1
|
Abdollahi S, Raissi H, Farzad F. Examine stability polyvinyl alcohol-stabilized nanosuspensions to overcome the challenge of poor drug solubility utilizing molecular dynamic simulation. Sci Rep 2024; 14:17386. [PMID: 39075104 PMCID: PMC11286956 DOI: 10.1038/s41598-024-68362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
The pharmaceutical industry faces a significant challenge from the low water solubility of nearly 90% of newly developed Active Pharmaceutical Ingredients (APIs). Despite extensive efforts to improve solubility, approximately 40% of these APIs encounter commercialization hurdles, impacting drug efficacy. In this context, a promising strategy will be introduced in which nanosuspensions, particularly polyvinyl alcohol (PVA) as a stabilizer, are applied to increase drug solubility. In this work using molecular dynamics simulations, the nanosuspension of four poorly water-soluble drugs (flurbiprofen, bezafibrate, miconazole, and phenytoin) stabilized with PVA is investigated. The simulation data showed van der Waals energies between polyvinyl alcohol with flurbiprofen and bezafibrate are - 101.12 and - 58.42 kJ/mol, respectively. The results indicate that PVA is an effective stabilizer for these drugs, and superior interactions are obtained with flurbiprofen and bezafibrate. The study also explores the impact of PVA on water molecule diffusion, providing insights into the stability of nanosuspensions. Obtained results also provide valuable insights into hydrogen bond formation, diffusion coefficients, and nanosuspension stability, contributing to the rational design and optimization of pharmaceutical formulations.
Collapse
Affiliation(s)
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran.
| | - Farzaneh Farzad
- Department of Chemistry, University of Birjand, Birjand, Iran
| |
Collapse
|
2
|
Ravald H, Wiedmer SK. Potential of liposomes and lipid membranes for the separation of β-blockers by capillary electromigration and liquid chromatographic techniques. J Chromatogr A 2023; 1706:464265. [PMID: 37573755 DOI: 10.1016/j.chroma.2023.464265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
β-Blockers belong to a frequently used class of drugs primarily used to treat heart and circulatory conditions. Here we describe the use of lipid vesicles and liposomes as cell membrane biomimicking models in capillary electromigration (CE) and liquid chromatography (LC) techniques for the investigation of interactions between lipid membranes and β-blockers. In addition to liposomes, the use of commercial intravenous lipid emulsions, and their interactions with β-blockers are also discussed. Different CE and LC instrumental techniques designed for these purposes are introduced. Other methodologies for studying interactions between β-blockers and lipid membranes are also briefly discussed, and the different methodologies are compared. The aim is to give the reader a good overview on the status of the use of liposomes and lipids in CE and LC for studying β-blocker interactions.
Collapse
Affiliation(s)
- Henri Ravald
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland
| | - Susanne K Wiedmer
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| |
Collapse
|
3
|
Ravald H, Moghaddam AH, Jaikishan S, Lavainne M, Wiedmer SK. Effect of liposome composition on β-blocker interactions studied by capillary electrokinetic chromatography. J Sep Sci 2023; 46:e2300414. [PMID: 37496318 DOI: 10.1002/jssc.202300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Liposome capillary electrokinetic chromatography was used to investigate the interactions between three β-blockers of different hydrophobicity and various liposome solutions. The studied β-blockers comprised alprenolol, propranolol, and carvedilol. The composition of the liposome solutions, containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-sn-glycero-3-phos-phoethanolamine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine, and cholesterol in various molar ratios, was designed by a response surface methodology-central composite design approach. Subsequently, after conducting the liposome capillary electrokinetic chromatography experiments and determining the retention factors from the electrophoretic mobilities of the compounds, and further calculating the distribution coefficients, an analysis of variance was performed. After extracting the statistical models, optimal operational conditions were obtained based on the developed models. To further investigate the interactions between the β-blockers and the liposomes, nanoplasmonic sensing experiments were carried out on two different liposome systems. The overall results demonstrate the strong influence of cholesterol and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine on the distribution coefficients.
Collapse
Affiliation(s)
- Henri Ravald
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Amin Hedayati Moghaddam
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Marine Lavainne
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
4
|
Kashyap HK. Deciphering Ethanol-Driven Swelling, Rupturing, Aggregation, and Fusion of Lipid Vesicles Using Coarse-Grained Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2445-2459. [PMID: 35167280 DOI: 10.1021/acs.langmuir.1c02763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Traditionally, liquid ethanol is known to enhance the permeability of lipid membranes and causes vesicle aggregation and fusion. However, how the amphiphilic ethanol molecules perturb the lipid vesicles to facilitate their aggregation or fusion has not been addressed at any level of molecular simulations. Herein, not only have we developed a coarse-grained (CG) model for liquid ethanol, its aqueous mixture, and hydrated lipid membranes for molecular dynamics (MD) simulations, but also utilized it to delineate the aggregation and fusion of lipid vesicles using CG-MD simulations with multimillion particles. We have systematically parametrized the force-field for pure ethanol and its interactions with hydrated POPC and POPE model lipid membranes. In this process, we have successfully reproduced the bulk ethanol structure and concentration-dependent density of aqueous ethanol. To quantify the interaction of ethanol with lipid membranes, we have reproduced the transfer free energy of the ethanol molecule across the hydrated bilayers, and the concentration-dependent distribution of ethanol molecules across the lipid bilayers. After having acceptable force-field parameters for ethanol-membrane interactions, we have checked the effect of ethanol toward the vesicles comprising POPC lipids. We observe a rapid increase in the size of the POPC lipid vesicles with increasing amounts of ethanol up to 30 mol %. We unambiguously observe swelling and decrease in the thickness of the POPC vesicles with increasing amounts of ethanol up to 30 mol %, beyond which the vesicles begin to lose their integrity and rupture at higher mol % of ethanol. The fusion study of two vesicles demonstrates that fused vesicles can be obtained from 20 to 30 mol % of ethanol provided that they are brought closer than a critical distance at a particular mol %. The multivesicle simulations show that along with the increase in the sizes of vesicles the propensity of vesicle aggregation increases as the mol % of ethanol increases.
Collapse
Affiliation(s)
- Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
6
|
Das S, Meinel MK, Wu Z, Müller-Plathe F. The role of the envelope protein in the stability of a coronavirus model membrane against an ethanolic disinfectant. J Chem Phys 2021; 154:245101. [PMID: 34241335 DOI: 10.1063/5.0055331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ethanol is highly effective against various enveloped viruses and can disable the virus by disintegrating the protective envelope surrounding it. The interactions between the coronavirus envelope (E) protein and its membrane environment play key roles in the stability and function of the viral envelope. By using molecular dynamics simulation, we explore the underlying mechanism of ethanol-induced disruption of a model coronavirus membrane and, in detail, interactions of the E-protein and lipids. We model the membrane bilayer as N-palmitoyl-sphingomyelin and 1-palmitoyl-2-oleoylphosphatidylcholine lipids and the coronavirus E-protein. The study reveals that ethanol causes an increase in the lateral area of the bilayer along with thinning of the bilayer membrane and orientational disordering of lipid tails. Ethanol resides at the head-tail region of the membrane and enhances bilayer permeability. We found an envelope-protein-mediated increase in the ordering of lipid tails. Our simulations also provide important insights into the orientation of the envelope protein in a model membrane environment. At ∼25 mol. % of ethanol in the surrounding ethanol-water phase, we observe disintegration of the lipid bilayer and dislocation of the E-protein from the membrane environment.
