1
|
Rivel T, Biriukov D, Kabelka I, Vácha R. Free Energy of Membrane Pore Formation and Stability from Molecular Dynamics Simulations. J Chem Inf Model 2025; 65:908-920. [PMID: 39792085 PMCID: PMC11776052 DOI: 10.1021/acs.jcim.4c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Understanding the molecular mechanisms of pore formation is crucial for elucidating fundamental biological processes and developing therapeutic strategies, such as the design of drug delivery systems and antimicrobial agents. Although experimental methods can provide valuable information, they often lack the temporal and spatial resolution necessary to fully capture the dynamic stages of pore formation. In this study, we present two novel collective variables (CVs) designed to characterize membrane pore behavior, particularly its energetics, through molecular dynamics (MD) simulations. The first CV─termed Full-Path─effectively tracks both the nucleation and expansion phases of pore formation. The second CV─called Rapid─is tailored to accurately assess pore expansion in the limit of large pores, providing quick and reliable method for evaluating membrane line tension under various conditions. Our results clearly demonstrate that the line tension predictions from both our CVs are in excellent agreement. Moreover, these predictions align qualitatively with available experimental data. Specifically, they reflect higher line tension of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) lipids compared to pure POPC, the decrease in line tension of POPC vesicles as the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) content increases, and higher line tension when ionic concentration is increased. Notably, these experimental trends are accurately captured only by the all-atom CHARMM36 and prosECCo75 force fields. In contrast, the all-atom Slipids force field, along with the coarse-grained Martini 2.2, Martini 2.2 polarizable, and Martini 3 models, show varying degrees of agreement with experiments. Our developed CVs can be adapted to various MD simulation engines for studying pore formation, with potential implications in membrane biophysics. They are also applicable to simulations involving external agents, offering an efficient alternative to existing methodologies.
Collapse
Affiliation(s)
- Timothée Rivel
- Central
European Institute of Technology, Masaryk
University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Denys Biriukov
- Central
European Institute of Technology, Masaryk
University, Kamenice 5, CZ-62500 Brno, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Ivo Kabelka
- Central
European Institute of Technology, Masaryk
University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Robert Vácha
- Central
European Institute of Technology, Masaryk
University, Kamenice 5, CZ-62500 Brno, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Department
of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, CZ-61137 Brno, Czech
Republic
| |
Collapse
|
2
|
Dehury B, Mishra S, Panda S, Singh MK, Simha NL, Pati S. Structural Dynamics of Neutral Amino Acid Transporter SLC6A19 in Simple and Complex Lipid Bilayers. J Cell Biochem 2025; 126:e30693. [PMID: 39749651 PMCID: PMC11696832 DOI: 10.1002/jcb.30693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025]
Abstract
B0AT1 (SLC6A19) is a major sodium-coupled neutral amino acid transporter that relies on angiotensin converting enzyme 2 (ACE2) or collectrin for membrane trafficking. Despite its significant role in disorders associated with amino acid metabolism, there is a deficit of comprehensive structure-function understanding of B0AT1 in lipid environment. Herein, we have employed molecular dynamics (MD) simulations to explore the architectural characteristics of B0AT1 in two distinct environments: a simplified POPC bilayer and a complex lipid system replicating the native membrane composition. Notably, our B0AT1 analysis in terms of structural stability and regions of maximum flexibility shows consistency in both the systems with enhanced structural features in the case of complex lipid system. Our findings suggest that diacylglycerol phospholipids significantly alter the pore radius, hydrophobic index, and surface charge distribution of B0AT1, thereby affecting the flexibility of transmembrane helices TM7, TM12, and loop connecting TM7-TM8, crucial for ACE2-B0AT1 interaction. Pro41, Ser190, Arg214, Arg240, Ser413, Pro414, Cys463, and Val582 are among the most prominent lipid binding residues that might influence B0AT1 functionality. We also perceive notable lipid mediated deviation in the degree of tilt and loss of helicity in TM1 and TM6 which might affect the substrate binding sites S1 and S2 in B0AT1. Considerably, destabilization in the structure of B0AT1 in lipid environment was evident upon mutation in TM domain, associated with Hartnup disorder through various structure-based protein stability tools. Our two-tiered approach allowed us to validate the use of POPC as a baseline for initial analyses of SLC transporters. Altogether, our all-atoms MD study provides a platform for future investigations into the structure-function mechanism of B0AT1 in realistic lipid mimetic bilayers and offers a framework for developing new therapeutic agents targeting this transporter.
