1
|
Klousnitzer J, Xiang W, Polynice VM, Deslouches B. Comparative Properties of Helical and Linear Amphipathicity of Peptides Composed of Arginine, Tryptophan, and Valine. Antibiotics (Basel) 2024; 13:954. [PMID: 39452220 PMCID: PMC11504230 DOI: 10.3390/antibiotics13100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The persistence of antibiotic resistance has incited a strong interest in the discovery of agents with novel antimicrobial mechanisms. The direct killing of multidrug-resistant bacteria by cationic antimicrobial peptides (AMPs) underscores their importance in the fight against infections associated with antibiotic resistance. Despite a vast body of AMP literature demonstrating a plurality in structural classes, AMP engineering has been largely skewed toward peptides with idealized amphipathic helices (H-amphipathic). In contrast to helical amphipathicity, we designed a series of peptides that display the amphipathic motifs in the primary structure. We previously developed a rational framework for designing AMP libraries of H-amphipathic peptides consisting of Arg, Trp, and Val (H-RWV, with a confirmed helicity up to 88% in the presence of membrane lipids) tested against the most common MDR organisms. METHODS In this study, we re-engineered one of the series of the H-RWV peptides (8, 10, 12, 14, and 16 residues in length) to display the amphipathicity in the primary structure by side-by-side (linear) alignment of the cationic and hydrophobic residues into the 2 separate linear amphipathic (L-amphipathic) motifs. We compared the 2 series of peptides for antibacterial activity, red blood cell (RBC) lysis, killing and membrane-perturbation properties. RESULTS The L-RWV peptides achieved the highest antibacterial activity at a minimum length of 12 residues (L-RWV12, minimum optimal length or MOL) with the lowest mean MIC of 3-4 µM, whereas the MOL for the H-RWV series was reached at 16 residues (H-RWV16). Overall, H-RWV16 displayed the lowest mean MIC at 2 µM but higher levels of RBC lysis (25-30%), while the L-RWV series displayed minor RBC lytic effects at the test concentrations. Interestingly, when the S. aureus strain SA719 was chosen because of its susceptibility to most of the peptides, none of the L-RWV peptides demonstrated a high level of membrane perturbation determined by propidium iodide incorporation measured by flow cytometry, with <50% PI incorporation for the L-RWV peptides. By contrast, most H-RWV peptides displayed almost up to 100% PI incorporation. The results suggest that membrane perturbation is not the primary killing mechanism of the L-amphipathic RWV peptides, in contrast to the H-RWV peptides. CONCLUSIONS Taken together, the data indicate that both types of amphipathicity may provide different ideal pharmacological properties that deserve further investigation.
Collapse
Affiliation(s)
| | | | | | - Berthony Deslouches
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.K.); (W.X.); (V.M.P.)
| |
Collapse
|
2
|
Li S, Tang Z, Liu Z, Lv S, Yao C, Wang S, Li F. Antifungal activity of indolicidin-derived peptide In-58 against Sporothrix globosa in vitro and in vivo. Front Med (Lausanne) 2024; 11:1458951. [PMID: 39328314 PMCID: PMC11424419 DOI: 10.3389/fmed.2024.1458951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
In-58, a peptide derived from indolicidin, shows extraordinary antibacterial activity and lower toxicity than indolicidin toward mammalian cells. Here, we investigated the antifungal activity of In-58 against the human pathogen Sporothrix globosa in vitro and in vivo. In-58 markedly inhibited the growth of Sporothrix globosa isolates in microdilution assays and showed no antagonism with any tested antifungal agent (itraconazole, terbinafine or amphotericin B). Scanning electron microscopy and propidium iodide staining indicated that In-58 alters the cell wall integrity and interacts with DNA, leading to disruption of S. globosa in a dose-dependent manner. In S. globosa, the mitochondrial membrane potential decreased and reactive oxygen species increased after treatment with In-58. In vivo experiments in the Galleria mellonella (greater wax moth) larval infection model revealed the effectiveness of In-58 against S. globosa infection with low toxicity. Our results indicate that In-58 possesses remarkable antifungal activity against S. globosa in vitro and in vivo. It has potential as a novel drug for the treatment of sporotrichosis.
Collapse
Affiliation(s)
| | | | | | | | - Chunli Yao
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Fuqiu Li
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Recktenwald M, Kaur M, Benmassaoud MM, Copling A, Khanna T, Curry M, Cortes D, Fleischer G, Carabetta VJ, Vega SL. Antimicrobial Peptide Screening for Designing Custom Bactericidal Hydrogels. Pharmaceutics 2024; 16:860. [PMID: 39065557 PMCID: PMC11279943 DOI: 10.3390/pharmaceutics16070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that lives on surfaces and skin and can cause serious infections inside the body. Antimicrobial peptides (AMPs) are part of the innate immune system and can eliminate pathogens, including bacteria and viruses, and are a promising alternative to antibiotics. Although studies have reported that AMP-functionalized hydrogels can prevent bacterial adhesion and biofilm formation, AMP dosing and the combined effects of multiple AMPs are not well understood. Here, three AMPs with different antibacterial properties were synthesized and the soluble minimum inhibitory concentrations (MICs) of each AMP against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) were determined. Hydrogels with immobilized AMPs at their MIC (DD13-RIP 27.5 µM; indolicidin 43.8 µM; P10 120 µM) were effective in preventing MRSA adhesion and biofilm formation. Checkerboard AMP screens identified synergy between indolicidin (3.1 µM) and P10 (12.5 µM) based on soluble fractional inhibitory concentration indices (FICIs) against MRSA, and hydrogels formed with these AMPs at half of their synergistic concentrations (total peptide concentration, 7.8 µM) were highly efficacious in killing MRSA. Mammalian cells cultured atop these hydrogels were highly viable, demonstrating that these AMP hydrogels are biocompatible and selectively eradicate bacteria, based on soluble checkerboard-screening data.
Collapse
Affiliation(s)
- Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (M.R.); (M.M.B.)
| | - Muskanjot Kaur
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Mohammed M. Benmassaoud
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (M.R.); (M.M.B.)
| | - Aryanna Copling
- Department of Translational Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA;
| | - Tulika Khanna
- Department of Biological Sciences, Rowan University, Glassboro, NJ 08028, USA;
| | - Michael Curry
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Dennise Cortes
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Gilbert Fleischer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (M.R.); (M.M.B.)
- Department of Orthopedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
4
|
Shahriari M, Jafari M, Doustdar F, Mehrnejad F. Comparative study of the interactions between C60 fullerene and SARS-CoV-2, HIV, eukaryotic, and bacterial model membranes: Insights into antimicrobial strategies with C60-peptide hybrids. Int J Biol Macromol 2024; 271:132399. [PMID: 38754684 DOI: 10.1016/j.ijbiomac.2024.132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The neutrophil-derived peptide, indolicidin, and the sphere-shaped carbon nanoparticle, C60, are contemporary components capable of acting as bactericides and virucides, among others. Herein, the coarse-grained molecular dynamics simulation method was used to simulate the interactions of gram-negative bacteria, eukaryotes, human immunodeficiency virus (HIV), and SARS-COV-2 membrane models with indolicidin, C60s, and C60-indolicidin hybrids. Our results demonstrated that the carbon nanoparticle penetrated all membrane models, except the bacterial membrane, which remained impenetrable to both the peptide and C60. Additionally, the membrane thickness did not change significantly. The peptide floated above the membranes, with only the side chains of the tryptophan (Trp)-rich site slightly permeating the membranes. After achieving stable contact between the membrane models and nanoparticles, the infiltrated C60s interacted with the unsaturated tail of phospholipids. The density results showed that C60s stayed close to indolicidin and continued to interact with it even after penetration. Indolicidin, especially its Trp-rich site, exhibited more contact with the head and tail of neutral phospholipids compared to other phospholipids. Moreover, both particles interacted with different kinds of glycosphingolipids located in the eukaryote membrane. This investigation has the potential to advance our knowledge of novel approaches to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Masoud Shahriari
- Department of Nanobiotechnology and Biomimetics, School of Life Science Engineering, College of Interdisciplinary of Science and Technology, University of Tehran, 14395-1561 Tehran, Iran
| | - Majid Jafari
- Department of Nanobiotechnology and Biomimetics, School of Life Science Engineering, College of Interdisciplinary of Science and Technology, University of Tehran, 14395-1561 Tehran, Iran; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States.