Collapse
Affiliation(s)
- Shubhadip Das
- Technische Universität Darmstadt, Eduard-Zintl-Institute für Anorganische und Physikalische Chemie, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Melissa K Meinel
- Technische Universität Darmstadt, Eduard-Zintl-Institute für Anorganische und Physikalische Chemie, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Zhenghao Wu
- Technische Universität Darmstadt, Eduard-Zintl-Institute für Anorganische und Physikalische Chemie, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Technische Universität Darmstadt, Eduard-Zintl-Institute für Anorganische und Physikalische Chemie, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| |
Collapse
|
7
|
Lind C, Pandey P, Pastor RW, MacKerell AD. Functional Group Distributions, Partition Coefficients, and Resistance Factors in Lipid Bilayers Using Site Identification by Ligand Competitive Saturation. J Chem Theory Comput 2021; 17:3188-3202. [PMID: 33929848 DOI: 10.1021/acs.jctc.1c00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small molecules such as metabolites and drugs must pass through the membrane of the cell, a barrier primarily comprising phospholipid bilayers and embedded proteins. To better understand the process of passive diffusion, knowledge of the ability of various functional groups to partition across bilayers and the associated energetics would be of utility. In the present study, the site identification by ligand competitive saturation (SILCS) methodology has been applied to sample the distributions of a diverse set of chemical solutes representing the functional groups of small molecules across phospholipid bilayers composed of 0.9:0.1 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol and a mixture of 0.52:0.18:0.3 1,2-dioleoyl-sn-glycero-3-phospho-l-serine/1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol used in parallel artificial membrane permeability assay experiments. A combination of oscillating chemical potential grand canonical Monte Carlo and molecular dynamics in the SILCS simulations was applied to achieve solute sampling through the bilayers and surrounding aqueous environment from which the distribution of solutes and the functional groups they represent were obtained. Results show differential distribution of aliphatic versus aromatic groups with the former having increased sampling in the center of the bilayers versus in the region of the glycerol linker for the latter. Variations in the distribution of different polar groups are evident, with large differences between negative acetate and positive methylammonium with accumulation of the polar-neutral and acetate solutes above the bilayer head groups. Conversion of the distributions to absolute free energies allows for a detailed understanding of energetics of functional groups in different regions of the bilayers and for calculation of absolute free-energy profiles of multifunctional drug-like molecules across the bilayers from which partition coefficients and resistance factors suitable for insertion into the homogenous solubility-diffusion equation for calculation of permeability were obtained. Comparisons of the calculated bilayer/solution partition coefficients with 1-octanol/water experimental data for both drug-like molecules and the solutes show overall good agreement, validating the calculated distributions and associated absolute free-energy profiles.
Collapse
Affiliation(s)
- Christoffer Lind
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland 21201, United States
| | - Poonam Pandey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland 21201, United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
8
|
Nunes RS, Vila-Viçosa D, Costa PJ. Halogen Bonding: An Underestimated Player in Membrane–Ligand Interactions. J Am Chem Soc 2021; 143:4253-4267. [DOI: 10.1021/jacs.0c12470] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rafael Santana Nunes
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diogo Vila-Viçosa
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Paulo J. Costa
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| |
Collapse
|
9
|
Yee SM, Gillams RJ, McLain SE, Lorenz CD. Effects of lipid heterogeneity on model human brain lipid membranes. SOFT MATTER 2021; 17:126-135. [PMID: 33155582 DOI: 10.1039/d0sm01766c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell membranes naturally contain a heterogeneous lipid distribution. However, homogeneous bilayers are commonly preferred and utilised in computer simulations due to their relative simplicity, and the availability of lipid force field parameters. Recently, experimental lipidomics data for the human brain cell membranes under healthy and Alzheimer's disease (AD) conditions were investigated, since disruption to the lipid composition has been implicated in neurodegenerative disorders, including AD [R. B. Chan et al., J. Biol. Chem., 2012, 287, 2678-2688]. In order to observe the effects of lipid complexity on the various bilayer properties, molecular dynamics simulations were used to study four membranes with increasing heterogeneity: a pure POPC membrane, a POPC and cholesterol membrane in a 1 : 1 ratio (POPC-CHOL), and to our knowledge, the first realistic models of a healthy brain membrane and an Alzheimer's diseased brain membrane. Numerous structural, interfacial, and dynamical properties, including the area per lipid, interdigitation, dipole potential, and lateral diffusion of the two simple models, POPC and POPC-CHOL, were analysed and compared to those of the complex brain models consisting of 27 lipid components. As the membranes gain heterogeneity, a number of alterations were found in the structural and dynamical properties, and more significant differences were observed in the lateral diffusion. Additionally, we observed snorkeling behaviour of the lipid tails that may play a role in the permeation of small molecules across biological membranes. In this work, atomistic description of realistic brain membrane models is provided, which can add insight towards the permeability and transport pathways of small molecules across these membrane barriers.
Collapse
Affiliation(s)
- Sze May Yee
- Department of Physics, King's College London, London WC2R 2LS, UK.
| | - Richard J Gillams
- School of Electronics and Computer Science, and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sylvia E McLain
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | | |
Collapse
|
10
|
Sharma P, Parthasarathi S, Patil N, Waskar M, Raut JS, Puranik M, Ayappa KG, Basu JK. Assessing Barriers for Antimicrobial Penetration in Complex Asymmetric Bacterial Membranes: A Case Study with Thymol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8800-8814. [PMID: 32609530 DOI: 10.1021/acs.langmuir.0c01124] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The bacterial cell envelope is a complex multilayered structure evolved to protect bacteria in hostile environments. An understanding of the molecular basis for the interaction and transport of antibacterial therapeutics with the bacterial cell envelope will enable the development of drug molecules to combat bacterial infections and suppress the emergence of drug-resistant strains. Here we report the successful creation of an in vitro supported lipid bilayer (SLB) platform of the outer membrane (OM) of E. coli, an archetypical Gram-negative bacterium, containing the full smooth lipopolysaccharide (S-LPS) architecture of the membrane. Using this platform, we performed fluorescence correlation spectroscopy (FCS) in combination with molecular dynamics (MD) simulations to measure lipid diffusivities and provide molecular insights into the transport of natural antimicrobial agent thymol. Lipid diffusivities measured on symmetric supported lipid bilayers made up of inner membrane lipids show a distinct increase in the presence of thymol as also corroborated by MD simulations. However, lipid diffusivities in the asymmetric OM consisting of only S-LPS are invariant upon exposure to thymol. Increasing the phospholipid content in the LPS-containing outer leaflet improved the penetration toward thymol as reflected in slightly higher relative diffusivity changes in the inner leaflet when compared with the outer leaflet. Free-energy computations reveal the presence of a barrier (∼6 kT) only in the core-saccharide region of the OM for the translocation of thymol while the external O-antigen part is easily traversed. In contrast, thymol spontaneously inserts into the inner membrane. In addition to providing leaflet-resolved penetration barriers in bacterial membranes, we also assess the ability of small molecules to penetrate various membrane components. With rising bacterial resistance, our study opens up the possibility of screening potential antimicrobial drug candidates using these realistic model platforms for Gram-negative bacteria.
Collapse
Affiliation(s)
| | | | - Nivedita Patil
- Unilever RD Bangalore, 64 Main Road, Whitefield, Bangalore 560066, India
| | - Morris Waskar
- Unilever RD Bangalore, 64 Main Road, Whitefield, Bangalore 560066, India
| | - Janhavi S Raut
- Unilever RD Bangalore, 64 Main Road, Whitefield, Bangalore 560066, India
| | - Mrinalini Puranik
- Unilever RD Bangalore, 64 Main Road, Whitefield, Bangalore 560066, India
| | | | | |
Collapse
|
11
|
Shobhna, Kumari M, Kashyap HK. A coarse-grained model of dimethyl sulfoxide for molecular dynamics simulations with lipid membranes. J Chem Phys 2020; 153:035104. [DOI: 10.1063/5.0014614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shobhna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
12
|
Martinotti C, Ruiz-Perez L, Deplazes E, Mancera RL. Molecular Dynamics Simulation of Small Molecules Interacting with Biological Membranes. Chemphyschem 2020; 21:1486-1514. [PMID: 32452115 DOI: 10.1002/cphc.202000219] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Cell membranes protect and compartmentalise cells and their organelles. The semi-permeable nature of these membranes controls the exchange of solutes across their structure. Characterising the interaction of small molecules with biological membranes is critical to understanding of physiological processes, drug action and permeation, and many biotechnological applications. This review provides an overview of how molecular simulations are used to study the interaction of small molecules with biological membranes, with a particular focus on the interactions of water, organic compounds, drugs and short peptides with models of plasma cell membrane and stratum corneum lipid bilayers. This review will not delve on other types of membranes which might have different composition and arrangement, such as thylakoid or mitochondrial membranes. The application of unbiased molecular dynamics simulations and enhanced sampling methods such as umbrella sampling, metadynamics and replica exchange are described using key examples. This review demonstrates how state-of-the-art molecular simulations have been used successfully to describe the mechanism of binding and permeation of small molecules with biological membranes, as well as associated changes to the structure and dynamics of these membranes. The review concludes with an outlook on future directions in this field.
