1
|
García-Contreras R, de la Mora J, Mora-Montes HM, Martínez-Álvarez JA, Vicente-Gómez M, Padilla-Vaca F, Vargas-Maya NI, Franco B. The inorganic pyrophosphatases of microorganisms: a structural and functional review. PeerJ 2024; 12:e17496. [PMID: 38938619 PMCID: PMC11210485 DOI: 10.7717/peerj.17496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Pyrophosphatases (PPases) are enzymes that catalyze the hydrolysis of pyrophosphate (PPi), a byproduct of the synthesis and degradation of diverse biomolecules. The accumulation of PPi in the cell can result in cell death. Although the substrate is the same, there are variations in the catalysis and features of these enzymes. Two enzyme forms have been identified in bacteria: cytoplasmic or soluble pyrophosphatases and membrane-bound pyrophosphatases, which play major roles in cell bioenergetics. In eukaryotic cells, cytoplasmic enzymes are the predominant form of PPases (c-PPases), while membrane enzymes (m-PPases) are found only in protists and plants. The study of bacterial cytoplasmic and membrane-bound pyrophosphatases has slowed in recent years. These enzymes are central to cell metabolism and physiology since phospholipid and nucleic acid synthesis release important amounts of PPi that must be removed to allow biosynthesis to continue. In this review, two aims were pursued: first, to provide insight into the structural features of PPases known to date and that are well characterized, and to provide examples of enzymes with novel features. Second, the scientific community should continue studying these enzymes because they have many biotechnological applications. Additionally, in this review, we provide evidence that there are m-PPases present in fungi; to date, no examples have been characterized. Therefore, the diversity of PPase enzymes is still a fruitful field of research. Additionally, we focused on the roles of H+/Na+ pumps and m-PPases in cell bioenergetics. Finally, we provide some examples of the applications of these enzymes in molecular biology and biotechnology, especially in plants. This review is valuable for professionals in the biochemistry field of protein structure-function relationships and experts in other fields, such as chemistry, nanotechnology, and plant sciences.
Collapse
Affiliation(s)
- Rodolfo García-Contreras
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Javier de la Mora
- Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor Manuel Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Marcos Vicente-Gómez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Naurú Idalia Vargas-Maya
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
2
|
Strauss J, Wilkinson C, Vidilaseris K, de Castro Ribeiro OM, Liu J, Hillier J, Wichert M, Malinen AM, Gehl B, Jeuken LJ, Pearson AR, Goldman A. Functional and structural asymmetry suggest a unifying principle for catalysis in membrane-bound pyrophosphatases. EMBO Rep 2024; 25:853-875. [PMID: 38182815 PMCID: PMC10897367 DOI: 10.1038/s44319-023-00037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024] Open
Abstract
Membrane-bound pyrophosphatases (M-PPases) are homodimeric primary ion pumps that couple the transport of Na+- and/or H+ across membranes to the hydrolysis of pyrophosphate. Their role in the virulence of protist pathogens like Plasmodium falciparum makes them an intriguing target for structural and functional studies. Here, we show the first structure of a K+-independent M-PPase, asymmetric and time-dependent substrate binding in time-resolved structures of a K+-dependent M-PPase and demonstrate pumping-before-hydrolysis by electrometric studies. We suggest how key residues in helix 12, 13, and the exit channel loops affect ion selectivity and K+-activation due to a complex interplay of residues that are involved in subunit-subunit communication. Our findings not only explain ion selectivity in M-PPases but also why they display half-of-the-sites reactivity. Based on this, we propose, for the first time, a unified model for ion-pumping, hydrolysis, and energy coupling in all M-PPases, including those that pump both Na+ and H+.