Collapse
Affiliation(s)
- Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life SciencesManipal Academy of Higher EducationManipalIndia
- Bioinformatics Division I Microbiology DivisionICMR‐Regional Medical Research CentreBhubaneswarOdishaIndia
| | - Sarbani Mishra
- Bioinformatics Division I Microbiology DivisionICMR‐Regional Medical Research CentreBhubaneswarOdishaIndia
| | - Sunita Panda
- Bioinformatics Division I Microbiology DivisionICMR‐Regional Medical Research CentreBhubaneswarOdishaIndia
| | | | - Nischal L. Simha
- Department of Bioinformatics, Manipal School of Life SciencesManipal Academy of Higher EducationManipalIndia
| | - Sanghamitra Pati
- Bioinformatics Division I Microbiology DivisionICMR‐Regional Medical Research CentreBhubaneswarOdishaIndia
| |
Collapse
|
3
|
Nambiar NR, Gaur S, Ramachandran G, Pandey RS, M S, Nath LR, Dutta T, Sudheesh MS. Remote loading in liposome: a review of current strategies and recent developments. J Liposome Res 2024; 34:658-670. [PMID: 38343137 DOI: 10.1080/08982104.2024.2315449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 11/28/2024]
Abstract
Liposomes have gained prominence as nanocarriers in drug delivery, and the number of products in the market is increasing steadily, particularly in cancer therapeutics. Remote loading of drugs in liposomes is a significant step in the translation and commercialization of the first liposomal product. Low drug loading and drug leakage from liposomes is a translational hurdle that was effectively circumvented by the remote loading process. Remote loading or active loading could load nearly 100% of the drug, which was not possible with the passive loading procedure. A major drawback of conventional remote loading is that only a very small percentage of the drugs are amenable to this method. Therefore, methods for drug loading are still a problem for several drugs. The loading of multiple drugs in liposomes to improve the efficacy and safety of nanomedicine has gained prominence recently with the introduction of a marketed formulation (Vyxeos) that improves overall survival in acute myeloid leukemia. Different strategies for modifying the remote loading process to overcome the drawbacks of the conventional method are discussed here. The review aims to discuss the latest developments in remote loading technology and its implications in liposomal drug delivery.
Collapse
Affiliation(s)
- Navami Rajan Nambiar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, India
| | - Shreya Gaur
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, India
| | - Gayathri Ramachandran
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Sabitha M
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, India
| | | | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, India
| |
Collapse
|
4
|
Pem B, Liu Q, Pašalić L, Edely M, de la Chapelle ML, Bakarić D. Uncoated gold nanoparticles create fewer and less localized defects in model prokaryotic than in model eukaryotic lipid membranes. Colloids Surf B Biointerfaces 2024; 243:114158. [PMID: 39137531 DOI: 10.1016/j.colsurfb.2024.114158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
The rise of the populations of antibiotic resistant bacteria represents an increasing threat to human health. In addition to the synthesis of new antibiotics, which is an extremely expensive and time-consuming process, one of the ways to combat bacterial infections is the use of gold nanoparticles (Au NPs) as the vehicles for targeted delivery of therapeutic drugs. Since such a strategy requires the investigation of the effect of Au NPs (with and without drugs) on both bacterial and human cells, we investigated how the presence of coating-free Au NPs affects the physicochemical properties of lipid membranes that model prokaryotic (PRO) and eukaryotic (EU) cells. PRO/EU systems prepared as multilamellar liposomes (MLVs) and hybrid structures (HSs) from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG)/1,2-dipalmitoyl-sn-glycero-3-phosphoserine (DPPS) in the absence (MLVs)/presence (HSs) of differently distributed Au NPs (sizes ∼20 nm) reported stabilization of the gel phase of PRO systems in comparison with EU one (DSC data of PRO/EU were Tm(MLVs) ≈ 41.8 °C/42.0 °C, Tm¯ (HSs) ≈ 43.1 °C/42.4 °C, whereas UV-Vis response Tm(MLVs) ≈ 41.5 °C/42.0 °C, Tm¯ (HSs) ≈ 42.9 °C/41.1 °C). Vibrational spectroscopic data unraveled a substantial impact of Au NPs on the non-polar part of lipid bilayers, emphasizing the increase of kink and gauche conformers of the hydrocarbon chain. By interpreting the latter as Au NPs-induced defects, which exert the greatest effect when Au NPs are found exclusively outside the lipid membrane, these findings suggested that Au NPs reduced the compactness of EU-based lipid bilayers much more than in analogous PRO systems. Since the uncoated Au NPs manifested adverse effects when applied as antimicrobials, the results obtained in this work contribute towards recognizing AuNP functionalization as a strategy in tuning and reversing this effect.