Collapse
Affiliation(s)
- Carlo Martinotti
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and, Curtin Institute for Computation, Curtin University, Perth, WA 6845, Australia
| | - Lanie Ruiz-Perez
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and, Curtin Institute for Computation, Curtin University, Perth, WA 6845, Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and, Curtin Institute for Computation, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
13
|
Model-Informed Drug Discovery and Development Strategy for the Rapid Development of Anti-Tuberculosis Drug Combinations. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increasing emergence of drug-resistant tuberculosis requires new effective and safe drug regimens. However, drug discovery and development are challenging, lengthy and costly. The framework of model-informed drug discovery and development (MID3) is proposed to be applied throughout the preclinical to clinical phases to provide an informative prediction of drug exposure and efficacy in humans in order to select novel anti-tuberculosis drug combinations. The MID3 includes pharmacokinetic-pharmacodynamic and quantitative systems pharmacology models, machine learning and artificial intelligence, which integrates all the available knowledge related to disease and the compounds. A translational in vitro-in vivo link throughout modeling and simulation is crucial to optimize the selection of regimens with the highest probability of receiving approval from regulatory authorities. In vitro-in vivo correlation (IVIVC) and physiologically-based pharmacokinetic modeling provide powerful tools to predict pharmacokinetic drug-drug interactions based on preclinical information. Mechanistic or semi-mechanistic pharmacokinetic-pharmacodynamic models have been successfully applied to predict the clinical exposure-response profile for anti-tuberculosis drugs using preclinical data. Potential pharmacodynamic drug-drug interactions can be predicted from in vitro data through IVIVC and pharmacokinetic-pharmacodynamic modeling accounting for translational factors. It is essential for academic and industrial drug developers to collaborate across disciplines to realize the huge potential of MID3.
Collapse
|
14
|
Wood I, Fabian L, Moglioni A, Cabeça LF, de Paula E, Pickholz M. Combining nuclear magnetic resonance with molecular dynamics simulations to address sumatriptan interaction with model membranes. Chem Phys Lipids 2019; 225:104792. [DOI: 10.1016/j.chemphyslip.2019.104792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
|
15
|
Kumari P, Kumari M, Kashyap HK. Counter-effects of Ethanol and Cholesterol on the Heterogeneous PSM–POPC Lipid Membrane: A Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:9616-9628. [DOI: 10.1021/acs.jpcb.9b07107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
16
|
Rózsa ZB, Németh LJ, Jójárt B, Nehéz K, Viskolcz B, Szőri M. Molecular Dynamics and Metadynamics Insights of 1,4-Dioxane-Induced Structural Changes of Biomembrane Models. J Phys Chem B 2019; 123:7869-7884. [DOI: 10.1021/acs.jpcb.9b04313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zsófia Borbála Rózsa
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Lukács József Németh
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, 6724 Szeged, Hungary
| | - Balázs Jójárt
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, 6724 Szeged, Hungary
| | - Károly Nehéz
- Department of Information Engineering, University of Miskolc, Miskolc-Egyetemváros Informatics Building, H-3515 Miskolc, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| |
Collapse
|
17
|
Dahlgren D, Lennernäs H. Intestinal Permeability and Drug Absorption: Predictive Experimental, Computational and In Vivo Approaches. Pharmaceutics 2019; 11:pharmaceutics11080411. [PMID: 31412551 PMCID: PMC6723276 DOI: 10.3390/pharmaceutics11080411] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
The main objective of this review is to discuss recent advancements in the overall investigation and in vivo prediction of drug absorption. The intestinal permeability of an orally administered drug (given the value Peff) has been widely used to determine the rate and extent of the drug’s intestinal absorption (Fabs) in humans. Preclinical gastrointestinal (GI) absorption models are currently in demand for the pharmaceutical development of novel dosage forms and new drug products. However, there is a strong need to improve our understanding of the interplay between pharmaceutical, biopharmaceutical, biochemical, and physiological factors when predicting Fabs and bioavailability. Currently, our knowledge of GI secretion, GI motility, and regional intestinal permeability, in both healthy subjects and patients with GI diseases, is limited by the relative inaccessibility of some intestinal segments of the human GI tract. In particular, our understanding of the complex and highly dynamic physiology of the region from the mid-jejunum to the sigmoid colon could be significantly improved. One approach to the assessment of intestinal permeability is to use animal models that allow these intestinal regions to be investigated in detail and then to compare the results with those from simple human permeability models such as cell cultures. Investigation of intestinal drug permeation processes is a crucial biopharmaceutical step in the development of oral pharmaceutical products. The determination of the intestinal Peff for a specific drug is dependent on the technique, model, and conditions applied, and is influenced by multiple interactions between the drug molecule and the biological membranes.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmacy, Uppsala University, Box 580 SE-751 23 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, Box 580 SE-751 23 Uppsala, Sweden.
| |
Collapse
|
18
|
Effects of absorption-modifying excipients on jejunal drug absorption in simulated fasted and fed luminal conditions. Eur J Pharm Biopharm 2019; 142:387-395. [PMID: 31306752 DOI: 10.1016/j.ejpb.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/26/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
Oral administration of drug products is the preferred administration route. In recent decades there has been an increase in drug candidates with low solubility and/or low permeability. To increase the possibility of oral administration for the poorly permeating drugs, the use of absorption modifying excipients (AMEs) has been proposed. These types of AMEs may also affect the regulatory assessment of a novel drug delivery system if they affect the absorption of a drug from any of the four BCS classes. The effects of AMEs have previously been investigated in various animal models, including the single-pass intestinal perfusion (SPIP) in rats. To further improve the biorelevance and the in vivo predictiveness of the SPIP model, four compounds (atenolol, enalaprilat, ketoprofen, metoprolol) were perfused in fasted or fed state simulated intestinal fluid (FaSSIF or FeSSIF) together with the AMEs N-acetyl-cysteine, caprate, or sodium dodecyl sulfate. For the highly soluble and poorly permeating compounds enalaprilat and atenolol (BCS class III), the flux was increased the most by the addition of SDS in both FaSSIF and FeSSIF. For ketoprofen (BCS class II), the flux decreased in the presence of all AMEs in at least one of the perfusion media. The flux of metoprolol (BCS class I) was not affected by any of the excipients in none of simulated prandial states. The changes in magnitude in the absorption of the compounds were in general smaller in FeSSIF than in FaSSIF. This may be explained by a reduced free concentration AMEs in FeSSIF. Further, the results in FeSSIF were similar to those from intrajejunal bolus administration in rat in a previous study. This suggests that the biorelevance of the SPIP method may be increased when investigating the effects of AMEs, by the addition of intraluminal constituents representative to fasted and/or fed state to the inlet perfusate.
Collapse
|
19
|
Szlenk CT, Gc JB, Natesan S. Does the Lipid Bilayer Orchestrate Access and Binding of Ligands to Transmembrane Orthosteric/Allosteric Sites of G Protein-Coupled Receptors? Mol Pharmacol 2019; 96:527-541. [PMID: 30967440 DOI: 10.1124/mol.118.115113] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/03/2019] [Indexed: 01/08/2023] Open
Abstract
The ligand-binding sites of many G protein-coupled receptors (GPCRs) are situated around and deeply embedded within the central pocket formed by their seven transmembrane-spanning α-helical domains. Generally, these binding sites are assumed accessible to endogenous ligands from the aqueous phase. Recent advances in the structural biology of GPCRs, along with biophysical and computational studies, suggest that amphiphilic and lipophilic molecules may gain access to these receptors by first partitioning into the membrane and then reaching the binding site via lateral diffusion through the lipid bilayer. In addition, several crystal structures of class A and class B GPCRs bound to their ligands offer unprecedented details on the existence of lipid-facing allosteric binding sites outside the transmembrane helices that can only be reached via lipid pathways. The highly organized structure of the lipid bilayer may direct lipophilic or amphiphilic drugs to a specific depth within the bilayer, changing local concentration of the drug near the binding site and affecting its binding kinetics. Additionally, the constraints of the lipid bilayer, including its composition and biophysical properties, may play a critical role in "pre-organizing" ligand molecules in an optimal orientation and conformation to facilitate receptor binding. Despite its clear involvement in molecular recognition processes, the critical role of the membrane in binding ligands to lipid-exposed transmembrane binding sites remains poorly understood and warrants comprehensive investigation. Understanding the mechanistic basis of the structure-membrane interaction relationship of drugs will not only provide useful insights about receptor binding kinetics but will also enhance our ability to take advantage of the apparent membrane contributions when designing drugs that target transmembrane proteins with improved efficacy and safety. In this minireview, we summarize recent structural and computational studies on membrane contributions to binding processes, elucidating both lipid pathways of ligand access and binding mechanisms for several orthosteric and allosteric ligands of class A and class B GPCRs.