Collapse
Affiliation(s)
- Jannik Strauss
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK
- Numaferm GmbH, Düsseldorf, Germany
| | - Craig Wilkinson
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK
| | - Keni Vidilaseris
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland
| | - Orquidea M de Castro Ribeiro
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland
| | - Jianing Liu
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland
| | - James Hillier
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK
- Bio-Rad Laboratories Ltd., Watford, UK
| | - Maximilian Wichert
- Leiden Institute of Chemistry, University Leiden, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | - Anssi M Malinen
- Department of Life Technologies, University of Turku, FIN-20014, Turku, Finland
| | - Bernadette Gehl
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland
- Department of Applied Physics, Aalto University, FI-00076, AALTO, Espoo, Finland
| | - Lars Jc Jeuken
- Leiden Institute of Chemistry, University Leiden, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | - Arwen R Pearson
- Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761, Hamburg, Germany
| | - Adrian Goldman
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK.
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland.
| |
Collapse
|
3
|
Malinen AM, Anashkin VA, Orlov VN, Bogachev AV, Lahti R, Baykov AA. Pre-steady-state kinetics and solvent isotope effects support the "billiard-type" transport mechanism in Na + -translocating pyrophosphatase. Protein Sci 2022; 31:e4394. [PMID: 36040263 PMCID: PMC9405524 DOI: 10.1002/pro.4394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022]
Abstract
Membrane-bound pyrophosphatase (mPPase) found in microbes and plants is a membrane H+ pump that transports the H+ ion generated in coupled pyrophosphate hydrolysis out of the cytoplasm. Certain bacterial and archaeal mPPases can in parallel transport Na+ via a hypothetical "billiard-type" mechanism, also involving the hydrolysis-generated proton. Here, we present the functional evidence supporting this coupling mechanism. Rapid-quench and pulse-chase measurements with [32 P]pyrophosphate indicated that the chemical step (pyrophosphate hydrolysis) is rate-limiting in mPPase catalysis and is preceded by a fast isomerization of the enzyme-substrate complex. Na+ , whose binding is a prerequisite for the hydrolysis step, is not required for substrate binding. Replacement of H2 O with D2 O decreased the rates of pyrophosphate hydrolysis by both Na+ - and H+ -transporting bacterial mPPases, the effect being more significant than with a non-transporting soluble pyrophosphatase. We also show that the Na+ -pumping mPPase of Thermotoga maritima resembles other dimeric mPPases in demonstrating negative kinetic cooperativity and the requirement for general acid catalysis. The findings point to a crucial role for the hydrolysis-generated proton both in H+ -pumping and Na+ -pumping by mPPases.
Collapse
Affiliation(s)
| | - Viktor A. Anashkin
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Victor N. Orlov
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Alexander V. Bogachev
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Reijo Lahti
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Alexander A. Baykov
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
4
|
Cecchetti C, Strauss J, Stohrer C, Naylor C, Pryor E, Hobbs J, Tanley S, Goldman A, Byrne B. A novel high-throughput screen for identifying lipids that stabilise membrane proteins in detergent based solution. PLoS One 2021; 16:e0254118. [PMID: 34252116 PMCID: PMC8274869 DOI: 10.1371/journal.pone.0254118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022] Open
Abstract
Membrane proteins have a range of crucial biological functions and are the target of about 60% of all prescribed drugs. For most studies, they need to be extracted out of the lipid-bilayer, e.g. by detergent solubilisation, leading to the loss of native lipids, which may disturb important protein-lipid/bilayer interactions and thus functional and structural integrity. Relipidation of membrane proteins has proven extremely successful for studying challenging targets, but the identification of suitable lipids can be expensive and laborious. Therefore, we developed a screen to aid the high-throughput identification of beneficial lipids. The screen covers a large lipid space and was designed to be suitable for a range of stability assessment methods. Here, we demonstrate its use as a tool for identifying stabilising lipids for three membrane proteins: a bacterial pyrophosphatase (Tm-PPase), a fungal purine transporter (UapA) and a human GPCR (A2AR). A2AR is stabilised by cholesteryl hemisuccinate, a lipid well known to stabilise GPCRs, validating the approach. Additionally, our screen also identified a range of new lipids which stabilised our test proteins, providing a starting point for further investigation and demonstrating its value as a novel tool for membrane protein research. The pre-dispensed screen will be made commercially available to the scientific community in future and has a number of potential applications in the field.