Collapse
Affiliation(s)
- Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Qiqian Liu
- The Institute of Molecules and Materials of Le Mans, University of Le Mans, Avenue Olivier Messiaen, Le Mans cedex 9, 72085, France
| | - Lea Pašalić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Mathieu Edely
- The Institute of Molecules and Materials of Le Mans, University of Le Mans, Avenue Olivier Messiaen, Le Mans cedex 9, 72085, France
| | - Marc Lamy de la Chapelle
- The Institute of Molecules and Materials of Le Mans, University of Le Mans, Avenue Olivier Messiaen, Le Mans cedex 9, 72085, France
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.
| |
Collapse
|
5
|
Vo ATN, Murphy MA, Prabhu RK, Stone TW. Influence of phospholipid head and tail molecular structures on cell membrane mechanical response under tension. J Chem Phys 2024; 161:085103. [PMID: 39177086 DOI: 10.1063/5.0214893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024] Open
Abstract
Biological cell membranes are primarily comprised of a diverse lipid bilayer with multiple phospholipid (lipid) types, each of which is comprised of a hydrophilic headgroup and two hydrophobic hydrocarbon tails. The lipid type determines the molecular structure of head and tail groups, which can affect membrane mechanics at nanoscale and subsequently cell viability under mechanical loading. Hence, using molecular dynamics simulations, the current study investigated seven membrane phospholipids and the effect of their structural differences on physical deformation, mechanoporation damage, and mechanical failure of the membranes under tension. The inspected phospholipids showed similar yield stresses and strains, as well as pore evolution and damage, but significantly different failure strains. In general, failure occurred at a lower strain for lipids with a larger equilibrium area per lipid. The obtained results suggest that larger headgroup structure, greater degree of unsaturation, and tail-length asymmetry influenced the phospholipids' ability to pack against each other, increased the fluidity and equilibrium area per lipid of the membrane, and resulted in lower failure strain. Overall, this study provides insights on how different phospholipid structures affect membrane physical responses at the molecular level and serves as a reference for future studies of more complex membrane systems with intricate biophysical properties.
Collapse
Affiliation(s)
- Anh T N Vo
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Starkville, Mississippi 39759, USA
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Mississippi 39762, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Michael A Murphy
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Starkville, Mississippi 39759, USA
| | - Raj K Prabhu
- NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058, USA
| | - Tonya W Stone
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Starkville, Mississippi 39759, USA
- Department of Mechanical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
6
|
Smith RS, Weaver DR, King GM, Kosztin I. Chain-Length Dependence of Peptide-Lipid Bilayer Interaction Strength and Binding Kinetics: A Combined Theoretical and Experimental Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14467-14475. [PMID: 38963062 DOI: 10.1021/acs.langmuir.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Physical interactions between polypeptide chains and lipid membranes underlie critical cellular processes. Yet, despite fundamental importance, key mechanistic aspects of these interactions remain elusive. Bulk experiments have revealed a linear relationship between free energy and peptide chain length in a model system, but does this linearity extend to the interaction strength and to the kinetics of lipid binding? To address these questions, we utilized a combination of coarse-grained molecular dynamics (CG MD) simulations, analytical modeling, and atomic force microscopy (AFM)-based single molecule force spectroscopy. Following previous bulk experiments, we focused on interactions between short hydrophobic peptides (WLn, n = 1, ..., 5) with 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers, a simple system that probes peptide primary structure effects. Potentials of mean force extracted from CG MD recapitulated the linearity of free energy with the chain length. Simulation results were quantitatively connected to bulk biochemical experiments via a single scaling factor of order unity, corroborating the methodology. Additionally, CG MD revealed an increase in the distance to the transition state, a result that weakens the dependence of the dissociation force on the peptide chain length. AFM experiments elucidated rupture force distributions and, through modeling, intrinsic dissociation rates. Taken together, the analysis indicates a rupture force plateau in the WLn-POPC system, suggesting that the final rupture event involves the last 2 or 3 residues. In contrast, the linear dependence on chain length was preserved in the intrinsic dissociation rate. This study advances the understanding of peptide-lipid interactions and provides potentially useful insights for the design of peptides with tailored membrane-interacting properties.
