1
|
Zhang Y, Zhang TN, Lu YP, Ren LN, Chen ST, Liu L, Wei LP, Chen JM, Huang JN, Mo ML. Increased viperin expression induced by avian infectious bronchitis virus inhibits viral replication by restricting cholesterol synthesis: an in vitro study. Vet Res 2024; 55:116. [PMID: 39334500 PMCID: PMC11429478 DOI: 10.1186/s13567-024-01368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/27/2024] [Indexed: 09/30/2024] Open
Abstract
With the emergence of new variant strains resulting from high mutation rates and genome recombination, avian infectious bronchitis virus (IBV) has caused significant economic losses to the poultry industry worldwide. Little is known about the underlying mechanisms of IBV-host interactions, particularly how IBV utilizes host metabolic pathways for efficient viral replication and transmission. In the present study, the effects of the cell membrane, viral envelope membrane, and viperin-mediated cholesterol synthesis on IBV replication were explored. Our results revealed significant increase in cholesterol levels and the expression of viperin after IBV infection. Acute cholesterol depletion in the cell membrane and viral envelope membrane by treating cells with methyl-β-cyclodextrin (MβCD) obviously inhibited IBV replication; thereafter, replenishment of the cell membrane with cholesterol successfully restored viral replication, and direct addition of exogenous cholesterol to the cell membrane significantly promoted IBV infection during the early stages of infection. In addition, overexpression of viperin effectively suppressed cholesterol synthesis, as well as IBV replication, whereas knockdown of viperin (gene silencing with siRNA targeting viperin, siViperin) significantly increased IBV replication and cholesterol levels, whereas supplementation with exogenous cholesterol to viperin-transfected cells markedly restored viral replication. In conclusion, the increase in viperin induced by IBV infection plays an important role in IBV replication by affecting cholesterol production, providing a theoretical basis for understanding the pathogenesis of IBV and discovering new potential antiviral targets.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Tao-Ni Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yan-Peng Lu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Li-Na Ren
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Sheng-Ting Chen
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ling Liu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lan-Ping Wei
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ji-Ming Chen
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jian-Ni Huang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Mei-Lan Mo
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China.
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530004, China.
| |
Collapse
|
2
|
Shekunov EV, Zlodeeva PD, Efimova SS, Muryleva AA, Zarubaev VV, Slita AV, Ostroumova OS. Cyclic lipopeptides as membrane fusion inhibitors against SARS-CoV-2: New tricks for old dogs. Antiviral Res 2023; 212:105575. [PMID: 36868316 PMCID: PMC9977712 DOI: 10.1016/j.antiviral.2023.105575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
With the resurgence of the coronavirus pandemic, the repositioning of FDA-approved drugs against coronovirus and finding alternative strategies for antiviral therapy are both important. We previously identified the viral lipid envelope as a potential target for the prevention and treatment of SARS-CoV-2 infection with plant alkaloids (Shekunov et al., 2021). Here, we investigated the effects of eleven cyclic lipopeptides (CLPs), including well-known antifungal and antibacterial compounds, on the liposome fusion triggered by calcium, polyethylene glycol 8000, and a fragment of SARS-CoV-2 fusion peptide (816-827) by calcein release assays. Differential scanning microcalorimetry of the gel-to-liquid-crystalline and lamellar-to-inverted hexagonal phase transitions and confocal fluorescence microscopy demonstrated the relation of the fusion inhibitory effects of CLPs to alterations in lipid packing, membrane curvature stress and domain organization. The antiviral effects of CLPs were evaluated in an in vitro Vero-based cell model, and aculeacin A, anidulafugin, iturin A, and mycosubtilin attenuated the cytopathogenicity of SARS-CoV-2 without specific toxicity.
Collapse
Affiliation(s)
- Egor V Shekunov
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064, Saint Petersburg, Russia
| | - Polina D Zlodeeva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064, Saint Petersburg, Russia
| | - Svetlana S Efimova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064, Saint Petersburg, Russia
| | - Anna A Muryleva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064, Saint Petersburg, Russia; Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, Mira 14, 197101, Saint Petersburg, Russia
| | - Vladimir V Zarubaev
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, Mira 14, 197101, Saint Petersburg, Russia
| | - Alexander V Slita
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, Mira 14, 197101, Saint Petersburg, Russia
| | - Olga S Ostroumova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064, Saint Petersburg, Russia.
| |
Collapse
|
3
|
Gee YJ, Sea YL, Lal SK. Viral modulation of lipid rafts and their potential as putative antiviral targets. Rev Med Virol 2023; 33:e2413. [PMID: 36504273 DOI: 10.1002/rmv.2413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022]
Abstract
Lipid rafts are ubiquitous in cells. They are identified as cholesterol and glycosphingolipid enriched microdomains on cellular membranes. They serve as platforms for cellular communications by functioning in signal transduction and membrane trafficking. Such structural organisation fulfils cellular needs for normal function, but at the same time increases vulnerability of cells to pathogen invasion. Viruses rely heavily on lipid rafts in basically every stage of the viral life cycle for successful infection. Various mechanisms of lipid rafts modification exploited by diverse viruses for attachment, internalisation, membrane fusion, genome replication, assembly and release have been brought to light. This review focuses on virus-raft interactions and how a wide range of viruses manipulate lipid rafts at distinct stages of infection. The importance of virus-raft interactions in viral infections has inspired researchers to discover and develop antivirals that target this interaction, such as statins, methyl-β-cyclodextrin, viperin, 25-hydroxycholesterol and even anti-malarial drugs. The therapeutic modulations of lipid rafts as potential antiviral intervention from in vitro and in vivo evidence are discussed herein.
