1
|
Tan A, Scortecci KC, Cabral De Medeiros NM, Kukula-Koch W, Butler TJ, Smith SM, Boylan F. Plukenetia volubilis leaves as source of anti- Helicobacter pylori agents. Front Pharmacol 2024; 15:1461447. [PMID: 39508036 PMCID: PMC11537943 DOI: 10.3389/fphar.2024.1461447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Helicobacter pylori infection is a major issue worldwide, with widespread prevalence, combined with its link to gastritis, peptic ulcers, gastric cancer, and mucosa-associated lymphoid tissue (MALT) lymphoma. Meanwhile, effectiveness of current treatment protocols is limited by increasing antibiotic resistance and patient compliance issues due to long regimens and side effects. Plukenetia volubilis, or sacha inchi, is a valuable source of bioactive molecules. However, studies on its antimicrobial activity, especially against H. pylori, are lacking. Methods In this study, the anti-H. pylori activity of P. volubilis leaves water extract was explored using in vitro and in silico approaches. High-Performance Liquid Chromatography coupled to Electrospray Ionisation and Quadrupole Time-of-Flight Mass Spectrometry (HPLC-ESI- QTOF-MS-MS) analysis of the water extract from the leaves was used to characterise the chemical composition of the plant and allowed identification of some flavonoids, such as astragalin, and some phenolic compounds. Then, high-speed counter current chromatography (HSCCC) was used to fractionate the ethyl acetate partition obtained from the water extract from the leaves. Results and Discussion The presence of flavonoids derived from kaempferol was confirmed and astragalin was isolated for the first time in P. volubilis. The P. volubilis water infusion, ethyl acetate extract and the isolated astragalin exhibited anti-bacterial activity against H. pylori J99 and two clinical isolates (e.g., minimum inhibitory concentrations of 0.53, 0.51 and 0.49 μg/mL, respectively, for clarithromycin-resistant clinical isolate SSR366). Then, using molecular docking for potential protein targets for H. pylori, it was verified that astragalin could interact with these proteins by in silico analysis. Conclusion These findings highlight that P. volubilis and astragalin produce a bacteriostatic activity against H. pylori and may have potential to be used in treatment against H. pylori, after further research.
Collapse
Affiliation(s)
- Aditya Tan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Katia Castanho Scortecci
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, UFRN, Natal, Brazil
| | - Nathalia Maira Cabral De Medeiros
- Laboratório de Biotecnologia Vegetal (LBV), Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraiba (UEPB) Campina Grande, Paraiba, Brazil
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy With Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - Thomas J. Butler
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Trinity Centre, Tallaght University Hospital, Dublin, Ireland
| | - Sinéad Marian Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Trinity Centre, Tallaght University Hospital, Dublin, Ireland
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Trinity Natural Products Research Centre, NatPro Centre, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Zăgrean-Tuza C, Matei A, Silaghi-Dumitrescu R. A biomimetic assay for antioxidant reactivity, based on liposomes and myoglobin. J Inorg Biochem 2024; 258:112613. [PMID: 38815361 DOI: 10.1016/j.jinorgbio.2024.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Antioxidant assays are typically based on non-physiologically relevant reagents. We describe here a quantitative assay based on the inhibition of the liposome autooxidation in the presence of myoglobin (ILA-Mb), an oxidative process with direct biomedical relevance. Additional advantages of the assay include the use of standard and readily available reagents (lecithin and myoglobin) and the applicability to lipophilic antioxidants. The ILA-Mb assay is based on previously reported qualitative or semi-quantitative ones that employed cytochrome c instead of myoglobin. A number of antioxidants are tested, and their IC50 parameters are discussed and interpreted to involve direct interaction with both myoglobin and the liposomes.
Collapse
Affiliation(s)
- Cezara Zăgrean-Tuza
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Alina Matei
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Pandey B, Thapa S, Kaundinnyayana A, Panta S. Hepatoprotective effects of Juglans regia on carbon tetrachloride-induced hepatotoxicity: In silico/in vivo approach. Food Sci Nutr 2024; 12:6482-6497. [PMID: 39554326 PMCID: PMC11561823 DOI: 10.1002/fsn3.4288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 11/19/2024] Open
Abstract
Juglans regia L. is a well-known therapeutic plant in Nepal, employed in traditional medicine for treating liver ailments. This study aimed to evaluate the in vivo and in silico liver-protective effects of J. regia extract using a carbon tetrachloride (CCl4)-induced hepatic damage rat model. Healthy male rats were randomly divided into six groups: normal control (distilled water 10 mL/kg), toxic control (distilled water 10 mL/kg), standard test (silymarin 100 mg/kg), and three groups receiving oral J. regia extracts (125, 250, and 500 mg/kg/day) for seven days. On the eighth day, carbon tetrachloride (CCl4) was administered intraperitoneally (i.p.) (1.5 mL/kg in 1:1 olive oil ratio for all groups, except the normal control). Rats were sacrificed on the ninth day, and blood was collected retro-orbitally for liver blood injury tests and histopathological studies. Molecular docking was performed against cytochrome P450 2E1 (CYP450 2E1) enzyme for 16 selected phytoconstituents. J. regia, at doses of 125, 250, and 500 mg/kg, significantly reduced liver enzyme levels (alanine aminotransferase, alkaline phosphatase, direct bilirubin, and total bilirubin), while increasing serum albumin. Histological analysis revealed mitigation of carbon tetrachloride (CCl4)-induced liver injury, reducing fatty degeneration and necrosis. Molecular docking supported the findings, with Beta-sitosterol and Betulinic acid exhibiting the best binding affinity of -9.2 and -9.1 kcal/mol, respectively. In conclusion, result suggests that J. regia showed dose-dependent hepatoprotective activity in CCl4-induced hepatotoxicity and it could be utilized as a promising hepatoprotective agent. This study suggests the hepatoprotective potential of J. regia bark extracts, emphasizing the need for further clinical validation.
Collapse
Affiliation(s)
- Bipindra Pandey
- Department of PharmacyMadan Bhandari Academy of Health SciencesHetaudaNepal
- School of Health and Allied SciencesPokhara UniversityPokharaNepal
| | - Shankar Thapa
- Department of PharmacyMadan Bhandari Academy of Health SciencesHetaudaNepal
| | | | - Sushil Panta
- School of Health and Allied SciencesPokhara UniversityPokharaNepal
| |
Collapse
|
4
|
Golonka I, Dryś A, Podgórska K, Polewska J, Musiał W. Evaluation of Decay Kinetics of Black Elderberry Antioxidants from Fruits and Flowers. Antioxidants (Basel) 2024; 13:804. [PMID: 39061873 PMCID: PMC11274222 DOI: 10.3390/antiox13070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The health-promoting properties of black elderberry are related to its high content of polyphenols (natural antioxidants), which eliminate free radicals and prevent the formation of oxidative stress responsible for many diseases. The aim of this work was to determine, the anti-radical effect of Sambucus nigra infusions based on the reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and galvinoxyl (Glv) radicals and to determine the function describing the disappearance curves of these radicals. The antioxidant properties of infusions obtained from the flowers and fruits of this plant were tested using the modified Brand-Williams method using DPPH and Glv radicals. Higher antioxidant activity towards both the DPPH and Glv radicals was found in flowers compared to fruits. In addition, it was found that the process of quenching radicals in the reaction with Sambucus nigra infusions proceeds in accordance with the assumptions of second-order reaction kinetics. The infusion obtained from flowers quenched radicals faster than fruit infusions. The applied second-order kinetics equation may enable estimation of antioxidants levels in natural sources of radicals.
Collapse
Affiliation(s)
| | | | | | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland; (I.G.); (K.P.)
| |
Collapse
|
5
|
Peng H, Shahidi F. Metabolic, toxicological, chemical, and commercial perspectives on esterification of dietary polyphenols: a review. Crit Rev Food Sci Nutr 2024; 64:7465-7504. [PMID: 36908213 DOI: 10.1080/10408398.2023.2185589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Molecular modifications have been practiced for more than a century and nowadays they are widely applied in food, pharmaceutical, or other industries to manipulate the physicochemical, bioactivity, metabolic/catabolic, and pharmacokinetic properties. Among various structural modifications, the esterification/O-acylation has been well-established in altering lipophilicity and bioactivity of parent bioactive compounds, especially natural polyphenolics, while maintaining their high biocompatibility. Meanwhile, various classic chemical and enzymatic protocols and other recently emerged cell factory technology are being employed as viable esterification strategies. In this contribution, the main motivations of phenolic esterification, including the tendency to replace synthetic alkyl phenolics with safer alternatives in the food industry to improve the bioavailability of phenolics as dietary supplements/pharmaceuticals, are discussed. In addition, the toxicity, metabolism, and commercial application of synthetic and natural phenolics are briefly introduced. Under these contexts, the mechanisms and reaction features of several most prevalent chemical and enzymatic esterification pathways are demonstrated. In addition, insights into the studies of esterification modification of natural phenolic compounds and specific pros/cons of various reaction systems with regard to their practical application are provided.
Collapse
Affiliation(s)
- Han Peng
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
6
|
Pons DG. Roles of Phytochemicals in Cancer Prevention and Therapeutics. Int J Mol Sci 2024; 25:5450. [PMID: 38791488 PMCID: PMC11121644 DOI: 10.3390/ijms25105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This Special Issue focused on the importance of phytochemicals for their use in the prevention and treatment of cancer [...].
Collapse
Affiliation(s)
- Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain;
- Grupo Multidisciplinar de Oncología Traslacional, Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
7
|
Oura Y, Shimamura Y, Kan T, Masuda S. Effect of Polyphenols on Inflammation Induced by Membrane Vesicles from Staphylococcus aureus. Cells 2024; 13:387. [PMID: 38474351 DOI: 10.3390/cells13050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Staphylococcus aureus, a bacterium found on human skin, produces toxins and various virulence factors that can lead to skin infections such as atopic dermatitis. These toxins and virulence factors are carried in membrane vesicles (MVs), composed of the bacterium's own cell membranes, and are expected to reach host target cells in a concentrated form, inducing inflammation. This study investigated the effects of two polyphenols, (-)-epigallocatechin gallate (EGCG) and nobiletin (NOL), on the expression of S. aureus virulence factors and the inflammation induced by MVs. The study found that EGCG alone decreased the production of Staphylococcal Enterotoxin A (SEA), while both EGCG and NOL reduced biofilm formation and the expression of virulence factor-related genes. When S. aureus was cultured in a broth supplemented with these polyphenols, the resulting MVs showed a reduction in SEA content and several cargo proteins. These MVs also exhibited decreased levels of inflammation-related gene expression in immortalized human keratinocytes. These results suggest that EGCG and NOL are expected to inhibit inflammation in the skin by altering the properties of MVs derived from S. aureus.