Collapse
Affiliation(s)
- Ryan S Smith
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Dylan R Weaver
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Gavin M King
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Ioan Kosztin
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
7
|
Vo ATN, Murphy MA, Phan PK, Prabhu RK, Stone TW. Effect of Force Field Resolution on Membrane Mechanical Response and Mechanoporation Damage under Deformation Simulations. Mol Biotechnol 2024; 66:865-875. [PMID: 37016179 DOI: 10.1007/s12033-023-00726-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/19/2023] [Indexed: 04/06/2023]
Abstract
Damage induced by transient disruption and mechanoporation in an intact cell membrane is a vital nanoscale biomechanical mechanism that critically affects cell viability. To complement experimental studies of mechanical membrane damage and disruption, molecular dynamics (MD) simulations have been performed at different force field resolutions, each of which follows different parameterization strategies and thus may influence the properties and dynamics of membrane systems. Therefore, the current study performed tensile deformation MD simulations of bilayer membranes using all-atom (AA), united-atom (UA), and coarse-grained Martini (CG-M) models to investigate how the damage biomechanics differs across atomistic and coarse-grained (CG) simulations. The mechanical response and mechanoporation damage were qualitatively similar but quantitatively different in the three models, including some progressive changes based on the coarse-graining level. The membranes yielded and reached ultimate strength at similar strains; however, the coarser systems exhibited lower average yield stresses and failure strains. The average failure strain in the UA model was approximately 7% lower than the AA, and the CG-M was 20% lower than UA and 27% lower than AA. The CG systems also nucleated a higher number of pores and larger pores, which resulted in higher damage during the deformation process. Overall, the study provides insight on the impact of force field-a critical factor in modeling biomolecular systems and their interactions-in inspecting membrane mechanosensitive responses and serves as a reference for justifying the appropriate force field for future studies of more complex membranes and more diverse biomolecular assemblies.
Collapse
Affiliation(s)
- Anh T N Vo
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, 200 Research Blvd, Starkville, MS, 39759, USA.
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Starkville, MS, 39762, USA.
| | - Michael A Murphy
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, 200 Research Blvd, Starkville, MS, 39759, USA
| | - Phong K Phan
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, 200 Research Blvd, Starkville, MS, 39759, USA
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Starkville, MS, 39762, USA
| | - Raj K Prabhu
- NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Tonya W Stone
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, 200 Research Blvd, Starkville, MS, 39759, USA
- Department of Mechanical Engineering, Mississippi State University, Mississippi State, Starkville, MS, 39762, USA
| |
Collapse
|
8
|
Filipe HAL, Moreira AF, Miguel SP, Ribeiro MP, Coutinho P. Interaction of Near-Infrared (NIR)-Light Responsive Probes with Lipid Membranes: A Combined Simulation and Experimental Study. Pharmaceutics 2023; 15:1853. [PMID: 37514039 PMCID: PMC10383845 DOI: 10.3390/pharmaceutics15071853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is considered a major societal challenge for the next decade worldwide. Developing strategies for simultaneous diagnosis and treatment has been considered a promising tool for fighting cancer. For this, the development of nanomaterials incorporating prototypic near-infrared (NIR)-light responsive probes, such as heptamethine cyanines, has been showing very promising results. The heptamethine cyanine-incorporating nanomaterials can be used for a tumor's visualization and, upon interaction with NIR light, can also produce a photothermal/photodynamic effect with a high spatio-temporal resolution and minimal side effects, leading to an improved therapeutic outcome. In this work, we studied the interaction of 12 NIR-light responsive probes with lipid membrane models by molecular dynamics simulations. We performed a detailed characterization of the location, orientation, and local perturbation effects of these molecules on the lipid bilayer. Based on this information, the probes were divided into two groups, predicting a lower and higher perturbation of the lipid bilayer. From each group, one molecule was selected for testing in a membrane leakage assay. The experimental data validate the hypothesis that molecules with charged substituents, which function as two polar anchors for the aqueous phase while spanning the membrane thickness, are more likely to disturb the membrane by the formation of defects and pores, increasing the membrane leakage. The obtained results are expected to contribute to the selection of the most suitable molecules for the desired application or eventually guiding the design of probe modifications for achieving an optimal interaction with tumor cell membranes.
Collapse
Affiliation(s)
- Hugo A L Filipe
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | - André F Moreira
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Sónia P Miguel
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Maximiano P Ribeiro
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
9
|
Islam K, Razizadeh M, Liu Y. Coarse-grained molecular simulation of extracellular vesicle squeezing for drug loading. Phys Chem Chem Phys 2023; 25:12308-12321. [PMID: 37082907 PMCID: PMC10337604 DOI: 10.1039/d3cp00387f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
In recent years, extracellular vesicles have become promising carriers as next-generation drug delivery platforms. Effective loading of exogenous cargos without compromising the extracellular vesicle membrane is a major challenge. Rapid squeezing through nanofluidic channels is a widely used approach to load exogenous cargoes into the EV through the nanopores generated temporarily on the membrane. However, the exact mechanism and dynamics of nanopore opening, as well as cargo loading through nanopores during the squeezing process remains unknown and it is impossible to visualize or quantify it experimentally due to the small size of the EV and the fast transient process. This paper developed a systemic algorithm to simulate nanopore formation and predict drug loading during extracellular vesicle (EV) squeezing by leveraging the power of coarse-grain (CG) molecular dynamics simulations with fluid dynamics. The EV CG beads are coupled with implicit the fluctuating lattice Boltzmann solvent. The effects of EV properties and various squeezing test parameters, such as EV size, flow velocity, channel width, and length, on pore formation and drug loading efficiency are analyzed. Based on the simulation results, a phase diagram is provided as a design guide for nanochannel geometry and squeezing velocity to generate pores on the membrane without damaging the EV. This method can be utilized to optimize the nanofluidic device configuration and flow setup to obtain desired drug loading into EVs.
