1
|
Re R, Lassola S, De Rosa S, Bellani G. Humidification during Invasive and Non-Invasive Ventilation: A Starting Tool Kit for Correct Setting. Med Sci (Basel) 2024; 12:26. [PMID: 38804382 PMCID: PMC11130810 DOI: 10.3390/medsci12020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
The humidification process of medical gases plays a crucial role in both invasive and non-invasive ventilation, aiming to mitigate the complications arising from bronchial dryness. While passive humidification systems (HME) and active humidification systems are prevalent in routine clinical practice, there is a pressing need for further evaluation of their significance. Additionally, there is often an incomplete understanding of the operational mechanisms of these devices. The current review explores the historical evolution of gas conditioning in clinical practice, from early prototypes to contemporary active and passive humidification systems. It also discusses the physiological principles underlying humidity regulation and provides practical guidance for optimizing humidification parameters in both invasive and non-invasive ventilation modalities. The aim of this review is to elucidate the intricate interplay between temperature, humidity, and patient comfort, emphasizing the importance of individualized approaches to gas conditioning.
Collapse
Affiliation(s)
- Riccardo Re
- Anesthesia and Intensive Care 1, Santa Chiara Hospital, APSS, Largo Medaglie d’Oro 9, 38112 Trento, Italy;
| | - Sergio Lassola
- Anesthesia and Intensive Care 1, Santa Chiara Hospital, APSS, Largo Medaglie d’Oro 9, 38112 Trento, Italy;
| | - Silvia De Rosa
- Centre for Medical Sciences—CISMed, University of Trento, Via S. Maria Maddalena 1, 38122 Trento, Italy; (S.D.R.); (G.B.)
| | - Giacomo Bellani
- Centre for Medical Sciences—CISMed, University of Trento, Via S. Maria Maddalena 1, 38122 Trento, Italy; (S.D.R.); (G.B.)
| |
Collapse
|
2
|
Vuorinen V, Aarnio M, Alava M, Alopaeus V, Atanasova N, Auvinen M, Balasubramanian N, Bordbar H, Erästö P, Grande R, Hayward N, Hellsten A, Hostikka S, Hokkanen J, Kaario O, Karvinen A, Kivistö I, Korhonen M, Kosonen R, Kuusela J, Lestinen S, Laurila E, Nieminen HJ, Peltonen P, Pokki J, Puisto A, Råback P, Salmenjoki H, Sironen T, Österberg M. Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. SAFETY SCIENCE 2020; 130:104866. [PMID: 32834511 PMCID: PMC7428778 DOI: 10.1016/j.ssci.2020.104866] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 05/03/2023]
Abstract
We provide research findings on the physics of aerosol and droplet dispersion relevant to the hypothesized aerosol transmission of SARS-CoV-2 during the current pandemic. We utilize physics-based modeling at different levels of complexity, along with previous literature on coronaviruses, to investigate the possibility of airborne transmission. The previous literature, our 0D-3D simulations by various physics-based models, and theoretical calculations, indicate that the typical size range of speech and cough originated droplets ( d ⩽ 20 μ m ) allows lingering in the air for O ( 1 h ) so that they could be inhaled. Consistent with the previous literature, numerical evidence on the rapid drying process of even large droplets, up to sizes O ( 100 μ m ) , into droplet nuclei/aerosols is provided. Based on the literature and the public media sources, we provide evidence that the individuals, who have been tested positive on COVID-19, could have been exposed to aerosols/droplet nuclei by inhaling them in significant numbers e.g. O ( 100 ) . By 3D scale-resolving computational fluid dynamics (CFD) simulations, we give various examples on the transport and dilution of aerosols ( d ⩽ 20 μ m ) over distances O ( 10 m ) in generic environments. We study susceptible and infected individuals in generic public places by Monte-Carlo modelling. The developed model takes into account the locally varying aerosol concentration levels which the susceptible accumulate via inhalation. The introduced concept, 'exposure time' to virus containing aerosols is proposed to complement the traditional 'safety distance' thinking. We show that the exposure time to inhale O ( 100 ) aerosols could range from O ( 1 s ) to O ( 1 min ) or even to O ( 1 h ) depending on the situation. The Monte-Carlo simulations, along with the theory, provide clear quantitative insight to the exposure time in different public indoor environments.
