1
|
Villalaín J. SARS-CoV-2 Protein S Fusion Peptide Is Capable of Wrapping Negatively-Charged Phospholipids. MEMBRANES 2023; 13:344. [PMID: 36984731 PMCID: PMC10057416 DOI: 10.3390/membranes13030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
COVID-19, caused by SARS-CoV-2, which is a positive-sense, single-stranded RNA enveloped virus, emerged in late 2019 and was declared a worldwide pandemic in early 2020 causing more than 600 million infections so far and more than 6 million deaths in the world. Although new vaccines have been implemented, the pandemic continues to impact world health dramatically. Membrane fusion, critical for the viral entry into the host cell, is one of the main targets for the development of novel antiviral therapies to combat COVID-19. The S2 subunit of the viral S protein, a class I membrane fusion protein, contains the fusion domain which is directly implicated in the fusion mechanism. The knowledge of the membrane fusion mechanism at the molecular level will undoubtedly result in the development of effective antiviral strategies. We have used all-atom molecular dynamics to analyse the binding of the SARS-CoV-2 fusion peptide to specific phospholipids in model membranes composed of only one phospholipid plus cholesterol in the presence of either Na+ or Ca2+. Our results show that the fusion peptide is capable of binding to the membrane, that its secondary structure does not change significantly upon binding, that it tends to preferentially bind electronegatively charged phospholipids, and that it does not bind cholesterol at all. Understanding the intricacies of the membrane fusion mechanism and the molecular interactions involved will lead us to the development of antiviral molecules that will allow a more efficient battle against these viruses.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche, Spain
| |
Collapse
|
2
|
Schmidt TF, Caseli L. Molecular organization of dengue fusion peptide in phospholipid monolayers revealed by tensiometry and vibrational spectroscopy. Colloids Surf B Biointerfaces 2022; 215:112477. [PMID: 35381500 DOI: 10.1016/j.colsurfb.2022.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
The interaction of Dengue fusion peptide (FLAg) in selected lipid Langmuir monolayers was characterized with surface pressure-area isotherms and infrared spectroscopy to investigate the role of the membrane charge and molecular organization in the peptide-lipid binding. Surface pressure-area isotherms were employed to analyze the thermodynamic and mechanical properties of the FLAg-lipid monolayer, showing that charged lipid monolayers showed different peptide adsorption patterns for an optimized peptide concentration (maximum membrane adsorption). Polarization modulation infrared reflection-absorption spectroscopy pointed out that incorporating FLAg changed the dipole orientations for the lipid polar head groups, as confirmed in PG-containing monolayers. Also, FLAg reorients the lipid film when it interacts with the phosphate and choline groups. Finally, analysis of the 310-helix bands suggests that FLAg assumes a configuration as a hairpin, an essential premise for the beginning of the membrane fusion process.
Collapse
Affiliation(s)
- Thaís F Schmidt
- Universidade Federal de São Paulo, Diadema, SP, Brazil; Universidade Municipal de São Caetano do Sul, São Caetano do Sul, SP, Brazil.
| | | |
Collapse
|
3
|
Huber RG, Marzinek JK, Boon PLS, Yue W, Bond PJ. Computational modelling of flavivirus dynamics: The ins and outs. Methods 2021; 185:28-38. [PMID: 32526282 PMCID: PMC7278654 DOI: 10.1016/j.ymeth.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Enveloped viruses such as the flaviviruses represent a significant burden to human health around the world, with hundreds of millions of people each year affected by dengue alone. In an effort to improve our understanding of the molecular basis for the infective mechanisms of these viruses, extensive computational modelling approaches have been applied to elucidate their conformational dynamics. Multiscale protocols have been developed to simulate flavivirus envelopes in close accordance with biophysical data, in particular derived from cryo-electron microscopy, enabling high-resolution refinement of their structures and elucidation of the conformational changes associated with adaptation both to host environments and to immunological factors such as antibodies. Likewise, integrative modelling efforts combining data from biophysical experiments and from genome sequencing with chemical modification are providing unparalleled insights into the architecture of the previously unresolved nucleocapsid complex. Collectively, this work provides the basis for the future rational design of new antiviral therapeutics and vaccine development strategies targeting enveloped viruses.