Collapse
Affiliation(s)
- Yee Jing Gee
- School of Science, Monash University, Bandar Sunway, Selangor DE, Malaysia
| | - Yi Lin Sea
- School of Science, Monash University, Bandar Sunway, Selangor DE, Malaysia
| | - Sunil Kumar Lal
- School of Science, Monash University, Bandar Sunway, Selangor DE, Malaysia.,Tropical Medicine & Biology Platform, Monash University, Bandar Sunway, Selangor DE, Malaysia
| |
Collapse
|
4
|
Ayyar BV, Ettayebi K, Salmen W, Karandikar UC, Neill FH, Tenge VR, Crawford SE, Bieberich E, Prasad BVV, Atmar RL, Estes MK. CLIC and membrane wound repair pathways enable pandemic norovirus entry and infection. Nat Commun 2023; 14:1148. [PMID: 36854760 PMCID: PMC9974061 DOI: 10.1038/s41467-023-36398-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
Globally, most cases of gastroenteritis are caused by pandemic GII.4 human norovirus (HuNoV) strains with no approved therapies or vaccines available. The cellular pathways that these strains exploit for cell entry and internalization are unknown. Here, using nontransformed human jejunal enteroids (HIEs) that recapitulate the physiology of the gastrointestinal tract, we show that infectious GII.4 virions and virus-like particles are endocytosed using a unique combination of endosomal acidification-dependent clathrin-independent carriers (CLIC), acid sphingomyelinase (ASM)-mediated lysosomal exocytosis, and membrane wound repair pathways. We found that besides the known interaction of the viral capsid Protruding (P) domain with host glycans, the Shell (S) domain interacts with both galectin-3 (gal-3) and apoptosis-linked gene 2-interacting protein X (ALIX), to orchestrate GII.4 cell entry. Recognition of the viral and cellular determinants regulating HuNoV entry provides insight into the infection process of a non-enveloped virus highlighting unique pathways and targets for developing effective therapeutics.
Collapse
Affiliation(s)
- B Vijayalakshmi Ayyar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Wilhelm Salmen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Frederick H Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Victoria R Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY 40506 and VAMC, Lexington, KY, 40502, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Han H, Wang Y, Xu S, Han C, Qin Q, Wei S. High-density lipoproteins negatively regulate innate immunity and facilitate red-spotted grouper nervous necrosis virus entry via scavenger receptor B type 1. Int J Biol Macromol 2022; 215:424-433. [PMID: 35752331 DOI: 10.1016/j.ijbiomac.2022.06.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Lipid metabolism plays an important role in viral infections, and it can directly or indirectly affect various stages of viral infection in cells. As an important component of lipid metabolism, high-density lipoprotein (HDL) plays crucial roles in inflammation, immunity, and viral infections. Scavenger receptor B type 1 (SR-B1), a receptor of HDL, cannot be ignored in the regulation of lipid metabolism. Here, we investigate, for the first time, the role of Epinephelus coioides SR-B1 (Ec-SR-B1) in red-spotted grouper nervous necrosis virus (RGNNV) infection. Our results indicate that Ec-SR-B1 could promote RGNNV infection. We also demonstrate that Ec-SR-B1 could facilitate viral entry and interact with capsid protein (CP) of RGNNV. As the natural ligand of SR-B1, HDL significantly increased RGNNV entry in a dose-dependent manner. However, we observed no effect of HDL on Ec-SR-B1 expression. The results of the micro-scale thermophoresis assay did not reveal an association between HDL and CP, suggesting that RGNNV does not enter target cells by using HDL as a ligand to bind to its receptor. In addition, block lipid transport-1, a compound that inhibits HDL-mediated cholesterol transfer, reduced the HDL-induced enhancement of RGNNV infection, indicating a role for lipid transfer in facilitating RGNNV entry. Furthermore, HDL inhibited the expression of pro-inflammatory factors and antiviral genes in a dose-dependent manner. These findings suggest that the HDL-induced enhancement of RGNNV entry involves the complex interplay between Ec-SR-B1, HDL, and RGNNV, as well as the regulation of innate antiviral responses by HDL. In summary, we highlight the crucial role of HDL in RGNNV entry, identify a possible molecular connection between RGNNV and lipoprotein metabolism, and indicate the role of Ec-SR-B1 in RGNNV infection.
Collapse
Affiliation(s)
- Honglin Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Ke W, Zhou Y, Lai Y, Long S, Fang L, Xiao S. Porcine reproductive and respiratory syndrome virus nsp4 positively regulates cellular cholesterol to inhibit type I interferon production. Redox Biol 2021; 49:102207. [PMID: 34911669 PMCID: PMC8758914 DOI: 10.1016/j.redox.2021.102207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular cholesterol plays an important role in the life cycles of enveloped viruses. Previous studies by our group and other groups have demonstrated that the depletion of cellular cholesterol by methyl-β-cyclodextrin (MβCD) reduces the proliferation of porcine reproductive and respiratory syndrome virus (PRRSV), a porcine Arterivirus that has been devastating the swine industry worldwide for over two decades. However, how PRRSV infection regulates cholesterol synthesis is not fully understood. In this study, we showed that PRRSV infection upregulated the activity of protein phosphatase 2 (PP2A), which subsequently activated 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme in the cholesterol synthesis pathway, to increase the levels of cellular cholesterol. By screening the PRRSV-encoded proteins, we showed that nsp4 dominated the upregulation of cellular cholesterol, independently of the 3C-like protease activity of nsp4. A mutation analysis showed that domain I (amino acids 1–80) of PRRSV nsp4 interacted with PR65 alpha (PR65α), the structural subunit, and PP2Ac, the catalytic subunit, of PP2A. Importantly, domain I of nsp4 inhibited Sendai virus-induced interferon β production, and this inhibitory effect was eliminated by Lovastatin, an HMGCR inhibitor, indicating that the upregulation of cellular cholesterol by nsp4 is a strategy used by PRRSV to suppress the antiviral innate immunity of its host. Collectively, we here demonstrated the mechanism by which PRRSV regulates cellular cholesterol synthesis and reported a novel strategy by which PRRSV evades its host's antiviral innate immune response. PRRSV nsp4 up-regulates cellular cholesterol via the PP2A-HMGCR pathway. Nsp4 domain I (amino acids 1–80) interacts with A and C subunits of PP2A. Nsp4 domain I inhibits IFN-I production by upregulating cellular cholesterol. The HMGCR inhibitor Lovastatin inhibits PRRSV proliferation.
Collapse
Affiliation(s)
- Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yinan Lai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Siwen Long
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
7
|
Pattnaik GP, Chakraborty H. Cholesterol: A key player in membrane fusion that modulates the efficacy of fusion inhibitor peptides. VITAMINS AND HORMONES 2021; 117:133-155. [PMID: 34420578 DOI: 10.1016/bs.vh.2021.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The interaction of cholesterol with the neighboring lipids modulates several physical properties of the membrane. Mostly, it affects membrane fluidity, membrane permeability, lateral diffusion of lipids, bilayer thickness, and water penetration into the lipid bilayer. Due to the smaller head group to hydrophobic cross-sectional area of the tail, cholesterol induces intrinsic negative curvature to the membrane. The interaction of cholesterol with sphingolipids forms lipid rafts; generates phase separation in the membrane. The cholesterol-dependent modifications of membrane physical properties modulate viral infections by affecting the fusion between viral and host cell membranes. Cholesterol demonstrates a strong impact on the structure, depth of penetration, conformation, and organization of fusion peptides in membrane milieu. Further, cholesterol has been implicated to modify the fusion inhibitory efficiency of peptide-based membrane fusion inhibitors.