Collapse
Affiliation(s)
- Ville Vuorinen
- Department of Mechanical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Mia Aarnio
- Atmospheric Dispersion Modelling, Atmospheric Composition Research, Finnish Meteorological Institute, FI-00101 Helsinki, Finland
| | - Mikko Alava
- Department of Applied Physics, Aalto University, FI-00076 AALTO, Finland
| | - Ville Alopaeus
- Department of Chemical and Metallurgical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Nina Atanasova
- Atmospheric Dispersion Modelling, Atmospheric Composition Research, Finnish Meteorological Institute, FI-00101 Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Mikko Auvinen
- Atmospheric Dispersion Modelling, Atmospheric Composition Research, Finnish Meteorological Institute, FI-00101 Helsinki, Finland
| | | | - Hadi Bordbar
- Department of Civil Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Panu Erästö
- Department of Information and Service Management, Aalto University, FI-00076 AALTO, Finland
| | - Rafael Grande
- Department of Bioproducts and Biosystems, Aalto University, FI-00076 AALTO, Finland
| | - Nick Hayward
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Antti Hellsten
- Atmospheric Dispersion Modelling, Atmospheric Composition Research, Finnish Meteorological Institute, FI-00101 Helsinki, Finland
| | - Simo Hostikka
- Department of Civil Engineering, Aalto University, FI-00076 AALTO, Finland
| | | | - Ossi Kaario
- Department of Mechanical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Aku Karvinen
- VTT Technical Research Centre of Finland Ltd, Finland
| | - Ilkka Kivistö
- VTT Technical Research Centre of Finland Ltd, Finland
| | - Marko Korhonen
- Department of Applied Physics, Aalto University, FI-00076 AALTO, Finland
| | - Risto Kosonen
- Department of Mechanical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Janne Kuusela
- Emergency Department, Mikkeli Central Hospital, The South Savo Social and Health Care Authority, FI-50100, Finland
| | - Sami Lestinen
- Department of Mechanical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Erkki Laurila
- Department of Mechanical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Heikki J Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Petteri Peltonen
- Department of Mechanical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Juho Pokki
- Department of Chemical and Metallurgical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Antti Puisto
- Department of Applied Physics, Aalto University, FI-00076 AALTO, Finland
| | - Peter Råback
- CSC-IT Center for Science Ltd, FI-02101, Finland
| | - Henri Salmenjoki
- Department of Applied Physics, Aalto University, FI-00076 AALTO, Finland
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, Aalto University, FI-00076 AALTO, Finland
| |
Collapse
|
3
|
Andersson J, Roger K, Larsson M, Sparr E. The Impact of Nonequilibrium Conditions in Lung Surfactant: Structure and Composition Gradients in Multilamellar Films. ACS CENTRAL SCIENCE 2018; 4:1315-1325. [PMID: 30410969 PMCID: PMC6202641 DOI: 10.1021/acscentsci.8b00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 05/06/2023]
Abstract
The lipid-protein mixture that covers the lung alveoli, lung surfactant, ensures mechanical robustness and controls gas transport during breathing. Lung surfactant is located at an interface between water-rich tissue and humid, but not fully saturated, air. The resulting humidity difference places the lung surfactant film out of thermodynamic equilibrium, which triggers the buildup of a water gradient. Here, we present a millifluidic method to assemble multilamellar interfacial films from vesicular dispersions of a clinical lung surfactant extract used in replacement therapy. Using small-angle X-ray scattering, infrared, Raman, and optical microscopies, we show that the interfacial film consists of several coexisting lamellar phases displaying a substantial variation in water swelling. This complex phase behavior contrasts to observations made under equilibrium conditions. We demonstrate that this disparity stems from additional lipid and protein gradients originating from differences in their transport properties. Supplementing the extract with cholesterol, to levels similar to the endogenous lung surfactant, dispels this complexity. We observed a homogeneous multilayer structure consisting of a single lamellar phase exhibiting negligible variations in swelling in the water gradient. Our results demonstrate the necessity of considering nonequilibrium thermodynamic conditions to study the structure of lung surfactant multilayer films, which is not accessible in bulk or monolayer studies. Our reconstitution methodology also opens avenues for lung surfactant pharmaceuticals and the understanding of composition, structure, and property relationships at biological air-liquid interfaces.