Collapse
Affiliation(s)
- Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Priscilla L S Boon
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), University Hall, Tan Chin Tuan Wing #04-02, 119077, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Building S3, Singapore
| | - Wan Yue
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, 138672, Singapore
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Building S3, Singapore.
| |
Collapse
|
4
|
Carpio LE, Villalaín J. Identification of the phospholipid binding regions of the envelope E protein of flaviviruses by molecular dynamics. J Biomol Struct Dyn 2019; 38:5136-5147. [PMID: 31779533 DOI: 10.1080/07391102.2019.1697368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Flavivirus genus comprise several important human pathogens, including dengue, West Nile, Yellow fever, Japanese encephalitis, Zika, and tick-borne encephalitis viruses. These enveloped viruses affect more than 2 billion people in the world, mainly in less developed countries. Although some vaccines exist for some flaviviruses, these vaccines are not universally available due to many factors and since their infections are a world-wide public health issue, the development of antiviral molecules is fundamental. Flavivirus membranes, through the help of the envelope E glycoprotein, fuse with endosomal compartments in a pH-dependent way to release their genome into the cytoplasm and require specific lipids, such as bis(monoacylglycero)phosphate (BMP), for efficient fusion. The fundamental role the envelope E protein has on viral entry and membrane fusion suggest that it is an essential antiviral target. In this work, we have used atomistic molecular dynamics simulations to study the binding of the head-group of BMP to the tip of the envelope E proteins of ZIKV, DENV, TBEV and JEV viruses whose three-dimensional structures are known. Our results indicate that, apart from the fusion loop, there are different amino acid residues in different regions of the envelope E proteins of flaviviruses capable of binding the head-group of BMP. These regions should work together to accomplish the binding and fusion of the envelope and endosomal membranes and represent a new target to develop and design potent and effective antiviral agents capable of blocking flavivirus-endosome membrane fusion. [Formula: see text].
Collapse
Affiliation(s)
- Laureano E Carpio
- Molecular and Cellular Biology Institute (IBMC) and Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad 'Miguel Hernández', Elche-Alicante, Spain
| | - José Villalaín
- Molecular and Cellular Biology Institute (IBMC) and Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad 'Miguel Hernández', Elche-Alicante, Spain
| |
Collapse
|
5
|
Neutralization of Acidic Intracellular Vesicles by Niclosamide Inhibits Multiple Steps of the Dengue Virus Life Cycle In Vitro. Sci Rep 2019; 9:8682. [PMID: 31213630 PMCID: PMC6582152 DOI: 10.1038/s41598-019-45095-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/30/2019] [Indexed: 01/20/2023] Open
Abstract
Dengue fever is one of the most important mosquito-borne viral infections in large parts of tropical and subtropical countries and is a significant public health concern and socioeconomic burden. There is an urgent need to develop antivirals that can effectively reduce dengue virus (DENV) replication and decrease viral load. Niclosamide, an antiparasitic drug approved for human use, has been recently identified as an effective antiviral agent against a number of pH-dependent viruses, including flaviviruses. Here, we reveal that neutralization of low-pH intracellular compartments by niclosamide affects multiple steps of the DENV infectious cycle. Specifically, niclosamide-induced endosomal neutralization not only prevents viral RNA replication but also affects the maturation of DENV particles, rendering them non-infectious. We found that niclosamide-induced endosomal neutralization prevented E glycoprotein conformational changes on the virion surface of flaviviruses, resulting in the release of non-infectious immature virus particles with uncleaved pr peptide from host cells. Collectively, our findings support the potential application of niclosamide as an antiviral agent against flavivirus infection and highlight a previously uncharacterized mechanism of action of the drug.
Collapse
|
6
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
7
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Keasey SL, Smith JL, Fernandez S, Durbin AP, Zhao BM, Ulrich RG. Impact of Dengue Virus Serotype 2 Strain Diversity on Serological Immune Responses to Dengue. ACS Infect Dis 2018; 4:1705-1717. [PMID: 30347144 DOI: 10.1021/acsinfecdis.8b00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dengue is a mosquito-borne disease caused by four dengue virus serotypes (DENV1-4) that are loosely categorized by sequence commonalities and antibody recognition profiles. The highly variable envelope protein (E) that is prominently displayed on the surface of DENV is an essential component of vaccines currently under development, yet the impact of using single strains to represent each serotype in tetravalent vaccines has not been adequately studied. We synthesized chimeric E by replacing highly variable residues from a dengue virus serotype 2 vaccine strain (PUO-218) with those from 16 DENV2 lineages spanning 60 years of antigen evolution. Examining sera from human and rhesus macaques challenged with single strains of DENV2, antibody-E interactions were markedly inhibited or enhanced by residues mainly focused within a 480 Å2 footprint displayed on the E backbone. The striking impact of E diversity on polyclonal immune responses suggests that frequent antigen updates may be necessary for vaccines to counter shifts in circulating strains.