Collapse
Affiliation(s)
- Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jannik Strauss
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Claudia Stohrer
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Edward Pryor
- Anatrace, Maumee, Ohio, United States of America
| | | | | | - Adrian Goldman
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- MIBS, Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail: (AG); (BB)
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (AG); (BB)
| |
Collapse
|
5
|
Pérez-Castiñeira JR, Serrano A. The H +-Translocating Inorganic Pyrophosphatase From Arabidopsis thaliana Is More Sensitive to Sodium Than Its Na +-Translocating Counterpart From Methanosarcina mazei. FRONTIERS IN PLANT SCIENCE 2020; 11:1240. [PMID: 32903538 PMCID: PMC7438732 DOI: 10.3389/fpls.2020.01240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Overexpression of membrane-bound K+-dependent H+-translocating inorganic pyrophosphatases (H+-PPases) from higher plants has been widely used to alleviate the sensitivity toward NaCl in these organisms, a strategy that had been previously tested in Saccharomyces cerevisiae. On the other hand, H+-PPases have been reported to functionally complement the yeast cytosolic soluble pyrophosphatase (IPP1). Here, the efficiency of the K+-dependent Na+-PPase from the archaeon Methanosarcina mazei (MVP) to functionally complement IPP1 has been compared to that of its H+-pumping counterpart from Arabidopsis thaliana (AVP1). Both membrane-bound integral PPases (mPPases) supported yeast growth equally well under normal conditions, however, cells expressing MVP grew significantly better than those expressing AVP1 under salt stress. The subcellular distribution of the heterologously-expressed mPPases was crucial in order to observe the phenotypes associated with the complementation. In vitro studies showed that the PPase activity of MVP was less sensitive to Na+ than that of AVP1. Consistently, when yeast cells expressing MVP were grown in the presence of NaCl only a marginal increase in their internal PPi levels was observed with respect to control cells. By contrast, yeast cells that expressed AVP1 had significantly higher levels of this metabolite under the same conditions. The H+-pumping activity of AVP1 was also markedly inhibited by Na+. Our results suggest that mPPases primarily act by hydrolysing the PPi generated in the cytosol when expressed in yeast, and that AVP1 is more susceptible to Na+ inhibition than MVP both in vivo and in vitro. Based on this experimental evidence, we propose Na+-PPases as biotechnological tools to generate salt-tolerant plants.
Collapse
Affiliation(s)
| | - Aurelio Serrano
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| |
Collapse
|
6
|
Tsai JY, Chu CH, Lin MG, Chou YH, Hong RY, Yen CY, Hsiao CD, Sun YJ. Structure of the sodium-dependent phosphate transporter reveals insights into human solute carrier SLC20. SCIENCE ADVANCES 2020; 6:eabb4024. [PMID: 32821837 PMCID: PMC7413737 DOI: 10.1126/sciadv.abb4024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/26/2020] [Indexed: 05/14/2023]
Abstract
Inorganic phosphate (Pi) is a fundamental and essential element for nucleotide biosynthesis, energy supply, and cellular signaling in living organisms. Human phosphate transporter (hPiT) dysfunction causes numerous diseases, but the molecular mechanism underlying transporters remains elusive. We report the structure of the sodium-dependent phosphate transporter from Thermotoga maritima (TmPiT) in complex with sodium and phosphate (TmPiT-Na/Pi) at 2.3-angstrom resolution. We reveal that one phosphate and two sodium ions (Pi-2Na) are located at the core of TmPiT and that the third sodium ion (Nafore) is located near the inner membrane boundary. We propose an elevator-like mechanism for sodium and phosphate transport by TmPiT, with the TmPiT-Na/Pi complex adopting an inward occluded conformation. We found that disease-related hPiT variants carry mutations in the corresponding sodium- and phosphate-binding residues identified in TmPiT. Our three-dimensional structure of TmPiT provides a framework for understanding PiT dysfunction and for future structure-based drug design.