Collapse
Affiliation(s)
- Christopher T Szlenk
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Jeevan B Gc
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
20
|
Palaiokostas M, Ding W, Shahane G, Orsi M. Effects of lipid composition on membrane permeation. SOFT MATTER 2018; 14:8496-8508. [PMID: 30346462 DOI: 10.1039/c8sm01262h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Passive permeation through lipid membranes is an essential process in biology. In vivo membranes typically consist of mixtures of lamellar and nonlamellar lipids. Lamellar lipids are characterized by their tendency to form lamellar sheet-like structures, which are predominant in nature. Nonlamellar lipids, when isolated, instead form more geometrically complex nonlamellar phases. While mixed lamellar/nonlamellar lipid membranes tend to adopt the ubiquitous lamellar bilayer structure, the presence of nonlamellar lipids is known to have profound effects on key membrane properties, such as internal distributions of stress and elastic properties, which in turn may alter related biological processes. This work focuses on one such process, i.e., permeation, by utilising atomistic molecular dynamics simulations in order to obtain transfer free energy profiles, diffusion profiles and permeation coefficients for a series of thirteen small molecules and drugs. Each permeant is tested on two bilayer membranes of different lipid composition, i.e., purely lamellar and mixed lamellar/nonlamellar. Our results indicate that the presence of nonlamellar lipids reduces permeation for smaller molecules (molecular weight < 100) but facilitates it for the largest ones (molecular weight > 100). This work represents an advancement towards the development of more realistic in silico permeability assays, which may have a substantial future impact in the area of rational drug design.
Collapse
Affiliation(s)
- Michail Palaiokostas
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | | | | | | |
Collapse
|
21
|
Badaoui M, Kells A, Molteni C, Dickson CJ, Hornak V, Rosta E. Calculating Kinetic Rates and Membrane Permeability from Biased Simulations. J Phys Chem B 2018; 122:11571-11578. [DOI: 10.1021/acs.jpcb.8b07442] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Magd Badaoui
- Department of Chemistry, King’s College London, SE1 1DB London, United Kingdom
| | - Adam Kells
- Department of Chemistry, King’s College London, SE1 1DB London, United Kingdom
| | - Carla Molteni
- Department of Physics, King’s College London, WC2R 2LS London, United Kingdom
| | - Callum J. Dickson
- Global Discovery Chemistry, Computer-Aided Drug Discovery, Novartis Institutes for BioMedical Research, 181 Mass Ave., Cambridge, Massachusetts 02139, United States
| | - Viktor Hornak
- Global Discovery Chemistry, Computer-Aided Drug Discovery, Novartis Institutes for BioMedical Research, 181 Mass Ave., Cambridge, Massachusetts 02139, United States
| | - Edina Rosta
- Department of Chemistry, King’s College London, SE1 1DB London, United Kingdom
| |
Collapse
|
22
|
Sun R, Han Y, Swanson JMJ, Tan JS, Rose JP, Voth GA. Molecular transport through membranes: Accurate permeability coefficients from multidimensional potentials of mean force and local diffusion constants. J Chem Phys 2018; 149:072310. [PMID: 30134730 DOI: 10.1063/1.5027004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Estimating the permeability coefficient of small molecules through lipid bilayer membranes plays an important role in the development of effective drug candidates. In silico simulations can produce acceptable relative permeability coefficients for a series of small molecules; however, the absolute permeability coefficients from simulations are usually off by orders of magnitude. In addition to differences between the lipid bilayers used in vitro and in silico, the poor convergence of permeation free energy profiles and over-simplified diffusion models have contributed to these discrepancies. In this paper, we present a multidimensional inhomogeneous solubility-diffusion model to study the permeability of a small molecule drug (trimethoprim) passing through a POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) lipid bilayer. Our approach improves the permeation model in three ways: First, the free energy profile (potential of mean force, PMF) is two-dimensional in two key coordinates rather than simply one-dimensional along the direction normal to the bilayer. Second, the 2-D PMF calculation has improved convergence due to application of the recently developed transition-tempered metadynamics with randomly initialized replicas, while third, the local diffusivity coefficient was calculated along the direction of the minimum free energy path on the two-dimensional PMF. The permeability is then calculated as a line integral along the minimum free energy path of the PMF. With this approach, we report a considerably more accurate permeability coefficient (only 2-5 times larger than the experimental value). We also compare our approach with the common practice of computing permeability coefficients based only on the translation of the center of mass of the drug molecule. Our paper concludes with a discussion of approaches for minimizing the computational cost for the purpose of more rapidly screening a large number of drug candidate molecules.
Collapse
Affiliation(s)
- Rui Sun
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yining Han
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jessica M J Swanson
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jeffrey S Tan
- Small Molecule Design and Development, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - John P Rose
- Small Molecule Design and Development, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
23
|
Soybean oil-based nanoemulsion systems in absence and presence of curcumin: Molecular dynamics simulation approach. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Knippenberg S, Fabre G, Osella S, Di Meo F, Paloncýová M, Ameloot M, Trouillas P. Atomistic Picture of Fluorescent Probes with Hydrocarbon Tails in Lipid Bilayer Membranes: An Investigation of Selective Affinities and Fluorescent Anisotropies in Different Environmental Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9072-9084. [PMID: 29983063 DOI: 10.1021/acs.langmuir.8b01164] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
By reverting to spectroscopy, changes in the biological environment of a fluorescent probe can be monitored and the presence of various phases of the surrounding lipid bilayer membranes can be detected. However, it is currently not always clear in which phase the probe resides. The well-known orange 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbo-cyanine perchlorate (DiI-C18(5)) fluorophore, for instance, and the new, blue BODIPY (4,4-difluoro-4-bora-3 a,4 a-diaza- s-indacene) derivative were experimentally seen to target and highlight identical parts of giant unilamellar vesicles of various compositions, comprising mixtures of dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), and cholesterol (Chol). However, it was not clear which of the coexisting membrane phases were visualized (Bacalum et al., Langmuir. 2016, 32, 3495). The present study addresses this issue by utilizing large-scale molecular dynamics simulations and the z-constraint method, which allows evaluating Gibbs free-energy profiles. The current calculations give an indication why, at room temperature, both BODIPY and DiI-C18(5) probes prefer the gel (So) phase in DOPC/DPPC (2:3 molar ratio) and the liquid-ordered (Lo) phase in DOPC/SM/Chol (1:2:1 molar ratio) mixtures. This study highlights the important differences in orientation and location and therefore in efficiency between the probes when they are used in fluorescence microscopy to screen various lipid bilayer membrane phases. Dependent on the lipid composition, the angle between the transition-state dipole moments of both probes and the normal to the membrane is found to deviate clearly from 90°. It is seen that the DiI-C18(5) probe is located in the headgroup region of the SM/Chol mixture, in close contact with water molecules. A fluorescence anisotropy study also indicates that DiI-C18(5) gives rise to a distinctive behavior in the SM/Chol membrane compared to the other considered membranes. The latter behavior has not been seen for the studied BODIPY probe, which is located deeper in the membrane.
