1
|
Oliveira IS, Silva SG, Gomes AC, Real Oliveira MECD, Vale MLCD, Marques EF. Cationic Serine-Based Gemini Surfactant:Monoolein Aggregates as Viable and Efficacious Agents for DNA Complexation and Compaction: A Cytotoxicity and Physicochemical Assessment. J Funct Biomater 2024; 15:224. [PMID: 39194661 DOI: 10.3390/jfb15080224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Cationic gemini surfactants have emerged as potential gene delivery agents as they can co-assemble with DNA due to a strong electrostatic association. Commonly, DNA complexation is enhanced by the inclusion of a helper lipid (HL), which also plays a key role in transfection efficiency. The formation of lipoplexes, used as non-viral vectors for transfection, through electrostatic and hydrophobic interactions is affected by various physicochemical parameters, such as cationic surfactant:HL molar ratio, (+/-) charge ratio, and the morphological structure of the lipoplexes. Herein, we investigated the DNA complexation ability of mixtures of serine-based gemini surfactants, (nSer)2N5, and monoolein (MO) as a helper lipid. The micelle-forming serine surfactants contain long lipophilic chains (12 to 18 C atoms) and a five CH2 spacer, both linked to the nitrogen atoms of the serine residues by amine linkages. The (nSer)2N5:MO aggregates are non-cytotoxic up to 35-90 µM, depending on surfactant and surfactant/MO mixing ratio, and in general, higher MO content and longer surfactant chain length tend to promote higher cell viability. All systems efficaciously complex DNA, but the (18Ser)2N5:MO one clearly stands as the best-performing one. Incorporating MO into the serine surfactant system affects the morphology and size distribution of the formed mixed aggregates. In the low concentration regime, gemini-MO systems aggregate in the form of vesicles, while at high concentrations the formation of a lamellar liquid crystalline phase is observed. This suggests that lipoplexes might share a similar bilayer-based structure.
Collapse
Affiliation(s)
- Isabel S Oliveira
- CIQUP (Centro de Investigação em Química da Universidade do Porto), IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Sandra G Silva
- LAQV-REQUIMTE (Laboratório Associado para a Química Verde-Rede Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Andreia C Gomes
- CBMA (Centro de Biologia Molecular e Ambiental), Departamento de Biologia, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal
| | - M Elisabete C D Real Oliveira
- CFUM (Center of Physics), Departamento de Física, Universidade do Minho, Campos de Gualtar, 4710-057 Braga, Portugal
| | - M Luísa C do Vale
- LAQV-REQUIMTE (Laboratório Associado para a Química Verde-Rede Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Eduardo F Marques
- CIQUP (Centro de Investigação em Química da Universidade do Porto), IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Katawale S, Tank S, Dhaygude H, Holm R, Shah S, Shinde U, Shidhaye S, Aswal V, Kumar S, Nagarsenker M. Impact of formulation parameters on self-assembled liposomes (LeciPlex® III): A detailed investigation. Int J Pharm 2024; 657:124147. [PMID: 38657715 DOI: 10.1016/j.ijpharm.2024.124147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/30/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The present study investigated the feasibility of fabricating self-assembled liposomes, LeciPlex®, a phospholipid-based vesicular nanocarrier using cationic, anionic, and nonionic stabilizers. The phospholipid investigated was soy phosphatidylcholine and the nano-precipitation method based on solvent diffusion was applied as the fabrication technique of liposomes in this study. The effects of various formulation variables, such as lipid and stabilizer concentration, total solid concentration, and solvent type on the self-assembly of vesicles were studied for physical characterization including particle size analysis, differential scanning calorimetry, viscosity, optical transmittance, transmission electron microscopy, and small angle neutron scattering. All three LeciPlex® systems exhibited a direct relationship between particle size and phospholipid concentration. The two categoric variables, solvent, and stabilizer used to prepare LeciPlex® demonstrated a significant effect on particle size for all three LeciPlex® systems. Small angle neutron scattering, and optical transmittance confirmed the formation of micellar systems at a phospholipid: stabilizer ratio of 1:2 and vesicular systems at a ratio of 2:1 for the systems stabilized with anionic and nonionic surfactants. In contrast to this, the LeciPlex® formed with the cationic stabilizer Dioctadecyldimethylammonium bromide (DODAB), formed vesicles at both ratios. From these investigations, it was clear that the formulation space for LeciPlex® was diversified by the addition of cationic, anionic, and non-ionic stabilizers.
Collapse
Affiliation(s)
- Saurabh Katawale
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400 098, India
| | - Shivali Tank
- Department of Pharmaceutics, VES College of Pharmacy, Chembur, Mumbai 400 074, India
| | - Harshali Dhaygude
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400 098, India
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230, Odense, Denmark
| | - Sanket Shah
- Therapeutics Development and Supply, Janssen Pharmaceutica NV, A Johnson & Johnson Company, Turnhoutseweg 30 2340, Beerse, Belgium
| | - Ujwala Shinde
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400 098, India
| | - Supriya Shidhaye
- Department of Pharmaceutics, VES College of Pharmacy, Chembur, Mumbai 400 074, India
| | - Vinod Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Mumbai 400 094, India
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Mumbai 400 094, India
| | - Mangal Nagarsenker
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400 098, India; Department of Pharmaceutics, VES College of Pharmacy, Chembur, Mumbai 400 074, India.
| |
Collapse
|
3
|
Mortara L, Mukhina T, Chaimovich H, Brezesinski G, van der Vegt NFA, Schneck E. Anion Competition at Positively Charged Surfactant Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6949-6961. [PMID: 38502024 DOI: 10.1021/acs.langmuir.3c04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Interactions of anions with hydrophobic surfaces of proteins and water-soluble polymers depend on the ability of the ions to shed their hydration shells. At positively charged surfactant monolayers, the interactions of anions are less well understood. Due to the interplay of electrostatic surface forces, hydration effects, and ion-ion interactions in the electrostatic double layer, a comprehensive microscopic picture remains elusive. Herein, we study the interactions of chloride, bromide, and a mixture of these two anions at the aqueous interface of dihexadecyldimethylammonium (DHDA+) and dioctadecyldimethylammonium (DODA+) cationic monolayers. Using molecular dynamics simulations and three surface-sensitive X-ray scattering techniques, we demonstrate that bromide interacts preferentially over chloride with both monolayers. The structure of the two monolayers and their interfacial electron density profiles obtained from the simulations quantitatively reproduce the experimental data. We observe that chloride and bromide form contact ion pairs with the quaternary ammonium groups on both monolayers. However, ion pairing with bromide leads to a greater reduction in the number of water molecules hydrating the anion, resulting in more energetically stable ion pairs. This leads to long-range (>3 nm) lateral correlations between bromide ions on the structured DODA+ monolayer. These observations indicate that ion hydration is the dominant factor determining the interfacial electrolyte structure.