| | - Farahnoosh Doustdar
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Faramarz Mehrnejad
- Department of Nanobiotechnology and Biomimetics, School of Life Science Engineering, College of Interdisciplinary of Science and Technology, University of Tehran, 14395-1561 Tehran, Iran.
| |
Collapse
|
5
|
Ganesan N, Mishra B, Felix L, Mylonakis E. Antimicrobial Peptides and Small Molecules Targeting the Cell Membrane of Staphylococcus aureus. Microbiol Mol Biol Rev 2023; 87:e0003722. [PMID: 37129495 PMCID: PMC10304793 DOI: 10.1128/mmbr.00037-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Clinical management of Staphylococcus aureus infections presents a challenge due to the high incidence, considerable virulence, and emergence of drug resistance mechanisms. The treatment of drug-resistant strains, such as methicillin-resistant S. aureus (MRSA), is further complicated by the development of tolerance and persistence to antimicrobial agents in clinical use. To address these challenges, membrane disruptors, that are not generally considered during drug discovery for agents against S. aureus, should be explored. The cell membrane protects S. aureus from external stresses and antimicrobial agents, but membrane-targeting antimicrobial agents are probably less likely to promote bacterial resistance. Nontypical linear cationic antimicrobial peptides (AMPs), highly modified AMPs such as daptomycin (lipopeptide), bacitracin (cyclic peptide), and gramicidin S (cyclic peptide), are currently in clinical use. Recent studies have demonstrated that AMPs and small molecules can penetrate the cell membrane of S. aureus, inhibit phospholipid biosynthesis, or block the passage of solutes between the periplasm and the exterior of the cell. In addition to their primary mechanism of action (MOA) that targets the bacterial membrane, AMPs and small molecules may also impact bacteria through secondary mechanisms such as targeting the biofilm, and downregulating virulence genes of S. aureus. In this review, we discuss the current state of research into cell membrane-targeting AMPs and small molecules and their potential mechanisms of action against drug-resistant physiological forms of S. aureus, including persister cells and biofilms.
Collapse
Affiliation(s)
- Narchonai Ganesan
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Biswajit Mishra
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Medicine, The Miriam Hospital, Providence, Rhode Island, USA
| | - LewisOscar Felix
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
6
|
Espeche JC, Varas R, Maturana P, Cutro AC, Maffía PC, Hollmann A. Membrane permeability and antimicrobial peptides: Much more than just making a hole. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Saeed SI, Mergani A, Aklilu E, Kamaruzzaman NF. Antimicrobial Peptides: Bringing Solution to the Rising Threats of Antimicrobial Resistance in Livestock. Front Vet Sci 2022; 9:851052. [PMID: 35464355 PMCID: PMC9024325 DOI: 10.3389/fvets.2022.851052] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial therapy is the most applied method for treating and preventing bacterial infection in livestock. However, it becomes less effective due to the development of antimicrobial resistance (AMR). Therefore, there is an urgent need to find new antimicrobials to reduce the rising rate of AMR. Recently, antimicrobial peptides (AMPs) have been receiving increasing attention due to their broad-spectrum antimicrobial activity, rapid killing activities, less toxicity, and cell selectivity. These features make them potent and potential alternative antimicrobials to be used in animals. Here, we discuss and summarize the AMPs in animals, classification, structures, mechanisms of action, and their potential use as novel therapeutic alternative antimicrobials to tackle the growing AMR threat.
Collapse
Affiliation(s)
- Shamsaldeen Ibrahim Saeed
- Faculty Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa, Malaysia
- Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
- *Correspondence: Shamsaldeen Ibrahim Saeed
| | - AhmedElmontaser Mergani
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan
| | - Erkihun Aklilu
- Faculty Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa, Malaysia
| | - Nor Fadhilah Kamaruzzaman
- Faculty Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa, Malaysia
- Nor Fadhilah Kamaruzzaman
| |
Collapse
|
8
|
Walker LR, Marty MT. Lipid tails modulate antimicrobial peptide membrane incorporation and activity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183870. [PMID: 35077676 PMCID: PMC8818043 DOI: 10.1016/j.bbamem.2022.183870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/19/2022]
Abstract
Membrane disrupting antimicrobial peptides (AMPs) are often amphipathic peptides that interact directly with lipid bilayers. AMPs are generally thought to interact mostly with lipid head groups, but it is less clear how the lipid alkyl chain length and saturation modulate interactions with membranes. Here, we used native mass spectrometry to measure the stoichiometry of three different AMPs-LL-37, indolicidin, and magainin-2-in lipid nanodiscs. We also measured the activity of these AMPs in unilamellar vesicle leakage assays. We found that LL-37 formed specific hexamer complexes but with different intermediates and affinities that depended on the bilayer thickness. LL-37 was also most active in lipid bilayers containing longer, unsaturated lipids. In contrast, indolicidin incorporated to a higher degree into more fluid lipid bilayers but was more active with bilayers with thinner, less fluid lipids. Finally, magainin-2 incorporated to a higher degree into bilayers with longer, unsaturated alkyl chains and showed more activity in these same conditions. Together, these data show that higher amounts of peptide incorporation generally led to higher activity and that AMPs tend to incorporate more into longer unsaturated lipid bilayers. However, the activity of AMPs was not always directly related to amount of peptide incorporated.
Collapse
Affiliation(s)
- Lawrence R Walker
- Department of Chemistry and Biochemistry, Tucson, AZ 85721, United States.
| | - Michael T Marty
- Department of Chemistry and Biochemistry, Tucson, AZ 85721, United States; Bio5 Institute, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
9
|
Petrova LS, Yaminzoda ZA, Odintsova OI, Vladimirtseva EL, Solov'eva AA, Smirnova AS. Promising Methods of Antibacterial Finishing of Textile Materials. RUSS J GEN CHEM+ 2022; 91:2758-2767. [PMID: 35068917 PMCID: PMC8763362 DOI: 10.1134/s1070363221120549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 11/23/2022]
Abstract
A review article, containing information on the options, possibilities, and prospects for the development of antibacterial finishing of textile materials, is presented. A wide range of products designed to impart antibacterial, antimicrobial, and antiviral properties to textile materials is considered. The main factors determining the appropriate decision on the technological and functional choice of the protective composition are presented, including the nature of the fiber-forming polymer, the tasks that the resulting material is designed to solve, and its application options. Compositions providing the required effect of destruction of the pathogenic flora and their application technologies are described. Special attention is paid to antimicrobial agents based on silver nanoparticles. Nanoparticles of this metal have a detrimental effect on antibiotic-resistant strains of bacteria; their effectiveness is higher as compared to a number of well-known antibiotics, for example, penicillin and its analogues. Silver nanoparticles are harmless to the human body. Acting as an inhibitor, they limit the activity of the enzyme responsible for oxygen consumption by single-cell bacteria, viruses, and fungi. In this case, silver ions bind to the outer and inner proteins of the bacterial cell membranes, blocking cellular respiration and reproduction. Various options to apply microencapsulation methods for the implementation of antibacterial finishing are considered, including: phase separation, suspension crosslinking, simple and complex coacervation, spray drying, crystallization from the melt, evaporation of the solvent, co-extrusion, layering, fluidized bed spraying, deposition, emulsion and interphase polymerization, layer-by-layer electrostatic self-assembly etc. All presented technologies are at various development stages-from the laboratory stage to production tests, they all have certain advantages and disadvantages. The accelerated development and implementation of the described methods in production of textile materials is relevant and is related to the existing complex epidemiological situation in the world.