Collapse
Affiliation(s)
- Sarah L. Keasey
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Jessica L. Smith
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Stefan Fernandez
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Anna P. Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, 624 North Broadway, Room 251, Baltimore, Maryland 21205, United States
| | - Bryan M. Zhao
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Robert G. Ulrich
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| |
Collapse
|
9
|
Sharma KK, Marzinek JK, Tantirimudalige SN, Bond PJ, Wohland T. Single-molecule studies of flavivirus envelope dynamics: Experiment and computation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 143:38-51. [PMID: 30223001 DOI: 10.1016/j.pbiomolbio.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
Flaviviruses are simple enveloped viruses exhibiting complex structural and functional heterogeneities. Decades of research have provided crucial basic insights, antiviral medication and moderately successful gene therapy trials. The most infectious particle is, however, not always the most abundant one in a population, questioning the utility of classic ensemble-averaging virology approaches. Indeed, viral replication is often not particularly efficient, prone to errors or containing parallel routes. Here, we review different single-molecule sensitive fluorescence methods that are employed to investigate flaviviruses. In particular, we review how (i) time-resolved Förster resonance energy transfer (trFRET) was applied to probe dengue envelope conformations; (ii) FRET-fluorescence correlation spectroscopy to investigate dengue envelope intrinsic dynamics and (iii) single particle tracking to follow the path of dengue viruses in cells. We also discuss how such methods may be supported by molecular dynamics (MD) simulations over a range of spatio-temporal scales, to provide complementary data on the structure and dynamics of flaviviral systems. We describe recent improvements in multiscale MD approaches that allowed the simulation of dengue particle envelopes in near-atomic resolution. We hope this review is an incentive for setting up and applying similar single-molecule studies and combine them with MD simulations to investigate structural dynamics of entire flavivirus particles over the nanosecond-to-millisecond time-scale and follow viruses during infection in cells over milliseconds to minutes.
Collapse
Affiliation(s)
- Kamal Kant Sharma
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Jan K Marzinek
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Sarala Neomi Tantirimudalige
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Peter J Bond
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore.
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Department of Chemistry, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.
| |
Collapse
|
10
|
Kao JC, HuangFu WC, Tsai TT, Ho MR, Jhan MK, Shen TJ, Tseng PC, Wang YT, Lin CF. The antiparasitic drug niclosamide inhibits dengue virus infection by interfering with endosomal acidification independent of mTOR. PLoS Negl Trop Dis 2018; 12:e0006715. [PMID: 30125275 PMCID: PMC6117097 DOI: 10.1371/journal.pntd.0006715] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/30/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Background The antiparasitic agent niclosamide has been demonstrated to inhibit the arthropod-borne Zika virus. Here, we investigated the antiviral capacity of niclosamide against dengue virus (DENV) serotype 2 infection in vitro and in vivo. Principle finding Niclosamide effectively retarded DENV-induced infection in vitro in human adenocarcinoma cells (A549), mouse neuroblastoma cells (Neuro-2a), and baby hamster kidney fibroblasts (BHK-21). Treatment with niclosamide did not retard the endocytosis of DENV while niclosamide was unable to enhance the antiviral type I interferon response. Furthermore, niclosamide did not cause a direct effect on viral replicon-based expression. Niclosamide has been reported to competitively inhibit the mTOR (mammalian target of rapamycin), STAT3 (signal transducer and activator of transcription 3), and NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling pathways; however, selective inhibitors of those pathways did not reduce DENV infection. Similar to the vacuolar-type H+-ATPase inhibitor bafilomycin A1, both niclosamide and other protonophores, such as CCCP (carbonyl cyanide m-chlorophenyl hydrazone), and FCCP (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone), effectively reduced endosomal acidification and viral dsRNA replication. Co-administration of a single dose of niclosamide partially decreased viral replication, viral encephalitis, and mortality in DENV-infected ICR suckling mice. Significance These results demonstrate that niclosamide diminishes viral infection by hindering endosomal acidification. Dengue and severe dengue cause global health concerns annually. Without antiviral drugs, supportive care is the only treatment option for patients with DENV infection. A current vaccine has been approved for protection against DENV infection; however, the potential risks and challenges associated with the immunopathogenesis of DENV remain unresolved. For anti-dengue therapy, the repurposing of drugs with antimicrobial and anticancer properties is a possible pharmacological strategy. In this study, we evaluated the potential antiviral effects of the antiparasitic drug niclosamide, considering its current pharmacological efficacy against arthropod-borne Zika virus infection. Using in vitro and in vivo models of DENV infection, we demonstrated that one of the therapeutic effects of niclosamide is to significantly target endosomal acidification. Following safety screening, repurposing niclosamide treatment may facilitate the development of anti-dengue drugs in the near future.