Collapse
Affiliation(s)
- Laura Mortara
- Chemistry Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Tetiana Mukhina
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Hernan Chaimovich
- Chemistry Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Gerald Brezesinski
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | | | - Emanuel Schneck
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| |
Collapse
|
4
|
Ghosh G, Roy DS, Ghosh R, Mukherjee D, Biswas S, Roy L, Chattopadhyay A, Das R, Pal SK. Excited-State Dynamics of a Photoacid: A Potential Probe for Recognizing Transition from Lamellar to Nonlamellar Inverted Structures of Liposome based Nanocarriers. Chemphyschem 2024; 25:e202300635. [PMID: 37936318 DOI: 10.1002/cphc.202300635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
Liposomes of a cationic lipid dioctadecyldimethylammonium bromide (DODAB) are efficient nanocarriers of nucleic acids. Incorporation of a neutral lipid monoolein (MO) in excess (xMO >0.5) changes the lamellar organization of DODAB liposomes into non-lamellar inverted structures of DODAB/MO liposomes facilitating nucleic acid delivery to cells. Photoexcitation of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), a photoacid, initiates an excited state proton transfer (ESPT) reaction in its protonated form (ROH*) generating the deprotonated anionic form (RO- *). The fluorescence intensity ratio (IROH* /IRO-* ) of these two forms is governed by the ESPT dynamics, and increases with increasing MO content (xMO ) in the cationic liposomes of DODAB. Transition from lamellar organization of DODAB liposomes into non-lamellar inverted structures of DODAB/MO liposomes, due to incorporation of MO (xMO ~0.7), is manifested by a significant increase of ESPT time (τPT ) and the time constant of wobbling motion (τW ) of HPTS. Thus, the lamellar organizations of DODAB or DODAB-rich (xMO 0.2) liposomes and the non-lamellar organizations of MO-rich (xMO ~0.7) liposomes are recognized by significantly different excited state dynamics of the photoacid.
Collapse
Affiliation(s)
- Gourab Ghosh
- Dept. of Chemistry, West Bengal State University, Barasat, Kolkata, 700126, India
| | - Debanjana Singha Roy
- Dept. of Chemistry, West Bengal State University, Barasat, Kolkata, 700126, India
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, India
| | - Ria Ghosh
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Dipanjan Mukherjee
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, India
| | - Suman Biswas
- Dept. of Chemistry, West Bengal State University, Barasat, Kolkata, 700126, India
| | - Lopamudra Roy
- Department of Applied Optics and Photonics, University of Calcutta, 92, Acharya Prafulla Chandra Rd, Kolkata, 700009, India
| | - Arpita Chattopadhyay
- Department of Basic science and humanities, Techno International New Town, Rajarhat, Kolkata, 700156
| | - Ranjan Das
- Dept. of Chemistry, West Bengal State University, Barasat, Kolkata, 700126, India
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, India
| |
Collapse
|
5
|
de Andrade L, Duarte EL, Lamy MT, Rozenfeld JHK. Thermotropic Behavior and Structural Organization of C24:1 Sulfatide Dispersions and Its Mixtures with Cationic Bilayers. ACS OMEGA 2023; 8:5306-5315. [PMID: 36816677 PMCID: PMC9933474 DOI: 10.1021/acsomega.2c06189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
C24:1 sulfatide (SF) is an endogenous activator of type II NKT cells. The thermotropic behavior and structure of SF dispersions and its mixtures (4.8-16.6 mol %) with cationic dioctadecyldimethylammonium bromide (DODAB) bilayers were investigated by differential scanning calorimetry and electron paramagnetic resonance spectroscopy. The non-interdigitated lamellar structures formed by pure SF display broad thermal events around 27.5 °C when heated and cooled. These events disappear upon mixing with DODAB, showing complete lipid miscibility. SF decreases the DODAB gel-phase packing, with a consequent decrease in phase-transition temperatures and cooperativity upon heating. In contrast, SF increases the rigidity of the DODAB fluid phase, resulting in a smaller decrease in transition temperatures upon cooling. The hysteresis between heating and cooling decreased as the SF molar fraction increased. These effects on DODAB are similar to the ones described for other glycolipids, such as αGalCer and βGlcCer. This might be due to the orientation of the rigid and planar amide bond that connects their sphingoid bases and acyl chains, which result in a V-shaped conformation of the glycolipid molecules. The current results may be important to plan and develop new immunotherapeutic tools based on SF.
Collapse
Affiliation(s)
- Lucas de Andrade
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, 04023-062São Paulo, São Paulo, Brazil
| | - Evandro L. Duarte
- Instituto
de Física, Universidade de São
Paulo, Rua do Matão
1371, 05508090São
Paulo, São Paulo, Brazil
| | - M. Teresa Lamy
- Instituto
de Física, Universidade de São
Paulo, Rua do Matão
1371, 05508090São
Paulo, São Paulo, Brazil
| | - Julio H. K. Rozenfeld
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, 04023-062São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Improved hybrid-shelled perfluorocarbon microdroplets as ultrasound- and laser-activated phase-change platform. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Development and Characterization of Monoolein-Based Liposomes of Carvacrol, Cinnamaldehyde, Citral, or Thymol with Anti- Candida Activities. Antimicrob Agents Chemother 2021; 65:AAC.01628-20. [PMID: 33468460 DOI: 10.1128/aac.01628-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
There is an increasing need for novel drugs and new strategies for the therapy of invasive candidiasis. This study aimed to develop and characterize liposome-based nanoparticles of carvacrol, cinnamaldehyde, citral, and thymol with anti-Candida activities. Dioctadecyldimethylammonium bromide- and monoolein-based liposomes in a 1:2 molar ratio were prepared using a lipid-film hydration method. Liposomes were assembled with equal volumes of liposomal stock dispersion and stock solutions of carvacrol, cinnamaldehyde, citral, or thymol in dimethyl sulfoxide. Cytotoxicity was tested on RAW 264.7 macrophages. In vitro antifungal activity of liposomes with phytocompounds was evaluated according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology using clinical isolates of Candida albicans, Candida auris, Candida dubliniensis, and Candida tropicalis Finally, the ability of macrophage cells to kill Candida isolates after addition of phytocompounds and their nanoparticles was determined. Nanoparticles with 64 μg/ml of cinnamaldehyde, 256 μg/ml of citral, and 128 μg/ml of thymol had the best characteristics among the formulations tested. The highest encapsulation efficiencies were achieved with citral (78% to 83%) and carvacrol (66% to 71%) liposomes. Carvacrol and thymol in liposome-based nanoparticles were nontoxic regardless of the concentration. Moreover, carvacrol and thymol maintained their antifungal activity after encapsulation, and there was a significant reduction (∼41%) of yeast survival when macrophages were incubated with carvacrol or thymol liposomes. In conclusion, carvacrol and thymol liposomes possess high stability, low cytotoxicity, and antifungal activity that act synergistically with macrophages.