Collapse
Affiliation(s)
- Yukino Oura
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuko Shimamura
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshiyuki Kan
- Department of Synthetic Organic & Medicinal Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shuichi Masuda
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
8
|
Zhang Y, Chung WK, Moon SH, Lee JG, Om AS. Comparison of Antibacterial Activities of Korean Pine ( Pinus densiflora) Needle Steam Distillation Extract on Escherichia coli and Staphylococcus aureus Focusing on Membrane Fluidity and Genes Involved in Membrane Lipids and Stress. Molecules 2023; 29:165. [PMID: 38202748 PMCID: PMC10779765 DOI: 10.3390/molecules29010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The antibacterial activity and mechanism of Pinus densiflora extracts against Escherichia coli and Staphylococcus aureus were investigated. The growth inhibition tests of paper diffusion and optical density exhibited that the extracts have potent antibacterial potentials against foodborne pathogens. The measurement of membrane fluidity by fluorescence polarization has indicated that one of the antibacterial mechanisms involves the disruption of membrane integrity resulting in an increase in the membrane fluidity in both of E. coli and S. aureus. The alteration of fatty acid composition was accompanied by the disturbance of membranes thus shifting the proportion of saturated verses unsaturated fatty acids or trans fatty acids from 1.27:1 to 1.35:1 in E. coli and 1.47:1 to 2.31:1 in S. aureus, most likely to compensate for the increased membrane fluidity by means of a higher proportion of saturated fatty acids which is known to render rigidity in membranes. Realtime q-PCR (polymerase chain reaction) analysis of fatty acid synthetic genes and bacterial stress genes revealed that there was minimal influence of P. densiflora extracts on fatty acid genes except for fab I and the stress rpos in E. coli, and relatively greater impact on fatty acid genes and the stress sigB in S. aureus.
Collapse
Affiliation(s)
| | | | | | | | - Ae-Son Om
- Department of Food and Nutrition, Hanyang University, Seoul 04736, Republic of Korea; (Y.Z.); (W.-K.C.); (S.-H.M.); (J.-G.L.)
| |
Collapse
|
9
|
Nakamura M, Urakawa D, He Z, Akagi I, Hou DX, Sakao K. Apoptosis Induction in HepG2 and HCT116 Cells by a Novel Quercetin-Zinc (II) Complex: Enhanced Absorption of Quercetin and Zinc (II). Int J Mol Sci 2023; 24:17457. [PMID: 38139286 PMCID: PMC10743889 DOI: 10.3390/ijms242417457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Quercetin forms complexes with various metals due to its structural attributes. It predominantly exhibits chelating activity at the 3-hydroxy/4-carbonyl group. Previously, coordination in synthetically obtained quercetin-zinc (II) complexes has been limited to this group. However, the expanded coordination observed in quercetin-iron complexes has opened avenues for diverse applications. Thus, synthesizing novel quercetin-zinc complexes with different coordination positions is a significant advance. In our study, we not only synthesized and comprehensively characterized a new quercetin-zinc (II) complex, Zn-Q, but also evaluated the structure and bioactivity of chelate complexes (Q+Zn) derived from co-treatment in cell culture mediums. The structure of the new compound Zn-Q was comprehensively characterized using 1D 1H and 2D correlation spectroscopy (COSY), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), electrospray ionization mass spectrometer (ESI-MS), and X-ray diffraction analysis (XRD) analysis. Subcellular localization and absorption of these zinc (II) complexes were determined using the ZnAF-2 DA zinc ion fluorescence probe. Throughout the experiments, both Zn-Q and Q+Zn exhibited significant antioxidant, cell growth inhibitory, and anticancer effects in HepG2 and HCT116 cells, with Zn-Q showing the highest potential for inducing apoptosis via the caspase pathway. Tracking intracellular zinc complex absorption using zinc fluorescent probes revealed zinc (II) localization around the cell nucleus. Interestingly, there was a proportional increase in intracellular quercetin absorption in conjunction with zinc (II) uptake. Our research highlights the advantages of quercetin complexation with zinc (II): enhanced anticancer efficacy compared to the parent compound and improved bioavailability of both quercetin and zinc (II). Notably, our findings, which include enhanced intracellular uptake of both quercetin and zinc (II) upon complex formation and its implications in apoptosis, contribute significantly to the understanding of metal-polyphenol complexes. Moving forward, comprehensive functional assessments and insights into its mechanism of action, supported by animal studies, are anticipated.
Collapse
Affiliation(s)
- Mizuki Nakamura
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
| | - Daigo Urakawa
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
| | - Ziyu He
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Isao Akagi
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - De-Xing Hou
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Kozue Sakao
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| |
Collapse
|
10
|
de Freitas-Marchi BL, Dos Santos JF, Reigado GR, Fernandes MTP, Alcalde FSC, de Oliveira Carvalho CR, Nunes VA. Effect of Uncaria tomentosa aqueous extract on the response to palmitate-induced lipotoxicity in cultured skeletal muscle cells. BMC Complement Med Ther 2023; 23:412. [PMID: 37968654 PMCID: PMC10647034 DOI: 10.1186/s12906-023-04204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/06/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is frequently associated with dyslipidemia, which corresponds to the increase in the triglycerides and fatty acid concentrations in tissues, such as the skeletal muscle. Also, T2DM molecular mechanism involves increasing in reactive oxygen species (ROS) production and oxidative stress. The use of herbal medicines such as Uncaria tomentosa (Ut) has been proposed as an auxiliary treatment for patients with T2DM. In this study, it was evaluated the effect of Ut aqueous extract on cell viability and ROS production, in skeletal myoblasts from C2C12 lineage exposed to the free fatty acid palmitate (PA). METHODS Cells were incubated with PA in different concentrations ranging from 10 to 1000 μM, for 24 or 48 h, for cytotoxicity assay. Cell death, DNA fragmentation and ROS production assays were performed in cell cultures incubated with PA for 24 h, in the pre (preventive condition) or post treatment (therapeutic condition) with 250 μg/ml Ut aqueous extract, for 2 or 6 h. Cell death was evaluated by MTT method or flow cytometry. ROS generation was measured by fluorescence spectroscopy using the DCFDA probe. RESULTS Cell viability was reduced to approximately 44% after the incubation with PA for 24 h from the concentration of 500 µM. In the incubation of cells with 500 μM PA and Ut extract for 6 h, in both conditions (preventive or therapeutic), it was observed an increase of 27 and 70% in cell viability respectively, in comparison to the cultures incubated with only PA. Also, the incubation of cultures with 500 μM PA, for 24 h, increased 20-fold the ROS formation, while the treatment with Ut extract, for 6 h, both in the preventive or therapeutic conditions, promoted decrease of 21 and 55%, respectively. CONCLUSION The Ut extract was efficient in promoting cell protection against PA lipotoxicity and ROS generation, potentially preventing oxidative stress in C2C12 skeletal muscle cells. Since T2DM molecular mechanism involves oxidative stress condition and it is often associated with dyslipidemia and fatty acid accumulation in muscle tissue, these results open perspectives for the use of Ut as an auxiliary strategy for T2DM management.
Collapse
Affiliation(s)
- Bruna Leticia de Freitas-Marchi
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of Sao Paulo (EACH-USP), São Paulo, SP, Brazil
| | - Jeniffer Farias Dos Santos
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of Sao Paulo (EACH-USP), São Paulo, SP, Brazil
| | - Gustavo Roncoli Reigado
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of Sao Paulo (EACH-USP), São Paulo, SP, Brazil
| | - Myrian Thiago Pruschinski Fernandes
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of Sao Paulo (EACH-USP), São Paulo, SP, Brazil
| | - Felipe Santiago Chambergo Alcalde
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of Sao Paulo (EACH-USP), São Paulo, SP, Brazil
| | | | - Viviane Abreu Nunes
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of Sao Paulo (EACH-USP), São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Imtiyaz K, Husain Rahmani A, Alsahli MA, Almatroodi SA, Rizvi MMA. Fisetin induces apoptosis in human skin cancer cells through downregulating MTH1. J Biomol Struct Dyn 2023; 41:7339-7353. [PMID: 36129011 DOI: 10.1080/07391102.2022.2121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
Fisetin, a natural flavonoid molecule, has been shown to have anticancer properties against various malignancies. In this investigation, we discovered that Fisetin decreased cell viability of both the treated skin cancer cell lines A375 and A431 in a dose and time-dependent manner. The IC50 values ranging from 57.60 µM ± 6.59 to 41.70 µM ± 1.25 in A375 and 48.70 µM ± 5.49 to 33.67 µM ± 1.03 for A431 at the observed time ranging between 24 h to 72 h of treatment remained quite enthusiastic when compared with the normal HEK 293 cells. Fisetin significantly decreased colony formation and migratory ability of the cancer cells. Flow cytometry analysis revealed that Fisetin significantly restricted the progression of skin cancer cells in the G0/G1 phase of the cell cycle and induced cells to undergo apoptosis by increasing reactive oxygen species, decreasing mitochondrial membrane potential, and elevating the count of early and late apoptotic cells. Our in silico studies of molecular docking followed by molecular dynamics simulation found that the interactions and stability of MTH1 protein with Fisetin further showed a considerable binding affinity for MTH1 (-11.4 kcal/mol) and developed stable complexes maintained throughout 100 ns trajectories. Our western blot analysis endorsed this. We found that Fisetin downregulated the expression levels of MTH1 also in addition, it played a crucial role in regulation of apoptotic events in cancer cells. We therefore, conclude that Fisetin anticancer properties against skin cancer cells are mediated through MTH1 inhibition followed by ATM and P53 upregulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khalid Imtiyaz
- Department of Bioscience, Genome Biology Lab, New Delhi, India
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | | |
Collapse
|
12
|
Pivetta CP, Chitolina SF, Dartora N, Pelegrin CMGD, Santos MVD, Cassol F, Batista LS. Copper exposure leads to changes in chlorophyll content and secondary metabolite profile in Lantana fucata leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:571-584. [PMID: 37187188 DOI: 10.1071/fp23047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Cultivation of plants in environments polluted by metals at toxic levels can affect the biosynthesis of secondary metabolites. Here, we analysed the effect caused by excess copper on the concentration of chlorophylls a and b and the profile of secondary metabolites of Lantana fucata leaves. Five copper (Cu) treatments (mg Cukg-1 soil) were tested: T0, 0; T1, 210; T2, 420; T3, 630; and T4, 840. We found that the concentrations of chlorophylls in the plants decreased when compared to the control. However, this did not lead to a significant reduction in its growth, possibly due to the low translocation of the metal to shoots and the activation of plant defence systems to tolerate the environment in which they are exposed, increasing the emission of lateral roots and activating pathways for the production of secondary metabolites. Therefore, we found a decrease in the concentration of two key compounds in secondary metabolism, p -coumaric and cinnamic acids in treatments with higher copper concentrations. We also found an increase in phenolics. Decreases in p -coumaric and cinnamic acids may have occurred because these are precursors in the synthesis of phenolic compounds, which are increased in the high Cu treatments. Six secondary metabolites were characterised, described for the first time for this plant species. Thus, the presence of excess Cu in the soil may have triggered an increase in the amount of reactive oxygen species in the plants, which that led to the synthesis of antioxidant compounds, as a defence strategy.