Collapse
Affiliation(s)
- Jo-Chi Kao
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Ting Tsai
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min-Ru Ho
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Kai Jhan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Jing Shen
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ting Wang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Marzinek JK, Bag N, Huber RG, Holdbrook DA, Wohland T, Verma CS, Bond PJ. A Funneled Conformational Landscape Governs Flavivirus Fusion Peptide Interaction with Lipid Membranes. J Chem Theory Comput 2018; 14:3920-3932. [DOI: 10.1021/acs.jctc.8b00438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jan K. Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | | | - Roland G. Huber
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Daniel A. Holdbrook
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | | | - Chandra S. Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 63755
| | - Peter J. Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| |
Collapse
|
12
|
Vanegas JM, Heinrich F, Rogers DM, Carson BD, La Bauve S, Vernon BC, Akgun B, Satija S, Zheng A, Kielian M, Rempe SB, Kent MS. Insertion of Dengue E into lipid bilayers studied by neutron reflectivity and molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1216-1230. [PMID: 29447917 DOI: 10.1016/j.bbamem.2018.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 02/01/2023]
Abstract
The envelope (E) protein of Dengue virus rearranges to a trimeric hairpin to mediate fusion of the viral and target membranes, which is essential for infectivity. Insertion of E into the target membrane serves to anchor E and possibly also to disrupt local order within the membrane. Both aspects are likely to be affected by the depth of insertion, orientation of the trimer with respect to the membrane normal, and the interactions that form between trimer and membrane. In the present work, we resolved the depth of insertion, the tilt angle, and the fundamental interactions for the soluble portion of Dengue E trimers (sE) associated with planar lipid bilayer membranes of various combinations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), and cholesterol (CHOL) by neutron reflectivity (NR) and by molecular dynamics (MD) simulations. The results show that the tip of E containing the fusion loop (FL) is located at the interface of the headgroups and acyl chains of the outer leaflet of the lipid bilayers, in good agreement with prior predictions. The results also indicate that E tilts with respect to the membrane normal upon insertion, promoted by either the anionic lipid POPG or CHOL. The simulations show that tilting of the protein correlates with hydrogen bond formation between lysines and arginines located on the sides of the trimer close to the tip (K246, K247, and R73) and nearby lipid headgroups. These hydrogen bonds provide a major contribution to the membrane anchoring and may help to destabilize the target membrane.
Collapse
Affiliation(s)
- Juan M Vanegas
- Sandia National Laboratories, Albuquerque, NM, United States
| | - Frank Heinrich
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD, United States; Department of Physics, Carnegie Mellon University, Pittsburgh, PA, United States
| | - David M Rogers
- Sandia National Laboratories, Albuquerque, NM, United States
| | - Bryan D Carson
- Sandia National Laboratories, Albuquerque, NM, United States
| | - Sadie La Bauve
- Sandia National Laboratories, Albuquerque, NM, United States
| | - Briana C Vernon
- Sandia National Laboratories, Albuquerque, NM, United States
| | - Bulent Akgun
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD, United States
| | - Sushil Satija
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD, United States
| | - Aihua Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Susan B Rempe
- Sandia National Laboratories, Albuquerque, NM, United States
| | - Michael S Kent
- Sandia National Laboratories, Albuquerque, NM, United States.