Collapse
|
9
|
Effective cytocompatible nanovectors based on serine-derived gemini surfactants and monoolein for small interfering RNA delivery. J Colloid Interface Sci 2021; 584:34-44. [PMID: 33039681 DOI: 10.1016/j.jcis.2020.09.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/19/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Non-viral gene therapy based on gene silencing with small interfering RNA (siRNA) has attracted great interest over recent years. Among various types of cationic complexation agents, amino acid-based surfactants have been recently explored for nucleic acid delivery due to their low toxicity and high biocompatibility. Monoolein (MO), in turn, has been used as helper lipid in liposomal systems due to its ability to form inverted nonbilayer structures that enhance fusogenicity, thus contributing to higher transfection efficiency. In this work, we focused on the development of nanovectors for siRNA delivery based on three gemini amino acid-based surfactants derived from serine - (12Ser)2N12, amine derivative; (12Ser)2COO12, ester derivative; and (12Ser)2CON12, amide derivative - individually combined with MO as helper lipid. The inclusion of MO in the cationic surfactant system influences the morphology and size of the mixed aggregates. Furthermore, the gemini surfactant:MO systems showed the ability to efficiently complex siRNA, forming stable lipoplexes, in some cases clearly depending on the MO content, without inducing significant levels of cytotoxicity. High levels of gene silencing were achieved in comparison with a commercially available standard indicating that these gemini:MO systems are promising candidates as lipofection vectors for RNA interference (RNAi)-based therapies.
Collapse
|
10
|
Sharma VK, Srinivasan H, García Sakai V, Mitra S. Dioctadecyldimethylammonium bromide, a surfactant model for the cell membrane: Importance of microscopic dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:051301. [PMID: 32984433 PMCID: PMC7511241 DOI: 10.1063/4.0000030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 05/11/2023]
Abstract
Cationic lipid membranes have recently attracted huge attention both from a fundamental point of view and due to their practical applications in drug delivery and gene therapy. The dynamical behavior of the lipids in the membrane is a key parameter controlling various physiological processes and drug release kinetics. Here, we review the dynamical and thermotropic phase behavior of an archetypal cationic lipid membrane, dioctadecyldimethylammonium bromide (DODAB), as studied using neutron scattering and molecular dynamics simulation techniques. DODAB membranes exhibit interesting phase behavior, specifically showing coagel, gel, and fluid phases in addition to a large hysteresis when comparing heating and cooling cycles. The dynamics of the lipid membrane is strongly dependent on the physical state of the bilayer. Lateral diffusion of the lipids is faster, by an order of magnitude, in the fluid phase than in the ordered phase. It is not only the characteristic times but also the nature of the segmental motions that differ between the ordered and fluid phases. The effect of different membrane active molecules including drugs, stimulants, gemini surfactants, and unsaturated lipids, on the dynamical and thermotropic phase behavior of the DODAB membrane, is also discussed here. Various interesting features such as induced synchronous ordering between polar head groups and tails, sub diffusive behavior, etc., are observed. The results shed light on the interaction between these additives and the membrane, which is found to be a complex interplay between the physical state of the membrane, charge, concentration, molecular architecture of the additives, and their location within the membrane.
Collapse
Affiliation(s)
- V. K. Sharma
- Author to whom correspondence should be addressed: and . Phone: +91-22-25594604
| | | | - V. García Sakai
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | | |
Collapse
|
11
|
Carmona-Ribeiro AM, Pérez-Betancourt Y. Cationic Nanostructures for Vaccines Design. Biomimetics (Basel) 2020; 5:biomimetics5030032. [PMID: 32645946 PMCID: PMC7560170 DOI: 10.3390/biomimetics5030032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Subunit vaccines rely on adjuvants carrying one or a few molecular antigens from the pathogen in order to guarantee an improved immune response. However, to be effective, the vaccine formulation usually consists of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Most antigens are negatively charged and combine well with oppositely charged adjuvants. This explains the paramount importance of studying a variety of cationic supramolecular assemblies aiming at the optimal activity in vivo associated with adjuvant simplicity, positive charge, nanometric size, and colloidal stability. In this review, we discuss the use of several antigen/adjuvant cationic combinations. The discussion involves antigen assembled to 1) cationic lipids, 2) cationic polymers, 3) cationic lipid/polymer nanostructures, and 4) cationic polymer/biocompatible polymer nanostructures. Some of these cationic assemblies revealed good yet poorly explored perspectives as general adjuvants for vaccine design.
Collapse
|
12
|
Wu Y, Xiong Y, Wang L, Zhou Q, Li L, Levkin PA, Davidson G, Gao L, Deng W. Development of new self-assembled cationic amino liposomes for efficient gene delivery. Biomater Sci 2020; 8:3021-3025. [PMID: 32322846 DOI: 10.1039/d0bm00331j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A library of 83 structurally diverse cationic amino liposomes is rationally designed and parallelly synthesized for the transfection of plasmid DNA and siRNA. Our designed self-assembled liposomes not only exhibit excellent transfection efficiency in HEK 293T cells and mouse embryonic stem cells, but also show low cytotoxicity.
Collapse
Affiliation(s)
- Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Oliveira ACN, Fernandes J, Gonçalves A, Gomes AC, Oliveira MECDR. Lipid-based Nanocarriers for siRNA Delivery: Challenges, Strategies and the Lessons Learned from the DODAX: MO Liposomal System. Curr Drug Targets 2020; 20:29-50. [PMID: 29968536 DOI: 10.2174/1389450119666180703145410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/24/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022]
Abstract
The possibility of using the RNA interference (RNAi) mechanisms in gene therapy was one of the scientific breakthroughs of the last century. Despite the extraordinary therapeutic potential of this approach, the need for an efficient gene carrier is hampering the translation of the RNAi technology to the clinical setting. Although a diversity of nanocarriers has been described, liposomes continue to be one of the most attractive siRNA vehicles due to their relatively low toxicity, facilitated siRNA complexation, high transfection efficiency and enhanced pharmacokinetic properties. This review focuses on RNAi as a therapeutic approach, the challenges to its application, namely the nucleic acids' delivery process, and current strategies to improve therapeutic efficacy. Additionally, lipid-based nanocarriers are described, and lessons learned from the relation between biophysical properties and biological performance of the dioctadecyldimethylammonium:monoolein (DODAX: MO) system are explored. Liposomes show great potential as siRNA delivery systems, being safe nanocarriers to protect nucleic acids in circulation, extend their half-life time, target specific cells and reduce off-target effects. Nevertheless, several issues related to delivery must be overcome before RNAi therapies reach their full potential, namely target-cell specificity and endosomal escape. Understanding the relationship between biophysical properties and biological performance is an essential step in the gene therapy field.