Collapse
Affiliation(s)
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Burla, Odisha, India; Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Burla, Odisha, India.
| |
Collapse
|
8
|
Newcastle Disease Virus Entry into Chicken Macrophages via a pH-Dependent, Dynamin and Caveola-Mediated Endocytic Pathway That Requires Rab5. J Virol 2021; 95:e0228820. [PMID: 33762417 DOI: 10.1128/jvi.02288-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The cellular entry pathways and the mechanisms of Newcastle disease virus (NDV) entry into cells are poorly characterized. In this study, we demonstrated that chicken interferon-induced transmembrane protein 1 (chIFITM1), which is located in the early endosomes, could limit the replication of NDV in chicken macrophage cell line HD11, suggesting the endocytic entry of NDV into chicken macrophages. Then, we presented a systematic study about the entry mechanism of NDV into chicken macrophages. First, we demonstrated that a low-pH condition and dynamin were required during NDV entry. However, NDV entry into chicken macrophages was independent of clathrin-mediated endocytosis. We also found that NDV entry was dependent on membrane cholesterol. The NDV entry and replication were significantly reduced by nystatin and phorbol 12-myristate 13-acetate treatment, overexpression of dominant-negative (DN) caveolin-1, or knockdown of caveolin-1, suggesting that NDV entry depends on caveola-mediated endocytosis. However, macropinocytosis did not play a role in NDV entry into chicken macrophages. In addition, we found that Rab5, rather than Rab7, was involved in the entry and traffic of NDV. The colocalization of NDV with Rab5 and early endosome suggested that NDV virion was transported to early endosomes in a Rab5-dependent manner after internalization. Of particular note, the caveola-mediated endocytosis was also utilized by NDV to enter primary chicken macrophages. Moreover, NDV entered different cell types using different pathways. Collectively, our findings demonstrate for the first time that NDV virion enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway and that Rab5 is involved in the traffic and location of NDV. IMPORTANCE Although the pathogenesis of Newcastle disease virus (NDV) has been extensively studied, the detailed mechanism of NDV entry into host cells is largely unknown. Macrophages are the first-line defenders of host defense against infection of pathogens. Chicken macrophages are considered one of the main types of target cells during NDV infection. Here, we comprehensively investigated the entry mechanism of NDV in chicken macrophages. This is the first report to demonstrate that NDV enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway that requires Rab5. The result is important for our understanding of the entry of NDV in chicken macrophages, which will further advance the knowledge of NDV pathogenesis and provide useful clues for the development of novel preventive or therapeutic strategies against NDV infection. In addition, this information will contribute to our further understanding of pathogenesis with regard to other members of the Avulavirus genus in the Paramyxoviridae family.
Collapse
|
9
|
Jiang X, Li Z, Young DJ, Liu M, Wu C, Wu YL, Loh XJ. Toward the prevention of coronavirus infection: what role can polymers play? MATERIALS TODAY. ADVANCES 2021; 10:100140. [PMID: 33778467 PMCID: PMC7980145 DOI: 10.1016/j.mtadv.2021.100140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome-associated coronavirus 2 has caused a global public health crisis with high rates of infection and mortality. Treatment and prevention approaches include vaccine development, the design of small-molecule antiviral drugs, and macromolecular neutralizing antibodies. Polymers have been designed for effective virus inhibition and as antiviral drug delivery carriers. This review summarizes recent progress and provides a perspective on polymer-based approaches for the treatment and prevention of coronavirus infection. These polymer-based partners include polyanion/polycations, dendritic polymers, macromolecular prodrugs, and polymeric drug delivery systems that have the potential to significantly improve the efficacy of antiviral therapeutics.
Collapse
Affiliation(s)
- X Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Z Li
- Institute of Materials Research and Engineering, A∗STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - D J Young
- College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia
| | - M Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - C Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Y-L Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - X J Loh
- Institute of Materials Research and Engineering, A∗STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| |
Collapse
|
10
|
Roles of Cholesterol in Early and Late Steps of the Nipah Virus Membrane Fusion Cascade. J Virol 2021; 95:JVI.02323-20. [PMID: 33408170 DOI: 10.1128/jvi.02323-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cholesterol has been implicated in various viral life cycle steps for different enveloped viruses, including viral entry into host cells, cell-cell fusion, and viral budding from infected cells. Enveloped viruses acquire their membranes from their host cells. Although cholesterol has been associated with the binding and entry of various enveloped viruses into cells, cholesterol's exact function in the viral-cell membrane fusion process remains largely elusive, particularly for the paramyxoviruses. Furthermore, paramyxoviral fusion occurs at the host cell membrane and is essential for both virus entry (virus-cell fusion) and syncytium formation (cell-cell fusion), central to viral pathogenicity. Nipah virus (NiV) is a deadly member of the Paramyxoviridae family, which also includes Hendra, measles, mumps, human parainfluenza, and various veterinary viruses. The zoonotic NiV causes severe encephalitis, vasculopathy, and respiratory symptoms, leading to a high mortality rate in humans. We used NiV as a model to study the role of membrane cholesterol in paramyxoviral membrane fusion. We used a combination of methyl-beta cyclodextrin (MβCD), lovastatin, and cholesterol to deplete or enrich cell membrane cholesterol outside cytotoxic concentrations. We found that the levels of cellular membrane cholesterol directly correlated with the levels of cell-cell fusion induced. These phenotypes were paralleled using NiV/vesicular stomatitis virus (VSV)-pseudotyped viral infection assays. Remarkably, our mechanistic studies revealed that cholesterol reduces an early F-triggering step but enhances a late fusion pore formation step in the NiV membrane fusion cascade. Thus, our results expand our mechanistic understanding of the paramyxoviral/henipaviral entry and cell-cell fusion processes.IMPORTANCE Cholesterol has been implicated in various steps of the viral life cycle for different enveloped viruses. Nipah virus (NiV) is a highly pathogenic enveloped virus in the Henipavirus genus within the Paramyxoviridae family, capable of causing a high mortality rate in humans and high morbidity in domestic and agriculturally important animals. The role of cholesterol for NiV or the henipaviruses is unknown. Here, we show that the levels of cholesterol influence the levels of NiV-induced cell-cell membrane fusion during syncytium formation and virus-cell membrane fusion during viral entry. Furthermore, the specific role of cholesterol in membrane fusion is not well defined for the paramyxoviruses. We show that the levels of cholesterol affect an early F-triggering step and a late fusion pore formation step during the membrane fusion cascade. Thus, our results expand our mechanistic understanding of the viral entry and cell-cell fusion processes, which may aid the development of antivirals.