| |
Collapse
|
13
|
Zhou JS, Chen AYS, Drucker M, Lopez NH, Carpenter A, Ng JCK. Whitefly feeding behavior and retention of a foregut-borne crinivirus exposed to artificial diets with different pH values. INSECT SCIENCE 2017; 24:1079-1092. [PMID: 28677320 DOI: 10.1111/1744-7917.12503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/08/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Transmission of plant viruses by phytophagous hemipteran insects encompasses complex interactions underlying a continuum of processes involved in virus acquisition, retention and inoculation combined with vector feeding behavior. Here, we investigated the effects of dietary pH on whitefly (Bemisia tabaci) feeding behavior and release of Lettuce infectious yellows virus (LIYV) virions retained in the vector's foregut. Electrical penetration graph analysis revealed that variables associated with whitefly probing and ingestion did not differ significantly in pH (4, 7.4, and 9) adjusted artificial diets. To investigate virus retention and release, whiteflies allowed to acquire LIYV virions in a pH 7.4 artificial diet were fed pH 4, 7.4, or 9 virion-free artificial (clearing) diets. Immunofluorescent localization analyses indicated that virions remained bound to the foreguts of approximately 20%-24% of vectors after they fed on each of the 3 pH-adjusted clearing diets. When RNA preparations from the clearing diets were analyzed by reverse transcription (RT) nested-PCR and, in some cases, real-time qPCR, successful amplification of LIYV-specific sequence was infrequent but consistently repeatable for the pH 7.4 diet but never observed for the pH 4 and 9 diets, suggesting a weak pH-dependent effect for virion release. Viruliferous vectors that fed on each of the 3 pH-adjusted clearing diets transmitted LIYV to virus-free plants. These results suggest that changes in pH values alone in artificial diet do not result in observable changes in whitefly feeding behaviors, an observation that marks a first in the feeding of artificial diet by whitefly vectors; and that there is a potential causal and contingent relationship between the pH in artificial diet and the release/inoculation of foregut bound virions.
Collapse
Affiliation(s)
- Jaclyn S Zhou
- Department of Plant Pathology and Microbiology, and Center for Disease Vector Research, University of California, Riverside, California, USA
| | - Angel Y S Chen
- Department of Plant Pathology and Microbiology, and Center for Disease Vector Research, University of California, Riverside, California, USA
| | - Martin Drucker
- INRA, UMR BGPI Plant Pathogen Interactions, Montpellier Cedex 5, France
| | | | | | - James C K Ng
- Department of Plant Pathology and Microbiology, and Center for Disease Vector Research, University of California, Riverside, California, USA
| |
Collapse
|
14
|
New insights into flavivirus biology: the influence of pH over interactions between prM and E proteins. J Comput Aided Mol Des 2017; 31:1009-1019. [DOI: 10.1007/s10822-017-0076-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
|
15
|
Bauve EL, Vernon BC, Ye D, Rogers DM, Siegrist CM, Carson BD, Rempe SB, Zheng A, Kielian M, Shreve AP, Kent MS. Method for measuring the unbinding energy of strongly-bound membrane-associated proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2753-2762. [PMID: 27425029 DOI: 10.1016/j.bbamem.2016.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/23/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022]
Abstract
We describe a new method to measure the activation energy for unbinding (enthalpy ΔH*u and free energy ΔG*u) of a strongly-bound membrane-associated protein from a lipid membrane. It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method is used to determine ΔH*u and ΔG*u for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH5.5. ΔH*u is determined from the Arrhenius equation whereas ΔG*u is determined by fitting the data to a model based on mean first passage time for escape from a potential well. The binding free energy ΔGb of sE was also measured at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipid bilayer. The unbinding free energy (20±3kcal/mol, 20% PG) was found to be roughly three times the binding energy per monomer, (7.8±0.3kcal/mol for 30% PG, or est. 7.0kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH5.5, but assembles into trimers after associating with membranes. This new method to determine unbinding energies should be useful to understand better the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.