Collapse
Affiliation(s)
- Carlise Patrícia Pivetta
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | | | - Nessana Dartora
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil
| | - Carla Maria Garlet de Pelegrin
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | - Marlei Veiga Dos Santos
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | - Fabiano Cassol
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil
| | - Laura Spohr Batista
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| |
Collapse
|
13
|
Mendez-Encinas MA, Valencia D, Ortega-García J, Carvajal-Millan E, Díaz-Ríos JC, Mendez-Pfeiffer P, Soto-Bracamontes CM, Garibay-Escobar A, Alday E, Velazquez C. Anti-Inflammatory Potential of Seasonal Sonoran Propolis Extracts and Some of Their Main Constituents. Molecules 2023; 28:molecules28114496. [PMID: 37298970 DOI: 10.3390/molecules28114496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Biological properties of Sonoran propolis (SP) are influenced by harvest time. Caborca propolis showed cellular protective capacity against reactive oxygen species, which might be implicated in anti-inflammatory effects. However, the anti-inflammatory activity of SP has not been investigated so far. This study investigated the anti-inflammatory activity of previously characterized seasonal SP extracts (SPE) and some of their main constituents (SPC). The anti-inflammatory activity of SPE and SPC was evaluated by measuring nitric oxide (NO) production, protein denaturation inhibition, heat-induced hemolysis inhibition, and hypotonicity-induced hemolysis inhibition. SPE from spring, autumn, and winter showed a higher cytotoxic effect on RAW 264.7 cells (IC50: 26.6 to 30.2 µg/mL) compared with summer extract (IC50: 49.4 µg/mL). SPE from spring reduced the NO secretion to basal levels at the lowest concentration tested (5 µg/mL). SPE inhibited the protein denaturation by 79% to 100%, and autumn showed the highest inhibitory activity. SPE stabilized erythrocyte membrane against heat-induced and hypotonicity-induced hemolysis in a concentration-dependent manner. Results indicate that the flavonoids chrysin, galangin, and pinocembrin could contribute to the anti-inflammatory activity of SPE and that the harvest time influences such a property. This study presents evidence of SPE pharmacological potential and some of their constituents.
Collapse
Affiliation(s)
- Mayra A Mendez-Encinas
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, Caborca 83621, Mexico
| | - Dora Valencia
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, Caborca 83621, Mexico
| | - Jesús Ortega-García
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, Caborca 83621, Mexico
| | - Elizabeth Carvajal-Millan
- Research Center for Food and Development, CIAD, A.C. Carretera Gustavo Enrique Astiazaran Rosas No. 46, Hermosillo 83304, Mexico
| | - José C Díaz-Ríos
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, Caborca 83621, Mexico
| | - Pablo Mendez-Pfeiffer
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, Caborca 83621, Mexico
| | - Cinthia M Soto-Bracamontes
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, Caborca 83621, Mexico
| | - Adriana Garibay-Escobar
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Mexico
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Mexico
| |
Collapse
|
14
|
Barreca MM, Alessandro R, Corrado C. Effects of Flavonoids on Cancer, Cardiovascular and Neurodegenerative Diseases: Role of NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:ijms24119236. [PMID: 37298188 DOI: 10.3390/ijms24119236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Flavonoids are polyphenolic phytochemical compounds found in many plants, fruits, vegetables, and leaves. They have a multitude of medicinal applications due to their anti-inflammatory, antioxidative, antiviral, and anticarcinogenic properties. Furthermore, they also have neuroprotective and cardioprotective effects. Their biological properties depend on the chemical structure of flavonoids, their mechanism of action, and their bioavailability. The beneficial effects of flavonoids have been proven for a variety of diseases. In the last few years, it is demonstrated that the effects of flavonoids are mediated by inhibiting the NF-κB (Nuclear Factor-κB) pathway. In this review, we have summarized the effects of some flavonoids on the most common diseases, such as cancer, cardiovascular, and human neurodegenerative diseases. Here, we collected all recent studies describing the protective and prevention role of flavonoids derived from plants by specifically focusing their action on the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| | - Chiara Corrado
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
15
|
Kim S, Shin Y, Choi Y, Lim KM, Jeong Y, Dayem AA, Lee Y, An J, Song K, Jang SB, Cho SG. Improved Wound Healing and Skin Regeneration Ability of 3,2'-Dihydroxyflavone-Treated Mesenchymal Stem Cell-Derived Extracellular Vesicles. Int J Mol Sci 2023; 24:ijms24086964. [PMID: 37108128 PMCID: PMC10138514 DOI: 10.3390/ijms24086964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Flavonoids enhance the self-renewal and differentiation potential of mesenchymal stem cells (MSCs) and have therapeutic activities, including regenerative, anti-oxidative, and anti-inflammatory effects. Recent studies have revealed that MSC-derived extracellular vesicles (MSC-EVs) have therapeutic effects on tissue regeneration and inflammation. To facilitate further research on the therapeutic potential of MSC-EVs derived from flavonoid-treated MSCs, we surveyed the production of EVs and their therapeutic applications in wound regeneration. MSCs treated with flavonoids enhanced EV production twofold compared with naïve MSCs. EVs produced by MSCs treated with flavonoids (Fla-EVs) displayed significant anti-inflammatory and wound-healing effects in vitro. The wound-healing capacity of EVs was mediated by the upregulation of mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling. Interestingly, the protein level of p-ERK under inhibition of MEK signals was maintained in Fla-EV-treated fibroblasts, suggesting that Fla-EVs have a higher therapeutic potential than naïve MSC-EVs (Cont-EVs) in wound healing. Moreover, the in vivo wound closure effect of the Fla-EVs showed significant improvement compared with that of the flavonoid-only treatment group and the Cont-EVs. This study provides a strategy for the efficient production of EVs with superior therapeutic potential using flavonoids.
Collapse
Affiliation(s)
- Sehee Kim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeokyung Shin
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd. 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yujin Choi
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyung-Min Lim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd. 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeojin Jeong
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yoonjoo Lee
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jongyub An
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kwonwoo Song
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd. 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo Bin Jang
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd. 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
16
|
Abstract
Flavonoids are polyphenolic phytochemicals, which occur naturally in plants and possess both anti-oxidant and pro-oxidant properties. Flavonoids are gaining increasing popularity in the pharmaceutical industry as healthy and cost-effective compounds. Flavonoids show beneficial pharmacological activities in the treatment and prevention of various types of diseases. They are natural and less toxic agents for cancer chemotherapy and radiotherapy via regulation of multiple cell signaling pathways and pro-oxidant effects. In this review, we have summarized the mechanisms of action of selected flavonoids, and their pharmacological implications and potential therapeutic applications in cancer therapy.
Collapse
Affiliation(s)
- Prabha Tiwari
- Riken Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kaushala Prasad Mishra
- Ex Bhabha Atomic Research Center, Foundation for Education and Research, Mumbai, Maharashtra, India
| |
Collapse
|
17
|
Elshazly EH, Nasr A, Elnosary ME, Gouda GA, Mohamed H, Song Y. Identifying the Anti-MERS-CoV and Anti-HcoV-229E Potential Drugs from the Ginkgo biloba Leaves Extract and Its Eco-Friendly Synthesis of Silver Nanoparticles. Molecules 2023; 28:1375. [PMID: 36771041 PMCID: PMC9919260 DOI: 10.3390/molecules28031375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The present study aimed to estimate the antiviral activities of Ginkgo biloba (GB) leaves extract and eco-friendly free silver nanoparticles (Ag NPs) against the MERS-CoV (Middle East respiratory syndrome-coronavirus) and HCoV-229E (human coronavirus 229E), as well as isolation and identification of phytochemicals from GB. Different solvents and high-performance liquid chromatography (HPLC) were used to extract and identify flavonoids and phenolic compounds from GB leaves. The green, silver nanoparticle synthesis was synthesized from GB leaves aqueous extract and investigated for their possible effects as anti-coronaviruses MERS-CoV and HCoV-229E using MTT assay protocol. To verify the synthesis of Ag NPs, several techniques were employed, including X-ray diffraction (XRD), scan, transmission electron microscopy, FT-IR, and UV-visible spectroscopy. The highest contents of flavonoids and phenolic compounds were recorded for acetone, methanol, and ethanol as mixtures with water, in addition to pure water. HPLC flavonoids were detected as apegenin, luteolin, myricetin, and catechin, while HPLC phenolic compounds were pyrogallol, caffeic acid, gallic acid, and ellagic acid. In addition, our results revealed that Ag NPs were produced through the shift from yellow to dark brown. TEM examination of Ag NPs revealed spherical nanoparticles with mean sizes ranging from 5.46 to 19.40 nm and an average particle diameter of 11.81 nm. A UV-visible spectrophotometric investigation revealed an absorption peak at λ max of 441.56 nm. MTT protocol signified the use of GB leaves extract as an anti-coronavirus to be best from Ag NPs because GB extract had moderate anti-MERS-CoV with SI = 8.94, while had promising anti-HCov-229E, with an SI of 21.71. On the other hand, Ag NPs had a mild anti-MERS-CoV with SI = 4.23, and a moderate anti-HCoV-229E, with an SI of 7.51.
Collapse
Affiliation(s)
- Ezzat H. Elshazly
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Alyaa Nasr
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Mohamed E. Elnosary
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Gamal A. Gouda
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Hassan Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
18
|
Anti-inflammatory, Antinociceptive, and Toxicological Properties of Uvaria comperei Stem Crude Extract and Fractions. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2754725. [PMID: 36726837 PMCID: PMC9886488 DOI: 10.1155/2023/2754725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023]
Abstract
The present study was carried out to investigate the anti-inflammatory activity of a methanolic extract and fractions of Uvaria comperei stems. The crude extract was obtained by maceration of the powder in methanol and fractions by vacuum chromatography from the methanolic extract. To study the anti-inflammatory activity in vitro, red blood cell lysis inhibition assay and albumin denaturation inhibition were performed, while in vivo measurements of carrageenan-induced paw oedema and formalin-induced pain in albino mice were performed. Acute toxicity and cytotoxicity studies of the fraction F2 were performed, as well as its HPLC, and some biochemical parameters were quantified. Uvaria comperei crude extract (UCCE) at 250 and 500 μg/mL completely inhibited albumin denaturation, while decreasing 75.5% of heat blood cell lysis at 500 μg/mL. The fractions 128-136 (F3), 10-11 (F1), and 56-62 (F2) at 500 μg/mL displayed a significant anti-inflammatory activity with percentages of inhibition of 60.5, 67.4, and 100%, respectively. Administration of fraction F2 (25, 50, and 100 mg/kg, p.o.) produced a dose-dependent inhibition of formalin-induced pain of 60.2% at 50 mg/kg in the neurogenic phase (p < 0.05) and 70.2% at 25 mg/kg in the inflammatory phase (p < 0.05). Similarly, the time-dependent increase in carrageenan-induced paw circumference induced by carrageenan was inhibited by pretreatment with F2: 50% of inhibition at 25 mg/kg after 30 min (p < 0.05) and 96.5% inhibition at 25 mg/kg after 6 h (p < 0.05). In this research, the fraction F2 presented its maximum analgesic property at 50 mg/kg, while it presented the highest anti-inflammatory property at 25 mg/kg. The oral lethal median dose (LD50) of F2 was determined to be greater than 2000 mg/kg; further low cytotoxicity in RAW cells was also observed. Overall, this work shows that the methanolic crude extract and fractions, mainly F2, of Uvaria comperei stem have interesting anti-inflammatory properties.