Collapse
|
11
|
Adamek M, Davies J, Beck A, Jordan L, Becker AM, Mojzesz M, Rakus K, Rumiac T, Collet B, Brogden G, Way K, Bergmann SM, Zou J, Steinhagen D. Antiviral Actions of 25-Hydroxycholesterol in Fish Vary With the Virus-Host Combination. Front Immunol 2021; 12:581786. [PMID: 33717065 PMCID: PMC7943847 DOI: 10.3389/fimmu.2021.581786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Cholesterol is essential for building and maintaining cell membranes and is critical for several steps in the replication cycle of viruses, especially for enveloped viruses. In mammalian cells virus infections lead to the accumulation of the oxysterol 25-hydroxycholesterol (25HC), an antiviral factor, which is produced from cholesterol by the cholesterol 25 hydroxylase (CH25H). Antiviral responses based on CH25H are not well studied in fish. Therefore, in the present study putative genes encoding for CH25H were identified and amplified in common carp and rainbow trout cells and an HPLC-MS method was applied for determination of oxysterol concentrations in these cells under virus infection. Our results give some evidence that the activation of CH25H could be a part of the antiviral response against a broad spectrum of viruses infecting fish, in both common carp and rainbow trout cells in vitro. Quantification of oxysterols showed that fibroblastic cells are capable of producing 25HC and its metabolite 7α,25diHC. The oxysterol 25HC showed an antiviral activity by blocking the entry of cyprinid herpesvirus 3 (CyHV-3) into KFC cells, but not spring viremia of carp virus (SVCV) or common carp paramyxovirus (Para) in the same cells, or viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV) into RTG-2 cells. Despite the fact that the CH25H based antiviral response coincides with type I IFN responses, the stimulation of salmonid cells with recombinant type I IFN proteins from rainbow trout could not induce ch25h_b gene expression. This provided further evidence, that the CH25H-response is not type I IFN dependent. Interestingly, the susceptibility of CyHV-3 to 25HC is counteracted by a downregulation of the expression of the ch25h_b gene in carp fibroblasts during CyHV-3 infection. This shows a unique interplay between oxysterol based immune responses and immunomodulatory abilities of certain viruses.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jonathan Davies
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.,School of Life Sciences, Keele University, Keele, United Kingdom
| | - Alexander Beck
- Institute of Bioprocess Engineering, Friedrich-Alexander-University, Erlangen, Germany
| | - Lisa Jordan
- Institute of Bioprocess Engineering, Friedrich-Alexander-University, Erlangen, Germany
| | - Anna M Becker
- Institute of Bioprocess Engineering, Friedrich-Alexander-University, Erlangen, Germany
| | - Miriam Mojzesz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Typhaine Rumiac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Graham Brogden
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Keith Way
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, United Kingdom
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Greifswald, Germany
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
12
|
Shah M, Kumar S. Role of cholesterol in anatid herpesvirus 1 infections in vitro. Virus Res 2020; 290:198174. [DOI: 10.1016/j.virusres.2020.198174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023]
|
13
|
Wang Y, Zhang Y, Zhang C, Hu M, Yan Q, Zhao H, Zhang X, Wu Y. Cholesterol-Rich Lipid Rafts in the Cellular Membrane Play an Essential Role in Avian Reovirus Replication. Front Microbiol 2020; 11:597794. [PMID: 33224131 PMCID: PMC7667042 DOI: 10.3389/fmicb.2020.597794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
Cholesterol is an essential component of lipid rafts in cellular plasma membranes. Although lipid rafts have been reported to have several functions in multiple stages of the life cycles of many different enveloped viruses, the mechanisms by which non-enveloped viruses, which lack outer lipid membranes, infect host cells remain unclear. In this study, to investigate the dependence of non-enveloped avian reovirus (ARV) infection on the integrity of cholesterol-rich membrane rafts, methyl-β-cyclodextrin (MβCD) was used to deplete cellular membrane cholesterol at the ARV attachment, entry, and post-entry stages. Treatment with MβCD significantly inhibited ARV replication at both the entry and post-entry stages in a dose-dependent manner, but MβCD had a statistically insignificant effect when it was added at the attachment stage. Moreover, MβCD treatment markedly reduced syncytium formation, which occurs at a relatively late stage of the ARV life cycle and is involved in cell-cell transmission and release. Furthermore, the addition of exogenous cholesterol reversed the effects mentioned above. Colocalization data also showed that the ARV proteins σC, μNS, and p10 prefer to localize to cholesterol-rich lipid raft regions during ARV infection. Altogether, these results suggest that cellular cholesterol in lipid rafts plays a critical role in ARV replication.
Collapse
Affiliation(s)
- Yuyang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Testing Center, Yangzhou University, Yangzhou, China
| | - Yangyang Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chengcheng Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Maozhi Hu
- Testing Center, Yangzhou University, Yangzhou, China
| | - Qiuxiang Yan
- Testing Center, Yangzhou University, Yangzhou, China
| | - Hongyan Zhao
- Testing Center, Yangzhou University, Yangzhou, China
| | - Xiaorong Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yantao Wu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Garrido PF, Calvelo M, Blanco-González A, Veleiro U, Suárez F, Conde D, Cabezón A, Piñeiro Á, Garcia-Fandino R. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. Int J Pharm 2020; 588:119689. [PMID: 32717282 PMCID: PMC7381410 DOI: 10.1016/j.ijpharm.2020.119689] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
A handful of singular structures and laws can be observed in nature. They are not always evident but, once discovered, it seems obvious how to take advantage of them. In chemistry, the discovery of reproducible patterns stimulates the imagination to develop new functional materials and technological or medical applications. Two clear examples are helical structures at different levels in biological polymers as well as ring and spherical structures of different size and composition. Rings are intuitively observed as holes able to thread elongated structures. A large number of real and fictional stories have rings as inanimate protagonists. The design, development or just discovering of a special ring has often been taken as a symbol of power or success. Several examples are the Piscatory Ring wore by the Pope of the Catholic Church, the NBA Championship ring and the One Ring created by the Dark Lord Sauron in the epic story The Lord of the Rings. In this work, we reveal the power of another extremely powerful kind of rings to fight against the pandemic which is currently affecting the whole world. These rings are as small as ~1 nm of diameter and so versatile that they are able to participate in the attack of viruses, and specifically SARS-CoV-2, in a large range of different ways. This includes the encapsulation and transport of specific drugs, as adjuvants to stabilize proteins, vaccines or other molecules involved in the infection, as cholesterol trappers to destabilize the virus envelope, as carriers for RNA therapies, as direct antiviral drugs and even to rescue blood coagulation upon heparin treatment. “One ring to rule them all. One ring to find them. One ring to bring them all and in the darkness bind them.” J. R. R. Tolkien.