Collapse
Affiliation(s)
- Ana C N Oliveira
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.,CFUM (Center of Physics), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Joana Fernandes
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Anabela Gonçalves
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M E C D Real Oliveira
- CFUM (Center of Physics), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
14
|
Pinnapireddy SR, Giselbrecht J, Strehlow B, Janich C, Husteden C, Meister A, Loppnow H, Sedding D, Erdmann F, Hause G, Brezesinski G, Groth T, Langner A, Bakowsky U, Wölk C. A triple chain polycationic peptide-mimicking amphiphile - efficient DNA-transfer without co-lipids. Biomater Sci 2019; 8:232-249. [PMID: 31681923 DOI: 10.1039/c9bm01093a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Non-viral gene delivery in its current form is largely dependent upon the ability of a delivery vehicle to protect its cargo in the extracellular environment and release it efficiently inside the target cell. Also a simple delivery system is required to simplify a GMP conform production if a marketing authorization is striven for. This work addresses these problems. We have developed a synthetic polycationic peptide-mimicking amphiphile, namely DiTT4, which shows efficient transfection rates and good biocompatibility without the use of a co-lipid in the formulation. The lipid-nucleic acid complex (lipoplex) was characterized at the structural (electron microscopy), physical (laser Doppler velocimetry and atomic force microscopy) and molecular levels (X-ray scattering). Stability studies of the lipoplexes in the presence of serum and heparin indicated a stable formation capable of protecting the cargo against the extracellular milieu. Hemocompatibility studies (hemolysis, complement activation and erythrocyte aggregation) demonstrated the biocompatibility of the formulation for systemic administration. The transfection efficiency was assessed in vitro using the GFP assay and confocal laser scanning microscopy studies. With the chorioallantoic membrane model, an animal replacement model according to the 3R strategy (replacement, refinement, and reduction), initial in vivo experiments were performed which demonstrate fast and efficient transfection in complex tissues and excellent biocompatibility.
Collapse
Affiliation(s)
- Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Masukawa MK, Vequi-Suplicy CC, Duarte EL, Lamy MT. A closer look into laurdan as a probe to monitor cationic DODAB bilayers. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Martins LS, Nomura DA, Duarte EL, Riske KA, Lamy MT, Rozenfeld JHK. Structural characterization of cationic DODAB bilayers containing C24:1 β-glucosylceramide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:643-650. [PMID: 30611744 DOI: 10.1016/j.bbamem.2018.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/09/2018] [Accepted: 12/28/2018] [Indexed: 01/13/2023]
Abstract
The effect of 5 mol%, 9 mol%, and 16 mol% of C24:1 β-glucosylceramide (βGlcCer) on the structure of cationic DODAB bilayers was investigated by means of differential scanning calorimetry (DSC), electron spin resonance (ESR) spectroscopy and fluorescence microscopy. βGlcCer is completely miscible with DODAB at all fractions tested, since no domains were observed in fluorescence microscopy or ESR spectra. The latter showed that βGlcCer destabilized the gel phase of DODAB bilayers by decreasing the gel phase packing. As a consequence, βGlcCer induced a decrease in the phase transition temperature and cooperativity of DODAB bilayers, as seen in DSC thermograms. ESR spectra also showed that βGlcCer induced an increase in DODAB fluid phase order and/or rigidity. Despite their different structures, a similar effect of loosening the gel phase packing and turning the fluid phase more rigid/organized has also been observed when low molar fractions of cholesterol were incorporated in DODAB bilayers. The structural characterization of mixed membranes made of cationic lipids and glucosylceramides may be important for developing novel immunotherapeutic tools such as vaccine adjuvants.
Collapse
Affiliation(s)
- Letícia S Martins
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, 04023-062 São Paulo, SP, Brazil
| | - Daniela A Nomura
- Instituto de Física, Universidade de São Paulo, CP 66318, CEP 05315-970 São Paulo, SP, Brazil
| | - Evandro L Duarte
- Instituto de Física, Universidade de São Paulo, CP 66318, CEP 05315-970 São Paulo, SP, Brazil
| | - Karin A Riske
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, 04023-062 São Paulo, SP, Brazil
| | - M Teresa Lamy
- Instituto de Física, Universidade de São Paulo, CP 66318, CEP 05315-970 São Paulo, SP, Brazil
| | - Julio H K Rozenfeld
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, 04023-062 São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Singh P, Mukherjee D, Singha S, Sharma VK, Althagafi II, Ahmed SA, Mukhopadhyay R, Das R, Pal SK. Probing relaxation dynamics of a cationic lipid based non-viral carrier: a time-resolved fluorescence study. RSC Adv 2019; 9:35549-35558. [PMID: 35528090 PMCID: PMC9074709 DOI: 10.1039/c9ra06824d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023] Open
Abstract
Lipid vesicles composed of cationic dioctadecyldimethylammonium bromide (DODAB) and neutral 1-monooleoyl-rac-glycerol (MO) are promising non-viral carriers of nucleic acids for delivery into cells. Among them, higher cell transfection efficiency was displayed by DODAB-rich vesicles than those enriched with MO. Structural relaxation of these mixed lipid vesicles plays a key role in their cell transfection efficiency because structural organization of the DODAB-rich vesicles are different from that of the MO-rich vesicles. Polarization-gated anisotropy in conjunction with picosecond resolved emission transients of a novel fluorophore 6-acetyl-(2-((4-hydroxycyclohexyl)(methyl)amino)naphthalene) (ACYMAN) has been employed to probe relaxation dynamics in pure DODAB vesicles, and in mixed vesicles of DODAB with varying content of MO. Both orientational relaxation of ACYMAN and relaxation dynamics of its local environment are retarded significantly in mixed lipid vesicles with increasing MO content, from a mole fraction (χMO) of 0.2 to that of 0.8 which is consistent with increased rigidity of the MO-rich (χMO > 0.5) vesicles relative to the DODAB-rich (χMO < 0.5) vesicles. Therefore, higher structural rigidity of the MO-rich vesicles (χMO > 0.5) gives rise to their lower cell transfection efficiency than the more flexible DODAB-rich (χMO < 0.5) vesicles as observed in previous in vivo studies (Biochim. Biophys. Acta, Biomembr., 2014, 1838, 2555–2567). Lipid vesicles composed of cationic dioctadecyldimethylammonium bromide (DODAB) and neutral 1-monooleoyl-rac-glycerol (MO) are promising non-viral carriers of nucleic acids for delivery into cells.![]()
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemical, Biological & Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Dipanjan Mukherjee
- Department of Chemical, Biological & Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Subhankar Singha
- Centre of Health Science &Technology
- JIS Institute of Advanced Studies
- Kolkata
- India
| | - V. K. Sharma
- Solid State Physics Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Ismail I. Althagafi
- Chemistry Department
- Faculty of Applied Sciences
- Umm Al-Qura University
- 21955 Makkah Al-Mokarramma
- Saudi Arabia
| | - Saleh A. Ahmed
- Chemistry Department
- Faculty of Applied Sciences
- Umm Al-Qura University
- 21955 Makkah Al-Mokarramma
- Saudi Arabia
| | - R. Mukhopadhyay
- Solid State Physics Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Ranjan Das
- Department of Chemistry
- West Bengal State University
- Kolkata 700126
- India
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| |
Collapse
|
18
|
Rozenfeld JHK, Duarte EL, Oliveira TR, Lamy MT. Structural insights on biologically relevant cationic membranes by ESR spectroscopy. Biophys Rev 2017; 9:633-647. [PMID: 28836112 PMCID: PMC5662045 DOI: 10.1007/s12551-017-0304-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/28/2017] [Indexed: 12/26/2022] Open
Abstract
Cationic bilayers have been used as models to study membrane fusion, templates for polymerization and deposition of materials, carriers of nucleic acids and hydrophobic drugs, microbicidal agents and vaccine adjuvants. The versatility of these membranes depends on their structure. Electron spin resonance (ESR) spectroscopy is a powerful technique that employs hydrophobic spin labels to probe membrane structure and packing. The focus of this review is the extensive structural characterization of cationic membranes prepared with dioctadecyldimethylammonium bromide or diC14-amidine to illustrate how ESR spectroscopy can provide important structural information on bilayer thermotropic behavior, gel and fluid phases, phase coexistence, presence of bilayer interdigitation, membrane fusion and interactions with other biologically relevant molecules.