Collapse
Affiliation(s)
- Jenny
Marie Andersson
- Physical
Chemistry, Lund University, Lund SE-221 00, Sweden
- Laboratoire
de Génie Chimique, Université de Toulouse, CNRS, Institut
National Polytechnique de Toulouse, Université
Paul Sabatier, Toulouse 31330, France
| | - Kevin Roger
- Laboratoire
de Génie Chimique, Université de Toulouse, CNRS, Institut
National Polytechnique de Toulouse, Université
Paul Sabatier, Toulouse 31330, France
- E-mail:
| | - Marcus Larsson
- Department
of Pediatrics/Neonatology, Medical Faculty, Lund University, Lund SE-221 00, Sweden
| | - Emma Sparr
- Physical
Chemistry, Lund University, Lund SE-221 00, Sweden
| |
Collapse
|
4
|
Xu Y, Li S, Luo Z, Ren H, Zhang X, Huang F, Zuo YY, Yue T. Role of Lipid Coating in the Transport of Nanodroplets across the Pulmonary Surfactant Layer Revealed by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9054-9063. [PMID: 29985617 DOI: 10.1021/acs.langmuir.8b01547] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrophilic drugs can be delivered into lungs via nebulization for both local and systemic therapies. Once inhaled, ultrafine nanodroplets preferentially deposit in the alveolar region, where they first interact with the pulmonary surfactant (PS) layer, with nature of the interaction determining both efficiency of the pulmonary drug delivery and extent of the PS perturbation. Here, we demonstrate by molecular dynamics simulations the transport of nanodroplets across the PS layer being improved by lipid coating. In the absence of lipids, bare nanodroplets deposit at the PS layer to release drugs that can be directly translocated across the PS layer. The translocation is quicker under higher surface tensions but at the cost of opening pores that disrupt the ultrastructure of the PS layer. When the PS layer is compressed to lower surface tensions, the nanodroplet prompts collapse of the PS layer to induce severe PS perturbation. By coating the nanodroplet with lipids, the disturbance of the nanodroplet on the PS layer can be reduced. Moreover, the lipid-coated nanodroplet can be readily wrapped by the PS layer to form vesicular structures, which are expected to fuse with the cell membrane to release drugs into secondary organs. Properties of drug bioavailability, controlled drug release, and enzymatic tolerance in real systems could be improved by lipid coating on nanodroplets. Our results provide useful guidelines for the molecular design of nanodroplets as carriers for the pulmonary drug delivery.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Shixin Li
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Zhen Luo
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Yi Y Zuo
- Department of Mechanical Engineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
- Department of Pediatrics, John A. Burns School of Medicine , University of Hawaii , Honolulu , Hawaii 96826 , United States
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| |
Collapse
|
5
|
Al-Saiedy M, Pratt R, Lai P, Kerek E, Joyce H, Prenner E, Green F, Ling CC, Veldhuizen R, Ghandorah S, Amrein M. Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent. Biochim Biophys Acta Gen Subj 2018; 1862:1040-1049. [DOI: 10.1016/j.bbagen.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 01/19/2023]
|
6
|
Thomas AN, Borden MA. Hydrostatic Pressurization of Lung Surfactant Microbubbles: Observation of a Strain-Rate Dependent Elasticity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13699-13707. [PMID: 29064252 DOI: 10.1021/acs.langmuir.7b03307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The microbubble offers a unique platform to study lung surfactant mechanics at physiologically relevant geometry and length scale. In this study, we compared the response of microbubbles (∼15 μm initial radius) coated with pure dipalmitoyl-phosphatidylcholine (DPPC) versus naturally derived lung surfactant (SURVANTA) when subjected to linearly increasing hydrostatic pressure at different rates (0.5-2.3 kPa/s) at room temperature. The microbubbles contained perfluorobutane gas and were submerged in buffered saline saturated with perfluorobutane at atmospheric pressure. Bright-field microscopy showed that DPPC microbubbles compressed spherically and smoothly, whereas SURVANTA microbubbles exhibited wrinkling and smoothing cycles associated with buckling and collapse. Seismograph analysis showed that the SURVANTA collapse amplitude was constant, but the collapse rate increased with the pressurization rate. An analysis of the pressure-volume curves indicated that the dilatational elasticity increased during compression for both shell types. The initial dilatational elasticity for SURVANTA was nearly twice that of DPPC at higher pressurization rates (>1.5 kPa/s), producing a pressure drop of up to 60 kPa across the film prior to condensation of the perfluorobutane core. The strain-rate dependent stiffening of SURVANTA shells likely arises from their composition and microstructure, which provide enhanced in-plane monolayer rigidity and lateral repulsion from surface-associated collapse structures. Overall, these results provide new insights into lung surfactant mechanics and collapse behavior during compression.