Collapse
Affiliation(s)
- Pablo F Garrido
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Martín Calvelo
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alexandre Blanco-González
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Uxía Veleiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Fabián Suárez
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Daniel Conde
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alfonso Cabezón
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rebeca Garcia-Fandino
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Li W, Yang L, Mao L, Liu M, Li J, Zhang W, Sun M. Cholesterol-rich lipid rafts both in cellular and viral membrane are critical for caprine parainfluenza virus type3 entry and infection in host cells. Vet Microbiol 2020; 248:108794. [PMID: 32827922 DOI: 10.1016/j.vetmic.2020.108794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Cholesterol-rich lipid rafts have been shown to play important roles in the life cycle of various non-enveloped and enveloped viruses. Deletion of cholesterol from lipid rafts could influence different steps of viral replication cycle including entry, infection, assembly and release. Caprine parainfluenza virus type3 (CPIV3) is a newly identified member of Paramyxoviridae family. CPIV3 is highly prevalence and threatened the goat industry in China. The infection mechanism of CPIV3 is under exploring and still not fully understood, the roles of cholesterol and lipid rafts for CPIV3 infection remains unclear. In this study, we investigated the association of cholesterol and lipid rafts with CPIV3 during the different viral replication stages (binding, entry and infection) in two cells [MDBK and goat bronchial epithelial (GBE) cells]. Methyl-β- cyclodextrin (MβCD) was used to deplete cholesterol from cell and viral membranes. The results showed that MβCD treatment significantly inhibited CPIV3 entry and infection in these two cells with a dose-dependent manner, but didn't impair the binding of CPIV3. Addition of exogenous cholesterol to the cells after MβCD treatment restored the viral infection. In addition, treatment of MβCD only before virus-entry showed inhibitory effect in MDBK cells. Depletion of cholesterol from virion envelop also decreased the entry and infection of CPIV3 in the two cells. Furthermore, lipid rafts isolation test indicated that viral proteins (HN and N) co-localized with lipid rafts during infection in MDBK and GBE cells. Viral N protein co-localized with caveolin-1 (the marker of lipid rafts) in these two cells both at the entry and infection steps, as detected by con-focal laser scanning microscopy test. In conclusion, the results presented here demonstrated that cholesterol rich lipid rafts play an important role in CPIV3 life cycle. The findings give new insights on understanding of the mechanism of CPIV3 infection and provide a new anti-CPIV3 strategy.
Collapse
Affiliation(s)
- Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| |
Collapse
|
16
|
Zhang L, Zhao D, Han K, Huang X, Liu Y, Liu Q, Yang J, Li S, Li Y. Tembusu virus enters BHK-21 cells through a cholesterol-dependent and clathrin-mediated endocytosis pathway. Microb Pathog 2020; 147:104242. [PMID: 32407862 DOI: 10.1016/j.micpath.2020.104242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/01/2023]
Abstract
Tembusu virus (TMUV) is a newly emerging flavivirus and has caused significant economic loss to the poultry industry in China. To date, the entry of TMUV into host cells remains poorly understood. Here, the mechanism of TMUV entry into BHK-21 cells was investigated. The depletion of cellular cholesterol by methyl-β-cyclodextrin led to a significant decline in the titers and RNA levels of the infectious TMUV. This reduction was restored by supplementation of exogenous cholesterol. Membrane cholesterol depletion mainly blocked viral internalization but not attachment. However, viral infection was unaffected by genistein treatment or caveolin-1 silencing by small interfering RNA. In addition, clathrin-mediated endocytosis might be utilized in TMUV entry given that the viral infection was inhibited by knockdown of clathrin heavy chain and treatment of chlorpromazine (CPZ). Moreover, the number of internalized virus particles decreased under CPZ treatment. Dynasore inhibited TMUV entry suggesting a role for dynamin. Our results reveal that TMUV entry into BHK-21 cells is dependent on cholesterol, clathrin and dynamin but not caveolae.
Collapse
Affiliation(s)
- Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China.
| | - Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Shuang Li
- Laboratory Animal Center, North China University of Science and Technology, Tangshan, China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China.
| |
Collapse
|
17
|
Braga SS. Cyclodextrins: Emerging Medicines of the New Millennium. Biomolecules 2019; 9:E801. [PMID: 31795222 PMCID: PMC6995511 DOI: 10.3390/biom9120801] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cyclodextrins, since their discovery in the late 19th century, were mainly regarded as excipients. Nevertheless, developments in cyclodextrin research have shown that some of these hosts can capture and include biomolecules, highlighting fatty acids and cholesterol, which implies that they are not inert and that their action may be used in specific medicinal purposes. The present review, centered on literature reports from the year 2000 until the present day, presents a comprehensive description of the known biological activities of cyclodextrins and their implications for medicinal applications. The paper is divided into two main sections, one devoted to the properties and applications of cyclodextrins as active pharmaceutical ingredients in a variety of pathologies, from infectious ailments to cardiovascular dysfunctions and metabolic diseases. The second section is dedicated to the use of cyclodextrins in a range of biomedical technologies.
Collapse
Affiliation(s)
- Susana Santos Braga
- QOPNA & LAQV/REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Fernández-Oliva A, Ortega-González P, Risco C. Targeting host lipid flows: Exploring new antiviral and antibiotic strategies. Cell Microbiol 2019; 21:e12996. [PMID: 30585688 PMCID: PMC7162424 DOI: 10.1111/cmi.12996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Bacteria and viruses pose serious challenges for humans because they evolve continuously. Despite ongoing efforts, antiviral drugs to treat many of the most troubling viruses have not been approved yet. The recent launch of new antimicrobials is generating hope as more and more pathogens around the world become resistant to available drugs. But extra effort is still needed. One of the current strategies for antiviral and antibiotic drug development is the search for host cellular pathways used by many different pathogens. For example, many viruses and bacteria alter lipid synthesis and transport to build their own organelles inside infected cells. The characterization of these interactions will be fundamental to identify new targets for antiviral and antibiotic drug development. This review discusses how viruses and bacteria subvert cell machineries for lipid synthesis and transport and summarises the most promising compounds that interfere with these pathways.