Collapse
Affiliation(s)
- S Knippenberg
- Department of Theoretical Chemistry and Biology , KTH Royal Institute of Technology , Roslagstullsbacken 15 , S-106 91 Stockholm , Sweden
- Biomedical Research Institute , Hasselt University , Agoralaan Building C , 3590 Diepenbeek , Belgium
| | - G Fabre
- LCSN-EA1069, Faculty of Pharmacy , Limoges University , 2 rue du Dr. Marcland , 87025 Limoges Cedex , France
| | - S Osella
- Centre of New Technologies , University of Warsaw , Banacha 2C , 02-097 Warsaw , Poland
| | - F Di Meo
- Faculty of Pharmacy , INSERM UMR 1248, Limoges University , 2 rue du Docteur Marcland , 87025 Limoges Cedex , France
| | - M Paloncýová
- Department of Theoretical Chemistry and Biology , KTH Royal Institute of Technology , Roslagstullsbacken 15 , S-106 91 Stockholm , Sweden
| | - M Ameloot
- Biomedical Research Institute , Hasselt University , Agoralaan Building C , 3590 Diepenbeek , Belgium
| | - P Trouillas
- Faculty of Pharmacy , INSERM UMR 1248, Limoges University , 2 rue du Docteur Marcland , 87025 Limoges Cedex , France
- Centre of Advanced Technologies and Materials, Faculty of Science , Palacký University , tř. 17 listopadu 12 , 771 46 Olomouc , Czech Republic
| |
Collapse
|
25
|
Omolo CA, Kalhapure RS, Agrawal N, Rambharose S, Mocktar C, Govender T. Formulation and Molecular Dynamics Simulations of a Fusidic Acid Nanosuspension for Simultaneously Enhancing Solubility and Antibacterial Activity. Mol Pharm 2018; 15:3512-3526. [PMID: 29953816 DOI: 10.1021/acs.molpharmaceut.8b00505] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to formulate a nanosuspension (FA-NS) of fusidic acid (FA) to enhance its aqueous solubility and antibacterial activity. The nanosuspension was characterized using various in vitro, in silico, and in vivo techniques. The size, polydispersity index, and zeta potential of the optimized FA-NS were 265 ± 2.25 nm, 0.158 ± 0.026, and -16.9 ± 0.794 mV, respectively. The molecular dynamics simulation of FA and Poloxamer-188 showed an interaction and binding energy of -74.42 kJ/mol and -49.764 ± 1.298 kJ/mol, respectively, with van der Waals interactions playing a major role in the spontaneous binding. There was an 8-fold increase in the solubility of FA in a nanosuspension compared to the bare drug. The MTT assays showed a cell viability of 75-100% confirming the nontoxic nature of FA-NS. In vitro antibacterial activity revealed a 16- and 18-fold enhanced activity against Staphylococcus aureus (SA) and methicillin-resistant SA (MRSA), respectively, when compared to bare FA. Flowcytometry showed that MRSA cells treated with FA-NS had almost twice the percentage of dead bacteria in the population, despite having an 8-fold lower MIC in comparison to the bare drug. The in vivo skin-infected mice showed a 76-fold reduction in the MRSA load for the FA-NS treated group compared to that of the bare FA. These results show that the nanosuspension of antibiotics can enhance their solubility and antibacterial activity simultaneously.
Collapse
Affiliation(s)
- Calvin A Omolo
- Discipline of Pharmaceutical Sciences , College of Health Sciences, University of KwaZulu-Natal , Private Bag , X54001 Durban , South Africa
| | - Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences , College of Health Sciences, University of KwaZulu-Natal , Private Bag , X54001 Durban , South Africa.,School of Pharmacy , The University of Texas at El Paso , 500 W. University Avenue , El Paso , Texas 79968 , United States
| | - Nikhil Agrawal
- Discipline of Pharmaceutical Sciences , College of Health Sciences, University of KwaZulu-Natal , Private Bag , X54001 Durban , South Africa
| | - Sanjeev Rambharose
- Discipline of Pharmaceutical Sciences , College of Health Sciences, University of KwaZulu-Natal , Private Bag , X54001 Durban , South Africa.,Division of Emergency Medicine, Department of Surgery , University of Cape Town , Cape Town 7700 , South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences , College of Health Sciences, University of KwaZulu-Natal , Private Bag , X54001 Durban , South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences , College of Health Sciences, University of KwaZulu-Natal , Private Bag , X54001 Durban , South Africa
| |
Collapse
|
26
|
Kumari P, Kaur S, Sharma S, Kashyap HK. Impact of amphiphilic molecules on the structure and stability of homogeneous sphingomyelin bilayer: Insights from atomistic simulations. J Chem Phys 2018; 148:165102. [DOI: 10.1063/1.5021310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Supreet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shobha Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
27
|
Hartkamp R, Moore TC, Iacovella CR, Thompson MA, Bulsara PA, Moore DJ, McCabe C. Composition Dependence of Water Permeation Across Multicomponent Gel-Phase Bilayers. J Phys Chem B 2018; 122:3113-3123. [PMID: 29504755 PMCID: PMC6028149 DOI: 10.1021/acs.jpcb.8b00747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The permeability
of multicomponent phospholipid bilayers in the
gel phase is investigated via molecular dynamics simulation. The physical
role of the different molecules is probed by comparing multiple mixed-component
bilayers containing distearylphosphatidylcholine (DSPC) with varying
amounts of either the emollient isostearyl isostearate or long-chain
alcohol (dodecanol, octadecanol, or tetracosanol) molecules. Permeability
is found to depend on both the tail packing density and hydrogen bonding
between lipid headgroups and water. Whereas the addition of emollient
or alcohol molecules to a gel-phase DSPC bilayer can increase the
tail packing density, it also disturbed the hydrogen-bonding network,
which in turn can increase interfacial water dynamics. These phenomena
have opposing effects on bilayer permeability, which is found to depend
on the balance between enhanced tail packing and decreased hydrogen
bonding.
Collapse
Affiliation(s)
- Remco Hartkamp
- Process & Energy Department , Delft University of Technology , Leeghwaterstraat 39 , 2628 CB Delft , The Netherlands
| | | | | | - Michael A Thompson
- GlaxoSmithKline Consumer Healthcare , 184 Liberty Corner Road , Suite 200, Warren , New Jersey 07059 , United States
| | - Pallav A Bulsara
- GlaxoSmithKline Consumer Healthcare , 184 Liberty Corner Road , Suite 200, Warren , New Jersey 07059 , United States
| | - David J Moore
- GlaxoSmithKline Consumer Healthcare , 184 Liberty Corner Road , Suite 200, Warren , New Jersey 07059 , United States
| | | |
Collapse
|
28
|
Katiyar RS, Jha PK. Molecular simulations in drug delivery: Opportunities and challenges. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1358] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Prateek K. Jha
- Department of Chemical EngineeringIIT RoorkeeUttarakhandIndia
| |
Collapse
|
29
|
Lee BL, Kuczera K. Simulating the free energy of passive membrane permeation for small molecules. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1407029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Brent L. Lee
- Department of Chemistry, The University of Kansas , Lawrence, KS, USA
| | - Krzysztof Kuczera
- Department of Chemistry, The University of Kansas , Lawrence, KS, USA
- Department of Molecular Biosciences, The University of Kansas , Lawrence, KS, USA
| |
Collapse
|
30
|
Gobrogge CA, Walker RA. Quantifying Solute Partitioning in Phosphatidylcholine Membranes. Anal Chem 2017; 89:12587-12595. [DOI: 10.1021/acs.analchem.7b03964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christine A. Gobrogge
- Chemistry
and Biochemistry Department, Montana State University, Bozeman, Montana 59717, United States
| | - Robert A. Walker
- Chemistry
and Biochemistry Department, Montana State University, Bozeman, Montana 59717, United States
- Montana
Materials Science Program, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
31
|
Wei C, Pohorille A. Sequence-Dependent Interfacial Adsorption and Permeation of Dipeptides across Phospholipid Membranes. J Phys Chem B 2017; 121:9859-9867. [PMID: 28982244 DOI: 10.1021/acs.jpcb.7b08238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We investigate permeation of three blocked dipeptides with different side chain polarity across a phospholipid membrane and their behavior at the water-membrane interface by way of molecular dynamics simulations. Hydrophilic serine-serine dipeptide is found to desorb from the interface to aqueous phase, whereas hydrophobic phenylalanine-leucine and amphiphilic serine-leucine tend to accumulate at the interface with a free energy minimum of -3 kcal/mol. All three dipeptides exhibit free energy barriers to permeation across the membrane located at the center of the bilayer. The height of the barrier is strongly sequence dependent and increases with the dipeptide polarity. It is equal to 3.5, 6.4, and 10.0 kcal/mol for phenylalanine-leucine, serine-leucine, and serine-serine, respectively. The corresponding permeability coefficients are equal to 4.6 × 10-3, 4.5 × 10-5, and 8.7 × 10-8 cm/s. The apparent insensitivity of membrane permeability to hydrophobicity of dipeptides, found in some experiments, is attributed to neglecting corrections for unstirred water layers near membrane surface, which are significant for hydrophobic species. Different hydrophobicity of the dipeptides also influences their conformations and orientations, both at the interface and inside the membrane. In particular, penetration of hydrophilic serine-serine dipeptide causes the formation of water-filled defects in the bilayer. These results are relevant to the delivery of peptide-based therapeutic agents.