Collapse
Affiliation(s)
- L S Petrova
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - Z A Yaminzoda
- Tajikistan University of Technology, 734061 Dushanbe, Tajikistan
| | - O I Odintsova
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - E L Vladimirtseva
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - A A Solov'eva
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - A S Smirnova
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| |
Collapse
|
10
|
Zharkova MS, Golubeva OY, Orlov DS, Vladimirova EV, Dmitriev AV, Tossi A, Shamova OV. Silver Nanoparticles Functionalized With Antimicrobial Polypeptides: Benefits and Possible Pitfalls of a Novel Anti-infective Tool. Front Microbiol 2021; 12:750556. [PMID: 34975782 PMCID: PMC8719061 DOI: 10.3389/fmicb.2021.750556] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) and antimicrobial peptides or proteins (AMPs/APs) are both considered as promising platforms for the development of novel therapeutic agents effective against the growing number of drug-resistant pathogens. The observed synergy of their antibacterial activity suggested the prospect of introducing antimicrobial peptides or small antimicrobial proteins into the gelatinized coating of AgNPs. Conjugates with protegrin-1, indolicidin, protamine, histones, and lysozyme were comparatively tested for their antibacterial properties and compared with unconjugated nanoparticles and antimicrobial polypeptides alone. Their toxic effects were similarly tested against both normal eukaryotic cells (human erythrocytes, peripheral blood mononuclear cells, neutrophils, and dermal fibroblasts) and tumor cells (human erythromyeloid leukemia K562 and human histiocytic lymphoma U937 cell lines). The AMPs/APs retained their ability to enhance the antibacterial activity of AgNPs against both Gram-positive and Gram-negative bacteria, including drug-resistant strains, when conjugated to the AgNP surface. The small, membranolytic protegrin-1 was the most efficient, suggesting that a short, rigid structure is not a limiting factor despite the constraints imposed by binding to the nanoparticle. Some of the conjugated AMPs/APs clearly affected the ability of nanoparticle to permeabilize the outer membrane of Escherichia coli, but none of the conjugated AgNPs acquired the capacity to permeabilize its cytoplasmic membrane, regardless of the membranolytic potency of the bound polypeptide. Low hemolytic activity was also found for all AgNP-AMP/AP conjugates, regardless of the hemolytic activity of the free polypeptides, making conjugation a promising strategy not only to enhance their antimicrobial potential but also to effectively reduce the toxicity of membranolytic AMPs. The observation that metabolic processes and O2 consumption in bacteria were efficiently inhibited by all forms of AgNPs is the most likely explanation for their rapid and bactericidal action. AMP-dependent properties in the activity pattern of various conjugates toward eukaryotic cells suggest that immunomodulatory, wound-healing, and other effects of the polypeptides are at least partially transferred to the nanoparticles, so that functionalization of AgNPs may have effects beyond just modulation of direct antibacterial activity. In addition, some conjugated nanoparticles are selectively toxic to tumor cells. However, caution is required as not all modulatory effects are necessarily beneficial to normal host cells.
Collapse
Affiliation(s)
- Maria S. Zharkova
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Olga Yu. Golubeva
- Laboratory of the Nanostructures Research, Institute of Silicate Chemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Dmitriy S. Orlov
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Elizaveta V. Vladimirova
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexander V. Dmitriev
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Olga V. Shamova
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
11
|
Meurer M, O’Neil DA, Lovie E, Simpson L, Torres MDT, de la Fuente-Nunez C, Angeles-Boza AM, Kleinsorgen C, Mercer DK, von Köckritz-Blickwede M. Antimicrobial Susceptibility Testing of Antimicrobial Peptides Requires New and Standardized Testing Structures. ACS Infect Dis 2021; 7:2205-2208. [PMID: 34110786 DOI: 10.1021/acsinfecdis.1c00210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The need for optimized as well as standardized test systems of novel antimicrobial peptides (AMPs) was discussed by experts in the field at the International Meeting on Antimicrobial Peptides (IMAP) 2017 and the 2019 Gordon Research Conference (GRC) on Antimicrobial Peptides, and a survey related to this topic was circulated to participants to collate opinions. The survey included questions ranging from the relevance of susceptibility testing for understanding the mode of action of AMPs, to the importance of optimization and a degree of standardization of test methods and their clinical relevance. Based on the survey results, suggestions for future improvements in the research field are made.
Collapse
Affiliation(s)
- Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hanover, Germany
| | | | - Emma Lovie
- NovaBiotics Ltd, Aberdeen, AB23 8EW, United Kingdom
| | | | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Christin Kleinsorgen
- Center for E-Learning, Didactics and Educational Research (ZELDA), University of Veterinary Medicine Hannover, Foundation, 30559 Hanover, Germany
| | | | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hanover, Germany
| |
Collapse
|
12
|
Huynh L, Velásquez J, Rabara R, Basu S, Nguyen HB, Gupta G. Rational design of antimicrobial peptides targeting Gram-negative bacteria. Comput Biol Chem 2021; 92:107475. [PMID: 33813188 DOI: 10.1016/j.compbiolchem.2021.107475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023]
Abstract
Membrane-targeting host antimicrobial peptides (AMPs) can kill or inhibit the growth of Gram-negative bacteria. However, the evolution of resistance among microbes poses a substantial barrier to the long-term utility of the host AMPs. Combining experiment and molecular dynamics simulations, we show that terminal carboxyl capping enhances both membrane insertion and antibacterial activity of an AMP called P1. Furthermore, we show that a bacterial strain with evolved resistance to this peptide becomes susceptible to P1 variants with either backbone capping or lysine-to-arginine substitutions. Our results suggest that cocktails of closely related AMPs may be useful in overcoming evolved resistance.
Collapse
Affiliation(s)
- Loan Huynh
- New Mexico Consortium, Los Alamos, NM, 87544, USA
| | | | - Roel Rabara
- New Mexico Consortium, Los Alamos, NM, 87544, USA
| | | | - Hau B Nguyen
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Goutam Gupta
- New Mexico Consortium, Los Alamos, NM, 87544, USA.
| |
Collapse
|
13
|
Nielsen JE, Bjørnestad VA, Pipich V, Jenssen H, Lund R. Beyond structural models for the mode of action: How natural antimicrobial peptides affect lipid transport. J Colloid Interface Sci 2021; 582:793-802. [DOI: 10.1016/j.jcis.2020.08.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
|
14
|
Kumar R, Ali SA, Singh SK, Bhushan V, Mathur M, Jamwal S, Mohanty AK, Kaushik JK, Kumar S. Antimicrobial Peptides in Farm Animals: An Updated Review on Its Diversity, Function, Modes of Action and Therapeutic Prospects. Vet Sci 2020; 7:vetsci7040206. [PMID: 33352919 PMCID: PMC7766339 DOI: 10.3390/vetsci7040206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are the arsenals of the innate host defense system, exhibiting evolutionarily conserved characteristics that are present in practically all forms of life. Recent years have witnessed the emergence of antibiotic-resistant bacteria compounded with a slow discovery rate for new antibiotics that have necessitated scientific efforts to search for alternatives to antibiotics. Research on the identification of AMPs has generated very encouraging evidence that they curb infectious pathologies and are also useful as novel biologics to function as immunotherapeutic agents. Being innate, they exhibit the least cytotoxicity to the host and exerts a wide spectrum of biological activity including low resistance among microbes and increased wound healing actions. Notably, in veterinary science, the constant practice of massive doses of antibiotics with inappropriate withdrawal programs led to a high risk of livestock-associated antimicrobial resistance. Therefore, the world faces tremendous pressure for designing and devising strategies to mitigate the use of antibiotics in animals and keep it safe for posterity. In this review, we illustrate the diversity of farm animal-specific AMPs, and their biochemical foundations, mode of action, and prospective application in clinics. Subsequently, we present the data for their systematic classification under the major and minor groups, antipathogenic action, and allied bioactivities in the host. Finally, we address the limitations of their clinical implementation and envision areas for further advancement.
Collapse
|
15
|
Mahlapuu M, Björn C, Ekblom J. Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol 2020; 40:978-992. [PMID: 32781848 DOI: 10.1080/07388551.2020.1796576] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The rapid development of microbial resistance to conventional antibiotics has accelerated efforts to find anti-infectives with a novel mode-of-action, which are less prone to bacterial resistance. Intense nonclinical and clinical research is today ongoing to evaluate antimicrobial peptides (AMPs) as potential next-generation antibiotics. Currently, multiple AMPs are assessed in late-stage clinical trials, not only as novel anti-infective drugs, but also as innovative product candidates for immunomodulation, promotion of wound healing, and prevention of post-operative scars. The efforts to translate AMP-based research findings into pharmaceutical product candidates are expected to accelerate in coming years due to technological advancements in multiple areas, including an improved understanding of the mechanism-of-action of AMPs, smart formulation strategies, and advanced chemical synthesis protocols. At the same time, it is recognized that cytotoxicity, low metabolic stability due to sensitivity to proteolytic degradation, and limited oral bioavailability are some of the key weaknesses of AMPs. Furthermore, the pricing and reimbursement environment for new antimicrobial products remains as a major barrier to the commercialization of AMPs.