Collapse
Affiliation(s)
- Alec N Thomas
- Department of Mechanical Engineering and ‡Materials Science and Engineering Program, University of Colorado , Boulder, Colorado 80309, United States
| | - Mark A Borden
- Department of Mechanical Engineering and ‡Materials Science and Engineering Program, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Xu Y, Deng L, Ren H, Zhang X, Huang F, Yue T. Transport of nanoparticles across pulmonary surfactant monolayer: a molecular dynamics study. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp02548c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three types of nanoparticles, including hydrophobic nanoparticles, hydrophilic nanoparticles, and hydrophilic nanoparticles coated with lipids, were found by our molecular dynamics simulations to be transported across the pulmonary surfactant monolayer, but via different pathways, which affect their subsequent interactions with target cell membranes.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
- Center for Bioengineering and Biotechnology
| | - Li Deng
- Center for Bioengineering and Biotechnology
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| | - Hao Ren
- Center for Bioengineering and Biotechnology
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing
- China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
- Center for Bioengineering and Biotechnology
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
- Center for Bioengineering and Biotechnology
| |
Collapse
|
8
|
Valle RP, Wu T, Zuo YY. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant. ACS NANO 2015; 9:5413-21. [PMID: 25929264 PMCID: PMC4856476 DOI: 10.1021/acsnano.5b01181] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air-water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handle NP-PS interactions in the liquid phase. This technical limitation, inherent in current in vitro methodologies, makes it impossible to simulate how airborne NP deposit at the PS film and interact with it. Existing in vitro NP-PS studies using liquid-suspended particles have been shown to artificially inflate the no-observed adverse effect level of NP exposure when compared to in vivo inhalation studies and international occupational exposure limits (OELs). Here, we developed an in vitro methodology called the constrained drop surfactometer (CDS) to quantitatively study PS inhibition by airborne CNM. We show that airborne multiwalled carbon nanotubes and graphene nanoplatelets induce a concentration-dependent PS inhibition under physiologically relevant conditions. The CNM aerosol concentrations controlled in the CDS are comparable to those defined in international OELs. Development of the CDS has the potential to advance our understanding of how submicron airborne nanomaterials affect the PS lining of the lung.
Collapse
Affiliation(s)
- Russell P. Valle
- Department of Mechanical Engineering, University of Hawaii at Mnoa, Honolulu, Hawaii 96822, United States
| | - Tony Wu
- Department of Mechanical Engineering, University of Hawaii at Mnoa, Honolulu, Hawaii 96822, United States
| | - Yi Y. Zuo
- Department of Mechanical Engineering, University of Hawaii at Mnoa, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
- Address correspondence to
| |
Collapse
|
9
|
Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 2014; 185:153-75. [PMID: 25260665 DOI: 10.1016/j.chemphyslip.2014.09.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes.
Collapse
|
10
|
Goetzman ES, Alcorn JF, Bharathi SS, Uppala R, McHugh KJ, Kosmider B, Chen R, Zuo YY, Beck ME, McKinney RW, Skilling H, Suhrie KR, Karunanidhi A, Yeasted R, Otsubo C, Ellis B, Tyurina YY, Kagan VE, Mallampalli RK, Vockley J. Long-chain acyl-CoA dehydrogenase deficiency as a cause of pulmonary surfactant dysfunction. J Biol Chem 2014; 289:10668-10679. [PMID: 24591516 DOI: 10.1074/jbc.m113.540260] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD(-/-) mice. LCAD(-/-) mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD(-/-) mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD(-/-) surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD(-/-) lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.