Collapse
Affiliation(s)
| | | | - Cristina Risco
- Cell Structure Lab, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
19
|
Li L, Yu L, Hou X. Cholesterol-rich lipid rafts play a critical role in bovine parainfluenza virus type 3 (BPIV3) infection. Res Vet Sci 2017; 114:341-347. [PMID: 28654867 DOI: 10.1016/j.rvsc.2017.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/14/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Lipid rafts are specialized lipid domains enriched in cholesterol and sphingolipid, which can be utilized in the lifecycle of numerous enveloped viruses. Bovine parainfluenza virustype3 (BPIV3) entry to cell is mediated by receptor binding and membrane fusion, but how lipid rafts in host cell membrane and BPIV3 envelope affect virus infection remains unclear. In this study, we investigated the role of lipid rafts in the different stages of BPIV3 infection. The MDBK cells were treated by methyl-β-cyclodextrin (MβCD) to disrupt cellular lipid raft, and the virus infection was determined. The results showed that MβCD significantly inhibited BPIV3 infection in a dose-dependent manner, but didn't block the binding of virus to the cell membrane. Whereas, the MDBK cells treated by MβCD after virus-entry had no effects on the virus infection, to suggest that BPIV3 infection was associated with lipid rafts in cell membrane during viral entry stage. To further confirm lipid rafts in viral envelope also affected BPIV3 infection, we treated BPIV3 with MβCD to determine the virus titer. We found that disruption of the viral lipid raft caused a significant reduction of viral yield. Cholesterol reconstitution experiment showed that BPIV3 infection was successfully restored by cholesterol supplementation both in cellular membrane and viral envelope, which demonstrated that cholesterol-rich lipid rafts played a critical role in BPIV3 infection. These findings provide insights on our understanding of the mechanism of BPIV3 infection and imply that lipid raft might be a good potential therapeutic target to prevent virus infection.
Collapse
Affiliation(s)
- Liyang Li
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Liyun Yu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xilin Hou
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China.
| |
Collapse
|
20
|
Sheng XX, Sun YJ, Zhan Y, Qu YR, Wang HX, Luo M, Liao Y, Qiu XS, Ding C, Fan HJ, Mao X. The LXR ligand GW3965 inhibits Newcastle disease virus infection by affecting cholesterol homeostasis. Arch Virol 2016; 161:2491-501. [PMID: 27357231 PMCID: PMC7087268 DOI: 10.1007/s00705-016-2950-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
Newcastle disease (ND) is a contagious disease that affects most species of birds. Its causative pathogen, Newcastle disease virus (NDV), also exhibits considerable oncolytic activity against mammalian cancers. A better understanding of the pathogenesis of NDV will help us design efficient vaccines and novel anticancer strategies. GW3965, a widely used synthetic ligand of liver X receptor (LXR), induces the expression of LXRs and its downstream genes, including ATP-binding cassette transporter A1 (ABCA1). ABCA1 regulates cellular cholesterol homeostasis. Here, we found that GW3965 inhibited NDV infection in DF-1 cells. It also inhibited NF-κB activation and reduced the upregulation of proinflammatory cytokines induced by the infection. Further studies showed that GW3965 exerted its inhibitory effects on virus entry and replication. NDV infection increased the mRNA levels of several lipogenic genes but decreased the ABCA1 mRNA level. Overexpression of ABCA1 inhibited NDV infection and reduced the cholesterol content in DF-1 cells, but when the cholesterol was replenished, NDV infection was restored. GW3965 treatment prevented cholesterol accumulation in the perinuclear area of the infected cells. In summary, our studies suggest that GW3965 inhibits NDV infection, probably by affecting cholesterol homeostasis.
Collapse
Affiliation(s)
- Xiang-Xiang Sheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ying-Jie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuan Zhan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yu-Rong Qu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hua-Xia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Miao Luo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xu-Sheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Hong-Jie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China. .,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
21
|
Cholesterol Flux Is Required for Endosomal Progression of African Swine Fever Virions during the Initial Establishment of Infection. J Virol 2015; 90:1534-43. [PMID: 26608317 DOI: 10.1128/jvi.02694-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED African swine fever virus (ASFV) is a major threat for porcine production that has been slowly spreading in Eastern Europe since its first appearance in the Caucasus in 2007. ASFV enters the cell by endocytosis and gains access to the cytosol to start replication from late endosomes and multivesicular bodies. Cholesterol associated with low-density lipoproteins entering the cell by endocytosis also follows a trafficking pathway similar to that of ASFV. Here we show that cholesterol plays an essential role in the establishment of infection as the virus traffics through the endocytic pathway. In contrast to the case for other DNA viruses, such as vaccinia virus or adenovirus 5, cholesterol efflux from endosomes is required for ASFV release/entry to the cytosol. Accumulation of cholesterol in endosomes impairs fusion, resulting in retention of virions inside endosomes. ASFV also remodels intracellular cholesterol by increasing its cellular uptake and redistributes free cholesterol to viral replication sites. Our analysis reveals that ASFV manipulates cholesterol dynamics to ensure an appropriate lipid flux to establish productive infection. IMPORTANCE Since its appearance in the Caucasus in 2007, African swine fever (ASF) has been spreading westwards to neighboring European countries, threatening porcine production. Due to the lack of an effective vaccine, ASF control relies on early diagnosis and widespread culling of infected animals. We investigated early stages of ASFV infection to identify potential cellular targets for therapeutic intervention against ASF. The virus enters the cell by endocytosis, and soon thereafter, viral decapsidation occurs in the acid pH of late endosomes. We found that ASFV infection requires and reorganizes the cellular lipid cholesterol. ASFV requires cholesterol to exit the endosome to gain access to the cytoplasm to establish productive replication. Our results indicate that there is a differential requirement for cholesterol efflux for vaccinia virus or adenovirus 5 compared to ASFV.
Collapse
|
22
|
Brogden G, Adamek M, Proepsting MJ, Ulrich R, Naim HY, Steinhagen D. Cholesterol-rich lipid rafts play an important role in the Cyprinid herpesvirus 3 replication cycle. Vet Microbiol 2015; 179:204-12. [PMID: 26059657 PMCID: PMC7117466 DOI: 10.1016/j.vetmic.2015.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 12/24/2022]
Abstract
Sequestration of cholesterol from the cell membrane inhibits CyHV-3 entry. CyHV-3 egress requires cholesterol. Lipid composition of the CyHV-3 envelope is similar to that of CCB lipid rafts.