Collapse
Affiliation(s)
- Margit Mahlapuu
- Promore Pharma AB, Karolinska Institutet Science Park, Solna, Sweden
| | | | - Jonas Ekblom
- Promore Pharma AB, Karolinska Institutet Science Park, Solna, Sweden
| |
Collapse
|
16
|
Vergis J, Malik SS, Pathak R, Kumar M, Ramanjaneya S, Kurkure NV, Barbuddhe SB, Rawool DB. Antimicrobial Efficacy of Indolicidin Against Multi-Drug Resistant Enteroaggregative Escherichia coli in a Galleria mellonella Model. Front Microbiol 2019; 10:2723. [PMID: 31849877 PMCID: PMC6895141 DOI: 10.3389/fmicb.2019.02723] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance against enteroaggregative Escherichia coli (EAEC), an emerging food-borne pathogen, has been observed in an increasing trend recently. In the recent wake of antimicrobial resistance, alternate strategies especially, cationic antimicrobial peptides (AMPs) have attracted considerable attention to source antimicrobial technology solutions. This study evaluated the in vitro antimicrobial efficacy of Indolicidin against multi-drug resistant enteroaggregative Escherichia coli (MDR-EAEC) strains and further to assess its in vivo antimicrobial efficacy in Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 32 μM) and minimum bactericidal concentration (MBC; 64 μM) of Indolicidin against MDR-EAEC was determined by micro broth dilution method. Indolicidin was also tested for its stability (high-end temperatures, physiological concentration of salts and proteases); safety (sheep RBCs; HEp-2 and RAW 264.7 cell lines); effect on beneficial microflora (Lactobacillus rhamnosus and Lactobacillus acidophilus) and its mode of action (flow cytometry; nitrocefin and ONPG uptake). In vitro time-kill kinetic assay of MDR-EAEC treated with Indolicidin was performed. Further, survival rate, MDR-EAEC count, melanization rate, hemocyte enumeration, cytotoxicity assay and histopathological examination were carried out in G. mellonella model to assess in vivo antimicrobial efficacy of Indolicidin against MDR-EAEC strains. Indolicidin was tested stable at high temperatures (70°C; 90°C), physiological concentration of cationic salts (NaCl; MgCl2) and proteases, except for trypsin and tested safe with sheep RBCs and cell lines (RAW 264.7; HEp-2) at MIC (1X and 2X); the beneficial flora was not inhibited. Indolicidin exhibited outer membrane permeabilization in a concentration- and time-dependent manner. In vitro time-kill assay revealed concentration-cum-time dependent clearance of MDR-EAEC in Indolicidin-treated groups at 120 min, while, in G. mellonella, the infected group treated with Indolicidin revealed an increased survival rate, immunomodulatory effect, reduced MDR-EAEC counts and were tested safe to the larval cells which was concurred histopathologically. To conclude, the results suggests Indolicidin as an effective antimicrobial candidate against MDR-EAEC and we recommend its further investigation in appropriate animal models (mice/piglets) before its application in the target host.
Collapse
Affiliation(s)
- Jess Vergis
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Richa Pathak
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manesh Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Sunitha Ramanjaneya
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
17
|
Gigante A, Li M, Junghänel S, Hirschhäuser C, Knauer S, Schmuck C. Non-viral transfection vectors: are hybrid materials the way forward? MEDCHEMCOMM 2019; 10:1692-1718. [PMID: 32180915 PMCID: PMC7053704 DOI: 10.1039/c9md00275h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Transfection is a process by which oligonucleotides (DNA or RNA) are delivered into living cells. This allows the synthesis of target proteins as well as their inhibition (gene silencing). However, oligonucleotides cannot cross the plasma membrane by themselves; therefore, efficient carriers are needed for successful gene delivery. Recombinant viruses are among the earliest described vectors. Unfortunately, they have severe drawbacks such as toxicity and immunogenicity. In this regard, the development of non-viral transfection vectors has attracted increasing interests, and has become an important field of research. In the first part of this review we start with a tutorial introduction into the biological backgrounds of gene transfection followed by the classical non-viral vectors (cationic organic carriers and inorganic nanoparticles). In the second part we highlight selected recent reports, which demonstrate that hybrid vectors that combine key features of classical carriers are a remarkable strategy to address the current challenges in gene delivery.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - M Li
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Junghänel
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
- Biomedical Technology Center of the Medical Faculty , University of Muenster , Muenster , Germany
| | - C Hirschhäuser
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Knauer
- Faculty of Biology , University of Duisburg-Essen , 45141 Essen , Germany
| | - C Schmuck
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| |
Collapse
|
18
|
Belosludtsev KN, Tenkov KS, Vedernikov AA, Belosludtseva NV, Dubinin MV. Dodecyltriphenylphosphonium As an Inducer of Potassium-Dependent Permeability in Rat Liver Mitochondria. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2019; 13:310-318. [DOI: 10.1134/s1990747819040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 11/29/2023]
|
19
|
Sabiá Júnior EF, Menezes LFS, de Araújo IFS, Schwartz EF. Natural Occurrence in Venomous Arthropods of Antimicrobial Peptides Active against Protozoan Parasites. Toxins (Basel) 2019; 11:E563. [PMID: 31557900 PMCID: PMC6832604 DOI: 10.3390/toxins11100563] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Arthropoda is a phylum of invertebrates that has undergone remarkable evolutionary radiation, with a wide range of venomous animals. Arthropod venom is a complex mixture of molecules and a source of new compounds, including antimicrobial peptides (AMPs). Most AMPs affect membrane integrity and produce lethal pores in microorganisms, including protozoan pathogens, whereas others act on internal targets or by modulation of the host immune system. Protozoan parasites cause some serious life-threatening diseases among millions of people worldwide, mostly affecting the poorest in developing tropical regions. Humans can be infected with protozoan parasites belonging to the genera Trypanosoma, Leishmania, Plasmodium, and Toxoplasma, responsible for Chagas disease, human African trypanosomiasis, leishmaniasis, malaria, and toxoplasmosis. There is not yet any cure or vaccine for these illnesses, and the current antiprotozoal chemotherapeutic compounds are inefficient and toxic and have been in clinical use for decades, which increases drug resistance. In this review, we will present an overview of AMPs, the diverse modes of action of AMPs on protozoan targets, and the prospection of novel AMPs isolated from venomous arthropods with the potential to become novel clinical agents to treat protozoan-borne diseases.
Collapse
Affiliation(s)
- Elias Ferreira Sabiá Júnior
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Israel Flor Silva de Araújo
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth Ferroni Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
20
|
Dwivedi R, Aggarwal P, Bhavesh NS, Kaur KJ. Design of therapeutically improved analogue of the antimicrobial peptide, indolicidin, using a glycosylation strategy. Amino Acids 2019; 51:1443-1460. [PMID: 31485742 DOI: 10.1007/s00726-019-02779-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/27/2019] [Indexed: 02/01/2023]
Abstract
Indolicidin is a member of cathelicidin family which displays broad spectrum antimicrobial activity. Severe toxicity and aggregation propensity associated with indolicidin pose a huge limitation to its probable therapeutic application. We are reporting the use of glycosylation strategy to design an analogue of indolicidin and subsequently explore structural and functional effects of sugar on it. Our study led to the design of a potent antibacterial glycosylated peptide, [βGlc-T9,K7]indolicidin, which showed decreased toxicity against erythrocytes and macrophage cells and thus a higher therapeutic selectivity. The incorporation of sugar also increased the solubility of the peptide. The mode of bacterial killing, functional stability, LPS binding, and cytokine inhibitory potential of the peptide, however, seemed unaffected upon glycosylation. Absence of significant changes in structure upon glycosylation accounts for the possibly retained functions and mode of action of the peptide. Our report thus presents the designing of an indolicidin analogue with improved therapeutic potential by substituting aromatic amino acid with glycosylated amino acid as a promising strategy for the first time.