Collapse
Affiliation(s)
- Eric S Goetzman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| | - John F Alcorn
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Sivakama S Bharathi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Radha Uppala
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Kevin J McHugh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Beata Kosmider
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Rimei Chen
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Megan E Beck
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Richard W McKinney
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Helen Skilling
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Kristen R Suhrie
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Anuradha Karunanidhi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Renita Yeasted
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Chikara Otsubo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Bryon Ellis
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Rama K Mallampalli
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15213
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
11
|
Zhang H, Wang YE, Fan Q, Zuo YY. On the low surface tension of lung surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8351-8. [PMID: 21650180 PMCID: PMC4849879 DOI: 10.1021/la201482n] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Natural lung surfactant contains less than 40% disaturated phospholipids, mainly dipalmitoylphosphatidylcholine (DPPC). The mechanism by which lung surfactant achieves very low near-zero surface tensions, well below its equilibrium value, is not fully understood. To date, the low surface tension of lung surfactant is usually explained by a squeeze-out model which predicts that upon film compression non-DPPC components are gradually excluded from the air-water interface into a surface-associated surfactant reservoir. However, detailed experimental evidence of the squeeze-out within the physiologically relevant high surface pressure range is still lacking. In the present work, we studied four animal-derived clinical surfactant preparations, including Survanta, Curosurf, Infasurf, and BLES. By comparing compression isotherms and lateral structures of these surfactant films obtained by atomic force microscopy within the physiologically relevant high surface pressure range, we have derived an updated squeeze-out model. Our model suggests that the squeeze-out originates from fluid phases of a phase-separated monolayer. The squeeze-out process follows a nucleation-growth model and only occurs within a narrow surface pressure range around the equilibrium spreading pressure of lung surfactant. After the squeeze-out, three-dimensional nuclei stop growing, thereby resulting in a DPPC-enriched interfacial monolayer to reduce the air-water surface tension to very low values.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Respiratory Medicine, Peking University First Hospital, Beijing, China 100034
| | - Yi E. Wang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Qihui Fan
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yi Y. Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Corresponding Author. ; Tel: 808-956-9650; Fax: 808-956-2373
| |
Collapse
|
12
|
Schürch D, Ospina OL, Cruz A, Pérez-Gil J. Combined and independent action of proteins SP-B and SP-C in the surface behavior and mechanical stability of pulmonary surfactant films. Biophys J 2011; 99:3290-9. [PMID: 21081077 DOI: 10.1016/j.bpj.2010.09.039] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 09/09/2010] [Accepted: 09/21/2010] [Indexed: 11/28/2022] Open
Abstract
The hydrophobic proteins SP-B and SP-C are essential for pulmonary surfactant function, even though they are a relatively minor component (<2% of surfactant dry mass). Despite countless studies, their specific differential action and their possible concerted role to optimize the surface properties of surfactant films have not been completely elucidated. Under conditions kept as physiologically relevant as possible, we tested the surface activity and mechanical stability of several surfactant films of varying protein composition in vitro using a captive bubble surfactometer and a novel (to our knowledge) stability test. We found that in the naturally derived surfactant lipid mixtures, surfactant protein SP-B promoted film formation and reextension to lower surface tensions than SP-C, and in particular played a vital role in sustaining film stability at the most compressed states, whereas SP-C produced no stabilization. Preparations containing both proteins together revealed a slight combined effect in enhancing film formation. These results provide a qualitative and quantitative framework for the development of future synthetic therapeutic surfactants, and illustrate the crucial need to include SP-B or an efficient SP-B analog for optimal function.