Collapse
Affiliation(s)
- Khayrul Islam
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Meghdad Razizadeh
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
10
|
Ermakova EA, Kurbanov RK. Interaction of Uperin Peptides with Model Membranes: Molecular Dynamics Study. MEMBRANES 2023; 13:370. [PMID: 37103797 PMCID: PMC10146956 DOI: 10.3390/membranes13040370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The interaction of antimicrobial and amyloid peptides with cell membranes is a critical step in their activities. Peptides of the uperin family obtained from the skin secretion of Australian amphibians demonstrate antimicrobial and amyloidogenic properties. All-atomic molecular dynamics and an umbrella sampling approach were used to study the interaction of uperins with model bacterial membrane. Two stable configurations of peptides were found. In the bound state, the peptides in helical form were located right under the head group region in parallel orientation with respect to the bilayer surface. Stable transmembrane configuration was observed for wild-type uperin and its alanine mutant in both alpha-helical and extended unstructured forms. The potential of mean force characterized the process of peptide binding from water to the lipid bilayer and its insertion into the membrane, and revealed that the transition of uperins from the bound state to the transmembrane position was accompanied by the rotation of peptides and passes through the energy barrier of 4-5 kcal/mol. Uperins have a weak effect on membrane properties.
Collapse
|
11
|
Anosov AA, Smirnova EY, Korepanova EA, Kazamanov VA, Derunets AS. Different effects of two Poloxamers (L61 and F68) on the conductance of bilayer lipid membranes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:14. [PMID: 36920579 DOI: 10.1140/epje/s10189-023-00270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The integral conductance of planar lipid bilayer membranes in the presence of two Poloxamers (Pluronics) L61 and F68 with the same lengths of hydrophobic poly(propylene oxide) blocks and the different lengths of hydrophilic poly(ethylene oxide) blocks increases with an increase in the concentration of both Pluronics; however, the shape of the conductance-concentration curves is super linear for L61 and sublinear for F68. In the presence of both Pluronics, rare discrete current jumps are observed against the background of continuous current. At high concentrations, the I-V curves of membranes with both L61 and F68 became nonlinear at sufficiently low voltages but differed significantly. At voltages greater than 50 mV, the conductance of membranes with L61 increased sharply and quantized jumps were observed toward higher conductance, which could be interpreted as the appearance of additional pores. On the contrary, the conductance of membranes with F68 decreased and quantized jumps to lower conductance were observed, which could be interpreted as blocking of already existing pores. We attributed the differences in the conductance-concentration and I-V curves of these two Pluronics to their different effects on the dynamics of membrane hydration and, accordingly, on the probability of formation of conducting pores.
Collapse
Affiliation(s)
- A A Anosov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Kotelnikov Institute of Radioengineering and Electronics of RAS, Moscow, Russia
| | - E Yu Smirnova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - E A Korepanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - V A Kazamanov
- MIREA-Russian Technological University, Moscow, Russia
| | - A S Derunets
- National Research Center Kurchatov Institute, Moscow, Russia.
| |
Collapse
|
12
|
Vo A, Murphy M, Phan P, Stone T, Prabhu R. Molecular Dynamics Simulation of Membrane Systems in the context of Traumatic Brain Injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Gössweiner-Mohr N, Siligan C, Pluhackova K, Umlandt L, Koefler S, Trajkovska N, Horner A. The Hidden Intricacies of Aquaporins: Remarkable Details in a Common Structural Scaffold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202056. [PMID: 35802902 DOI: 10.1002/smll.202202056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Evolution turned aquaporins (AQPs) into the most efficient facilitators of passive water flow through cell membranes at no expense of solute discrimination. In spite of a plethora of solved AQP structures, many structural details remain hidden. Here, by combining extensive sequence- and structural-based analysis of a unique set of 20 non-redundant high-resolution structures and molecular dynamics simulations of four representatives, key aspects of AQP stability, gating, selectivity, pore geometry, and oligomerization, with a potential impact on channel functionality, are identified. The general view of AQPs possessing a continuous open water pore is challenged and it is depicted that AQPs' selectivity is not exclusively shaped by pore-lining residues but also by the relative arrangement of transmembrane helices. Moreover, this analysis reveals that hydrophobic interactions constitute the main determinant of protein thermal stability. Finally, a numbering scheme of the conserved AQP scaffold is established, facilitating direct comparison of, for example, disease-causing mutations and prediction of potential structural consequences. Additionally, the results pave the way for the design of optimized AQP water channels to be utilized in biotechnological applications.