Collapse
Affiliation(s)
- Jia-Yin Tsai
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
| | - Chen-Hsi Chu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan (R.O.C.)
| | - Ying-Hsuan Chou
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
| | - Ruei-Yi Hong
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
| | - Cheng-Yi Yen
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan (R.O.C.)
- Corresponding author. (C.-D.H.); (Y.-J.S.)
| | - Yuh-Ju Sun
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
- Corresponding author. (C.-D.H.); (Y.-J.S.)
| |
Collapse
|
7
|
Vidilaseris K, Kiriazis A, Turku A, Khattab A, Johansson NG, Leino TO, Kiuru PS, Boije af Gennäs G, Meri S, Yli-Kauhaluoma J, Xhaard H, Goldman A. Asymmetry in catalysis by Thermotoga maritima membrane-bound pyrophosphatase demonstrated by a nonphosphorus allosteric inhibitor. SCIENCE ADVANCES 2019; 5:eaav7574. [PMID: 31131322 PMCID: PMC6530997 DOI: 10.1126/sciadv.aav7574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Membrane-bound pyrophosphatases are homodimeric integral membrane proteins that hydrolyze pyrophosphate into orthophosphates, coupled to the active transport of protons or sodium ions across membranes. They are important in the life cycle of bacteria, archaea, plants, and parasitic protists, but no homologous proteins exist in vertebrates, making them a promising drug target. Here, we report the first nonphosphorus allosteric inhibitor of the thermophilic bacterium Thermotoga maritima membrane-bound pyrophosphatase and its bound structure together with the substrate analog imidodiphosphate. The unit cell contains two protein homodimers, each binding a single inhibitor dimer near the exit channel, creating a hydrophobic clamp that inhibits the movement of β-strand 1-2 during pumping, and thus prevents the hydrophobic gate from opening. This asymmetry of inhibitor binding with respect to each homodimer provides the first clear structural demonstration of asymmetry in the catalytic cycle of membrane-bound pyrophosphatases.
Collapse
Affiliation(s)
- Keni Vidilaseris
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ayman Khattab
- Malaria Research Laboratory, Immunobiology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Niklas G. Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Teppo O. Leino
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paula S. Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gustav Boije af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Malaria Research Laboratory, Immunobiology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Adrian Goldman
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Strauss J, Wilkinson C, Vidilaseris K, Harborne SPD, Goldman A. A Simple Strategy to Determine the Dependence of Membrane-Bound Pyrophosphatases on K + as a Cofactor. Methods Enzymol 2018; 607:131-156. [PMID: 30149856 DOI: 10.1016/bs.mie.2018.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane-bound pyrophosphatases (mPPases) couple pyrophosphate hydrolysis to H+ and/or Na+ pumping across membranes and are found in all domains of life except for multicellular animals including humans. They are important for development and stress resistance in plants. Furthermore, mPPases play a role in virulence of human pathogens that cause severe diseases such as malaria and African sleeping sickness. Sequence analysis, functional studies, and recently solved crystal structures have contributed to the understanding of the mPPase catalytic cycle. However, several key mechanistic features remain unknown. During evolution, several subgroups of mPPases differing in their pumping specificity and cofactor dependency arose. mPPases are classified into one of five subgroups, usually by sequence analysis. However, classification based solely on sequence has been inaccurate in several instances due to our limited understanding of the molecular mechanism of mPPases. Thus, pumping specificity and cofactor dependency of mPPases require experimental confirmation. Here, we describe a simple method for the determination of K+ dependency in mPPases using a hydrolytic activity assay. By coupling these dependency studies with site-directed mutagenesis, we have begun to build a better understanding of the molecular mechanisms of mPPases. We optimized the assay for thermostable mPPases that are commonly used as model systems in our lab, but the method is equally applicable to mesophilic mPPases with minor modifications.