Collapse
Affiliation(s)
- Rohini Dwivedi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Priyanka Aggarwal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Neel S Bhavesh
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanwal J Kaur
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
21
|
Torres MD, Sothiselvam S, Lu TK, de la Fuente-Nunez C. Peptide Design Principles for Antimicrobial Applications. J Mol Biol 2019; 431:3547-3567. [DOI: 10.1016/j.jmb.2018.12.015] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 02/08/2023]
|
22
|
Nguyen VP, Palanikumar L, Kennel SJ, Alves DS, Ye Y, Wall JS, Magzoub M, Barrera FN. Mechanistic insights into the pH-dependent membrane peptide ATRAM. J Control Release 2019; 298:142-153. [PMID: 30763623 PMCID: PMC6408977 DOI: 10.1016/j.jconrel.2019.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/28/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
pH-responsive peptides are promising therapeutic molecules that can specifically target the plasma membrane in the acidified extracellular medium that bathes cells in tumors. We designed the acidity-triggered rational membrane (ATRAM) peptide to have a pH-responsive membrane interaction. At physiological pH, ATRAM binds to the membrane surface in a largely unstructured conformation, while in acidic conditions it inserts into lipid bilayers forming a transmembrane helix. However, the molecular mechanism ATRAM uses to target and insert into tumor cells remains poorly understood. Here, we determined that ATRAM inserts into cancer cells with a preferential membrane orientation, where the C-terminus of the peptide traverses the plasma membrane and explores the cytoplasm. Using biophysical techniques, we determined that the membrane interaction of ATRAM is contingent on the concentration of the peptide. Kinetic studies showed that membrane insertion occurs in at least three steps, where only the first step was affected by the membrane density of ATRAM. These observations, combined with membrane binding and leakage data, indicate that the interaction of ATRAM with lipid membranes is dependent on its oligomerization state. SPECT/CT imaging in mice revealed that ATRAM accumulates in the blood pool, where it has a prolonged circulation time (> 4 h). Since fast peptide clearance and degradation in circulation are major problems for clinical development, we studied the mechanism ATRAM uses to remain in the blood stream. Using binding and transfer assays, we determined that ATRAM binds reversibly to human serum albumin. We propose that ATRAM uses albumin as a carrier in the blood stream to evade clearance and proteolysis before interacting with the plasma membrane of cancer cells. We also show that ATRAM is able to be deliver liposomes to cells in a pH dependent way. Our data highlight the potential of ATRAM as a specific therapeutic agent for diseases that lead to acidic tissues, including cancer.
Collapse
Affiliation(s)
- Vanessa P Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Loganathan Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stephen J Kennel
- Departments of Medicine & Radiology, University of Tennessee Medical Center, Knoxville, TN, United States
| | - Daiane S Alves
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Yujie Ye
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Jonathan S Wall
- Departments of Medicine & Radiology, University of Tennessee Medical Center, Knoxville, TN, United States
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States.
| |
Collapse
|
23
|
Belosludtsev KN, Penkov NV, Tenkov KS, Talanov EY, Belosludtseva NV, Agafonov AV, Stepanova AE, Starinets VS, Vashchenko OV, Gudkov SV, Dubinin MV. Interaction of the anti-tuberculous drug bedaquiline with artificial membranes and rat erythrocytes. Chem Biol Interact 2019; 299:8-14. [PMID: 30496736 DOI: 10.1016/j.cbi.2018.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/06/2018] [Accepted: 11/25/2018] [Indexed: 11/28/2022]
|
24
|
Torres MDT, Pedron CN, Higashikuni Y, Kramer RM, Cardoso MH, Oshiro KGN, Franco OL, Silva Junior PI, Silva FD, Oliveira Junior VX, Lu TK, de la Fuente-Nunez C. Structure-function-guided exploration of the antimicrobial peptide polybia-CP identifies activity determinants and generates synthetic therapeutic candidates. Commun Biol 2018; 1:221. [PMID: 30534613 PMCID: PMC6286318 DOI: 10.1038/s42003-018-0224-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial peptides (AMPs) constitute promising alternatives to classical antibiotics for the treatment of drug-resistant infections, which are a rapidly emerging global health challenge. However, our understanding of the structure-function relationships of AMPs is limited, and we are just beginning to rationally engineer peptides in order to develop them as therapeutics. Here, we leverage a physicochemical-guided peptide design strategy to identify specific functional hotspots in the wasp-derived AMP polybia-CP and turn this toxic peptide into a viable antimicrobial. Helical fraction, hydrophobicity, and hydrophobic moment are identified as key structural and physicochemical determinants of antimicrobial activity, utilized in combination with rational engineering to generate synthetic AMPs with therapeutic activity in a mouse model. We demonstrate that, by tuning these physicochemical parameters, it is possible to design nontoxic synthetic peptides with enhanced sub-micromolar antimicrobial potency in vitro and anti-infective activity in vivo. We present a physicochemical-guided rational design strategy to generate peptide antibiotics.
Collapse
Affiliation(s)
- Marcelo D. T. Torres
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580 Brazil
| | - Cibele N. Pedron
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580 Brazil
| | - Yasutomi Higashikuni
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Robin M. Kramer
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Marlon H. Cardoso
- Programa de Pós-Gradução em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF 70297400 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF 71966700 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117010 Brazil
| | - Karen G. N. Oshiro
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117010 Brazil
| | - Octávio L. Franco
- Programa de Pós-Gradução em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF 70297400 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF 71966700 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117010 Brazil
| | - Pedro I. Silva Junior
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP 05503900 Brazil
| | - Fernanda D. Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580 Brazil
| | - Vani X. Oliveira Junior
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580 Brazil
| | - Timothy K. Lu
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
25
|
Nielsen JE, Bjørnestad VA, Lund R. Resolving the structural interactions between antimicrobial peptides and lipid membranes using small-angle scattering methods: the case of indolicidin. SOFT MATTER 2018; 14:8750-8763. [PMID: 30358793 DOI: 10.1039/c8sm01888j] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Using small angle X-ray and neutron scattering (SAXS/SANS) and detailed theoretical modelling we have elucidated the structure of the antimicrobial peptide, indolicidin, and the interaction with model lipid membranes of different anionic lipid compositions mimicking typical charge densities found in the cytoplasmic membrane of bacteria. First, we show that indolicidin displays a predominantly disordered, random chain conformation in solution with a small fraction (≈1%) of fiber-like nanostructures that are not dissolved at higher temperatures. The peptide is shown to strongly interact with the membranes at all charge densities without significantly perturbing the lipid bilayer structure. Instead, the results show that indolicidin inserts into the outer leaflet of the lipid vesicles causing a reduced local order of the lipid packing. This result is supported by an observed change in the melting point of the lipids upon addition of the peptide, as seen by differential scanning calorimetry experiments. The peptide does not to our observation affect the thickness of the membrane or form distinct structural pores in the membrane at physiologically relevant concentrations as has been previously suggested as an important mode of action. Finally, using sophisticated contrast variation SANS, we show that the peptide does not affect the random lateral distribution of anionic lipids in the membrane. Together, these results demonstrate that the structural aspects of the mode of action of antimicrobial peptides can be elucidated in detail using SAS techniques with liposomes as model systems.