Collapse
Affiliation(s)
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, University of Stuttgart, Cluster of Excellence EXC 2075, Universitätsstr. 32, 70569, Stuttgart, Germany
| | - Linnea Umlandt
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Sabina Koefler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Natasha Trajkovska
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| |
Collapse
|
14
|
Boudreault F, Tan JJ, Grygorczyk R. Propidium uptake and ATP release in A549 cells share similar transport mechanisms. Biophys J 2022; 121:1593-1609. [PMID: 35398020 PMCID: PMC9117937 DOI: 10.1016/j.bpj.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022] Open
Abstract
The lipid bilayer of eukaryotic cells' plasma membrane is almost impermeable to small ions and large polar molecules, but its miniscule basal permeability in intact cells is poorly characterized. This report describes the intrinsic membrane permeability of A549 cells toward the charged molecules propidium (Pr2+) and ATP4-. Under isotonic conditions, we detected with quantitative fluorescence microscopy, a continuous low-rate uptake of Pr (∼150 × 10-21 moles (zmol)/h/cell, [Pr]o = 150 μM, 32°C). It was stimulated transiently but strongly by 66% hypotonic cell swelling reaching an influx amplitude of ∼1500 (zmol/h)/cell. The progressive Pr uptake with increasing [Pr]o (30, 150, and 750 μM) suggested a permeation mechanism by simple diffusion. We quantified separately ATP release with custom wide-field-of-view chemiluminescence imaging. The strong proportionality between ATP efflux and Pr2+ influx during hypotonic challenge, and the absence of stimulation of transmembrane transport following 300% hypertonic shock, indicated that ATP and Pr travel the same conductive pathway. The fluorescence images revealed a homogeneously distributed intracellular uptake of Pr not consistent with high-conductance channels expressed at low density on the plasma membrane. We hypothesized that the pathway consists of transiently formed water pores evenly spread across the plasma membrane. The abolition of cell swelling-induced Pr uptake with 500 μM gadolinium, a known modulator of membrane fluidity, supported the involvement of water pores whose formation depends on the membrane fluidity. Our study suggests an alternative model of a direct permeation of ATP (and other molecules) through the phospholipid bilayer, which may have important physiological implications.
Collapse
|
15
|
Nature of bilayer lipids affects membranes deformation and pore resealing during nanoparticle penetration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 132:112530. [DOI: 10.1016/j.msec.2021.112530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/17/2021] [Accepted: 10/30/2021] [Indexed: 01/31/2023]
|
16
|
Cruz VL, Ramos J, Martinez-Salazar J, Montalban-Lopez M, Maqueda M. The Role of Key Amino Acids in the Antimicrobial Mechanism of a Bacteriocin Model Revealed by Molecular Simulations. J Chem Inf Model 2021; 61:6066-6078. [PMID: 34874722 PMCID: PMC9178794 DOI: 10.1021/acs.jcim.1c00838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
The AS-48 bacteriocin is a potent
antimicrobial polypeptide with
enhanced stability due to its circular sequence of peptidic bonds.
The mechanism of biological action is still not well understood in
spite of both the elucidation of the molecular structure some years
ago and several experiments performed that yielded valuable information
about the AS-48 bacterial membrane poration activity. In this work,
we present a computational study at an atomistic scale to analyze
the membrane disruption mechanism. The process is based on the two-stage
model: (1) peptide binding to the bilayer surface and (2) membrane
poration due to the surface tension exerted by the peptide. Indeed,
the induced membrane tension mechanism is able to explain stable formation
of pores leading to membrane disruption. The atomistic detail obtained
from the simulations allows one to envisage the contribution of the
different amino acids during the poration process. Clustering of cationic
residues and hydrophobic interactions between peptide and lipids seem
to be essential ingredients in the process. GLU amino acids have shown
to enhance the membrane disrupting ability of the bacteriocin. TRP24–TRP24
interactions make also an important contribution in the initial stages
of the poration mechanism. The detailed atomistic information obtained
from the simulations can serve to better understand bacteriocin structural
characteristics to design more potent antimicrobial therapies.