Collapse
Affiliation(s)
- Jannik Strauss
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Craig Wilkinson
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Keni Vidilaseris
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Steven P D Harborne
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom.
| | - Adrian Goldman
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Harborne SPD, Strauss J, Turku A, Watson MA, Tuma R, Harris SA, Goldman A. Defining Dynamics of Membrane-Bound Pyrophosphatases by Experimental and Computational Single-Molecule FRET. Methods Enzymol 2018; 607:93-130. [PMID: 30149870 DOI: 10.1016/bs.mie.2018.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane-bound pyrophosphatases couple the hydrolysis of inorganic pyrophosphate to the pumping of ions (sodium or protons) across a membrane in order to generate an electrochemical gradient. This class of membrane protein is widely conserved across plants, fungi, archaea, and bacteria, but absent in multicellular animals, making them a viable target for drug design against protozoan parasites such as Plasmodium falciparum. An excellent understanding of many of the catalytic states throughout the enzymatic cycle has already been afforded by crystallography. However, the dynamics and kinetics of the catalytic cycle between these static snapshots remain to be elucidated. Here, we employ single-molecule Förster resonance energy transfer (FRET) measurements to determine the dynamic range and frequency of conformations available to the enzyme in a lipid bilayer during the catalytic cycle. First, we explore issues related to the introduction of fluorescent dyes by cysteine mutagenesis; we discuss the importance of residue selection for dye attachment, and the balance between mutating areas of the protein that will provide useful dynamics while not altering highly conserved residues that could disrupt protein function. To complement and guide the experiments, we used all-atom molecular dynamics simulations and computational methods to estimate FRET efficiency distributions for dye pairs at different sites in different protein conformational states. We present preliminary single-molecule FRET data that points to insights about the binding modes of different membrane-bound pyrophosphatase substrates and inhibitors.
Collapse
Affiliation(s)
- Steven P D Harborne
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Jannik Strauss
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Matthew A Watson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sarah A Harris
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Adrian Goldman
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism. Nat Commun 2016; 7:13596. [PMID: 27922000 PMCID: PMC5150537 DOI: 10.1038/ncomms13596] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/18/2016] [Indexed: 11/08/2022] Open
Abstract
Membrane-bound pyrophosphatases (M-PPases), which couple proton/sodium ion transport to pyrophosphate synthesis/hydrolysis, are important in abiotic stress resistance and in the infectivity of protozoan parasites. Here, three M-PPase structures in different catalytic states show that closure of the substrate-binding pocket by helices 5-6 affects helix 13 in the dimer interface and causes helix 12 to move down. This springs a 'molecular mousetrap', repositioning a conserved aspartate and activating the nucleophilic water. Corkscrew motion at helices 6 and 16 rearranges the key ionic gate residues and leads to ion pumping. The pumped ion is above the ion gate in one of the ion-bound structures, but below it in the other. Electrometric measurements show a single-turnover event with a non-hydrolysable inhibitor, supporting our model that ion pumping precedes hydrolysis. We propose a complete catalytic cycle for both proton and sodium-pumping M-PPases, and one that also explains the basis for ion specificity.