Collapse
Affiliation(s)
- David Schürch
- Departamento de Bioquímica, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
13
|
Picardi MV, Cruz A, Orellana G, Pérez-Gil J. Phospholipid packing and hydration in pulmonary surfactant membranes and films as sensed by LAURDAN. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:696-705. [PMID: 21126510 DOI: 10.1016/j.bbamem.2010.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/30/2010] [Accepted: 11/17/2010] [Indexed: 01/04/2023]
Abstract
The efficiency of pulmonary surfactant to stabilize the respiratory surface depends critically on the ability of surfactant to form highly packed films at the air-liquid interface. In the present study we have compared the packing and hydration properties of lipids in native pulmonary surfactant and in several surfactant models by analyzing the pressure and temperature dependence of the fluorescence emission of the LAURDAN (1-[6-(dimethylamino)-2-naphthyl]dodecan-1-one) probe incorporated into surfactant interfacial films or free-standing membranes. In interfacial films, compression-driven changes in the fluorescence of LAURDAN, evaluated from the generalized polarization function (GPF), correlated with changes in packing monitored by surface pressure. Compression isotherms and GPF profiles of films formed by native surfactant or its organic extract were compared at 25 or 37 °C to those of films made of dipalmitoylphosphatidylcholine (DPPC), palmitoyloleoylphosphatidylcholine (POPC), DPPC/phosphatidylglycerol (PG) (7:3, w/w), or the mixture DPPC/POPC/palmitoyloleoylphosphatidylglycerol (POPG)/cholesterol (Chol) (50:25:15.10), which simulates the lipid composition of surfactant. In general terms, compression of surfactant films at 25 °C leads to LAURDAN GPF values close to those obtained from pure DPPC monolayers, suggesting that compressed surfactant films reach a dehydrated state of the lipid surface, which is similar to that achieved in DPPC monolayers. However, at 37 °C, the highest GPF values were achieved in films made of full surfactant organic extract or the mixture DPPC/POPC/POPG/Chol, suggesting a potentially important role of cholesterol to ensure maximal packing/dehydration under physiological constraints. Native surfactant films reached high pressures at 37 °C while maintaining relatively low GPF, suggesting that the complex three-dimensional structures formed by whole surfactant might withstand the highest pressures without necessarily achieving full dehydration of the lipid environments sensed by LAURDAN. Finally, comparison of the thermotropic profiles of LAURDAN GPF in surfactant model bilayers and monolayers of analogous composition shows that the fluorophore probes an environment that is in average intrinsically more hydrated at the interface than inserted into free-standing bilayers, particularly at 37 °C. This effect suggests that the dependence of membrane and surfactant events on the balance of polar/non-polar interactions could differ in bilayer and monolayer models, and might be affected differently by the access of water molecules to confined or free-standing lipid structures.
Collapse
Affiliation(s)
- M Victoria Picardi
- Department of Biochemistry, Faculty of Biology, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Acosta EJ, Policova Z, Lee S, Dang A, Hair ML, Neumann AW. Restoring the activity of serum-inhibited bovine lung extract surfactant (BLES) using cationic additives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:489-97. [DOI: 10.1016/j.bbamem.2010.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|
15
|
Saad SM, Neumann A, Acosta EJ. A dynamic compression–relaxation model for lung surfactants. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2009.07.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Saad SMI, Policova Z, Dang A, Acosta EJ, Hair ML, Neumann AW. A double injection ADSA-CSD methodology for lung surfactant inhibition and reversal studies. Colloids Surf B Biointerfaces 2009; 73:365-75. [PMID: 19586757 DOI: 10.1016/j.colsurfb.2009.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 12/25/2022]
Abstract
This paper presents a continuation of the development of a drop shape method for film studies, ADSA-CSD (Axisymmetric Drop Shape Analysis-Constrained Sessile Drop). ADSA-CSD has certain advantages over conventional methods. The development presented here allows complete exchange of the subphase of a spread or adsorbed film. This feature allows certain studies relevant to lung surfactant research that cannot be readily performed by other means. The key feature of the design is a second capillary into the bulk of the drop to facilitate addition or removal of a secondary liquid. The development will be illustrated through studies concerning lung surfactant inhibition. After forming a sessile drop of a basic lung surfactant preparation, the bulk phase can be removed and exchanged for one containing different inhibitors. Such studies mimic the leakage of plasma and blood proteins into the alveolar spaces altering the surface activity of lung surfactant in a phenomenon called surfactant inhibition. The resistance of the lung surfactant to specific inhibitors can be readily evaluated using the method. The new method is also useful for surfactant reversal studies, i.e. the ability to restore the normal surface activity of an inhibited lung surfactant film by using special additives. Results show a distinctive difference between the inhibition when an inhibitor is mixed with and when it is injected under a preformed surfactant film. None of the inhibitors studied (serum, albumin, fibrinogen, and cholesterol) were able to penetrate a preexisting film formed by the basic preparation (BLES and protasan), while all of them can alter the surface activity of such preparation when mixed with the preparation. Preliminary results show that reversal of serum inhibition can be easily achieved and evaluated using the modified methodology.