Collapse
Affiliation(s)
- Julio H K Rozenfeld
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP, 04023-062, Brazil
| | - Evandro L Duarte
- Instituto de Física, Universidade de São Paulo, R. do Matão 1371, São Paulo, SP, 05508-090, Brazil
| | - Tiago R Oliveira
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, R. Arcturus (Jd Antares), São Bernardo do Campo, SP, Brazil
| | - M Teresa Lamy
- Instituto de Física, Universidade de São Paulo, R. do Matão 1371, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
19
|
Angelov B, Garamus VM, Drechsler M, Angelova A. Structural analysis of nanoparticulate carriers for encapsulation of macromolecular drugs. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Zylberberg C, Gaskill K, Pasley S, Matosevic S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther 2017; 24:441-452. [PMID: 28504657 DOI: 10.1038/gt.2017.41] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
Abstract
Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.
Collapse
Affiliation(s)
| | | | - S Pasley
- Akron Biotech, Boca Raton, FL, USA
| | | |
Collapse
|
21
|
Carneiro C, Correia A, Lima T, Vilanova M, Pais C, Gomes AC, Real Oliveira MEC, Sampaio P. Protective effect of antigen delivery using monoolein-based liposomes in experimental hematogenously disseminated candidiasis. Acta Biomater 2016; 39:133-145. [PMID: 27150234 DOI: 10.1016/j.actbio.2016.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/22/2016] [Accepted: 05/01/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED We evaluated the potential of a liposomal antigen delivery system (ADS) containing Candida albicans cell wall surface proteins (CWSP) in mediating protection against systemic candidiasis. Treatment of bone-marrow-derived dendritic cells with CWSP-loaded dioctadecyldimethylammonium bromide:monoolein (DODAB:MO) liposomes enhanced and prolonged their activation comparatively to free antigen, indicating that liposome-entrapped CWSP were released more sustainable. Therefore, we immunized mice with CWSP either in a free form or loaded into two different DODAB:MO liposome formulations, respectively designated as ADS1 and ADS2, prior to intravenous C. albicans infection. Immunization with ADS1, but not with ADS2, conferred significant protection to infected mice, comparatively to immunization with CWSP or empty liposomes as control. ADS1-immunized mice presented significantly higher serum levels of C. albicans-specific antibodies that enhanced phagocytosis of this fungus. In these mice, a mixed cytokine production profile was observed encompassing IFN-γ, IL-4, IL-17A and IL-10. Nevertheless, only production of IL-4, IL-17 and IL-10 was higher than in controls. In this study we demonstrated that DODAB:MO liposomes enhance the immunogenicity of C. albicans antigens and host protection in a murine model of systemic candidiasis. Therefore, this liposomal adjuvant could be a promising candidate to assess in vaccination against this pathogenic fungus. STATEMENT OF SIGNIFICANCE This work describes the immunomodulation capacity of the previously validated antigen delivery system (ADS) composed by dioctadecyldimethylammonium bromide (DODAB) and monoolein (MO) lipids incorporating the cell wall surface proteins (CWSP) from C. albicans. Here, we not only present the ability of this system in facilitating antigen uptake by DCs in vitro, but also that this system induces higher levels of pro-inflammatory cytokines and opsonizing specific IgG antibodies in serum of mice immunized subcutaneously. We show that the ADS are efficient nanocarrier and modulate the immune response against intravenous C. albicans infection favoring mouse protection. In sum, we show that the incorporation of C. albicans antigens in DODAB:MO nanocarries are a promising vaccine strategy against C. albicans fungal infection.
Collapse
|
22
|
Das J, Han JW, Choi YJ, Song H, Cho SG, Park C, Seo HG, Kim JH. Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: investigation of the cellular uptake mechanism. Sci Rep 2016; 6:29197. [PMID: 27380727 PMCID: PMC4933920 DOI: 10.1038/srep29197] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
Gene therapy is a promising technique for the treatment of various diseases. The development of minimally toxic and highly efficient non-viral gene delivery vectors is the most challenging undertaking in the field of gene therapy. Here, we developed dimethyldioctadecylammonium bromide (DODAB)-nanoceria (CeO2) hybrids as a new class of non-viral gene delivery vectors. These DODAB-modified CeO2 nanoparticles (CeO2/DODAB) could effectively compact the pDNA, allowing for highly efficient gene transfection into the selected cell lines. The CeO2/DODAB nanovectors were also found to be non-toxic and did not induce ROS formation as well as any stress responsive and pro-survival signaling pathways. The overall vector performance of CeO2/DODAB nanohybrids was comparable with lipofectamine and DOTAP, and higher than calcium phosphate and DEAE-dextran for transfecting small plasmids. The increased cellular uptake of the nanovector/DNA complexes through clathrin- and caveolae-mediated endocytosis and subsequent release from the endosomes further support the increased gene transfection efficiency of the CeO2/DODAB vectors. Besides, CeO2/DODAB nanovectors could transfect genes in vivo without any sign of toxicity. Taken together, this new nano-vector has the potential to be used for gene delivery in biomedical applications.
Collapse
Affiliation(s)
- Joydeep Das
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jae Woong Han
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Han Geuk Seo
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
23
|
Oliveira ACN, Sárria MP, Moreira P, Fernandes J, Castro L, Lopes I, Côrte-Real M, Cavaco-Paulo A, Real Oliveira MECD, Gomes AC. Counter ions and constituents combination affect DODAX : MO nanocarriers toxicity in vitro and in vivo. Toxicol Res (Camb) 2016; 5:1244-1255. [PMID: 30090429 PMCID: PMC6062248 DOI: 10.1039/c6tx00074f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/22/2016] [Indexed: 12/31/2022] Open
Abstract
Liposomes have received extensive attention as nanocarriers for bioactive compounds due to their good biocompatibility, possibility of targeting and incorporation of hydrophilic and hydrophobic compounds. Although generally considered as safe, detailed knowledge of the effects induced in cells and tissues with which they interact is still underexplored. The aim of this study is to gain insight into the toxicity profile of dioctadecyldimethylammonium (DODAX) : monoolein(MO) liposomes (X is bromide or chloride), previously validated for gene therapy, by evaluating the effect of the counter ions Br- or Cl-, and of the cationic : neutral lipid molar fraction, both in vitro and in vivo. Effects on cellular metabolism and proliferation, plasma membrane integrity, oxidative stress, mitochondrial membrane potential dysfunction and ability to trigger apoptosis and necrosis were evaluated in a dose-/time-dependent manner in normal human skin fibroblasts. Also, newly fertilized zebrafish zygotes were exposed to liposomes, permitting a fast-track evaluation of the morphophysiological modifications. In vitro data showed that only very high doses of DODAX : MO induce apoptosis and necrosis, inhibit cell proliferation, and affect the metabolism and plasma membrane integrity of fibroblasts in a dose-/time-dependent manner. Furthermore, liposomes affected mitochondrial function, increasing ROS accumulation and disturbing mitochondrial membrane potential. DODAC-based liposomes were consistently more toxic when compared to DODAB-based formulations; furthermore, the inclusion of MO was found to reduce toxicity, in contrast to liposomes with cationic DODAX only, especially in DODAB : MO (1 : 2) nanocarriers. These results were corroborated, in a holistic approach, by cytotoxicity profiling in five additional human cell lines, and also with the zebrafish embryotoxicity testing, which constitutes a sensitive and informative tool and accurately extends cell-based assays.