Collapse
|
11
|
Hsu SH, Lo YY, Liu TH, Pan YJ, Huang YT, Sun YJ, Hung CC, Tseng FG, Yang CW, Pan RL. Substrate-induced changes in domain interaction of vacuolar H⁺-pyrophosphatase. J Biol Chem 2015; 290:1197-209. [PMID: 25451931 DOI: 10.1074/jbc.m114.568139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Single molecule atomic force microscopy (smAFM) was employed to unfold transmembrane domain interactions of a unique vacuolar H(+)-pyrophosphatase (EC 3.6.1.1) from Vigna radiata. H(+)-Pyrophosphatase is a membrane-embedded homodimeric protein containing a single type of polypeptide and links PPi hydrolysis to proton translocation. Each subunit consists of 16 transmembrane domains with both ends facing the lumen side. In this investigation, H(+)-pyrophosphatase was reconstituted into the lipid bilayer in the same orientation for efficient fishing out of the membrane by smAFM. The reconstituted H(+)-pyrophosphatase in the lipid bilayer showed an authentically dimeric structure, and the size of each monomer was ∼4 nm in length, ∼2 nm in width, and ∼1 nm in protrusion height. Upon extracting the H(+)-pyrophosphatase out of the membrane, force-distance curves containing 10 peaks were obtained and assigned to distinct domains. In the presence of pyrophosphate, phosphate, and imidodiphosphate, the numbers of interaction curves were altered to 7, 8, and 10, respectively, concomitantly with significant modification in force strength. The substrate-binding residues were further replaced to verify these domain changes upon substrate binding. A working model is accordingly proposed to show the interactions between transmembrane domains of H(+)-pyrophosphatase in the presence and absence of substrate and its analog.
Collapse
Affiliation(s)
- Shen-Hsing Hsu
- From the Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33333
| | - Yueh-Yu Lo
- From the Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33333
| | - Tseng-Huang Liu
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| | - Yih-Jiuan Pan
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| | - Yun-Tzu Huang
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| | - Yuh-Ju Sun
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| | - Cheng-Chieh Hung
- From the Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33333
| | - Fan-Gang Tseng
- Department of Engineering and System Science, College of Nuclear Science, National Tsing Hua University, Hsin Chu 30013, Taiwan
| | - Chih-Wei Yang
- From the Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33333,
| | - Rong-Long Pan
- the Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, and
| |
Collapse
|
12
|
Asaoka M, Segami S, Maeshima M. Identification of the critical residues for the function of vacuolar H+-pyrophosphatase by mutational analysis based on the 3D structure. ACTA ACUST UNITED AC 2014; 156:333-44. [DOI: 10.1093/jb/mvu046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
14
|
Kellosalo J, Kajander T, Honkanen R, Goldman A. Crystallization and preliminary X-ray analysis of membrane-bound pyrophosphatases. Mol Membr Biol 2012; 30:64-74. [DOI: 10.3109/09687688.2012.712162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Kellosalo J, Kajander T, Kogan K, Pokharel K, Goldman A. The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 2012; 337:473-6. [PMID: 22837527 DOI: 10.1126/science.1222505] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Membrane-integral pyrophosphatases (M-PPases) are crucial for the survival of plants, bacteria, and protozoan parasites. They couple pyrophosphate hydrolysis or synthesis to Na(+) or H(+) pumping. The 2.6-angstrom structure of Thermotoga maritima M-PPase in the resting state reveals a previously unknown solution for ion pumping. The hydrolytic center, 20 angstroms above the membrane, is coupled to the gate formed by the conserved Asp(243), Glu(246), and Lys(707) by an unusual "coupling funnel" of six α helices. Comparison with our 4.0-angstrom resolution structure of the product complex suggests that helix 12 slides down upon substrate binding to open the gate by a simple binding-change mechanism. Below the gate, four helices form the exit channel. Superimposing helices 3 to 6, 9 to 12, and 13 to 16 suggests that M-PPases arose through gene triplication.