Collapse
|
19
|
Xanthomicrol Activity in Cancer HeLa Cells: Comparison with Other Natural Methoxylated Flavones. Molecules 2023; 28:molecules28020558. [PMID: 36677614 PMCID: PMC9864045 DOI: 10.3390/molecules28020558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
The methoxylated flavone xanthomicrol represents an uncommon active phenolic compound identified in herbs/plants with a long application in traditional medicine. It was isolated from a sample of Achillea erba-rotta subsp. moschata (musk yar-row) flowering tops. Xanthomicrol promising biological properties include antioxidant, anti-inflammatory, antimicrobial, and anticancer activities. This study mainly focused on the evaluation of the xanthomicrol impact on lipid metabolism in cancer HeLa cells, together with the investigation of the treatment-induced changes in cell growth, morphology, and apoptosis. At the dose range of 5-100 μM, xanthomicrol (24 h of incubation) significantly reduced viability and modulated lipid profile in cancer Hela cells. It induced marked changes in the phospholipid/cholesterol ratio, significant decreases in the levels of oleic and palmitic acids, and a marked increase of stearic acid, involving an inhibitory effect on de novo lipogenesis and desaturation in cancer cells. Moreover, marked cell morphological alterations, signs of apoptosis, and cell cycle arrest at the G2/M phase were observed in cancer treated cells. The bioactivity profile of xanthomicrol was compared to that of the anticancer methoxylated flavones eupatilin and artemetin, and structure-activity relationships were underlined.
Collapse
|
20
|
Lee J, Park E, Lee K, Shin M, Lee S, Moreno-Villaécija MÁ, Lee H. Reversible tissue sticker inspired by chemistry in plant-pathogen relationship. Acta Biomater 2023; 155:247-257. [PMID: 36216125 DOI: 10.1016/j.actbio.2022.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 02/02/2023]
Abstract
Plants release phenolic molecules to protect against invading pathogens. In plant-microorganism relationships, phenolics bind to surface oligosaccharides, inactivating microorganism activities. Inspired by phenol-saccharide interactions in plant defense systems, we designed an adhesive sealant. By screening 16 different saccharides, the O-acetyl group, rich in glucomannan (GM), exhibited rapid, robust binding with the galloyl moiety of a model phenolic molecule, tannic acid (TA). Furthermore, the interaction showed both pH and temperature (upper critical solution temperature) sensitivities. Utilizing O-acetyl-galloyl interactions, materials of all dimensions from beads (0D) to strings (1D), films (2D), and objects (3D) could be prepared, as a suitable platform for printing techniques. GMTA films are elastic, adhesive, water-resistant, and effectively sealed perforations, as demonstrated by (1) a lung incision followed by an air inflation model and (2) a thoracic diaphragm model. STATEMENT OF SIGNIFICANCE: In nature, phenolic molecules are 'nearly always' physically bound with polysaccharides, indicating that the phenolics widen the functions of polysaccharides. An example includes that phenolic-polysaccharide interactions are key defense mechanisms against microbial infection in plants whereas polysaccharide alone functions poorly. Despite the ubiquitous biochemistry of polysaccharide-phenolic interactions, efforts on understanding binding chemistry focusing on phenol/polysaccharide interactions is little. This study is important because we found for the first time that O-acetyl group is the moiety in polysaccharides to which phenolic cis-diol and/or cis-triol is spontaneously bound. The phenol-polysaccharide interaction is non-covalent yet robust, kinetically fast, and reversible. Inspired by the interaction chemistry, a simple mixture of phenolic molecules and O-acetyl group containing polysaccharides such as glucomannan opens a promising fabrication strategy toward functional polysaccharide-based material.
Collapse
Affiliation(s)
- Jeehee Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eunsook Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyueui Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41666, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU) Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Soohyeon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Miguel Ángel Moreno-Villaécija
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
21
|
Hitchhiking into a cell: flavonoids may produce complexes with transition metals for transmembrane translocation. Biometals 2022; 35:1299-1306. [PMID: 36161545 DOI: 10.1007/s10534-022-00445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
Flavonoids are a group of food polyphenols that are delivered to the human body with plant foods. In recent years, these substances have attracted the attention of researchers due to their effectiveness in preventing a wide variety of diseases, including neurodegenerative, oncological, autoimmune, and cardiovascular. Similar pathologies may also occur with a lack of some first-row transition metals, including Cu(II), Zn(II), Mn(II), Fe(II/III). It is noteworthy that flavonoids are known as transition metal chelators. When a complex with these metals is formed, the therapeutic effect of flavonoids can be enhanced, assuming the possibility of synergy. Molecular models have shown that the lipophilicity of flavonoid-metal complexes can vary significantly depending on their binding stoichiometry. Therefore, a unique process of translocation of flavonoid-metal complexes of various lipophilicity through cell membranes is assumed, based on the possibility of their sequential association and dissociation, called "hitchhiking". It is expected that studies of the interaction of flavonoids with metals will improve the effectiveness of drugs based on flavonoids.
Collapse
|
22
|
Aoiadni N, Jdidi H, Feki AE, Fetoui H, Koubaa FG. Mitochondrial bioenergetics and redox dysfunction in nephrotoxicity induced by pyrethroid permethrin are ameliorated by flavonoid-rich fraction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63973-63987. [PMID: 35469380 DOI: 10.1007/s11356-022-20350-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The present study was designed to evaluate in vitro and in vivo the potential anti-inflammatory and nephroprotective potential of ethyl acetate fraction extracted from Fumaria officinalis (EAF) against permethrin (PER). Male wistar rats were treated daily by gavage during 7 days as follows: group C: negative control rats received 2 mL/kg bw of corn oil, group EAF: positive control rats received EAF at a dose of 200 mg/kg bw dissolved in water, group PER: rats received PER at a dose of 34.05 mg/kg bw and group (PER + EAF): rats received PER (34.05 mg/kg bw) and EAF (200 mg/kg bw). In vitro study showed the ability of EAF to inhibit protein denaturation and heat-induced hemolysis confirming its anti-inflammatory activity. In vivo, PER treatment decreased calcium (Ca) and phosphorus (P) levels and increased lactate dehydrogenase (LDH) activity in plasma. It induced oxidative stress objectified by an increase in the lipid peroxidation and protein oxidation and a perturbation of antioxidant system in kidney and mitochondria. The activities of NADH-ubiquinone reductase, ubiquinol-cytochrome C reductase and cytochrome C oxidase activities were reduced. These alterations were confirmed by histopathological studies. Co-treatment with EAF improved the antioxidant status and mitochondrial bioenergetics. The nephroprotective effects of EAF could be attributed to its modulation of detoxification enzymes and/or free radical scavenging actions.
Collapse
Affiliation(s)
- Nissaf Aoiadni
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Tunisia, Street of Soukra Km 3.5, BP 1171, 9 3000, Sfax, CP, Tunisia.
| | - Hajer Jdidi
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Tunisia, Street of Soukra Km 3.5, BP 1171, 9 3000, Sfax, CP, Tunisia
| | - Abdelfattah El Feki
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Tunisia, Street of Soukra Km 3.5, BP 1171, 9 3000, Sfax, CP, Tunisia
| | - Hamadi Fetoui
- Laboratory of Toxicology and Environmental Health.LR17ES06, Sciences Faculty of Sfax, University of Sfax, 14 BP1171, 3000, Sfax, Tunisia
| | - Fatma Ghorbel Koubaa
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Tunisia, Street of Soukra Km 3.5, BP 1171, 9 3000, Sfax, CP, Tunisia
| |
Collapse
|
23
|
Mendez-Pfeiffer P, Juarez J, Hernandez J, Taboada P, Virués C, Alday E, Valencia D, Velazquez C. Polymeric nanoparticles for the delivery of Sonoran desert propolis: Synthesis, characterization and antiproliferative activity on cancer cells. Colloids Surf B Biointerfaces 2022; 215:112475. [PMID: 35390598 DOI: 10.1016/j.colsurfb.2022.112475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 12/18/2022]
Abstract
Sonoran propolis (SP) exerts remarkable biological activities attributed to its polyphenolic composition, mostly described as poplar-type flavonoids. It is known that polyphenols present low bioavailability derived of their molecular weight, glycosylation level, metabolic conversion, as well as interaction with the intestinal microbiota, affording limitations for possible in vivo applications. The aim of this work was to synthesize Poly-(lactide-co-glycolide) acid (PLGA) nanoparticles for encapsulation of SP, as a matrix to increase solubility of their polyphenolic compounds and improve delivery, for the evaluation of its antiproliferative activity on cancer cells. The Sonoran propolis-loaded PLGA nanoparticles (SP-PLGA NPs) were synthesized (by nanoprecipitation), and their physicochemical parameters were determined (size, morphology, zeta potential, stability, and drug release). Additionally, the antiproliferative activity of SP-PLGA nanoparticles was evaluated in vitro against murine (M12.C3.F6) and human (HeLa) cancer cell lines, including a non-cancer human cell line (ARPE-19) as control. SP-PLGA NPs presented a mean size of 152.6 ± 7.1 nm with an average negative charge of - 21.2 ± 0.7 mV. The encapsulation yield of SP into PLGA system was approximately 68.2 ± 6.0% with an in vitro release of 45% of propolis content at 48 h. SP-PLGA NPs presented antiproliferative activity against both cancer cell lines tested, with lower IC50 values in M12.C3.F6 and HeLa cell lines (7.8 ± 0.4 and 3.8 ± 0.4 μg/mL, respectively) compared to SP (24.0 ± 4.3 and 7.4 ± 0.4 μg/mL, respectively). In contrast, the IC50 of SP-PLGA NPs and SP against ARPE-19 was higher than 50 µg/mL. Cancer cells treated with SP and SP-PLGA NPs presented morphological features characteristic of apoptosis (cellular shrinkage and membrane blebs), as well as elongated cells, effect previously reported for SP, meanwhile, no morphological changes were observed with ARPE-19 cells. The obtained delivery system demonstrates appropriate encapsulation characteristics and antiproliferative activity to be used in the field of nanomedicine, therefore SP could be potentially used in antitumoral in vivo assays upon its encapsulation into PLGA nanoparticles.