Collapse
Affiliation(s)
| | | | - Dongmei Ye
- Sandia National Laboratories, Albuquerque, NM 87185
| | - David M Rogers
- Department of Chemistry, University of South Florida, 4202 E Fowler Av, Tampa, FL 33620
| | | | | | | | - Aihua Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Andrew P Shreve
- Center for Biomedical Engineering and Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | | |
Collapse
|
16
|
Reddy T, Sansom MSP. Computational virology: From the inside out. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1610-8. [PMID: 26874202 PMCID: PMC4884666 DOI: 10.1016/j.bbamem.2016.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/23/2022]
Abstract
Viruses typically pack their genetic material within a protein capsid. Enveloped viruses also have an outer membrane made up of a lipid bilayer and membrane-spanning glycoproteins. X-ray diffraction and cryoelectron microscopy provide high resolution static views of viral structure. Molecular dynamics (MD) simulations may be used to provide dynamic insights into the structures of viruses and their components. There have been a number of simulations of viral capsids and (in some cases) of the inner core of RNA or DNA packaged within them. These simulations have generally focussed on the structural integrity and stability of the capsid and/or on the influence of the nucleic acid core on capsid stability. More recently there have been a number of simulation studies of enveloped viruses, including HIV-1, influenza A, and dengue virus. These have addressed the dynamic behaviour of the capsid, the matrix, and/or of the outer envelope. Analysis of the dynamics of the lipid bilayer components of the envelopes of influenza A and of dengue virus reveals a degree of biophysical robustness, which may contribute to the stability of virus particles in different environments. Significant computational challenges need to be addressed to aid simulation of complex viruses and their membranes, including the need to integrate structural data from a range of sources to enable us to move towards simulations of intact virions. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Tyler Reddy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
17
|
Pöyry S, Vattulainen I. Role of charged lipids in membrane structures - Insight given by simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2322-2333. [PMID: 27003126 DOI: 10.1016/j.bbamem.2016.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/28/2023]
Abstract
Lipids and proteins are the main components of cell membranes. It is becoming increasingly clear that lipids, in addition to providing an environment for proteins to work in, are in many cases also able to modulate the structure and function of those proteins. Particularly charged lipids such as phosphatidylinositols and phosphatidylserines are involved in several examples of such effects. Molecular dynamics simulations have proved an invaluable tool in exploring these aspects. This so-called computational microscope can provide both complementing explanations for the experimental results and guide experiments to fruitful directions. In this paper, we review studies that have utilized molecular dynamics simulations to unravel the roles of charged lipids in membrane structures. We focus on lipids as active constituents of the membranes, affecting both general membrane properties as well as non-lipid membrane components, mainly proteins. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Sanja Pöyry
- Department of Physics, Tampere University of Technology, POB 692, FI-33101 Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, POB 692, FI-33101 Tampere, Finland; MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark; Department of Physics, University of Helsinki, POB 64, FI-00014 Helsinki, Finland.
| |
Collapse
|
18
|
Reddy T, Sansom MSP. The Role of the Membrane in the Structure and Biophysical Robustness of the Dengue Virion Envelope. Structure 2016; 24:375-82. [PMID: 26833387 PMCID: PMC4780862 DOI: 10.1016/j.str.2015.12.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 01/11/2023]
Abstract
The dengue virion is surrounded by an envelope of membrane proteins surrounding a lipid bilayer. We have combined the cryoelectron microscopy structures of the membrane proteins (PDB: 3J27) with a lipid bilayer whose composition is based on lipidomics data for insect cell membranes, to obtain a near-atomic resolution computational model of the envelope of the dengue virion. A coarse-grained molecular dynamics simulation on the microsecond timescale enables analysis of key biophysical properties of the dengue outer envelope. Properties analyzed include area per lipid values (for a spherical virion with a mixed lipid composition), bilayer thickness, and lipid diffusion coefficients. Despite the absence of cholesterol from the lipid bilayer, the virion exhibits biophysical robustness (slow lipid diffusion alongside stable bilayer thickness, virion diameter, and shape) that matches the cholesterol-rich membrane of influenza A, with similarly anomalous diffusion of lipids. Biophysical robustness of the envelope may confer resilience to environmental perturbations. The dengue virus envelope is a lipid bilayer plus an outer layer of membrane proteins The structures of the proteins plus lipidomics data were used to model the envelope Microsecond MD simulations revealed the dynamic behavior of the lipid bilayer Protein interactions confer “raft-like” robustness on a cholesterol-free membrane
Collapse
Affiliation(s)
- Tyler Reddy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|