Collapse
Affiliation(s)
- Víctor L Cruz
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, Madrid 28006, Spain
| | - Javier Ramos
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, Madrid 28006, Spain
| | - Javier Martinez-Salazar
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, Madrid 28006, Spain
| | - Manuel Montalban-Lopez
- Department of Microbiology, University of Granada, C/ Fuentenueva s/n, Granada 18071, Spain
| | - Mercedes Maqueda
- Department of Microbiology, University of Granada, C/ Fuentenueva s/n, Granada 18071, Spain
| |
Collapse
|
17
|
Trofimenko E, Grasso G, Heulot M, Chevalier N, Deriu MA, Dubuis G, Arribat Y, Serulla M, Michel S, Vantomme G, Ory F, Dam LC, Puyal J, Amati F, Lüthi A, Danani A, Widmann C. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore. eLife 2021; 10:69832. [PMID: 34713805 PMCID: PMC8639150 DOI: 10.7554/elife.69832] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (Vm). These findings provide the first unbiased genetic validation of the role of Vm in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the Vm to very low values (–150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (–5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo. Before a drug can have its desired effect, it must reach its target tissue or organ, and enter its cells. This is not easy because cells are surrounded by the plasma membrane, a fat-based barrier that separates the cell from its external environment. The plasma membrane contains proteins that act as channels, shuttling specific molecules in and out of the cell, and it also holds charge, with its inside surface being more negatively charged than its outside surface. Cell-penetrating peptides are short sequences of amino acids (the building blocks that form proteins) that carry positive charges. These positive charges allow them to cross the membrane easily, but it is not well understood how. To find out how cell-penetrating peptides cross the membrane, Trofimenko et al. attached them to dyes of different sizes. This revealed that the cell-penetrating peptides enter the cell through temporary holes called water pores, which measure about two nanometres across. The water pores form when the membrane becomes ‘megapolarized’, this is, when the difference in charge between the inside and the outside of the membrane becomes greater than normal. This can happen when the negative charge on the inside surface or the positive charge on the outer surface of the membrane increase. Megapolarization depends on potassium channels, which transport positive potassium ions outside the cell, making the outside of the membrane positive. When cell-penetrating peptides arrive at the outer surface of the cell near potassium channels, they make it even more positive. This increases the charge difference between the inside and the outside of the cell, allowing water pores to form. Once the peptides pass through the pores, the charge difference between the inside and the outside of the cell membrane dissipates, and the pores collapse. Drug developers are experimenting with attaching cell-penetrating peptides to drugs to help them get inside their target cells. Currently there are several experimental medications of this kind in clinical trials. Understanding how these peptides gain entry, and what size of molecule they could carry with them, provides solid ground for further drug development.
Collapse
Affiliation(s)
- Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence Research, Università della Svizzera italiana, Scuola Universitaria Professionale della Svizzera Italiana, Lugano, Switzerland
| | - Mathieu Heulot
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nadja Chevalier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marco A Deriu
- PolitoBIOMed Lab Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Gilles Dubuis
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Yoan Arribat
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marc Serulla
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sebastien Michel
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gil Vantomme
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Florine Ory
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Linh Chi Dam
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML (University Center of Legal Medicine), Lausanne University Hospital, Lausanne, Switzerland
| | - Francesca Amati
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence Research, Università della Svizzera italiana, Scuola Universitaria Professionale della Svizzera Italiana, Lugano, Switzerland
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Cruz CHB, Marzuoli I, Fraternali F. Virus-inspired designs of antimicrobial nanocapsules. Faraday Discuss 2021; 232:448-462. [PMID: 34596638 DOI: 10.1039/d1fd00041a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antimicrobial resistance is becoming a serious burden for drug design. The challenges are in finding novel approaches for effectively targeting a number of different bacterial strains, and in delivering these to the site of action. We propose here a novel approach that exploits the assembly of antimicrobial peptidic units in nanocapsules that can penetrate and rupture the bacterial membrane. Additionally, the chemical versatility of the designed units can be tailored to specific targets and to the delivery of genetic material in the cell. The proposed design exploits a β-annulus (sequence ITHVGGVGGSIMAPVAVSRQLVGS) triskelion unit from the Tomato Bushy Stunt Virus, able to self assemble in solution, and functionalised with antimicrobial sequences to form dodecahedral antimicrobial nanocapsules. The stability and the activity of the antimicrobial β-annulus capsule is measured by molecular dynamics simulations in water and in the presence of model membranes.