Collapse
Affiliation(s)
- Pablo Mendez-Pfeiffer
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico
| | - Josue Juarez
- Departament of Physics, University of Sonora, Hermosillo, Sonora CP. 83000, Mexico
| | - Javier Hernandez
- Instituto de Química Aplicada (IQA), Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa, 91190 Veracruz, Mexico
| | - Pablo Taboada
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, Santiago de Compostela CP. 15782, Spain
| | - Claudia Virués
- Instituto de Química Aplicada (IQA), Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa, 91190 Veracruz, Mexico
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico
| | - Dora Valencia
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad and Irigoyen, Caborca, Sonora C.P. 83600, Mexico.
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico.
| |
Collapse
|
24
|
Shanmugavadivu A, Balagangadharan K, Selvamurugan N. Angiogenic and Osteogenic Effects of Flavonoids in Bone Regeneration. Biotechnol Bioeng 2022; 119:2313-2330. [PMID: 35718883 DOI: 10.1002/bit.28162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
Bone is a highly vascularised tissue that relies on a close spatial and temporal interaction between blood vessels and bone cells. As a result, angiogenesis is critical for bone formation and healing. The vascular system supports bone regeneration by delivering oxygen, nutrients, and growth factors, as well as facilitating efficient cell-cell contact. Most clinical applications of engineered bone grafts are hampered by insufficient vascularization after implantation. Over the last decade, a number of flavonoids have been reported to have osteogenic-angiogenic potential in bone regeneration because of their excellent bioactivity, low cost, availability, and minimal in vivo toxicity. During new bone formation, the osteoinductive nature of certain flavonoids is involved in regulating multiple signaling pathways contributing toward the osteogenic-angiogenic coupling. This review briefly outlines the osteogenic-angiogenic potential of those flavonoids and the mechanisms of their action in promoting bone regeneration. However, further studies are needed to investigate their delivery strategies and establish their clinical efficacy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| |
Collapse
|
25
|
Huang M, Wang J, Tan C, Ying R, Wu X, Chen W, Liu J, Ahmad M. Liposomal co‐delivery strategy to improve stability and antioxidant activity of trans‐resveratrol and naringenin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Meigui Huang
- International Faculty of Applied Technology Yibin University Yibin Sichuan 644000 China
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Jin Wang
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Chen Tan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Engineering and Technology Research Center of Food Additives Beijing Technology & Business University (BTBU) Beijing 100048 China
| | - Ruifeng Ying
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health Miami University Oxford OH 45056 USA
| | - Wei Chen
- Department of Information Systems and Analytics Miami University Oxford OH 45056 USA
| | - Jianhua Liu
- International Faculty of Applied Technology Yibin University Yibin Sichuan 644000 China
| | - Mehraj Ahmad
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu 210037 China
| |
Collapse
|
26
|
Patel K, Patel DK. Health Benefits of Avicularin in the Medicine Against Cancerous Disorders
and other Complications: Biological Importance, Therapeutic Benefit
and Analytical Aspects. CURRENT CANCER THERAPY REVIEWS 2022. [DOI: 10.2174/1573394717666210831163322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Herbal drugs and their derived phytochemicals have been used in
medicine for the preparation of different types of pharmaceutical products. Pure phytochemicals including
flavonoids, alkaloids and terpenoids have been used in medicine for the treatment of different
types of human disorders including cancerous disorders. Flavonoids have been well known in
medicine for their anti-viral, anti-bacterial, anti-inflammatory, anti-diabetic, anti-cancer, anti-aging
and cardioprotective potential. Avicularin, also called quercetin-3-α-l-arabino furanoside, is a pure
flavonoid, a class of phytochemicals, found to be present in Lindera erythrocarpa and Lespedeza
cuneata. Avicularin has been well known in medicine for its anti-cancer properties.
Methods:
In the present work, scientific data of avicularin have been collected from different
databases such as Google, PubMed, Science Direct, Google Scholar and Scopus and summarized
with reference to medicinal importance, pharmacological activities and analytical aspects of avicularin.
The present review summarized the health beneficial properties of avicularin in medicine
through data analysis of various scientific research works. Further analytical progress in medicine
for the qualitative and quantitative analysis of avicularin in medicine has been also discussed in the
present work.
Results:
Scientific data analysis of different literature work revealed the biological importance of
flavonoid class of phytochemical ‘avicularin’ in medicine. Scientific data analysis revealed that avicularin
was found to be present in the Lindera erythrocarpa, Lespedeza cuneata, Rhododendron
schlipenbachii and Psidium guajava. Avicularin has been well known in medicine for its anti-inflammatory,
anti-allergic, anti-oxidant, anti-tumor and hepatoprotective activities. Avicularin protects
cardiomyocytes and hepatocytes against oxidative stress-induced apoptosis and induces cytotoxicity
in cancer lines and tumor tissues. Avicularin has positive influence on human hepatocellular
carcinoma and inhibits intracellular lipid accumulation. The role of avicularin in rheumatoid
arthritis has been also established with its underlying molecular mechanisms in the scientific work.
Recent interest in avicularin has focused on pharmacological investigations for its anti-cancer activity
in the medicine.
Conclusion:
The present work signified the biological importance of avicularin in medicine
through its medicinal uses, pharmacological activities and analytical aspects in the biological system.
Collapse
Affiliation(s)
- Kanika Patel
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture,
Technology and Sciences, Prayagraj, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture,
Technology and Sciences, Prayagraj, India
| |
Collapse
|
27
|
Rocchetti G, Gregorio RP, Lorenzo JM, Barba FJ, Oliveira PG, Prieto MA, Simal-Gandara J, Mosele JI, Motilva MJ, Tomas M, Patrone V, Capanoglu E, Lucini L. Functional implications of bound phenolic compounds and phenolics-food interaction: A review. Compr Rev Food Sci Food Saf 2022; 21:811-842. [PMID: 35150191 DOI: 10.1111/1541-4337.12921] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Sizeable scientific evidence indicates the health benefits related to phenolic compounds and dietary fiber. Various phenolic compounds-rich foods or ingredients are also rich in dietary fiber, and these two health components may interrelate via noncovalent (reversible) and covalent (mostly irreversible) interactions. Notwithstanding, these interactions are responsible for the carrier effect ascribed to fiber toward the digestive system and can modulate the bioaccessibility of phenolics, thus shaping health-promoting effects in vivo. On this basis, the present review focuses on the nature, occurrence, and implications of the interactions between phenolics and food components. Covalent and noncovalent interactions are presented, their occurrence discussed, and the effect of food processing introduced. Once reaching the large intestine, fiber-bound phenolics undergo an intense transformation by the microbial community therein, encompassing reactions such as deglycosylation, dehydroxylation, α- and β-oxidation, dehydrogenation, demethylation, decarboxylation, C-ring fission, and cleavage to lower molecular weight phenolics. Comparatively less information is still available on the consequences on gut microbiota. So far, the very most of the information on the ability of bound phenolics to modulate gut microbiota relates to in vitro models and single strains in culture medium. Despite offering promising information, such models provide limited information about the effect on gut microbes, and future research is deemed in this field.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Rosa Perez Gregorio
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia 4, Parque Tecnológico de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| | - Paula García Oliveira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Juana I Mosele
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires (IBIMOL), Buenos Aires, Argentina
| | - Maria-Jose Motilva
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logroño, Spain
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Halkali, Turkey
| | - Vania Patrone
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Turkey
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
28
|
Bazmi RR, Panichayupakaranant P. Synergistic interactions between artocarpin-rich extract, lawsone methyl ether and ampicillin on anti-MRSA and their antibiofilm formation. Lett Appl Microbiol 2022; 74:777-786. [PMID: 35100449 DOI: 10.1111/lam.13662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023]
Abstract
Artocarpin-rich extract (ARE) was prepared using a green technology and standardized to contain 49.6% w/w artocarpin, while lawsone methyl ether was prepared using a green semi-synthesis. ARE, LME and ampicillin exhibited weak anti-MRSA activity with the MICs of 31.2-62.5 µg/mL. Based on the checkerboard assay, the synergistic interaction between ARE (0.03 µg/mL) and LME (0.49 µg/mL) against four MRSA isolates were observed with the fractional inhibitory concentration index (FICI) value of 0.008, while those of ARE (1.95-7.81 µg/mL) and ampicillin (0.49 µg/mL) as well as LME (0.49-1.95 µg/mL) and ampicillin (0.49 µg/mL) were 0.016-0.257. The time kill confirmed the synergistic interactions against MRSA with different degrees. The combination of ARE and LME as well as its combinations with ampicillin altered the membrane permeability of MRSA, which led to release of the intracellular materials. In addition, each compound inhibited the biofilm formation of standard MRSA (DMST 20654) and the clinical isolate (MRSA 1096). These findings suggested that cocktails containing ARE and LME might be used to overcome problems associated with MRSA. Additionally, the results implied that combination of either ARE or LME with available conventional antibiotic agents might be effective in countering these perilous pathogens.
Collapse
Affiliation(s)
- Rizwan Rashid Bazmi
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand.,Faculty of Pharmaceutical Sciences, Govt. College University Faisalabad, Pakistan
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand.,Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| |
Collapse
|
29
|
Catarina Duarte A, Raquel Costa A, Gonçalves I, Quintela T, Preissner R, R A Santos C. The druggability of bitter taste receptors for the treatment of neurodegenerative disorders. Biochem Pharmacol 2022; 197:114915. [PMID: 35051386 DOI: 10.1016/j.bcp.2022.114915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The delivery of therapeutic drugs to the brain remains a major pharmacology challenge. A complex system of chemical surveillance to protect the brain from endogenous and exogenous toxicants at brain barriers hinders the uptake of many compounds with significant in vitro and ex vivo therapeutic properties. Despite the advances in the field in recent years, the components of this system are not completely understood. Recently, a large group of chemo-sensing receptors, have been identified in the blood-cerebrospinal fluid barrier. Among these chemo-sensing receptors, bitter taste receptors (TAS2R) hold promise as potential drug targets, as many TAS2R bind compounds with recognized neuroprotective activity (quercetin, resveratrol, among others). Whether activation of TAS2R by their ligands contributes to their diverse biological actions described in other cells and tissues is still debatable. In this review, we discuss the potential role of TAS2R gene family as the mediators of the biological activity of their ligands for the treatment of central nervous system disorders and discuss their potential to counteract drug resistance by improving drug delivery to the brain.