Collapse
Affiliation(s)
- Chenyu Wei
- NASA Ames Research Center, Mail Stop 239-4, Moffett Field, California 94035, United States.,Department of Pharmaceutical Chemistry, University of California, San Francisco , San Francisco, California 94143, United States
| | - Andrew Pohorille
- NASA Ames Research Center, Mail Stop 239-4, Moffett Field, California 94035, United States.,Department of Pharmaceutical Chemistry, University of California, San Francisco , San Francisco, California 94143, United States
| |
Collapse
|
32
|
Theodorakis PE, Müller EA, Craster RV, Matar OK. Physical insights into the blood-brain barrier translocation mechanisms. Phys Biol 2017; 14:041001. [PMID: 28586313 DOI: 10.1088/1478-3975/aa708a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood-brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies.
Collapse
|
33
|
Gupta R, Rai B. Effect of Size and Surface Charge of Gold Nanoparticles on their Skin Permeability: A Molecular Dynamics Study. Sci Rep 2017; 7:45292. [PMID: 28349970 PMCID: PMC5368607 DOI: 10.1038/srep45292] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/21/2017] [Indexed: 12/22/2022] Open
Abstract
Molecular level understanding of permeation of nanoparticles through human skin establishes the basis for development of novel transdermal drug delivery systems and design and formulation of cosmetics. Recent experiments suggest that surface coated nano-sized gold nanoparticles (AuNPs) can penetrate the rat and human skin. However, the mechanisms by which these AuNPs penetrate are not well understood. In this study, we have carried out coarse grained molecular dynamics simulations to explore the permeation of dodecanethiol coated neutral hydrophobic AuNPs of different sizes (2–5 nm) and surface charges (cationic and anionic) through the model skin lipid membrane. The results indicate that the neutral hydrophobic AuNPs disrupted the bilayer and entered in it with in ~200 ns, while charged AuNPs were adsorbed on the bilayer headgroup. The permeation free energy calculation revealed that at the head group of the bilayer, a very small barrier existed for neutral hydrophobic AuNP while a free energy minimum was observed for charged AuNPs. The permeability was maximum for neutral 2 nm gold nanoparticle (AuNP) and minimum for 3 nm cationic AuNP. The obtained results are aligned with recent experimental findings. This study would be helpful in designing customized nanoparticles for cosmetic and transdermal drug delivery application.
Collapse
Affiliation(s)
- Rakesh Gupta
- Physical Science Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune - 411013, India
| | - Beena Rai
- Physical Science Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune - 411013, India
| |
Collapse
|
34
|
Diffusion of the small, very polar, drug piracetam through a lipid bilayer: an MD simulation study. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2073-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Zhang Y, Wang H, Xu W, Meng F. Structural effects and translocation of spontaneous membrane-translocating peptides with POPC bilayer. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s021963361750002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Martini coarse-grained force field simulations have been carried out to estimate the free energy profiles of the spontaneous membrane-translocating peptide TP2 and one negative control peptide ONEG with POPC as the model bilayer. The results show that the free energy minimum of TP2 is [Formula: see text]20[Formula: see text]kJ/mol lower than that of ONEG. In addition, the minimum of TP2 shifts slightly to the bilayer center compared with ONEG. The translocation barrier height for TP2 and ONEG are 119.0[Formula: see text]kJ/mol and 155.7[Formula: see text]kJ/mol, respectively. The lower central energy barrier of TP2 facilitates the transition between two leaflets of POPC. Both translocating peptides induce the formation of funnel-shaped structures at the bilayer center, but TP2 has a more compact structure and brings less perturbation compared with ONEG. Subsequently all atom molecular simulations testify the findings. It is indicated that compared with its negative control ONEG, TP2 binds better with lipid and penetrates deeper into bilayer with less perturbation to the bilayer structure. Our findings may shed light on the design and virtual screening of spontaneous membrane-translocating peptides.
Collapse
Affiliation(s)
- Yuan Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China
| | - Huanjie Wang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical, Research, Tianjin 300193, P. R. China
| | - Weiren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical, Research, Tianjin 300193, P. R. China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical, Research, Tianjin 300193, P. R. China
| |
Collapse
|
36
|
Lopes D, Jakobtorweihen S, Nunes C, Sarmento B, Reis S. Shedding light on the puzzle of drug-membrane interactions: Experimental techniques and molecular dynamics simulations. Prog Lipid Res 2017; 65:24-44. [DOI: 10.1016/j.plipres.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 12/20/2022]
|
37
|
Gupta R, Dwadasi BS, Rai B. Molecular Dynamics Simulation of Skin Lipids: Effect of Ceramide Chain Lengths on Bilayer Properties. J Phys Chem B 2016; 120:12536-12546. [DOI: 10.1021/acs.jpcb.6b08059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rakesh Gupta
- Engineering & Physical Sciences, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune 411013, India
| | - Balarama Sridhar Dwadasi
- Engineering & Physical Sciences, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune 411013, India
| | - Beena Rai
- Engineering & Physical Sciences, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune 411013, India
| |
Collapse
|
38
|
Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2334-2352. [DOI: 10.1016/j.bbamem.2016.02.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
39
|
Kulkarni A, Pandey P, Rao P, Mahmoud A, Goldman A, Sabbisetti V, Parcha S, Natarajan SK, Chandrasekar V, Dinulescu D, Roy S, Sengupta S. Algorithm for Designing Nanoscale Supramolecular Therapeutics with Increased Anticancer Efficacy. ACS NANO 2016; 10:8154-68. [PMID: 27452234 DOI: 10.1021/acsnano.6b00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the chemical world, evolution is mirrored in the origin of nanoscale supramolecular structures from molecular subunits. The complexity of function acquired in a supramolecular system over a molecular subunit can be harnessed in the treatment of cancer. However, the design of supramolecular nanostructures is hindered by a limited atomistic level understanding of interactions between building blocks. Here, we report the development of a computational algorithm, which we term Volvox after the first multicellular organism, that sequentially integrates quantum mechanical energy-state- and force-field-based models with large-scale all-atomistic explicit water molecular dynamics simulations to design stable nanoscale lipidic supramolecular structures. In one example, we demonstrate that Volvox enables the design of a nanoscale taxane supramolecular therapeutic. In another example, we demonstrate that Volvox can be extended to optimizing the ratio of excipients to form a stable nanoscale supramolecular therapeutic. The nanoscale taxane supramolecular therapeutic exerts greater antitumor efficacy than a clinically used taxane in vivo. Volvox can emerge as a powerful tool in the design of nanoscale supramolecular therapeutics for effective treatment of cancer.