Collapse
|
26
|
Vasilchenko AS, Vasilchenko AV, Pashkova TM, Smirnova MP, Kolodkin NI, Manukhov IV, Zavilgelsky GB, Sizova EA, Kartashova OL, Simbirtsev AS, Rogozhin EA, Duskaev GK, Sycheva MV. Antimicrobial activity of the indolicidin-derived novel synthetic peptide In-58. J Pept Sci 2018; 23:855-863. [PMID: 29193518 DOI: 10.1002/psc.3049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 12/26/2022]
Abstract
Natural peptides with antimicrobial activity are extremely diverse, and peptide synthesis technologies make it possible to significantly improve their properties for specific tasks. Here, we investigate the biological properties of the natural peptide indolicidin and the indolicidin-derived novel synthetic peptide In-58. In-58 was generated by replacing all tryptophan residues on phenylalanine in D-configuration; the α-amino group in the main chain also was modified by unsaturated fatty acid. Compared with indolicidin, In-58 is more bactericidal, more resistant to proteinase K, and less toxic to mammalian cells. Using molecular physics approaches, we characterized the action of In-58 on bacterial cells at the cellular level. Also, we have found that studied peptides damage bacterial membranes. Using the Escherichia coli luminescent biosensor strain MG1655 (pcolD'::lux), we investigated the action of indolicidin and In-58 at the subcellular level. At subinhibitory concentrations, indolicidin and In-58 induced an SOS response. Our data suggest that indolicidin damages the DNA, but bacterial membrane perturbation is its principal mode of action. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A S Vasilchenko
- Tyumen State University, ul. Volodarsky, 6, Tyumen, 625003, Russia
| | - A V Vasilchenko
- Tyumen State University, ul. Volodarsky, 6, Tyumen, 625003, Russia
| | - T M Pashkova
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, ul. Pionerskaya, Orenburg, 11, Russia
| | - M P Smirnova
- Research Institute of Highly Pure Biopreparations, Pudozhsakya str., St. Petersburg, 197110, Russia
| | - N I Kolodkin
- Research Institute of Highly Pure Biopreparations, Pudozhsakya str., St. Petersburg, 197110, Russia
| | - I V Manukhov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1, 1st Dorozhny pr., Moscow, 113545, Russia.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudnyi, 141701, Russia
| | - G B Zavilgelsky
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1, 1st Dorozhny pr., Moscow, 113545, Russia
| | - E A Sizova
- All-Russia Research Institute of Beef Cattle Breeding, Russian Academy of Sciences, ul. Pionerskaya, Orenburg, 11, Russia.,Orenburg State University, Pobedy str., Orenburg, 13, Russia
| | - O L Kartashova
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, ul. Pionerskaya, Orenburg, 11, Russia
| | - A S Simbirtsev
- Research Institute of Highly Pure Biopreparations, Pudozhsakya str., St. Petersburg, 197110, Russia
| | - E A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, ul. Miklukho-Maklaya, 16, Orenburg, /10, Russia.,Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, Moscow, 11, Russia
| | - G K Duskaev
- All-Russia Research Institute of Beef Cattle Breeding, Russian Academy of Sciences, ul. Pionerskaya, Orenburg, 11, Russia
| | - M V Sycheva
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, ul. Pionerskaya, Orenburg, 11, Russia.,Orenburg State Agrarian University, ul. Chelyuskintsev, Orenburg, 18, Russia
| |
Collapse
|
27
|
Tsai CW, Lin ZW, Chang WF, Chen YF, Hu WW. Development of an indolicidin-derived peptide by reducing membrane perturbation to decrease cytotoxicity and maintain gene delivery ability. Colloids Surf B Biointerfaces 2018; 165:18-27. [DOI: 10.1016/j.colsurfb.2018.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 11/28/2022]
|
28
|
Yan W, Lu J, Li G, Wei H, Ren WH. Amidated Scolopin-2 inhibits proliferation and induces apoptosis of Hela cells in vitro and in vivo. Biotechnol Appl Biochem 2018; 65:672-679. [PMID: 29644748 DOI: 10.1002/bab.1661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/03/2018] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the effect of Scolopin-2, a cationic antimicrobial peptide from centipede venoms, and amidated Scolopin-2 on Hela cell viability in vitro and in vivo. The cellular proliferation was investigated with the MTT assay. Confocal laser scanning, flow cytometry, and Western blot analysis were employed to localize Scolopin-2-NH2 in Hela cells and to study the caused cells apoptosis. We subcutaneously injected Hela cells into BALB/c nude mice and studied if Scolopin-2-NH2 suppressed tumor growth in the mice. Scolopin-2-NH2 inhibited Hela proliferation in vitro in a dose-dependent manner with an IC50 of 35 μM. In addition, Scolopin-2-NH2 combined with mitochondria and regulated caspase-related apoptosis pathways in Hela cells. Scolopin-2-NH2 significantly suppressed tumor growth in the tumor-bearing mice without side effects, such as weight loss or abnormal changes in tissues, including liver, spleen, kidney, and lung. These results indicate Scolopin-2-NH2 may be a good therapeutic candidate for the treatment of Hela cervical cancer.
Collapse
Affiliation(s)
- Weili Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jia Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | - Guiting Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | - Huiyuan Wei
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | - Wen-Hua Ren
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
29
|
Hu WW, Yeh CC, Tsai CW. The conjugation of indolicidin to polyethylenimine for enhanced gene delivery with reduced cytotoxicity. J Mater Chem B 2018; 6:5781-5794. [DOI: 10.1039/c8tb01408f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The hydrophobic domains of conjugated peptides can stabilize their insertion into the cell membrane to promote transportation.
Collapse
Affiliation(s)
- Wei-Wen Hu
- Department of Chemical and Materials Engineering
- National Central University
- Taoyuan City
- Taiwan
- Center for Biocellular Engineering
| | - Chiao-Chun Yeh
- Department of Chemical and Materials Engineering
- National Central University
- Taoyuan City
- Taiwan
| | - Ching-Wei Tsai
- Department of Chemical and Materials Engineering
- National Central University
- Taoyuan City
- Taiwan
| |
Collapse
|
30
|
Dong N, Li XR, Xu XY, Lv YF, Li ZY, Shan AS, Wang JL. Characterization of bactericidal efficiency, cell selectivity, and mechanism of short interspecific hybrid peptides. Amino Acids 2017; 50:453-468. [PMID: 29282543 DOI: 10.1007/s00726-017-2531-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Facing rising global antibiotics resistance, physical membrane-damaging antimicrobial peptides (AMPs) represent promising antimicrobial agents. Various strategies to design effective hybrid peptides offer many advantages in overcoming the adverse effects of natural AMPs. In this study, hybrid peptides from different species were investigated, and three hybrid antimicrobial peptides, LI, LN, and LC, were designed by combining the typical fragment of human cathelicidin-derived LL37 with either indolicidin, pig nematode cecropin P1 (CP-1) or rat neutrophil peptide-1 (NP-1). In an aqueous solution, all hybrid peptides had an unordered conformation. In simulated membrane conditions, the hybrid peptide LI displayed more β-turn and β-hairpin structures, whereas LN and LC folded into α-helix structures. The three interspecific hybrid peptides LI, LN, and LC exhibited different levels of antimicrobial activity against Gram-positive and Gram-negative bacteria. LI demonstrated the highest antimicrobial activity and cell selectivity. The results of the swimming motility indicated that LI repressed bacterial motility in a concentration-dependent method. Endotoxin binding assay demonstrated that hybrid peptide LI conserved the binding ability to LPS (polyanionic lipopolysaccharides) of its parental peptides. Fluorescence assays, flow cytometry, and SEM further revealed that hybrid peptide LI acted through different bacteriostatic mechanisms than LL37 and indolicidin and that LI killed bacterial cells via membrane damage. In summary, this study demonstrated that hybrid peptide LI produced by interspecific hybrid synthesis possessed strong cell selectivity and is a promising therapeutic candidate for drug-resistant bacteria infection.