Collapse
Affiliation(s)
- Ana Catarina Duarte
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CPIRN-IPG- Centro de Potencial e Inovação de Recursos Naturais- Instituto Politécnico da Guarda, Av. Dr. Francisco de Sá Carneiro, 6300-559, Guarda, Portugal
| | - Ana Raquel Costa
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Robert Preissner
- Institute of Physiology and Science-IT, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
30
|
Aluminum(III), iron(III) and copper(II) complexes of luteolin: Stability, antioxidant, and anti-inflammatory properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Moon H, Lertpatipanpong P, Hong Y, Kim CT, Baek SJ. Nano-encapsulated quercetin by soluble soybean polysaccharide/chitosan enhances anti-cancer, anti-inflammation, and anti-oxidant activities. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
32
|
Wang Y, Jia N, Wang P, Liu J, Sun J, Ye W, Fan B. Flavonoid biosynthesis in four Dendrobium species based on transcriptome sequencing and metabolite analysis. Mol Biol Rep 2021; 49:2047-2057. [PMID: 34851480 DOI: 10.1007/s11033-021-07023-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Dendrobium is a genus of plants used as traditional Chinese herbal medicines, with high economic and medicinal value. METHODS AND RESULTS To reveal the mechanism of flavonoid biosynthesis in Dendrobium, the metabolites and transcriptomes of four Dendrobium species (D. chrysotoxum, D. nobile, D. fimbriatum, and D. denneanum) were analyzed comprehensively. Ultra-high-performance liquid chromatography-tandem mass spectrometry analysis revealed ten flavonoid compounds in Dendrobium. In total, 100,096 unigenes were obtained from the transcript database of the four Dendrobium species. Among the identified differentially expressed genes, 51 were associated with flavonoid biosynthesis, and 670 differentially expressed transcription factors were predicted, including 194 MYB, 87 bHLH, and 100 WRKY family transcription factors, respectively. Transcriptome analysis showed that the expression levels of structural genes such as chalcone synthase (CHS), cinnamate-4-hydroxylase (C4H), and flavonoid 3'-hydroxylase (F3'H) were lower in D. chrysotoxum, D. nobile, and D. fimbriatum than those in D. denneanum, which may be the main reason for the low flavonoid contents in D. chrysotoxum, D. nobile, and D. fimbriatum. CONCLUSIONS The expression level of structural genes corresponded to the accumulation level of flavonols in the different Dendrobium species. The results deepen the understanding of the molecular mechanism of flavonoid biosynthesis in Dendrobium and provide novel insights into the synthesis and accumulation of flavonoids in Dendrobium.
Collapse
Affiliation(s)
- Yajuan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Laboratory of Quality & Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Ning Jia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Laboratory of Quality & Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Peiyu Wang
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Shaxian, 365050, Fujian, China
| | - Jiameng Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Laboratory of Quality & Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Jing Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Laboratory of Quality & Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Wei Ye
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Shaxian, 365050, Fujian, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Laboratory of Quality & Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| |
Collapse
|
33
|
Quercetin Mitigates Red Blood Cell Membrane Bound Na +, K +-ATPase Transporter During Human Aging. J Membr Biol 2021; 254:459-462. [PMID: 34480589 DOI: 10.1007/s00232-021-00200-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/28/2021] [Indexed: 01/08/2023]
Abstract
Increasing interest has recently focused on determining whether quercetin may exert anti-aging properties or not? The objective of this study was determination of Na+, K+ -ATPase activity in quercetin-treated red blood cells during human aging. The study was carried out on human blood samples. The subjects were divided into different age groups, young, middle, and old. The effects of quercetin were evaluated by determining Na+, K+ -ATPase activity by co-incubating the red blood cells in presence of quercetin (10-6 M to 10-3 M final concentration). Quercetin causes 15% increase in Na+, K+ -ATPase activity at 10-4 M and 17% at 10-3 M as compared to the young control age group. The effect was insignificant at 10-5 M (7%) and 10-6 M (5%) in the young age group. Quercetin showed significant increase at 10-6 M to 10-3 M in Na+, K+ -ATPase activity as compared to the middle control age group. A significant increase in Na+, K+ -ATPase activity was observed at all concentrations [10-6 M (31%), 10-5 M (39%), 10-4 M (51%), and 10-3 M (61%)] in elderly population. We believe that these findings will help in further research against oxidative stress in red blood cells.
Collapse
|
34
|
Joyner PM. Protein Adducts and Protein Oxidation as Molecular Mechanisms of Flavonoid Bioactivity. Molecules 2021; 26:molecules26165102. [PMID: 34443698 PMCID: PMC8401221 DOI: 10.3390/molecules26165102] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023] Open
Abstract
There are tens of thousands of scientific papers about flavonoids and their impacts on human health. However, despite the vast amount of energy that has been put toward studying these compounds, a unified molecular mechanism that explains their bioactivity remains elusive. One contributing factor to the absence of a general mechanistic explanation of their bioactivity is the complexity of flavonoid chemistry in aqueous solutions at neutral pH. Flavonoids have acidic protons, are redox active, and frequently auto-oxidize to produce an array of degradation products including electrophilic quinones. Flavonoids are also known to interact with specificity and high affinity with a variety of proteins, and there is evidence that some of these interactions may be covalent. This review summarizes the mechanisms of flavonoid oxidation in aqueous solutions at neutral pH and proposes the formation of protein-flavonoid adducts or flavonoid-induced protein oxidation as putative mechanisms of flavonoid bioactivity in cells. Nucleophilic residues in proteins may be able to form covalent bonds with flavonoid quinones; alternatively, specific amino acid residues such as cysteine, methionine, or tyrosine in proteins could be oxidized by flavonoids. In either case, these protein-flavonoid interactions would likely occur at specific binding sites and the formation of these types of products could effectively explain how flavonoids modify proteins in cells to induce downstream biochemical and cellular changes.
Collapse
Affiliation(s)
- P Matthew Joyner
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263, USA
| |
Collapse
|
35
|
Hong W, Liu CC, Zhang H, Chen Z, Xiao M, Xu L. Cancer Cell Preferential Penetration and pH-Responsive Drug Delivery of Oligorutin. Biomacromolecules 2021; 22:3679-3691. [PMID: 34383480 DOI: 10.1021/acs.biomac.1c00268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report herein a novel delivery system, derived from the facile enzymatic synthesis of oligorutin (OR), for cancer cell targeting and pH-responsive drug delivery. In this study, we demonstrate that OR could preferentially penetrate cancer cells via the lipid raft-mediated endocytosis pathway, and cell membrane cholesterol was critical to the internalization of OR. The accumulation of OR in the tumor region was further confirmed by an in vivo biodistribution study. Considering the tumor-targeting property of OR, a pH-responsive drug delivery system (OR-BTZ) was developed by covalent conjugation of the catechol groups on OR with antitumor drug bortezomib (BTZ) through a pH-sensitive borate ester bond. OR-BTZ exerted cytotoxicity as well as inhibition of the migration and invasion to hepatoma carcinoma cells and showed no apparent cytotoxicity with liver normal cells. The OR-BTZs also presented significant therapeutic efficacy and low systematic toxicity in the murine hepatocellular carcinoma model. To our knowledge, this study presents the first attempt to exploit the potential of oligoflavonoids for cancer cell-targeted drug delivery and will motivate the development of flavonoids and their derivatives as a new type of biomaterials for tumor-targeted therapy.
Collapse
Affiliation(s)
- Weiying Hong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Henan Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Zhiyong Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, Jinan University, Jinan 250022, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| |
Collapse
|
36
|
González A, Casado J, Lanas Á. Fighting the Antibiotic Crisis: Flavonoids as Promising Antibacterial Drugs Against Helicobacter pylori Infection. Front Cell Infect Microbiol 2021; 11:709749. [PMID: 34354964 PMCID: PMC8329489 DOI: 10.3389/fcimb.2021.709749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Over half of the world’s population is estimated to be infected with Helicobacter pylori. Chronic infection with this microbial class I carcinogen is considered the most important risk factor for developing gastric cancer. The increasing antimicrobial resistance to first-line antibiotics mainly causes the failure of current eradication therapies, inducing refractory infections. The alarming increase in multidrug resistance in H. pylori isolates worldwide is already beginning to limit the efficacy of existing treatments. Consequently, the World Health Organization (WHO) has included H. pylori in its list of “priority pathogens” for which new antibiotics are urgently needed. Novel strategies must be followed to fight this antibiotic crisis, including properly exploiting the proven therapeutic potential of medicinal plants and plant-derived phytochemicals. In this mini-review, we overview the impressive properties of naturally occurring flavonoids as effective antimicrobial agents against H. pylori, which support the use of these plant-derived bioactive compounds as promising drug candidates for inclusion in novel and personalized combinatory therapies against H. pylori infection.
Collapse
Affiliation(s)
- Andrés González
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Javier Casado
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Ángel Lanas
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain.,Digestive Diseases Service, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| |
Collapse
|
37
|
Grijalva-Guiza RE, Jiménez-Garduño AM, Hernández LR. Potential Benefits of Flavonoids on the Progression of Atherosclerosis by Their Effect on Vascular Smooth Muscle Excitability. Molecules 2021; 26:3557. [PMID: 34200914 PMCID: PMC8230563 DOI: 10.3390/molecules26123557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022] Open
Abstract
Flavonoids are a group of secondary metabolites derived from plant-based foods, and they offer many health benefits in different stages of several diseases. This review will focus on their effects on ion channels expressed in vascular smooth muscle during atherosclerosis. Since ion channels can be regulated by redox potential, it is expected that during the onset of oxidative stress-related diseases, ion channels present changes in their conductive activity, impacting the progression of the disease. A typical oxidative stress-related condition is atherosclerosis, which involves the dysfunction of vascular smooth muscle. We aim to present the state of the art on how redox potential affects vascular smooth muscle ion channel function and summarize if the benefits observed in this disease by using flavonoids involve restoring the ion channel activity.
Collapse
Affiliation(s)
- Rosa Edith Grijalva-Guiza
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| | | | - Luis Ricardo Hernández
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| |
Collapse
|
38
|
Aleksandar R, Milica PK, Gorana M, Boris M, Anastazija SM, Mladena LP, Snežana S, Nebojša S, Slobodan G. Interaction between apigenin and sodium deoxycholate with raloxifene: A potential risk for clinical practice. Eur J Pharm Sci 2021; 161:105809. [PMID: 33741473 DOI: 10.1016/j.ejps.2021.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Apigenin (API) and sodium deoxycholate (NaDC) have different pharmacodynamic properties and can affect pharmacokinetics of drugs without causing significant toxicity. The aim of our study was to investigate the effect of API and NaDC on raloxifene pharmacokinetics in rats as well as on hemostasis parameters after applying the raloxifene therapeutic dose. Rats were treated daily with oral single dose of saline solution (1 ml/kg), API (10 mg/kg) and/or NaDC (4 mg/kg) for 7 days. Raloxifene was given orally or intravenously in a single dose (6 mg/kg) and during period of 24 h blood samples, feces and urine samples were collected. Blood samples were collected at the 15th, 30th, 45th, 60th, 90th minute and 2, 3, 4, 6, 8, 10, 12 and 24 h after raloxifene administration. Urine and feces samples were collected in the 3th, 6h, 12th and 24th hour of the experiment. Rats were divided into 10 groups each of which contained 6 animals. Differences were considered statistically significant if p<0.05. Pretreatment with NaDC and API affected raloxifene pharmacokinetic profile after intravenous application. NaDC lead to statistically significant decrease in raloxifene serum concentration and increased volume of distribution and clearance as well as halftime of elimination, while API has also decreased also raloxifene serum concentrations and increased volume of distribution but not as profoundly as NaDC alone. Difference was also noticed in clearance where it was significantly increased in group pretreated with NaDC and slightly decreased in group pretreated with API. NaDC and API increased raloxifene amount in feces, both after peroral (p<0.05) and intravenous application. However, peroral application of raloxifene did not produce measurable raloxifene serum concentration in neither of investigated groups. NaDC shortened activated partial thromboplastin time (aPTT) and prothrombin time (PT). API reduced aPTT, PT and d-dimer level. Fibrinogen level was significantly increased in all experimental groups. Both NaDC and apigenin had significant influence on raloxifene pharmacokinetics and can potentiate the raloxifene effects on hemostasis parameters, by increasing its bioavailability. These substances may be the subject of further investigation into the formulation of raloxifene and other medicines as depot preparations, which could prolong the dosing interval and thus improve patient compliance and quality of life.