Collapse
Affiliation(s)
- Juho Kellosalo
- Structural Biology and Biophysics Program, Institute of Biotechnology, Post Office Box 65, University of Helsinki, FIN-00014, Finland
| | | | | | | | | |
Collapse
|
16
|
A plant proton-pumping inorganic pyrophosphatase functionally complements the vacuolar ATPase transport activity and confers bafilomycin resistance in yeast. Biochem J 2011; 437:269-78. [PMID: 21612578 DOI: 10.1042/bj20110447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
V-ATPases (vacuolar H+-ATPases) are a specific class of multi-subunit pumps that play an essential role in the generation of proton gradients across eukaryotic endomembranes. Another simpler proton pump that co-localizes with the V-ATPase occurs in plants and many protists: the single-subunit H+-PPase [H+-translocating PPase (inorganic pyrophosphatase)]. Little is known about the relative contribution of these two proteins to the acidification of intracellular compartments. In the present study, we show that the expression of a chimaeric derivative of the Arabidopsis thaliana H+-PPase AVP1, which is preferentially targeted to internal membranes of yeast, alleviates the phenotypes associated with V-ATPase deficiency. Phenotypic complementation was achieved both with a yeast strain with its V-ATPase specifically inhibited by bafilomycin A1 and with a vma1-null mutant lacking a catalytic V-ATPase subunit. Cell staining with vital fluorescent dyes showed that AVP1 recovered vacuole acidification and normalized the endocytic pathway of the vma mutant. Biochemical and immunochemical studies further demonstrated that a significant fraction of heterologous H+-PPase is located at the vacuolar membrane. These results raise the question of the occurrence of distinct proton pumps in certain single-membrane organelles, such as plant vacuoles, by proving yeast V-ATPase activity dispensability and the capability of H+-PPase to generate, by itself, physiologically suitable internal pH gradients. Also, they suggest new ways of engineering macrolide drug tolerance and outline an experimental system for testing alternative roles for fungal and animal V-ATPases, other than the mere acidification of subcellular organelles.
Collapse
|
17
|
Heterologous expression and purification of membrane-bound pyrophosphatases. Protein Expr Purif 2011; 79:25-34. [DOI: 10.1016/j.pep.2011.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 12/18/2022]
|
18
|
Huang YT, Liu TH, Chen YW, Lee CH, Chen HH, Huang TW, Hsu SH, Lin SM, Pan YJ, Lee CH, Hsu IC, Tseng FG, Fu CC, Pan RL. Distance variations between active sites of H(+)-pyrophosphatase determined by fluorescence resonance energy transfer. J Biol Chem 2010; 285:23655-64. [PMID: 20511234 DOI: 10.1074/jbc.m110.134916] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homodimeric H(+)-pyrophosphatase (H(+)-PPase; EC 3.6.1.1) is a unique enzyme playing a pivotal physiological role in pH homeostasis of organisms. This novel H(+)-PPase supplies energy at the expense of hydrolyzing metabolic byproduct, pyrophosphate (PP(i)), for H(+) translocation across membrane. The functional unit for the translocation is considered to be a homodimer. Its putative active site on each subunit consists of PP(i) binding motif, Acidic I and II motifs, and several essential residues. In this investigation structural mapping of these vital regions was primarily determined utilizing single molecule fluorescence resonance energy transfer. Distances between two C termini and also two N termini on homodimeric subunits of H(+)-PPase are 49.3 + or - 4.0 and 67.2 + or - 5.7 A, respectively. Furthermore, putative PP(i) binding motifs on individual subunits are found to be relatively far away from each other (70.8 + or - 4.8 A), whereas binding of potassium and substrate analogue led them to closer proximity. Moreover, substrate analogue but not potassium elicits significant distance variations between two Acidic I motifs and two His-622 residues on homodimeric subunits. Taken together, this study provides the first quantitative measurements of distances between various essential motifs, residues, and putative active sites on homodimeric subunits of H(+)-PPase. A working model is accordingly proposed elucidating the distance variations of dimeric H(+)-PPase upon substrate binding.