Collapse
Affiliation(s)
- N Dong
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - X R Li
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - X Y Xu
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Y F Lv
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Z Y Li
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - A S Shan
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - J L Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
31
|
Jiang H, Ji C, Sui J, Sa R, Wang X, Liu X, Guo TL. Antibacterial and antitumor activity of Bogorol B-JX isolated from Brevibacillus laterosporus JX-5. World J Microbiol Biotechnol 2017; 33:177. [DOI: 10.1007/s11274-017-2337-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022]
|
32
|
Kara S, Afonin S, Babii O, Tkachenko AN, Komarov IV, Ulrich AS. Diphytanoyl lipids as model systems for studying membrane-active peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1828-1837. [PMID: 28587828 DOI: 10.1016/j.bbamem.2017.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/28/2023]
Abstract
The branched chains in diphytanoyl lipids provide membranes with unique properties, such as high chemical/physical stability, low water permeability, and no gel-to-fluid phase transition at ambient temperature. Synthetic diphytanoyl phospholipids are often used as model membranes for electrophysiological experiments. To evaluate whether these sturdy lipids are also suitable for solid-state NMR, we have examined their interactions with a typical amphiphilic peptide in comparison with straight-chain lipids. First, their phase properties were monitored using 31P NMR, and the structural behaviour of the antimicrobial peptide PGLa was studied by 19F NMR and circular dichroism in oriented membrane samples. Only lipids with choline headgroups (DPhPC) were found to form stable lipid bilayers in oriented samples, while DPhPG, DPhPE and DPhPS display non-lamellar structures. Hence, the experimental temperature and hydration are crucial factors when using supported diphytanoyl lipids, as both parameters must be maintained in an appropriate range to avoid the formation of non-bilayer structures. For the same reason, a high content of other diphytanoyl lipids besides DPhPC in mixed lipid systems is not favourable. Unlike the situation in straight-chain membranes, we found that the α-helical PGLa was not able to insert into the tightly packed fluid bilayer of DPhPC but remained in a surface-bound state even at very high peptide concentration. This behaviour can be explained by the high cohesivity and the negative spontaneous curvature of the diphytanoyl lipids. These characteristic features must therefore be taken into consideration, both, in electrophysiological studies, and when interpreting the structural behaviour of membrane-active peptides in such lipid environment.
Collapse
Affiliation(s)
- Sezgin Kara
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P.O.B. 3640, 76021 Karlsruhe, Germany
| | - Oleg Babii
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; Institute of Biology and Medicine (IBM), Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601 Kyiv, Ukraine
| | - Anton N Tkachenko
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; Institute of Biology and Medicine (IBM), Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601 Kyiv, Ukraine
| | - Igor V Komarov
- Enamine Ltd., vul. Chervonotkatska 78, 02094 Kyiv, Ukraine; Institute of High Technologies (IHT), Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601 Kyiv, Ukraine
| | - Anne S Ulrich
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P.O.B. 3640, 76021 Karlsruhe, Germany.
| |
Collapse
|
33
|
Peptoids successfully inhibit the growth of gram negative E. coli causing substantial membrane damage. Sci Rep 2017; 7:42332. [PMID: 28195195 PMCID: PMC5307948 DOI: 10.1038/srep42332] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/10/2017] [Indexed: 02/05/2023] Open
Abstract
Peptoids are an alternative approach to antimicrobial peptides that offer higher stability towards enzymatic degradation. It is essential when developing new types of peptoids, that mimic the function of antimicrobial peptides, to understand their mechanism of action. Few studies on the specific mechanism of action of antimicrobial peptoids have been described in the literature, despite the plethora of studies on the mode of action of antimicrobial peptides. Here, we investigate the mechanism of action of two short cationic peptoids, rich in lysine and tryptophan side chain functionalities. We demonstrate that both peptoids are able to cause loss of viability in E. coli susceptible cells at their MIC (16–32 μg/ml) concentrations. Dye leakage assays demonstrate slow and low membrane permeabilization for peptoid 1, that is still higher for lipid compositions mimicking bacterial membranes than lipid compositions containing Cholesterol. At concentrations of 4 × MIC (64–128 μg/ml), pore formation, leakage of cytoplasmic content and filamentation were the most commonly observed morphological changes seen by SEM in E. coli treated with both peptoids. Flow cytometry data supports the increase of cell size as observed in the quantification analysis from the SEM images and suggests overall decrease of DNA per cell mass over time.
Collapse
|
34
|
Antimicrobial and anti-inflammatory activities of three chensinin-1 peptides containing mutation of glycine and histidine residues. Sci Rep 2017; 7:40228. [PMID: 28054660 PMCID: PMC5215317 DOI: 10.1038/srep40228] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022] Open
Abstract
The natural peptide chensinin-1 doesnot exhibit its desired biological properties. In this study, the mutant MC1-1 was designed by replacing Gly in the chensinin-1 sequence with Trp. Mutants MC1-2 and MC1-3 were designed based on the MC1-1 sequence to investigate the specific role of His residues. The mutated peptides presented α-helicity in a membrane-mimetic environment and exhibited broad-spectrum antimicrobial activities; in contrast to Trp residues, His residues were dispensable for interacting with the cell membrane. The interactions between the mutant peptides and lipopolysaccharide (LPS) facilitated the ingestion of peptides by Gram-negative bacteria. The binding affinities of the peptides were similar, at approximately 10 μM, but ΔH for MC1-2 was −7.3 kcal.mol−1, which was 6-9 folds higher than those of MC1-1 and MC1-3, probably due to the conformational changes. All mutant peptides demonstrated the ability to inhibit LPS-induced tumour-necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release from murine RAW264.7 cells. In addition, the representative peptide MC1-1showed better inhibition of serum TNF-α and IL-6 levels compared to polymyxin B (PMB), a potent binder and neutralizer of LPS as positive control in LPS-challenged mice model. These data suggest that the mutant peptides could be promising molecules for development as chensinin-based therapeutic agents against sepsis.
Collapse
|
35
|
Morais DS, Guedes RM, Lopes MA. Antimicrobial Approaches for Textiles: From Research to Market. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E498. [PMID: 28773619 PMCID: PMC5456784 DOI: 10.3390/ma9060498] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023]
Abstract
The large surface area and ability to retain moisture of textile structures enable microorganisms' growth, which causes a range of undesirable effects, not only on the textile itself, but also on the user. Due to the public health awareness of the pathogenic effects on personal hygiene and associated health risks, over the last few years, intensive research has been promoted in order to minimize microbes' growth on textiles. Therefore, to impart an antimicrobial ability to textiles, different approaches have been studied, being mainly divided into the inclusion of antimicrobial agents in the textile polymeric fibers or their grafting onto the polymer surface. Regarding the antimicrobial agents, different types have been used, such as quaternary ammonium compounds, triclosan, metal salts, polybiguanides or even natural polymers. Any antimicrobial treatment performed on a textile, besides being efficient against microorganisms, must be non-toxic to the consumer and to the environment. This review mainly intends to provide an overview of antimicrobial agents and treatments that can be performed to produce antimicrobial textiles, using chemical or physical approaches, which are under development or already commercially available in the form of isolated agents or textile fibers or fabrics.
Collapse
Affiliation(s)
- Diana Santos Morais
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
- INEGI-Instituto de Engenharia Mecânica e Gestão Industrial, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| | - Rui Miranda Guedes
- INEGI-Instituto de Engenharia Mecânica e Gestão Industrial, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
- Departamento de Engenharia Mecânica Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| | - Maria Ascensão Lopes
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| |
Collapse
|
36
|
Shagaghi N, Palombo EA, Clayton AHA, Bhave M. Archetypal tryptophan-rich antimicrobial peptides: properties and applications. World J Microbiol Biotechnol 2016; 32:31. [PMID: 26748808 DOI: 10.1007/s11274-015-1986-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/25/2015] [Indexed: 12/17/2022]
Abstract
Drug-resistant microorganisms ('superbugs') present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications.
Collapse
Affiliation(s)
- Nadin Shagaghi
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Enzo A Palombo
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Andrew H A Clayton
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
37
|
Tachikawa S, Sato S, Hazama H, Kaneda Y, Awazu K, Nakamura H. Localization-dependent cell-killing effects of protoporphyrin (PPIX)-lipid micelles and liposomes in photodynamic therapy. Bioorg Med Chem 2015; 23:7578-84. [DOI: 10.1016/j.bmc.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 10/31/2015] [Accepted: 11/01/2015] [Indexed: 11/26/2022]
|
38
|
Tsai CW, Hu WW, Liu CI, Ruaan RC, Tsai BC, Jin SLC, Chang Y, Chen WY. The consideration of indolicidin modification to balance its hemocompatibility and delivery efficiency. Int J Pharm 2015; 494:498-505. [DOI: 10.1016/j.ijpharm.2015.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/24/2015] [Accepted: 08/13/2015] [Indexed: 01/21/2023]
|
39
|
Indolicidin binding induces thinning of a lipid bilayer. Biophys J 2014; 106:L29-31. [PMID: 24739184 DOI: 10.1016/j.bpj.2014.02.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/11/2014] [Accepted: 02/21/2014] [Indexed: 01/09/2023] Open
Abstract
We use all-atom molecular dynamics simulations on a massive scale to compute the standard binding free energy of the 13-residue antimicrobial peptide indolicidin to a lipid bilayer. The analysis of statistical convergence reveals systematic sampling errors that correlate with reorganization of the bilayer on the microsecond timescale and persist throughout a total of 1.4 ms of sampling. Consistent with experimental observations, indolicidin induces membrane thinning, although the simulations significantly overestimate the lipophilicity of the peptide.