Collapse
Affiliation(s)
| | | | - Mitić Gorana
- University of Novi Sad, Faculty of Medicine Novi Sad, Serbia; Clinical Center of Vojvodina, Serbia
| | | | | | | | - Stević Snežana
- Faculty of Medicine, University of Priština - Kosovska Mitrovica, Serbia; Faculty of Pharmacy, Novi Sad, University Business Academy in Novi Sad, Serbia
| | | | - Gigov Slobodan
- Faculty of Pharmacy, Novi Sad, University Business Academy in Novi Sad, Serbia
| |
Collapse
|
39
|
Rosa A, Isola R, Pollastro F, Caria P, Appendino G, Nieddu M. The dietary flavonoid eupatilin attenuates in vitro lipid peroxidation and targets lipid profile in cancer HeLa cells. Food Funct 2021; 11:5179-5191. [PMID: 32436500 DOI: 10.1039/d0fo00777c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eupatilin is a dietary flavonoid isolated from the alpine wormwoods, used for the genepy liqueur production. This flavone protects cells and tissues against oxidative stress and targets cancer cells, inducing cytotoxicity, cell circle arrest, apoptosis and mitochondrial dysfunction. This study examines the EUP in vitro antioxidant effects on cholesterol and phospholipid membrane oxidation and explores its ability to modulate the cancer cell lipid profile. This flavone remarkably protected fatty acids and cholesterol against oxidative degradation by scavenging lipoperoxyl radicals. EUP (24 h of incubation) significantly reduced viability and modulated the total lipid and fatty acid profiles in cancer HeLa cells. It induced marked changes in the phospholipid/cholesterol ratio, significant decreases in the levels of oleic and palmitic acids and a marked increase of stearic acid, involving an inhibitory effect on de novo lipogenesis and desaturation in cancer cells. Moreover, a noteworthy mitochondrial membrane depolarization, signs of apoptosis, abnormal mitosis with multi-nucleation (mitotic catastrophe) and morphological alterations were observed in cancer EUP-treated cells. Our results validate the EUP role as antioxidant agent for the treatment/prevention of disorders implicating a membrane lipid oxidative damage and substantiate cell lipid metabolism as another possible target of this dietary natural flavonoid in cancer HeLa cells.
Collapse
Affiliation(s)
- A Rosa
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Km 4.5 SS 554, 09042 Monserrato, CA, Italy.
| | - R Isola
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Km 4.5 SS 554, 09042 Monserrato, CA, Italy.
| | - F Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - P Caria
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Km 4.5 SS 554, 09042 Monserrato, CA, Italy.
| | - G Appendino
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - M Nieddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Km 4.5 SS 554, 09042 Monserrato, CA, Italy.
| |
Collapse
|
40
|
Changes in Human Erythrocyte Membrane Exposed to Aqueous and Ethanolic Extracts from Uncaria tomentosa. Molecules 2021; 26:molecules26113189. [PMID: 34073461 PMCID: PMC8198037 DOI: 10.3390/molecules26113189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Uncaria tomentosa (Willd.) DC is a woody climber species originating from South and Central America that has been used in the therapy of asthma, rheumatism, hypertension, and blood purification. Our previous study showed that U. tomentosa extracts altered human erythrocyte shape, which could be due to incorporation of the compounds contained in extracts into the erythrocyte membrane. The aim of the present study was to determine how the compounds contained in U. tomentosa extracts incorporate into the human erythrocyte membrane. The study has assessed the effect of aqueous and ethanolic extracts from leaves and bark of U. tomentosa on the osmotic resistance of the human erythrocyte, the viscosity of erythrocyte interior, and the fluidity of erythrocyte plasma membrane. Human erythrocytes were incubated with the studied extracts in the concentrations of 100, 250, and 500 µg/mL for 2, 5, and 24 h. All extracts tested caused a decrease in erythrocyte membrane fluidity and increased erythrocyte osmotic sensitivity. The ethanolic extracts from the bark and leaves increased viscosity of the erythrocytes. The largest changes in the studied parameters were observed in the cells incubated with bark ethanolic extract. We consider that the compounds from U. tomentosa extracts mainly build into the outer, hydrophilic monolayer of the erythrocyte membrane, thus protecting the erythrocytes against the adverse effects of oxidative stress.
Collapse
|
41
|
Cruz TM, Santos JS, do Carmo MAV, Hellström J, Pihlava JM, Azevedo L, Granato D, Marques MB. Extraction optimization of bioactive compounds from ora-pro-nobis (Pereskia aculeata Miller) leaves and their in vitro antioxidant and antihemolytic activities. Food Chem 2021; 361:130078. [PMID: 34023692 DOI: 10.1016/j.foodchem.2021.130078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 11/18/2022]
Abstract
Ora-pro-nobis (Pereskia aculeata Miller) is a non-conventional food plant common in Brazil. The objective of this study was to optimize the extraction of bioactive phenolic compounds from ora-pro-nobis leaves by employing solvent mixtures. Ten extracts were obtained with water, ethanol, acetone, and their binary and ternary mixtures, evaluating the chemical composition, antioxidant activity and bioactivities in vitro. The response surface methodology was applied to model the results and calculate the optimal solvent composition, which is 60% water, 40% ethanol and 0% acetone. The optimized extract is rich in phenolic compounds (64 mg GAE/g) and proteins (823 mg/g) and presents antioxidant activity (in intracellular media as well) and inhibits lipid peroxidation (32%) along with hypotonic hemolysis (H50 = 0.339%), it does not present toxicity in vitro against cancer and normal cells. This is the first report of chicoric, caffeoyl-hexaric and coumaroyl-hexaric acids and some glycosylate derivatives of flavonols in ora-pro-nobis leaves.
Collapse
Affiliation(s)
- Thiago Mendanha Cruz
- Graduation Program in Chemistry, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | - Jânio Sousa Santos
- Graduation Program in Food Science and Technology, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | | | - Jarkko Hellström
- Food Processing and Quality, Production Systems Unit - Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Juha-Matti Pihlava
- Food Processing and Quality, Production Systems Unit - Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Luciana Azevedo
- Nutrition Faculty, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000 Alfenas, MG, Brazil
| | - Daniel Granato
- Graduation Program in Food Science and Technology, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil; Food Processing and Quality, Production Systems Unit - Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Mariza Boscacci Marques
- Graduation Program in Chemistry, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil.
| |
Collapse
|
42
|
Darmadi J, Batubara RR, Himawan S, Azizah NN, Audah HK, Arsianti A, Kurniawaty E, Ismail IS, Batubara I, Audah KA. Evaluation of Indonesian mangrove Xylocarpus granatum leaves ethyl acetate extract as potential anticancer drug. Sci Rep 2021; 11:6080. [PMID: 33727582 PMCID: PMC7971038 DOI: 10.1038/s41598-021-85383-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
Local Xylocarpus granatum leaves were extracted by ethyl acetate solvent and characterized by TLC fingerprinting and 2D 1H NMR spectroscopy to contain phenolic compounds as well as several organic and amino acids as metabolic byproducts, such as succinic acid and acetic acid. Traces of flavonoids and other non-categorized phenolic compounds exhibited intermediate antioxidant activity (antioxidant IC50 84.93 ppm) as well as anticancer activity against HeLa, T47D, and HT-29 cell lines; which the latter being most effective against HT-29 with Fraction 5 contained the strongest activity (anticancer IC50 23.12 ppm). Extracts also behaved as a natural growth factor and nonlethal towards brine shrimps as well as human adipose-derived stem cell hADSC due to antioxidative properties. A stability test was performed to examine how storage conditions factored in bioactivity and phytochemical structure. Extracts were compared with several studies about X. granatum leaves extracts to evaluate how ethnogeography and ecosystem factored on biologically active compounds. Further research on anticancer or antioxidant mechanism on cancer cells is needed to determine whether the extract is suitable as a candidate for an anticancer drug.
Collapse
Affiliation(s)
- Jason Darmadi
- Department of Biomedical Engineering, Swiss German University, 15143, Tangerang, Indonesia
| | | | - Sandiego Himawan
- Department of Biomedical Engineering, Swiss German University, 15143, Tangerang, Indonesia
| | - Norma Nur Azizah
- Drug Development Research Center, IMERI, University of Indonesia, 10430, Jakarta, Indonesia
| | | | - Ade Arsianti
- Drug Development Research Center, IMERI, University of Indonesia, 10430, Jakarta, Indonesia
- Department of Medical Chemistry, University of Indonesia, 10430, Jakarta, Indonesia
| | - Evi Kurniawaty
- Faculty of Medicine, University of Lampung, 35145, Bandar Lampung, Indonesia
| | | | - Irmanida Batubara
- Biopharmaca Tropica Research Center, IPB University, 16680, Bogor, Indonesia
- Department of Chemistry, IPB University, 16680, Bogor, Indonesia
| | - Kholis Abdurachim Audah
- Department of Biomedical Engineering, Swiss German University, 15143, Tangerang, Indonesia.
