchers in the fields of cell biology and molecular medicine. In this mini-review, we focus on data concerning the role of spectrins in cell surface activities such as adhesion, cell–cell contact, and invadosome formation. We discuss data on different adhesion proteins that directly or indirectly interact with spectrin repeats. New findings support the involvement of spectrin in cell adhesion and spreading, formation of lamellipodia, and also the participation in morphogenetic processes, such as eye development, oogenesis, and angiogenesis. Here, we review the role of spectrin in cell adhesion and cell–cell contact.Impact statementThis article reviews properties of spectrins as a group of proteins involved in cell surface activities such as, adhesion and cell–cell contact, and their contribution to morphogenesis. We show a new area of research and discuss the involvement of spectrin in regulation of cell–cell contact leading to immunological synapse formation and in shaping synapse architecture during myoblast fusion. Data indicate involvement of spectrins in adhesion and cell–cell or cell–extracellular matrix interactions and therefore in signaling pathways. There is evidence of spectrin’s contribution to the processes of morphogenesis which are connected to its interactions with adhesion molecules, membrane proteins (and perhaps lipids), and actin. Our aim was to highlight the essential role of spectrin in cell–cell contact and cell adhesion.
Collapse
Affiliation(s)
- Beata Machnicka
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Renata Grochowalska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Dżamila M Bogusławska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Aleksander F Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| |
Collapse
|