The Cyprinus herpesvirus 3 (CyHV-3) is a member of the new Alloherpesviridae virus family in the Herpesvirales order. CyHV-3 has been implicated in a large number of disease outbreaks in carp populations causing up to 100% mortality. The aim of this study was to investigate the requirement of cholesterol-rich lipid rafts in CyHV-3 entry and replication in carp cells. Plasma membrane cholesterol was depleted from common carp brain (CCB) cells with methyl-β-cyclodextrin (MβCD). Treated and non-treated cells were infected with CyHV-3 and virus binding and infection parameters were assessed using RT-qPCR, immunocytochemistry and virus titration. The effect of cholesterol reduction severely stunted virus entry in vitro, however after cholesterol replenishment virus entry and subsequent replication rates were similar to the control infection. Furthermore, cholesterol depletion did not significantly influence virus binding and the subsequent post-entry replication stage, however had an impact on virus egress. Comparative analysis of the lipid compositions of CyHV-3 and CCB membrane fractions revealed strong similarities between the lipid composition of the CyHV-3 and CCB lipid rafts. The results presented here show that cholesterol-rich lipid rafts are important for the CyHV-3 replication cycle especially during entry and egress.
Collapse
Affiliation(s)
- Graham Brogden
- Fish Disease Research Unit, University of Veterinary Medicine Hanover, Germany
| | - Mikołaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hanover, Germany
| | - Marcus J Proepsting
- Fish Disease Research Unit, University of Veterinary Medicine Hanover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine Hanover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hanover, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hanover, Germany.
| |
Collapse
|
23
|
Dai C, Kang H, Yang W, Sun J, Liu C, Cheng G, Rong G, Wang X, Wang X, Jin Z, Zhao K. O-2'-hydroxypropyltrimethyl ammonium chloride chitosan nanoparticles for the delivery of live Newcastle disease vaccine. Carbohydr Polym 2015; 130:280-9. [PMID: 26076628 DOI: 10.1016/j.carbpol.2015.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/05/2015] [Accepted: 05/09/2015] [Indexed: 12/31/2022]
Abstract
A novel complex chitosan derivative, O-2'-hydroxypropyltrimethyl ammonium chloride chitosan (O-2'-HACC), was synthesized and used to make nanoparticles as a delivery vehicle for live attenuated Newcastle disease vaccine. We found that O-2'-HACC had high antimicrobial activity, low toxicity, and a high safety level. Newcastle disease virus (NDV) was then encapsulated in the O-2'-HACC nanoparticles (NDV/La Sota-O-2'-HACC-NPs) by the ionic crosslinking method, and the properties of the resulting nanoparticles were determined by transmission electron microscopy, Zeta potential analysis, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and X-ray diffraction. NDV/La Sota-O-2'-HACC-NPs had regular spherical morphologies and high stability, with an encapsulation efficiency of 95.68 ± 2.2% and a loading capacity of 58.75 ± 4.03%. An in vitro release assay indicated that release of NDV from NDV/La Sota-O-2'-HACC-NPs occurred slowly. Specific pathogen-free chickens immunized with NDV/La Sota-O-2'-HACC-NPs intranasally had much stronger cellular, humoral and mucosal immune responses than did those immunized intramuscularly or with live attenuated Newcastle disease vaccine. NDV/La Sota-O-2'-HACC-NPs are a novel drug delivery carrier with immense potential in medical applications.
Collapse
Affiliation(s)
- Chunxiao Dai
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China; Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, Heilongjiang University, Harbin 150080, China
| | - Hong Kang
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Wanqiu Yang
- Harbin Pharmaceutical Group Bio-Vaccine Co., Ltd., Harbin 150069, China
| | - Jinyan Sun
- Animal Husbandry Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Chunlong Liu
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guogang Cheng
- Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, Heilongjiang University, Harbin 150080, China
| | - Guangyu Rong
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Xiaohua Wang
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Xin Wang
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, Heilongjiang University, Harbin 150080, China
| | - Kai Zhao
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
24
|
Vitiello G, Falanga A, Petruk AA, Merlino A, Fragneto G, Paduano L, Galdiero S, D'Errico G. Fusion of raft-like lipid bilayers operated by a membranotropic domain of the HSV-type I glycoprotein gH occurs through a cholesterol-dependent mechanism. SOFT MATTER 2015; 11:3003-3016. [PMID: 25734956 DOI: 10.1039/c4sm02769h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A wealth of evidence indicates that lipid rafts are involved in the fusion of the viral lipid envelope with the target cell membrane. However, the interplay between these sterol- and sphingolipid-enriched ordered domains and viral fusion glycoproteins has not yet been clarified. In this work we investigate the molecular mechanism by which a membranotropic fragment of the glycoprotein gH of the Herpes Simplex Virus (HSV) type I (gH625) drives fusion of lipid bilayers formed by palmitoyl oleoyl phosphatidylcholine (POPC)-sphingomyelin (SM)-cholesterol (CHOL) (1 : 1 : 1 wt/wt/wt), focusing on the role played by each component. The comparative analysis of the liposome fusion assays, Dynamic Light Scattering (DLS), spectrofluorimetry, Neutron Reflectivity (NR) and Electron Spin Resonance (ESR) experiments, and Molecular Dynamics (MD) simulations shows that CHOL is fundamental for liposome fusion to occur. In detail, CHOL stabilizes the gH625-bilayer association by specific interactions with the peptide Trp residue. The interaction with gH625 causes an increased order of the lipid acyl chains, whose local rotational motion is significantly hampered. SM plays only a minor role in the process, favoring the propagation of lipid perturbation to the bilayer inner core. The stiffening of the peptide-interacting bilayer leaflet results in an asymmetric perturbation of the membrane, which is locally destabilized thus favoring fusion events. Our results show that viral fusion glycoproteins are optimally suited to exert a high fusogenic activity on lipid rafts and support the relevance of cholesterol as a key player of membrane-related processes.