Collapse
Affiliation(s)
- Yun-Tzu Huang
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu 30013, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
N-terminal chimaeras with signal sequences enhance the functional expression and alter the subcellular localization of heterologous membrane-bound inorganic pyrophosphatases in yeast. Biochem J 2010; 426:147-57. [PMID: 20025609 DOI: 10.1042/bj20091491] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Expression of heterologous multispanning membrane proteins in Saccharomyces cerevisiae is a difficult task. Quite often, the use of multicopy plasmids where the foreign gene is under the control of a strong promoter does not guarantee efficient production of the corresponding protein. In the present study, we show that the expression level and/or subcellular localization in S. cerevisiae of a heterologous type of multispanning membrane protein, the proton-translocating inorganic pyrophosphatase (H+-PPase), can be changed by fusing it with various suitable N-terminal signal sequences. Chimaeric proteins were constructed by adding the putative N-terminal extra domain of Trypanosoma cruzi H+-PPase or the bona fide signal sequence of S. cerevisiae invertase Suc2p to H+-PPase polypeptides of different organisms (from bacteria to plants) and expressed in a yeast conditional mutant deficient in its cytosolic PPi hydrolysis activity when grown on glucose. Chimaeric constructs not only substantially enhanced H+-PPase expression levels in transformed mutant cells, but also allowed functional complementation in those cases in which native H+-PPase failed to accomplish it. Activity assays and Western blot analyses demonstrated further the occurrence of most H+-PPase in internal membrane fractions of these cells. The addition of N-terminal signal sequences to the vacuolar H+-PPase AVP1 from the plant Arabidopsis thaliana, a protein efficiently expressed in yeast in its natural form, alters the subcellular distribution of the chimaeras, suggesting further progression along the secretory sorting pathways, as shown by density gradient ultracentrifugation and in vivo fluorescence microscopy of the corresponding GFP (green fluorescent protein)-H+-PPase fusion proteins.
Collapse
|
20
|
Liu TH, Hsu SH, Huang YT, Lin SM, Huang TW, Chuang TH, Fan SK, Fu CC, Tseng FG, Pan RL. The proximity between C-termini of dimeric vacuolar H+-pyrophosphatase determined using atomic force microscopy and a gold nanoparticle technique. FEBS J 2009; 276:4381-94. [PMID: 19614743 DOI: 10.1111/j.1742-4658.2009.07146.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vacuolar H(+)-translocating inorganic pyrophosphatase [vacuolar H(+)-pyrophosphatase (V-PPase); EC 3.6.1.1] is a homodimeric proton translocase; it plays a pivotal role in electrogenic translocation of protons from the cytosol to the vacuolar lumen, at the expense of PP(i) hydrolysis, for the storage of ions, sugars, and other metabolites. Dimerization of V-PPase is necessary for full proton translocation function, although the structural details of V-PPase within the vacuolar membrane remain uncertain. The C-terminus presumably plays a crucial role in sustaining enzymatic and proton-translocating reactions. We used atomic force microscopy to visualize V-PPases embedded in an artificial lipid bilayer under physiological conditions. V-PPases were randomly distributed in reconstituted lipid bilayers; approximately 43.3% of the V-PPase protrusions faced the cytosol, and 56.7% faced the vacuolar lumen. The mean height and width of the cytosolic V-PPase protrusions were 2.8 +/- 0.3 nm and 26.3 +/- 4.7 nm, whereas those of the luminal protrusions were 1.2 +/- 0.1 nm and 21.7 +/- 3.6 nm, respectively. Moreover, both C-termini of dimeric subunits of V-PPase are on the same side of the membrane, and they are close to each other, as visualized with antibody and gold nanoparticles against 6xHis tags on C-terminal ends of the enzyme. The distance between the V-PPase C-terminal ends was determined to be approximately 2.2 +/- 1.4 nm. Thus, our study is the first to provide structural details of a membrane-bound V-PPase dimer, revealing its adjacent C-termini.
Collapse
Affiliation(s)
- Tseng-Huang Liu
- Department of Life Sciences and Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin Chu, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|