Collapse
|
40
|
Sun Y, Dong W, Sun L, Ma L, Shang D. Insights into the membrane interaction mechanism and antibacterial properties of chensinin-1b. Biomaterials 2014; 37:299-311. [PMID: 25453959 DOI: 10.1016/j.biomaterials.2014.10.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/02/2014] [Indexed: 11/29/2022]
Abstract
Antimicrobial peptides (AMPs) with non-specific membrane disrupting activities are thought to exert their antimicrobial activity as a result of their cationicity, hydrophobicity and α-helical or β-sheet structures. Chensinin-1, a native peptide from skin secretions of Rana chensinensis, fails to manifest its desired biological properties because its low hydrophobic nature and an adopted random coil structure in a membrane-mimetic environment. In this study, chensinin-1b was designed by rearranging the amino acid sequence of its hydrophilic/polar residues on one face and its hydrophobic/nonpolar residues on the opposite face according to its helical diagram, and by replacing three Gly residues with three Trp residues. Introduction of Trp residues significantly promoted the binding of the peptide to the bacterial outer membrane and exerted bactericidal activity through cytoplasmic membrane damage. Chensinin-1b demonstrates higher antimicrobial activity and greater cell selectivity than its parent peptide, chensinin-1. The electrostatic interactions between chensinin-1b and lipopolysaccharide (LPS) may have facilitated the uptake of the peptide into Gram-negative cells and be also helpful to disrupt the bacterial cytoplasmic membrane, as evidenced by depolarisation of the membrane potential and leakage of calceins from the liposomes of Escherichia coli and Staphylococcus aureus. Chensinin-1b was also found to penetrate mouse skin and was also effective in vivo, as measured by hydroxyproline levels in a wound infection mouse model, and could therefore act as an anti-infective agent for wound healing.
Collapse
Affiliation(s)
- Yue Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Weibing Dong
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Li Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Lijie Ma
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
41
|
Zhao R, Liu L, Wang Y, Xiao Z. Vinegar-baked Radix Bupleuri modulates the cell membrane constituents and inhibits the P-gp activity in rat hepatocytes. Altern Ther Health Med 2014; 14:357. [PMID: 25256115 PMCID: PMC4192444 DOI: 10.1186/1472-6882-14-357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022]
Abstract
Background Vinegar-baked Radix Bupleuri (VBRB) enhances the effects of other drugs on the liver by increasing drug distribution to the liver, but the mechanism of action remains unclear. The present study was designed to determine the effects of VBRB on the membrane permeability, constituents, and P-glycoprotein (P-gp) activity of hepatocyte BRL cells, in order to interpret the liver targeting enhancing effects of VBRB. Methods The membrane permeability and P-gp expression were analyzed by flow cytometry. The membrane constituents were determined by an automatic biochemistry analyzer and thin-layer chromatography. Results The results showed that, compared with the control, VBRB enhanced the membrane permeability by 41-67% (P < 0.05), which occurred in the absence of any cytotoxicity. VBRB had marginal effects on the cholesterol content, but significantly affected the total protein contents and the lipid constituents of the cell membrane in a dose- and time-dependent manner. VBRB inhibited P-gp expression in the cell membrane by 59-86% (P < 0.01). Conclusion VBRB affects the constituents of BRL cells and increases its permeability, which may help explain its liver-targeting effects.
Collapse
|
42
|
Muszanska AK, Rochford ETJ, Gruszka A, Bastian AA, Busscher HJ, Norde W, van der Mei HC, Herrmann A. Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules 2014; 15:2019-26. [PMID: 24833130 DOI: 10.1021/bm500168s] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This paper describes the synthesis and characterization of polymer-peptide conjugates to be used as infection-resistant coating for biomaterial implants and devices. Antiadhesive polymer brushes composed of block copolymer Pluronic F-127 (PF127) were functionalized with antimicrobial peptides (AMP), able to kill bacteria on contact, and arginine-glycine-aspartate (RGD) peptides to promote the adhesion and spreading of host tissue cells. The antiadhesive and antibacterial properties of the coating were investigated with three bacterial strains: Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. The ability of the coating to support mammalian cell growth was determined using human fibroblast cells. Coatings composed of the appropriate ratio of the functional components: PF127, PF127 modified with AMP, and PF127 modified with RGD showed good antiadhesive and bactericidal properties without hampering tissue compatibility.
Collapse
Affiliation(s)
- Agnieszka K Muszanska
- University of Groningen and University Medical Center Groningen , Department of Biomedical Engineering, P.O. Box 196, 9700 AD Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
A novel application of indolicidin for gene delivery. Int J Pharm 2013; 456:293-300. [DOI: 10.1016/j.ijpharm.2013.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/30/2013] [Accepted: 08/15/2013] [Indexed: 01/06/2023]
|
44
|
Tsai CW, Ruaan RC, Liu CI. Adsorption of antimicrobial indolicidin-derived peptides on hydrophobic surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10446-10452. [PMID: 22721449 DOI: 10.1021/la301401v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The hydrophobic interaction between antimicrobial peptides and membrane hydrophobic cores is usually related to their cytotoxicity. In this study, the adsorption mechanism of five plasma membrane-associated peptides, indolicidin (IL) and its four derivatives, with hydrophobic ligands was investigated to understand the relationship between peptide hydrophobicity and bioactivity. The hydrophobic adsorption mechanisms of IL and its derivatives were interpreted thermodynamically and kinetically by reversed-phase chromatography (RPC) analysis and surface plasmon resonance (SPR) measurement, respectively. IL and its derivatives possess a similar random coil structure in both aqueous and organic solvents. Thermodynamic analysis showed that the binding enthalpy of peptides with higher electropositivity was lower than those with lower electropositivity and exhibited unfavorable binding entropy. Higher electropositivity peptides adsorbed to the hydrophobic surface arising from the less bound solvent on the peptide surface. A comparison with the kinetic analysis showed that IL and its derivatives adopt a two-state binding model (i.e., adsorption onto and self-association on the hydrophobic acyl chain) to associate with the hydrophobic surface, and the binding affinity of peptide self-association correlates well with peptide hemolysis. Consequently, this study provided a novel concept for understanding the action of plasma membrane-associated peptides.
Collapse
Affiliation(s)
- Ching-Wei Tsai
- Department of Chemical and Materials Engineering, National Central University, Jhong-Li, Taiwan
| | | | | |
Collapse
|
45
|
Liu Z, Cai Y, Young AW, Totsingan F, Jiwrajka N, Shi Z, Kallenbach NR. OH radical production stimulated by (RW)4D, a synthetic antimicrobial agent and indolicidin. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20272g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 2011; 29:464-72. [PMID: 21680034 DOI: 10.1016/j.tibtech.2011.05.001] [Citation(s) in RCA: 1066] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/27/2011] [Accepted: 05/04/2011] [Indexed: 11/17/2022]
Abstract
Antimicrobial peptides (AMPs) are an integral part of the innate immune system that protect a host from invading pathogenic bacteria. To help overcome the problem of antimicrobial resistance, cationic AMPs are currently being considered as potential alternatives for antibiotics. Although extremely variable in length, amino acid composition and secondary structure, all peptides can adopt a distinct membrane-bound amphipathic conformation. Recent studies demonstrate that they achieve their antimicrobial activity by disrupting various key cellular processes. Some peptides can even use multiple mechanisms. Moreover, several intact proteins or protein fragments are now being shown to have inherent antimicrobial activity. A better understanding of the structure-activity relationships of AMPs is required to facilitate the rational design of novel antimicrobial agents.
Collapse
Affiliation(s)
- Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | | | | |
Collapse
|