Collapse
Affiliation(s)
- Ashish Kulkarni
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts 02139, United States
| | - Prithvi Pandey
- India Innovation Research Center , Invictus Oncology, New Delhi 110092, India
| | | | | | - Aaron Goldman
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts 02139, United States
- Harvard Digestive Diseases Center , Boston, Massachusetts 02115, United States
| | - Venkata Sabbisetti
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | | | | | | - Sudip Roy
- India Innovation Research Center , Invictus Oncology, New Delhi 110092, India
| | - Shiladitya Sengupta
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts 02139, United States
- Dana Farber Cancer Institute , Boston, Massachusetts 02115, United States
| |
Collapse
|
40
|
Carpenter TS, Parkin J, Khalid S. The Free Energy of Small Solute Permeation through the Escherichia coli Outer Membrane Has a Distinctly Asymmetric Profile. J Phys Chem Lett 2016; 7:3446-3451. [PMID: 27518381 DOI: 10.1021/acs.jpclett.6b01399] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Permeation of small molecules across cell membranes is a ubiquitous process in biology and is dependent on the principles of physical chemistry at the molecular level. Here we use atomistic molecular dynamics simulations to calculate the free energy of permeation of a range of small molecules through a model of the outer membrane of Escherichia coli, an archetypical Gram-negative bacterium. The model membrane contains lipopolysaccharide (LPS) molecules in the outer leaflet and phospholipids in the inner leaflet. Our results show that the energetic barriers to permeation through the two leaflets of the membrane are distinctly asymmetric; the LPS headgroups provide a less energetically favorable environment for organic compounds than do phospholipids. In summary, we provide the first reported estimates of the relative free energies associated with the different chemical environments experienced by solutes as they attempt to cross the outer membrane of a Gram-negative bacterium. These results provide key insights for the development of novel antibiotics that target these bacteria.
Collapse
Affiliation(s)
- Timothy S Carpenter
- Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Jamie Parkin
- School of Chemistry, University of Southampton , Southampton, U.K. SO17 1BJ
| | - Syma Khalid
- School of Chemistry, University of Southampton , Southampton, U.K. SO17 1BJ
| |
Collapse
|
41
|
Votapka LW, Lee CT, Amaro RE. Two Relations to Estimate Membrane Permeability Using Milestoning. J Phys Chem B 2016; 120:8606-16. [PMID: 27154639 PMCID: PMC5002937 DOI: 10.1021/acs.jpcb.6b02814] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/30/2016] [Indexed: 01/17/2023]
Abstract
Prediction of passive permeation rates of solutes across lipid bilayers is important to drug design, toxicology, and other biological processes such as signaling. The inhomogeneous solubility-diffusion (ISD) equation is traditionally used to relate the position-dependent potential of mean force and diffusivity to the permeability coefficient. The ISD equation is derived via the Smoluchowski equation and assumes overdamped system dynamics. It has been suggested that the complex membrane environment may exhibit more complicated damping conditions. Here we derive a variant of the inhomogeneous solubility diffusion equation as a function of the mean first passage time (MFPT) and show how milestoning, a method that can estimate kinetic quantities of interest, can be used to estimate the MFPT of membrane crossing and, by extension, the permeability coefficient. We further describe a second scheme, agnostic to the damping condition, to estimate the permeability coefficient from milestoning results or other methods that compute a probability of membrane crossing. The derived relationships are tested using a one-dimensional Langevin dynamics toy system confirming that the presented theoretical methods can be used to estimate permeabilities given simulation and milestoning results.
Collapse
Affiliation(s)
- Lane W. Votapka
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Christopher T. Lee
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Rommie E. Amaro
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
42
|
Jalili S, Saeedi M. Study of procaine and tetracaine in the lipid bilayer using molecular dynamics simulation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:265-282. [PMID: 27557558 DOI: 10.1007/s00249-016-1164-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/18/2016] [Accepted: 08/12/2016] [Indexed: 11/29/2022]
Abstract
Despite available experimental results, the molecular mechanism of action of local anesthetics upon the nervous system and contribution of the cell membrane to the process are still controversial. In this work, molecular dynamics simulations were performed to investigate the effect of two clinically used local anesthetics, procaine and tetracaine, on the structure and dynamics of a fully hydrated dimyristoylphosphatidylcholine lipid bilayer. We focused on comparing the main effects of uncharged and charged drugs on various properties of the lipid membrane: mass density distribution, diffusion coefficient, order parameter, radial distribution function, hydrogen bonding, electrostatic potential, headgroup angle, and water dipole orientation. To compare the diffusive nature of anesthetic through the lipid membrane quantitatively, we investigated the hexadecane/water partition coefficient using expanded ensemble simulation. We predicted the permeability coefficient of anesthetics in the following order: uncharged tetracaine > uncharged procaine > charged tetracaine > charged procaine. We also shown that the charged forms of drugs are more potent in hydrogen bonding, disturbing the lipid headgroups, changing the orientation of water dipoles, and increasing the headgroup electrostatic potential more than uncharged drugs, while the uncharged drugs make the lipid diffusion faster and increase the tail order parameter. The results of these simulation studies suggest that the different forms of anesthetics induce different structural modifications in the lipid bilayer, which provides new insights into their molecular mechanism.
Collapse
Affiliation(s)
- Seifollah Jalili
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, P.O. Box 15875-4416, Iran. .,Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, P.O. Box 19395-5531, Iran. .,Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Marzieh Saeedi
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, P.O. Box 15875-4416, Iran
| |
Collapse
|
43
|
Wood I, Pickholz M. Naratriptan aggregation in lipid bilayers: perspectives from molecular dynamics simulations. J Mol Model 2016; 22:221. [PMID: 27558798 DOI: 10.1007/s00894-016-3096-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/08/2016] [Indexed: 11/27/2022]
Abstract
In order to understand the interaction between naratriptan and a fully hydrated bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC), we carried out molecular dynamics simulations. The simulations were performed considering neutral and protonated ionization states, starting from different initial conditions. At physiological pH, the protonated state of naratriptan is predominant. It is expected that neutral compounds could have larger membrane partition than charged compounds. However, for the specific case of triptans, it is difficult to study neutral species in membranes experimentally, making computer simulations an interesting tool. When the naratriptan molecules were originally placed in water, they partitioned between the bilayer/water interface and water phase, as has been described for similar compounds. From this condition, the drugs displayed low access to the hydrophobic environment, with no significant effects on bilayer organization. The molecules anchored in the interface, due mainly to the barrier function of the polar and oriented lipid heads. On the other hand, when placed inside the bilayer, both neutral and protonated naratriptan showed self-aggregation in the lipid tail environment. In particular, the protonated species exhibited a pore-like structure, dragging water through this environment. Graphical Abstract Different behaviour of Naratriptan and Sumatriptan, when the drugs were originally placed in the lipid core.
Collapse
Affiliation(s)
- Irene Wood
- Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, CONICET, Junin 956 CP 1113, Buenos Aires, Argentina.,National Science Research Council (CONICET), Buenos Aires, Argentina
| | - Mónica Pickholz
- Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, CONICET, Junin 956 CP 1113, Buenos Aires, Argentina. .,National Science Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
44
|
Gupta R, Sridhar DB, Rai B. Molecular Dynamics Simulation Study of Permeation of Molecules through Skin Lipid Bilayer. J Phys Chem B 2016; 120:8987-96. [PMID: 27518707 DOI: 10.1021/acs.jpcb.6b05451] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stratum Corneum (SC), the outermost layer of skin, is mainly responsible for skin's barrier function. The complex lipid matrix of SC determines these barrier properties. In this study, the lipid matrix is modeled as an equimolar mixture of ceramide (CER), cholesterol (CHOL), and free fatty acid (FFA). The permeation of water, oxygen, ethanol, acetic acid, urea, butanol, benzene, dimethyl sulfoxide (DMSO), toluene, phenol, styrene, and ethylbenzene across this layer is studied using a constrained MD simulations technique. Several long constrained simulations are performed at a skin temperature of 310 K under NPT conditions. The free energy profiles and diffusion coefficients along the bilayer normal have been calculated for each molecule. Permeability coefficients are also calculated and compared with experimental data. The main resistance for the permeation of hydrophilic and hydrophobic permeants has been found to be in the interior of the lipid bilayer and near the lipid-water interface, respectively. The obtained permeability is found to be a few orders of magnitude higher than experimental values for hydrophilic molecules while for hydrophobic molecules more discrepancy was observed. Overall, the qualitative ranking is consistent with the experiments.