Collapse
Affiliation(s)
- Ana Cristina Norberto Oliveira
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
- CFUM (Center of Physics) , Department of Physics , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Marisa Passos Sárria
- INL - International Iberian Nanotechnology Laboratory , Av. Mestre José Veiga , 4715-330 Braga , Portugal
| | - Pedro Moreira
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
| | - Joana Fernandes
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
| | - Lisandra Castro
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
| | - Ivo Lopes
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
- CFUM (Center of Physics) , Department of Physics , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
- Nanodelivery-I&D em Bionanotecnologia Lda. , Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Manuela Côrte-Real
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
| | - Artur Cavaco-Paulo
- CEB , Department of Biological Engineering , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | | | - Andreia Castro Gomes
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
| |
Collapse
|
24
|
Oliveira ACN, Nogueira SS, Gonçalves O, Cerqueira MF, Alpuim P, Tovar J, Rodriguez-Abreu C, Brezesinski G, Gomes AC, Lúcio M, Oliveira MECDR. Role of counter-ion and helper lipid content in the design and properties of nanocarrier systems: a biophysical study in 2D and 3D lipid assemblies. RSC Adv 2016. [DOI: 10.1039/c6ra08125h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study validates a model for DODAX : MO assemblies highlighting the role of counter-ion and MO content in their biophysical properties.
Collapse
Affiliation(s)
- Ana C. N. Oliveira
- CBMA (Centre of Molecular and Environmental Biology)
- Department of Biology
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | - Sara S. Nogueira
- CFUM (Centre of Physics)
- Department of Physics
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | - Odete Gonçalves
- CBMA (Centre of Molecular and Environmental Biology)
- Department of Biology
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | - M. F. Cerqueira
- CFUM (Centre of Physics)
- Department of Physics
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | - P. Alpuim
- CFUM (Centre of Physics)
- Department of Physics
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | - Júlia Tovar
- CFUM (Centre of Physics)
- Department of Physics
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | | | | | - Andreia C. Gomes
- CBMA (Centre of Molecular and Environmental Biology)
- Department of Biology
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | - Marlene Lúcio
- CFUM (Centre of Physics)
- Department of Physics
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | | |
Collapse
|
25
|
Rozenfeld JHK, Duarte EL, Barbosa LRS, Lamy MT. The effect of an oligonucleotide on the structure of cationic DODAB vesicles. Phys Chem Chem Phys 2015; 17:7498-506. [PMID: 25706300 DOI: 10.1039/c4cp05652c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of a small single-stranded oligonucleotide (ODN) on the structure of cationic DODAB vesicles was investigated by means of differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and electron spin resonance (ESR) spectroscopy. ODN adsorption induced coalescence of vesicles and formation of multilamellar structures with close contact between lamellae. It also increased the phase transition temperature by 10 °C but decreased transition cooperativity. The ODN rigidified and stabilized the gel phase. In the fluid phase, a simultaneous decrease of ordering close to the bilayer surface and increase in bilayer core rigidity was observed in the presence of the ODN. These effects may be due not only to electrostatic shielding of DODAB head groups but also to superficial dehydration of the bilayers. The data suggest that oligonucleotides may induce the formation of a multilamellar poorly hydrated coagel-like phase below phase transition. These effects should be taken into account when planning ODN delivery employing cationic bilayer carriers.
Collapse
|
26
|
Oliveira ACN, Raemdonck K, Martens T, Rombouts K, Simón-Vázquez R, Botelho C, Lopes I, Lúcio M, González-Fernández Á, Real Oliveira MECD, Gomes AC, Braeckmans K. Stealth monoolein-based nanocarriers for delivery of siRNA to cancer cells. Acta Biomater 2015. [PMID: 26225736 DOI: 10.1016/j.actbio.2015.07.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
While the delivery of small interfering RNAs (siRNAs) is an attractive strategy to treat several clinical conditions, siRNA-nanocarriers' stability after intravenous administration is still a major obstacle for the development of RNA-interference based therapies. But, although the need for stability is well recognized, the notion that strong stabilization can decrease nanocarriers' efficiency is sometimes neglected. In this work we evaluated two stealth functionalization strategies to stabilize the previously validated dioctadecyldimethylammonium bromide (DODAB):monoolein (MO) siRNA-lipoplexes. The nanocarriers were pre- and post-pegylated, forming vectors with different stabilities in biological fluids. The stealth nanocarriers' behavior was tested under biological mimetic conditions, as the production of stable siRNA-lipoplexes is determinant to achieve efficient intravenous siRNA delivery to cancer cells. Upon incubation in human serum for 2h, by fluorescence Single Particle Tracking microscopy, PEG-coated lipoplexes were found to have better colloidal stability as they could maintain a relatively stable size. In addition, using fluorescence fluctuation spectroscopy, post-pegylation also proved to avoid siRNA dissociation from the nanocarriers in human serum. Concomitantly it was found that PEG-coated lipoplexes improved cellular uptake and transfection efficiency in H1299 cells, and had the ability to silence BCR-ABL, affecting the survival of K562 cells. Based on an efficient cellular internalization, good silencing effect, good siRNA retention and good colloidal stability in human serum, DODAB:MO (2:1) siRNA-lipoplexes coated with PEG-Cer are considered promising nanocarriers for further in vivo validation. STATEMENT OF SIGNIFICANCE This work describes two stealth functionalization strategies for the stabilization of the previously validated dioctadecyldimethylammonium bromide (DODAB):monoolein (MO) siRNA-lipoplexes. These nanocarriers are capable of efficiently incorporating and delivering siRNA molecules to cells in order to silence genes whose expression is implicated in a pathological condition. The main objective was to functionalize these nanocarriers with a coating conferring protection to siRNA in blood without compromising its efficient delivery to cancer cells, validating the potential of DODAB:MO (2:1) siRNA-lipoplexes as therapeutic vectors. We show that the stealth strategy is determinant to achieve a stable and efficient nanocarrier, and that DODAB:MO mixtures have a very promising potential for systemic siRNA delivery to leukemic cells.