- Directorate of Academic Research and Community Service, Swiss German University, 15143, Tangerang, Indonesia.
| |
Collapse
|
43
|
Naso LG, Martínez VR, Ferrer EG, Williams PAM. Antimetastatic effects of VOflavonoid complexes on A549 cell line. J Trace Elem Med Biol 2021; 64:126690. [PMID: 33260045 DOI: 10.1016/j.jtemb.2020.126690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/12/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is the most frequent type of lung cancer and more than 90 % of mortality is due to metastasis-related deaths. Flavonoids are considered nutraceuticals due to the variety of pharmacological properties. In this paper, we studied the effects of baicalin, silibinin, apigenin, luteolin, and its oxidovanadium(IV) cation complexes on the viability, adhesion to fibronectin, invasion, and migration on human lung cancer cell line A549. In addition, in order to complete the study of the interaction of VOflavonoids and bovine serum albumin (BSA), the binding ability of silibinin and VOsil to the protein was evaluated. METHOD To establish the non-cytotoxic concentration range of the tested compounds, the cancer cell viability was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Cell migration and invasion assays were performed using Boyden chambers and adhesion assay using MTT method. The interaction of compounds with BSA were investigated in physiological buffer (pH = 7.4) by fluorescence spectroscopy. RESULTS All complexes inhibited the metastatic cascade steps to a greater extent than their respective ligands. Likewise, based on binding constant values (Kb) for BSA-silibinin and BSA-VOsil, we can suggest that both compounds can interact with the protein. CONCLUSION Although all the complexes suppressed cell adhesion, invasion and migration, VOlut can be considered as a good candidate to continue the trials because it presented encouraging results as a potential antitumor and antimetastatic agent, and can be transported by BSA.
Collapse
Affiliation(s)
- Luciana G Naso
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina.
| | - Valeria R Martínez
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina
| | - Evelina G Ferrer
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina
| | - Patricia A M Williams
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina
| |
Collapse
|
44
|
Ajdžanović V, Miler M, Šošić-Jurjević B, Filipović B, Milenkovic D, Jakovljević V, Milošević V. Soy isoflavone-caused shunting of the corticosteroidogenesis pathways in andropausal subjects: Top-down impulse for the optimal supplementation design. Med Hypotheses 2021; 148:110516. [PMID: 33548764 DOI: 10.1016/j.mehy.2021.110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 11/20/2022]
Abstract
In a series of our previous works, we revealed the beneficial effects of applied soy isoflavones (genistein or daidzein) on the wide context of corticosteroidogenesis in vivo, in a rat model of the andropause. Soy isoflavones decreased the circulating levels of pituitary adrenocorticotropic hormone, inhibited aldosterone secretion, as well as corticosterone production and secretion, but stimulated dehydroepiandrosterone secretion, all in andropausal rats. In vitro studies indicate that the mechanism underlying these hormonal changes relies on inhibition of the pituitary tyrosine kinase and adrenocortical 3β-hydroxysteroid dehydrogenase enzymes by soy isoflavones. Although the clinical studies are in their infancy, the opinion is that genistein and daidzein have therapeutic potential for the safe treatment of ageing-caused androgen deprivation and glucocorticoid excess with related metabolic/hemodynamic issues in males. Our accumulated experience and knowledge in the field of biomedical effects of plant polyphenols have provided a platform for potential recommending the agenda to organize and accelerate experimental research aimed at producing the optimal supplementation. We hypothesize that an in vivo approach should first be exploited in the sequence of investigative steps, followed by in vitro studies and synchronously conducted molecular docking analyses. In vivo research, besides establishing the margin of exposure safety or adjustment of the correct polyphenol dose, enables identification and quantification of the metabolites of applied polyphenols in the blood. Subsequent in vitro exploitation of the metabolites and related docking analyses provide clarification of the molecular mechanisms of action of applied polyphenols. Chemical modification of the polyphenol structure or coupling it with nanoparticles might be the next step in optimizing the design of supplementation. Selected, intact or chemically-modified polyphenol molecules should be included in preclinical studies on a more closely-related species, while clinical studies would finally assess the safety and effectiveness of a polyphenol-based remedial strategy. The final supplement represents a product of an appropriate technological process, conducted in accordance with the recommendations derived from the preceding research.
Collapse
Affiliation(s)
- Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branko Filipović
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow, Russian Federation
| | - Verica Milošević
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
45
|
Interaction of drugs with lipid raft membrane domains as a possible target. Drug Target Insights 2021; 14:34-47. [PMID: 33510571 PMCID: PMC7832984 DOI: 10.33393/dti.2020.2185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 01/23/2023] Open
Abstract
Introduction Plasma membranes are not the homogeneous bilayers of uniformly distributed lipids but the lipid complex with laterally separated lipid raft membrane domains, which provide receptor, ion channel and enzyme proteins with a platform. The aim of this article is to review the mechanistic interaction of drugs with membrane lipid rafts and address the question whether drugs induce physicochemical changes in raft-constituting and raft-surrounding membranes. Methods Literature searches of PubMed/MEDLINE and Google Scholar databases from 2000 to 2020 were conducted to include articles published in English in internationally recognized journals. Collected articles were independently reviewed by title, abstract and text for relevance. Results The literature search indicated that pharmacologically diverse drugs interact with raft model membranes and cellular membrane lipid rafts. They could physicochemically modify functional protein-localizing membrane lipid rafts and the membranes surrounding such domains, affecting the raft organizational integrity with the resultant exhibition of pharmacological activity. Raft-acting drugs were characterized as ones to decrease membrane fluidity, induce liquid-ordered phase or order plasma membranes, leading to lipid raft formation; and ones to increase membrane fluidity, induce liquid-disordered phase or reduce phase transition temperature, leading to lipid raft disruption. Conclusion Targeting lipid raft membrane domains would open a new way for drug design and development. Since angiotensin-converting enzyme 2 receptors which are a cell-specific target of and responsible for the cellular entry of novel coronavirus are localized in lipid rafts, agents that specifically disrupt the relevant rafts may be a drug against coronavirus disease 2019.
Collapse
|
46
|
Kiani AK, Dhuli K, Anpilogov K, Bressan S, Dautaj A, Dundar M, Beccari T, Ergoren MC, Bertelli M. Natural compounds as inhibitors of SARS-CoV-2 endocytosis: A promising approach against COVID-19. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020008. [PMID: 33170174 PMCID: PMC8023130 DOI: 10.23750/abm.v91i13-s.10520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM The recent COVID-19 pandemic caused by SARS-CoV-2 affected more than six million people and caused thousands of deaths. The lack of effective drugs or vaccines against SARS-CoV-2 further worsened the situation. This review is focused on the identification of molecules that may inhibit viral entry into host cells by endocytosis. METHODS We performed the literature search for these natural compounds in the articles indexed in PubMed. RESULTS Natural products against viral infections have been gaining importance in recent years. Specific natural compounds like phytosterols, polyphenols, flavonoids, citrus, galangal, curcuma and hydroxytyrosol are being analyzed to understand whether they could inhibit SARS-CoV-2. CONCLUSIONS We reviewed natural compounds with potential antiviral activity against SARS-CoV-2 that could be used as a treatment for COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Munis Dundar
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey.
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| | - Mahmut C Ergoren
- Department of Medical Biology, Faculty of Medicine, Near East University, Nicosia, Cyprus; DESAM Institute, Near East University, Nicosia, Cyprus.
| | - Matteo Bertelli
- MAGI EUREGIO, Bolzano, Italy; EBTNA-LAB, Rovereto (TN), Italy; MAGI'S LAB, Rovereto (TN), Italy.
| |
Collapse
|
47
|
Kajszczak D, Zakłos-Szyda M, Podsędek A. Viburnum opulus L.-A Review of Phytochemistry and Biological Effects. Nutrients 2020; 12:E3398. [PMID: 33167421 PMCID: PMC7694363 DOI: 10.3390/nu12113398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Viburnum opulus (VO) is a valuable decorative, medicinal, and food plant. This deciduous shrub is found in natural habitats in Europe, Russia, and some regions in North Africa and North Asia. The VO is traditionally used to treat aliments such as cough, colds, tuberculosis, rheumatic aches, ulcers, stomach, and kidney problems, among others. Many of the health-promoting properties of VO are associated with antioxidant activity, which has been demonstrated in both in vitro and in vivo studies. The results of in vitro studies show the antimicrobial potential of VO, especially against Gram-positive bacteria. In cell-based studies, VO demonstrated anti-inflammatory, anti-obesity, anti-diabetic, osteogenic, cardio-protective, and cytoprotective properties. The applicability of VO in the treatment of urinary tract diseases, endometriosis, and some cancers has been confirmed in in vivo studies. The health benefits of VO result from the presence of bioactive components such as phenolic compounds, vitamin C, carotenoids, iridoids, and essential oils. The aim of this review is to present an overview of the botanical characteristics, chemical compositions, including bioactive compounds, and pro-health properties of VO different morphological parts.
Collapse
Affiliation(s)
- Dominika Kajszczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Łódź, Poland;
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Łódź, Poland;
| | | |
Collapse
|
48
|
Autophagy regulation using luteolin: new insight into its anti-tumor activity. Cancer Cell Int 2020; 20:537. [PMID: 33292250 PMCID: PMC7641824 DOI: 10.1186/s12935-020-01634-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Application of novel methods in cancer therapy is important in terms of management and treatment of the life-threatening disorder. It appears that autophagy is a potential target in cancer therapy, as a variety of drugs targeting autophagy have shown great potential in reducing the viability and proliferation of cancer cells. Autophagy is primarily a catabolic process which provides energy during starvation. Besides, this process contributes to the degradation of aged or potentially toxic components and organelles. On the other hand, the source of a variety of naturally occurring anti-tumor drugs are flavonoids which have high anti-tumor activity. Luteolin is a polyphenolic flavone with the great pharmacological effects such as anti-diabetic, hepatoprotective, antioxidant, anti-inflammation, and anti-tumor. At the present review, we demonstrate how luteolin affects on autophagy process to induce anti-tumor activity.
Collapse
|
49
|
Yan L, Li H, Xia W. Bioglass could increase cell membrane fluidity with ion products to develop its bioactivity. Cell Prolif 2020; 53:e12906. [PMID: 33043500 PMCID: PMC7653244 DOI: 10.1111/cpr.12906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Silicate bioactive glass (BG) has been widely demonstrated to stimulate both of the hard and soft tissue regeneration, in which ion products released from BG play important roles. However, the mechanism by which ion products act on cells on cells is unclear. MATERIALS AND METHODS Human umbilical vein endothelial cells and human bone marrow stromal cells were used in this study. Fluorescence recovery after photobleaching and generalized polarization was used to characterize changes in cell membrane fluidity. Migration, differentiation and apoptosis experiments were carried out. RNA and protein chip were detected. The signal cascade is simulated to evaluate the effect of increased cell membrane fluidity on signal transduction. RESULTS We have demonstrated that ion products released from BG could effectively enhance cell membrane fluidity in a direct and physical way, and Si ions may play a major role. Bioactivities of BG ion products on cells, such as migration and differentiation, were regulated by membrane fluidity. Furthermore, we have proved that BG ion products could promote apoptosis of injured cells based on our conclusion that BG ion products increased membrane fluidity. CONCLUSIONS This study proved that BG ion products could develop its bioactivity on cells by directly enhancing cell membrane fluidity and subsequently affected cell behaviours, which may provide an explanation for the general bioactivities of silicate material.
Collapse
Affiliation(s)
- Longxin Yan
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Zhang Y, Pu C, Tang W, Wang S, Sun Q. Effects of four polyphenols loading on the attributes of lipid bilayers. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|