Collapse
Affiliation(s)
- Sameh M I Saad
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Saad SMI, Policova Z, Acosta EJ, Neumann AW. Axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD): a film balance technique for high collapse pressures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:10843-10850. [PMID: 18759471 DOI: 10.1021/la801683q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Collapse pressure of insoluble monolayers is a property determined from surface pressure/area isotherms. Such isotherms are commonly measured by a Langmuir film balance or a drop shape technique using a pendant drop constellation (ADSA-PD). Here, a different embodiment of a drop shape analysis, called axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD) is used as a film balance. It is shown that ADSA-CSD has certain advantages over conventional methods. The ability to measure very low surface tension values (e.g., <2 mJ/m2), an easier deposition procedure than in a pendant drop setup, and leak-proof design make the constrained sessile drop constellation a better choice than the pendant drop constellation in many situations. Results of compression isotherms are obtained on three different monolayers: octadecanol, dipalmitoyl-phosphatidyl-choline (DPPC), and dipalmitoyl-phosphatidyl-glycerol (DPPG). The collapse pressures are found to be reproducible and in agreement with previous methods. For example, the collapse pressure of DPPC is found to be 70.2 mJ/m2. Such values are not achievable with a pendant drop. The collapse pressure of octadecanol is found to be 61.3 mJ/m2, while that of DPPG is 59.0 mJ/m2. The physical reasons for these differences are discussed. The results also show a distinctive difference between the onset of collapse and the ultimate collapse pressure (ultimate strength) of these films. ADSA-CSD allows detailed study of this collapse region.
Collapse
Affiliation(s)
- Sameh M I Saad
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| | | | | | | |
Collapse
|
18
|
Zuo YY, Veldhuizen RAW, Neumann AW, Petersen NO, Possmayer F. Current perspectives in pulmonary surfactant--inhibition, enhancement and evaluation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1947-77. [PMID: 18433715 DOI: 10.1016/j.bbamem.2008.03.021] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 02/06/2023]
Abstract
Pulmonary surfactant (PS) is a complicated mixture of approximately 90% lipids and 10% proteins. It plays an important role in maintaining normal respiratory mechanics by reducing alveolar surface tension to near-zero values. Supplementing exogenous surfactant to newborns suffering from respiratory distress syndrome (RDS), a leading cause of perinatal mortality, has completely altered neonatal care in industrialized countries. Surfactant therapy has also been applied to the acute respiratory distress syndrome (ARDS) but with only limited success. Biophysical studies suggest that surfactant inhibition is partially responsible for this unsatisfactory performance. This paper reviews the biophysical properties of functional and dysfunctional PS. The biophysical properties of PS are further limited to surface activity, i.e., properties related to highly dynamic and very low surface tensions. Three main perspectives are reviewed. (1) How does PS permit both rapid adsorption and the ability to reach very low surface tensions? (2) How is PS inactivated by different inhibitory substances and how can this inhibition be counteracted? A recent research focus of using water-soluble polymers as additives to enhance the surface activity of clinical PS and to overcome inhibition is extensively discussed. (3) Which in vivo, in situ, and in vitro methods are available for evaluating the surface activity of PS and what are their relative merits? A better understanding of the biophysical properties of functional and dysfunctional PS is important for the further development of surfactant therapy, especially for its potential application in ARDS.
Collapse
Affiliation(s)
- Yi Y Zuo
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
19
|
Kang N, Policova Z, Bankian G, Hair ML, Zuo YY, Neumann AW, Acosta EJ. Interaction between chitosan and bovine lung extract surfactants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:291-302. [DOI: 10.1016/j.bbamem.2007.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 09/27/2007] [Accepted: 10/02/2007] [Indexed: 11/28/2022]
|
20
|
Acosta EJ, Gitiafroz R, Zuo YY, Policova Z, Cox PN, Hair ML, Neumann AW. Effect of humidity on lung surfactant films subjected to dynamic compression/expansion cycles. Respir Physiol Neurobiol 2007; 155:255-67. [DOI: 10.1016/j.resp.2006.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 06/23/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
|