Collapse
Affiliation(s)
- Ana C N Oliveira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Centre of Physics, Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Thomas Martens
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium; Center for Nano- and Biophotonics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Koen Rombouts
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Rosana Simón-Vázquez
- Immunology, Biomedical Research Center (CINBIO) and Institute of Biomedical Research of Vigo (IBIV), University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Pontevedra, Spain
| | - Cláudia Botelho
- Centre of Biological Engineering (CEB), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Ivo Lopes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Centre of Physics, Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Marlene Lúcio
- Centre of Physics, Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - África González-Fernández
- Immunology, Biomedical Research Center (CINBIO) and Institute of Biomedical Research of Vigo (IBIV), University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Pontevedra, Spain
| | | | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium; Center for Nano- and Biophotonics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Lopes I, C. N. Oliveira A, P. Sárria M, P. Neves Silva J, Gonçalves O, Gomes AC, Real Oliveira MECD. Monoolein-based nanocarriers for enhanced folate receptor-mediated RNA delivery to cancer cells. J Liposome Res 2015; 26:199-210. [DOI: 10.3109/08982104.2015.1076463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ivo Lopes
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
- Department of Biology, University of Minho, Braga, Portugal
| | - Ana C. N. Oliveira
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
- Department of Biology, University of Minho, Braga, Portugal
| | | | - João P. Neves Silva
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
| | - Odete Gonçalves
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
- Department of Biology, University of Minho, Braga, Portugal
| | | | | |
Collapse
|
28
|
Pietralik Z, Kumita JR, Dobson CM, Kozak M. The influence of novel gemini surfactants containing cycloalkyl side-chains on the structural phases of DNA in solution. Colloids Surf B Biointerfaces 2015; 131:83-92. [PMID: 25969417 DOI: 10.1016/j.colsurfb.2015.04.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/07/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022]
Abstract
Very important to gene therapy is the delivery system of the nucleic acids (called a vector), which will enhance the efficiency of the transport of new DNA into cells whilst protecting against damage. A promising alternative to the currently used viral vectors are the systems based on amphiphilic compounds - lipoplexes. Among them, gemini surfactants, which consist of two hydrophobic chains and two cationic heads connected by a linker - spacer group, appear to be promising candidates. The subject of this study involves two gemini surfactants, alkoxy derivatives of bis-imidazolium quaternary salts, differing in the length of their spacer groups and how they interact with two types of salmon sperm DNA (low and high molecular weight (MW)) or plasmid DNA (pDNA). The mixtures of gemini surfactants with nucleic acids of differing p/n ratios (positive-to-negative charge ratio) were characterised by small angle X-ray scattering (SAXS) of synchrotron radiation, dynamic light scattering (DLS), circular dichroism (CD) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and gel electrophoresis techniques. This analysis allows for the selection of the most suitable and promising candidates for non-viral vectors in gene therapy, determination of the conditions needed to form stable complexes, identification of conformational changes in the DNA molecules upon interactions with gemini surfactants and in some cases, determination of the structures formed in these lipoplexes.
Collapse
Affiliation(s)
- Zuzanna Pietralik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Janet R Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| |
Collapse
|
29
|
Physicochemical and biological characterization of 1,2-dialkoylamidopropane-based lipoplexes for gene delivery. Biophys Chem 2015; 199:9-16. [DOI: 10.1016/j.bpc.2015.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/01/2015] [Accepted: 02/05/2015] [Indexed: 11/21/2022]
|
30
|
Carneiro C, Correia A, Collins T, Vilanova M, Pais C, Gomes AC, Real Oliveira MEC, Sampaio P. DODAB:monoolein liposomes containing Candida albicans cell wall surface proteins: A novel adjuvant and delivery system. Eur J Pharm Biopharm 2015; 89:190-200. [DOI: 10.1016/j.ejpb.2014.11.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 11/26/2022]
|
31
|
Silva SG, Oliveira IS, do Vale MLC, Marques EF. Serine-based gemini surfactants with different spacer linkages: from self-assembly to DNA compaction. SOFT MATTER 2014; 10:9352-9361. [PMID: 25342304 DOI: 10.1039/c4sm01771d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cationic gemini surfactants have strong potential as compaction agents of nucleic acids for efficient non-viral gene delivery. In this work, we present the aggregation behavior of three novel cationic serine-based gemini surfactants as well as their ability to compact DNA per se and mixed with a helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). All the surfactants have a 12-12-12 configuration, i.e. two main 12-carbon alkyl chains linked to the nitrogen atom of the amino acid residue and a 12 methylene spacer, but they differ in the nature of the spacer linkage: for (12Ser)2N12, an amine bond; for (12Ser)2CON12, an amide bond; and for (12Ser)2COO12, an ester bond. Interestingly, while the amine-based gemini aggregates into micelles, the amide and ester ones spontaneously form vesicles, which denotes a strong influence of the type of linkage on the surfactant packing parameter. The size, ζ-potential and stability of the vesicles have been characterized by light microscopy, cryogenic scanning electron microscopy (cryo-SEM) and dynamic light scattering (DLS). The interaction of the gemini aggregates with DNA at different charge ratios and in the absence and presence of DOPE has been studied by DLS, fluorescence spectroscopy and cryo-SEM. All the compounds are found to efficiently compact DNA (complexation > 90%), but relevant differences are obtained in terms of the size, ζ-potential and stability of the lipoplexes formed. Results are rationalized in terms of headgroup differences and the type of aggregates present prior to DNA condensation.
Collapse
Affiliation(s)
- Sandra G Silva
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do campo Alegre s/n, P 4169-007 Porto, Portugal.
| | | | | | | |
Collapse
|
32
|
Silva JPN, Oliveira IMSC, Oliveira ACN, Lúcio M, Gomes AC, Coutinho PJG, Oliveira MECDR. Structural dynamics and physicochemical properties of pDNA/DODAB:MO lipoplexes: effect of pH and anionic lipids in inverted non-lamellar phases versus lamellar phases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2555-67. [PMID: 24976292 DOI: 10.1016/j.bbamem.2014.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022]
Abstract
Dioctadecyldimethylammonium bromide (DODAB):Monoolein (MO) lipoplexes have mainly been studied within the range of high molar ratios of DODAB, with noticeable transfection efficiencies in the Human Embryonic Kidney (HEK, a.k.a. 293T) cell line. In this work, we intend to study the effect of high MO content on the structure and physicochemical properties of pDNA/DODAB:MO lipoplexes to achieve some correlation with their transfection efficiency. Static/Dynamic Light Scattering and Cryo-TEM imaging were used to characterize the size/morphology of DNA/DODAB:MO lipoplexes at different DODAB:MO contents (2:1, 1:1, 1:2) and charge ratios (CRs) (+/-). Nile Red fluorescence emission was performed to detect changes in microviscosity, hydration and polarity of DNA/DODAB:MO systems. Lipoplexes stability at physiological pH values and in the presence of anionic lipids was evaluated by Förster Resonance Energy Transfer (FRET). Physicochemical/structural data were complemented with transfection studies in HEK cells using the β-galactosidase reporter gene activity assay. This work reports the coexistence of multilamellar and non-lamellar inverted phases in MO-richer lipoplexes (DODAB:MO 1:2 and 1:4), leading to transfection efficiencies comparable to those of multilamellar (DODAB-richer) lipoplexes, but at higher charge ratios [CR (+/-)=6.0] and without dose-effect response. These results may be related to the structural changes of lipoplexes promoted by high MO content.