Collapse
Affiliation(s)
- Rakesh Gupta
- Physical Science Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services , 54B, Hadapsar Industrial Estate, Pune - 411013, India
| | - D B Sridhar
- Physical Science Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services , 54B, Hadapsar Industrial Estate, Pune - 411013, India
| | - Beena Rai
- Physical Science Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services , 54B, Hadapsar Industrial Estate, Pune - 411013, India
| |
Collapse
|
45
|
Di Meo F, Fabre G, Berka K, Ossman T, Chantemargue B, Paloncýová M, Marquet P, Otyepka M, Trouillas P. In silico pharmacology: Drug membrane partitioning and crossing. Pharmacol Res 2016; 111:471-486. [PMID: 27378566 DOI: 10.1016/j.phrs.2016.06.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Over the past decade, molecular dynamics (MD) simulations have become particularly powerful to rationalize drug insertion and partitioning in lipid bilayers. MD simulations efficiently support experimental evidences, with a comprehensive understanding of molecular interactions driving insertion and crossing. Prediction of drug partitioning is discussed with respect to drug families (anesthetics; β-blockers; non-steroidal anti-inflammatory drugs; antioxidants; antiviral drugs; antimicrobial peptides). To accurately evaluate passive permeation coefficients turned out to be a complex theoretical challenge; however the recent methodological developments based on biased MD simulations are particularly promising. Particular attention is paid to membrane composition (e.g., presence of cholesterol), which influences drug partitioning and permeation. Recent studies concerning in silico models of membrane proteins involved in drug transport (influx and efflux) are also reported here. These studies have allowed gaining insight in drug efflux by, e.g., ABC transporters at an atomic resolution, explicitly accounting for the mandatory forces induced by the surrounded lipid bilayer. Large-scale conformational changes were thoroughly analyzed.
Collapse
Affiliation(s)
- Florent Di Meo
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Gabin Fabre
- LCSN, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Karel Berka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Tahani Ossman
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Benjamin Chantemargue
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Markéta Paloncýová
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Pierre Marquet
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Michal Otyepka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Patrick Trouillas
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic.
| |
Collapse
|
46
|
Lee BL, Kuczera K, Middaugh CR, Jas GS. Permeation of the three aromatic dipeptides through lipid bilayers: Experimental and computational study. J Chem Phys 2016; 144:245103. [DOI: 10.1063/1.4954241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Brent L. Lee
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Krzysztof Kuczera
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, USA
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| | - C. Russell Middaugh
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Gouri S. Jas
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
47
|
Krämer SD, Aschmann HE, Hatibovic M, Hermann KF, Neuhaus CS, Brunner C, Belli S. When barriers ignore the "rule-of-five". Adv Drug Deliv Rev 2016; 101:62-74. [PMID: 26877103 DOI: 10.1016/j.addr.2016.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/20/2022]
Abstract
Why are a few drugs with properties beyond the rule of 5 (bRo5) absorbed across the intestinal mucosa while most other bRo5 compounds are not? Are such exceptional bRo5 compounds exclusively taken up by carrier-mediated transport or are they able to permeate the lipid bilayer (passive lipoidal diffusion)? Our experimental data with liposomes indicate that tetracycline, which violates one rule of the Ro5, and rifampicin, violating three of the rules, significantly permeate a phospholipid bilayer with kinetics similar to labetalol and metoprolol, respectively. Published data from experimental work and molecular dynamics simulations suggest that the formation of intramolecular H-bonds and the possibility to adopt an elongated shape besides the presence of a significant fraction of net neutral species facilitate lipid bilayer permeation. As an alternative to lipid bilayer permeation, carrier proteins can be targeted to improve absorption, with the potential drawbacks of drug-drug interactions and non-linear pharmacokinetics.
Collapse
Affiliation(s)
- Stefanie D Krämer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.
| | - Hélène E Aschmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Maja Hatibovic
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Katharina F Hermann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Claudia S Neuhaus
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Cyrill Brunner
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Sara Belli
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| |
Collapse
|
48
|
Effect of cis-(Z)-flupentixol on DPPC membranes in the presence and absence of cholesterol. Chem Phys Lipids 2016; 198:61-71. [DOI: 10.1016/j.chemphyslip.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/21/2016] [Accepted: 06/02/2016] [Indexed: 12/18/2022]
|
49
|
Lee CT, Comer J, Herndon C, Leung N, Pavlova A, Swift RV, Tung C, Rowley CN, Amaro RE, Chipot C, Wang Y, Gumbart JC. Simulation-Based Approaches for Determining Membrane Permeability of Small Compounds. J Chem Inf Model 2016; 56:721-33. [PMID: 27043429 DOI: 10.1021/acs.jcim.6b00022] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Predicting the rate of nonfacilitated permeation of solutes across lipid bilayers is important to drug design, toxicology, and signaling. These rates can be estimated using molecular dynamics simulations combined with the inhomogeneous solubility-diffusion model, which requires calculation of the potential of mean force and position-dependent diffusivity of the solute along the transmembrane axis. In this paper, we assess the efficiency and accuracy of several methods for the calculation of the permeability of a model DMPC bilayer to urea, benzoic acid, and codeine. We compare umbrella sampling, replica exchange umbrella sampling, adaptive biasing force, and multiple-walker adaptive biasing force for the calculation of the transmembrane PMF. No definitive advantage for any of these methods in their ability to predict the membrane permeability coefficient Pm was found, provided that a sufficiently long equilibration is performed. For diffusivities, a Bayesian inference method was compared to a generalized Langevin method, both being sensitive to chosen parameters and the slow relaxation of membrane defects. Agreement within 1.5 log units of the computed Pm with experiment is found for all permeants and methods. Remaining discrepancies can likely be attributed to limitations of the force field as well as slowly relaxing collective movements within the lipid environment. Numerical calculations based on model profiles show that Pm can be reliably estimated from only a few data points, leading to recommendations for calculating Pm from simulations.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Jeffrey Comer
- Nanotechnology Innovation Center of Kansas State, Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, Kansas State University , P-213 Mosier Hall, Manhattan, Kansas 66506, United States
| | - Conner Herndon
- School of Physics, Georgia Institute of Technology , 837 State Street, Atlanta, Georgia 30332, United States
| | - Nelson Leung
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Anna Pavlova
- School of Physics, Georgia Institute of Technology , 837 State Street, Atlanta, Georgia 30332, United States
| | - Robert V Swift
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chris Tung
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Christopher N Rowley
- Department of Chemistry, Memorial University of Newfoundland , St. John's, NL A1B 3X7 Canada
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique and University of Illinois at Urbana-Champaign, UMR n° 7565, Université de Lorraine , B.P. 70239, 54506 Vandœuvre-lès-Nancy, France.,Beckman Institute for Advanced Science and Technology and Department of Physics, University of Illinois at Urbana-Champaign , 405 North Mathews, Urbana, Illinois 61801, United States
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology , 837 State Street, Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
50
|
Lv C, Aitchison EW, Wu D, Zheng L, Cheng X, Yang W. Comparative exploration of hydrogen sulfide and water transmembrane free energy surfaces via orthogonal space tempering free energy sampling. J Comput Chem 2016; 37:567-74. [PMID: 26119423 PMCID: PMC4959446 DOI: 10.1002/jcc.23982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/24/2015] [Indexed: 01/22/2023]
Abstract
Hydrogen sulfide (H2 S), a commonly known toxic gas compound, possesses unique chemical features that allow this small solute molecule to quickly diffuse through cell membranes. Taking advantage of the recent orthogonal space tempering (OST) method, we comparatively mapped the transmembrane free energy landscapes of H2 S and its structural analogue, water (H2 O), seeking to decipher the molecular determinants that govern their drastically different permeabilities. As revealed by our OST sampling results, in contrast to the highly polar water solute, hydrogen sulfide is evidently amphipathic, and thus inside membrane is favorably localized at the interfacial region, that is, the interface between the polar head-group and nonpolar acyl chain regions. Because the membrane binding affinity of H2 S is mainly governed by its small hydrophobic moiety and the barrier height inbetween the interfacial region and the membrane center is largely determined by its moderate polarity, the transmembrane free energy barriers to encounter by this toxic molecule are very small. Moreover when H2 S diffuses from the bulk solution to the membrane center, the above two effects nearly cancel each other, so as to lead to a negligible free energy difference. This study not only explains why H2 S can quickly pass through cell membranes but also provides a practical illustration on how to use the OST free energy sampling method to conveniently analyze complex molecular processes. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chao Lv
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306
| | - Erick W. Aitchison
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Dongsheng Wu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Lianqing Zheng
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Xiaolin Cheng
- UT-ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37830
- Department of Biochemistry, Cellular and Molecular Biology, the University of Tennessee, Knoxville, Tennessee, 37996
| | - Wei Yang
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|