Collapse
Affiliation(s)
- Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Newcastle disease virus interaction in targeted therapy against proliferation and invasion pathways of glioblastoma multiforme. BIOMED RESEARCH INTERNATIONAL 2014; 2014:386470. [PMID: 25243137 PMCID: PMC4160635 DOI: 10.1155/2014/386470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/05/2014] [Accepted: 06/25/2014] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM), or grade IV glioma, is one of the most lethal forms of human brain cancer. Current bioscience has begun to depict more clearly the signalling pathways that are responsible for high-grade glioma initiation, migration, and invasion, opening the door for molecular-based targeted therapy. As such, the application of viruses such as Newcastle disease virus (NDV) as a novel biological bullet to specifically target aberrant signalling in GBM has brought new hope. The abnormal proliferation and aggressive invasion behaviour of GBM is reported to be associated with aberrant Rac1 protein signalling. NDV interacts with Rac1 upon viral entry, syncytium induction, and actin reorganization of the infected cell as part of the replication process. Ultimately, intracellular stress leads the infected glioma cell to undergo cell death. In this review, we describe the characteristics of malignant glioma and the aberrant genetics that drive its aggressive phenotype, and we focus on the use of oncolytic NDV in GBM-targeted therapy and the interaction of NDV in GBM signalling that leads to inhibition of GBM proliferation and invasion, and subsequently, cell death.
Collapse
|
26
|
Sánchez-Felipe L, Villar E, Muñoz-Barroso I. Entry of Newcastle Disease Virus into the host cell: role of acidic pH and endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:300-9. [PMID: 23994097 PMCID: PMC7094467 DOI: 10.1016/j.bbamem.2013.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 08/02/2013] [Accepted: 08/13/2013] [Indexed: 12/24/2022]
Abstract
Most paramyxoviruses enter the cell by direct fusion of the viral envelope with the plasma membrane. Our previous studies have shown the colocalization of Newcastle Disease Virus (NDV) with the early endosome marker EEA1 and the inhibition of NDV fusion by the caveolin-phosphorylating drug phorbol 12-myristate 13-acetate (PMA) prompted us to propose that NDV enters the cells via endocytosis. Here we show that the virus-cell fusion and cell-cell fusion promoted by NDV-F are increased by about 30% after brief exposure to low pH in HeLa and ELL-0 cells but not in NDV receptor- deficient cell lines such as GM95 or Lec1. After a brief low-pH exposure, the percentage of NDV fusion at 29 °C was similar to that at 37 °C without acid-pH stimulation, meaning that acid pH would decrease the energetic barrier to enhance fusion. Furthermore, preincubation of cells with the protein kinase C inhibitor bisindolylmaleimide led to the inhibition of about 30% of NDV infectivity, suggesting that a population of virus enters cells through receptor-mediated endocytosis. Moreover, the involvement of the GTPase dynamin in NDV entry is shown as its specific inhibitor, dynasore, also impaired NDV fusion and infectivity. Optimal infection of the host cells was significantly affected by drugs that inhibit endosomal acidification such as concanamycin A, monensin and chloroquine. These results support our hypothesis that entry of NDV into ELL-0 and HeLa cells occurs through the plasma membrane as well as by dynamin- low pH- and receptor- dependent endocytosis. A pulse of low-pH enhanced NDV fusion and infectivity in a cell-dependent manner. NDV infectivity was impaired by a protein kinase C inhibitor. A specific inhibitor of the GTPase dynamin impaired NDV fusion and infectivity. Inhibition of endosomal acidification inhibited NDV fusion and infectivity. NDV may enter by dynamin-acid- and receptor-dependent endocytosis.
Collapse
Affiliation(s)
- Lorena Sánchez-Felipe
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 106/108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | |
Collapse
|
27
|
A cholesterol tag at the N terminus of the relatively broad-spectrum fusion inhibitory peptide targets an earlier stage of fusion glycoprotein activation and increases the peptide's antiviral potency in vivo. J Virol 2013; 87:9223-32. [PMID: 23804636 DOI: 10.1128/jvi.01153-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In previous work, we designed peptides that showed potent inhibition of Newcastle disease virus (NDV) and infectious bronchitis virus (IBV) infections in chicken embryos. In this study, we demonstrate that peptides modified with cholesterol or 3 U of polyethylene glycol (PEG3) conjugated to the peptides' N termini showed even more promising antiviral activities when tested in animal models. Both cholesterol- and cholesterol-PEG3-tagged peptides were able to protect chicken embryos from infection with different serotypes of NDV and IBV when administered 12 h prior to virus inoculation. In comparison, the untagged peptides required intervention closer to the time of viral inoculation to achieve a similar level of protection. Intramuscular injection of cholesterol-tagged peptide at 1.6 mg/kg 1 day before virus infection and then three times at 3-day intervals after viral inoculation protected 70% of the chickens from NDV infection. We further demonstrate that the cholesterol-tagged peptide has an in vivo half-life greater than that of untagged peptides. It also has the potential to cross the blood-brain barrier to enter the avian central nervous system (CNS). Finally, we show that the cholesterol-tagged peptide could play a role before the viral fusion peptide's insertion into the host cell and thereby target an earlier stage of fusion glycoprotein activation. Our findings are of importance for the further development of antivirals with broad-spectrum protective effects.
Collapse
|
28
|
α2-3- and α2-6- N-linked sialic acids allow efficient interaction of Newcastle Disease Virus with target cells. Glycoconj J 2012; 29:539-49. [PMID: 22869099 PMCID: PMC7088266 DOI: 10.1007/s10719-012-9431-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/29/2012] [Accepted: 07/09/2012] [Indexed: 11/10/2022]
Abstract
Receptor recognition and binding is the first step in the viral cycle. It has been established that Newcastle Disease Virus (NDV) interacts with sialylated molecules such as gangliosides and glycoproteins at the cell surface. Nevertheless, the specific receptor(s) that mediate virus entry are not well known. We have analysed the role of the sialic acid linkage in the early steps of the viral infection cycle. Pretreatment of ELL-0 cells with both α2,3 and α2,6 specific sialidases led to the inhibition of NDV binding, fusion and infectivity, which were restored after α2,3(N)- and α2,6(N)-sialyltransferase incubation. Moreover, α2,6(N)-sialyltransferases also restored NDV activities in α2-6-linked sialic acid deficient cells. Competition with α2-6 sialic acid-binding lectins led to a reduction in the three NDV activities (binding, fusion and infectivity) suggesting a role for α2-6- linked sialic acid in NDV entry. We conclude that both α2-3- and α2-6- linked sialic acid containing glycoconjugates may be used for NDV infection. NDV was able to efficiently bind, fuse and infect the ganglioside-deficient cell line GM95 to a similar extent to that of its parental MEB4, suggesting that gangliosides are not essential for NDV binding, fusion and infectivity. Nevertheless, the fact that the interaction of NDV with cells deficient in N-glycoprotein expression such as Lec1 was less efficient prompted us to conclude that NDV requires N-linked glycoproteins for efficient attachment and entry into the host cell.
Collapse
|