Collapse
Affiliation(s)
- J P Neves Silva
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - I M S C Oliveira
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - A C N Oliveira
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M Lúcio
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - A C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - P J G Coutinho
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M E C D Real Oliveira
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
33
|
Silva JPN, Oliveira ACN, Lúcio M, Gomes AC, Coutinho PJG, Oliveira MECDR. Tunable pDNA/DODAB:MO lipoplexes: the effect of incubation temperature on pDNA/DODAB:MO lipoplexes structure and transfection efficiency. Colloids Surf B Biointerfaces 2014; 121:371-9. [PMID: 25023903 DOI: 10.1016/j.colsurfb.2014.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/20/2014] [Accepted: 06/08/2014] [Indexed: 10/25/2022]
Abstract
Dioctadecyldimethylammonium bromide (DODAB):1-monooleoyl-rac-glycerol (MO) cationic liposomes were reported as a promising alternative to common transfection agents, showing superior effectiveness on the transfection of the 293T mammalian cell line with pSV-β-gal plasmid DNA. The study of DODAB:MO aggregates in the absence of DNA has indicated that their morphology depends on the balance between DODAB's tendency to form bilayer structures and MO's propensity to form inverted non-lamellar structures. Other parameters, such as the temperature have proved to be crucial in the definition of the morphology of the developed nanocarrier. Therefore, in this work, a step forward to the current gene carrier system will be given by studying the effect of the tunable parameters (incubation temperature and MO content) on the structure of pDNA:DODAB:MO lipoplexes. More importantly, the implications that these tunable parameters could have in terms of lipoplex transfection efficiency will be investigated. Dynamic light scattering (DLS), zeta (ζ) potential, cryo-transmission electron microscopy (cryo-TEM) and ethidium bromide (EtBr) exclusion were used to assess the formation, structure and destabilization of pDNA:DODAB:MO lipoplexes at DODAB molar fractions of (1:1) and above equimolarity (2:1, 4:1) prepared at incubation temperatures from 25 to 50°C. Experimental results indicate that pDNA:DODAB:MO's structure is sensitive to the lipoplex incubation temperature, resulting in particles of distinct size, superficial charge and structure. These variations are also visible on the complexation dynamics of pDNA, and subsequent release upon incubation with the model proteoglycan heparin (HEP), at 25 and 50°C. Increase in temperature leads to re-organization of DODAB and MO molecules within the liposomal formulation, causing a positive charge re-localization in the lipoplex surface, which not only alters its structure but also its transfection efficiency. Altogether, these results confirm that in the DODAB:MO carriers, an increase in the incubation temperature has a similar effect on aggregate morphology as the observed with an increase in MO content. This conclusion is extended to the pDNA:DODAB:MO lipoplexes morphology and subsequent transfection efficiency defining new strategies in lipoplexes preparation that could be used to modulate the properties of other lipid formulations for nonviral gene delivery applications.
Collapse
Affiliation(s)
- João P Neves Silva
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Ana C N Oliveira
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Marlene Lúcio
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Paulo J G Coutinho
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M Elisabete C D Real Oliveira
- CFUM (Centre of Physics of the University of Minho), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
34
|
Oliveira ACN, Martens TF, Raemdonck K, Adati RD, Feitosa E, Botelho C, Gomes AC, Braeckmans K, Real Oliveira MECD. Dioctadecyldimethylammonium:monoolein nanocarriers for efficient in vitro gene silencing. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6977-6989. [PMID: 24712543 DOI: 10.1021/am500793y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study describes a novel liposomal formulation for siRNA delivery, based on the mixture of the neutral lipid monoolein (MO) and cationic lipids of the dioctadecyldimethylammonium (DODA) family. The cationic lipids dioctadecyldimethylammonium bromide (DODAB) and chloride (DODAC) were compared in order to identify which one will most efficiently induce gene silencing. MO has a fluidizing effect on DODAC and DODAB liposomes, although it was more homogeneously distributed in DODAC bilayers. All MO-based liposomal formulations were able to efficiently encapsulate siRNA. Stable lipoplexes of small size (100-160 nm) with a positive surface charge (>+45 mV) were formed. A more uniform MO incorporation in DODAC:MO may explain an increase of the fusogenic potential of these liposomes. The siRNA-lipoplexes were readily internalized by human nonsmall cell lung carcinoma (H1299) cells, in an energy dependent process. DODAB:MO nanocarriers showed a higher internalization efficiency in comparison to DODAC:MO lipoplexes, and were also more efficient in promoting gene silencing. MO had a similar gene silencing ability as the commonly used helper lipid 1,2-dioleyl-3-phosphatidylethanolamine (DOPE), but with much lower cytotoxicity. Taking in consideration all the results presented, DODAB:MO liposomes are the most promising tested formulation for systemic siRNA delivery.
Collapse
Affiliation(s)
- Ana Cristina Norberto Oliveira
- CBMA (Center of Molecular and Environmental Biology), Department of Biology and ‡CFUM (Center of Physics), Department of Physics, University of Minho , Campus of Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Giustini M, Giuliani AM, Gennaro G. Natural or synthetic nucleic acids encapsulated in a closed cavity of amphiphiles. RSC Adv 2013. [DOI: 10.1039/c3ra23208e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
36
|
Balbino TA, Gasperini AAM, Oliveira CLP, Azzoni AR, Cavalcanti LP, de La Torre LG. Correlation of the physicochemical and structural properties of pDNA/cationic liposome complexes with their in vitro transfection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:11535-11545. [PMID: 22788539 DOI: 10.1021/la302608g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, we characterized the conventional physicochemical properties of the complexes formed by plasmid DNA (pDNA) and cationic liposomes (CL) composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (50/25/25% molar ratio). We found that these properties are nearly unaffected at the studied ranges when the molar charge ratio (R(±)) between the positive charge from the CL and negative charge from pDNA is not close to the isoneutrality region (R(±) = 1). However, the results from in vitro transfection of HeLa cells showed important differences when R(±) is varied, indicating that the relationships between the physicochemical and biological characteristics were not completely elucidated. To obtain information regarding possible liposome structural modifications, small-angle X-ray scattering (SAXS) experiments were performed as a function of R(±) to obtain correlations between structural, physicochemical, and transfection properties. The SAXS results revealed that pDNA/CL complexes can be described as being composed of single bilayers, double bilayers, and multiple bilayers, depending on the R(±) value. Interestingly, for R(±) = 9, 6, and 3, the system is composed of single and double bilayers, and the fraction of the latter increases with the amount of DNA (or a decreasing R(±)) in the system. This information is used to explain the transfection differences observed at an R(±) = 9 as compared to R(±) = 3 and 6. Close to the isoneutrality region (R(±) = 1.8), there was an excess of pDNA, which induced the formation of a fraction of aggregates with multiple bilayers. These aggregates likely provide additional resistance against the release of pDNA during the transfection phenomenon, reflected as a decrease in the transfection level. The obtained results permitted proper correlation of the physicochemical and structural properties of pDNA/CL complexes with the in vitro transfection of HeLa cells by these complexes, contributing to a better understanding of the gene delivery process.
Collapse
Affiliation(s)
- Tiago A Balbino
- School of Chemical Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|