Collapse
Affiliation(s)
- Carlos H B Cruz
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Irene Marzuoli
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
19
|
Vasiliu T, Craciun BF, Neamtu A, Clima L, Isac DL, Maier SS, Pinteala M, Mocci F, Laaksonen A. In silico study of PEI-PEG-squalene-dsDNA polyplex formation: the delicate role of the PEG length in the binding of PEI to DNA. Biomater Sci 2021; 9:6623-6640. [PMID: 34582532 DOI: 10.1039/d1bm00973g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biocompatible hydrophilic polyethylene glycol (PEG) is widely used in biomedical applications, such as drug or gene delivery, tissue engineering or as an antifouling component in biomedical devices. Experimental studies have shown that the size of PEG can weaken polycation-polyanion interactions, like those between branched polyethyleneimine (b-PEI) and DNA in gene carriers, but details of its cause and underlying interactions on the atomic scale are still not clear. To better understand the interaction mechanisms in the formation of polyplexes between b-PEI-PEG based carriers and DNA, we have used a combination of in silico tools and experiments on three multicomponent systems differing in PEG MW. Using the PEI-PEG-squalene-dsDNA systems of the same size, both in the all-atom MD simulations and in experimental in-gel electrophoresis measurements, we found that the binding between DNA and the vectors is highly influenced by the size of PEG, with the binding efficiency increasing with a shorter PEG length. The mechanism of how PEG interferes with the binding between PEI and DNA is explained using a two-step MD simulation protocol that showed that the DNA-vector interactions are influenced by the PEG length due to the hydrogen bond formation between PEI and PEG. Although computationally demanding we find it important to study molecular systems of the same size both in silico and in a laboratory and to simulate the behaviour of the carrier prior to the addition of bioactive molecules to understand the molecular mechanisms involved in the formation of the polyplex.
Collapse
Affiliation(s)
- Tudor Vasiliu
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Bogdan Florin Craciun
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Andrei Neamtu
- Bioinformatics Laboratory, TRANSCEND IRO, Iaşi 700843, Romania
| | - Lilia Clima
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Dragos Lucian Isac
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Stelian S Maier
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania. .,Polymers Research Center, "Gheorghe Asachi" Technical University of Iasi, Iasi, 700487, Romania
| | - Mariana Pinteala
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Francesca Mocci
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania. .,Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Aatto Laaksonen
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania. .,Department of Materials and Environmental Chemistry, Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden.,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, PR China.,Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
20
|
Man VH, Li MS, Derreumaux P, Wang J, Nguyen PH. Molecular Mechanism of Ultrasound-Induced Structural Defects in Liposomes: A Nonequilibrium Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7945-7954. [PMID: 34161100 DOI: 10.1021/acs.langmuir.1c00555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The use of ultrasound in combination with liposomes is a promising approach to improve drug delivery. To achieve an optimal drug release rate, it is important to understand how ultrasound induces pathways on the liposome surface where drugs can be released from the liposome. To this end, we carry out large-scale ultrasound-induced molecular dynamics simulations for three single lipid component liposomes formed from the commonly used phospholipids: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoylphosphatidylcholine (DPPC), or phosphatidylcholine (POPC). The results show that ultrasound induces the detachment of two leaflets of the DOPC surface, suggesting that the drug release pathway may be through the low lipid packing areas on the stretched surface. In contrast, ultrasound induces pore formation on the surface of DPPC and DOPC, where drugs could escape from the liposomes. While the leaflet detachment and transient pore formation are the mechanisms of DOPC and DPPC, respectively, in both liquid-ordered and liquid-disordered phases, the leaflet detachment mechanism is switched to the transient pore formation mechanism on going from the liquid-ordered phase to the liquid-disordered phase in the POPC liposome. By adding 30% mol cholesterol, the leaflet detachment mechanism is observed in all liposomes. We found that the molecular origin that determines a mechanism is the competition between the intraleaflet and interleaflet interacting energy of lipids. The connection to experimental and theoretical modeling is discussed in some detail.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Philippe Derreumaux
- CNRS, Université de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Phuong H Nguyen
- CNRS, Université de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| |
Collapse
|
21
|
Zec N, Mangiapia G, Hendry AC, Barker R, Koutsioubas A, Frielinghaus H, Campana M, Ortega-Roldan JL, Busch S, Moulin JF. Mutually Beneficial Combination of Molecular Dynamics Computer Simulations and Scattering Experiments. MEMBRANES 2021; 11:507. [PMID: 34357157 PMCID: PMC8304056 DOI: 10.3390/membranes11070507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
We showcase the combination of experimental neutron scattering data and molecular dynamics (MD) simulations for exemplary phospholipid membrane systems. Neutron and X-ray reflectometry and small-angle scattering measurements are determined by the scattering length density profile in real space, but it is not usually possible to retrieve this profile unambiguously from the data alone. MD simulations predict these density profiles, but they require experimental control. Both issues can be addressed simultaneously by cross-validating scattering data and MD results. The strengths and weaknesses of each technique are discussed in detail with the aim of optimizing the opportunities provided by this combination.
Collapse
Affiliation(s)
- Nebojša Zec
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (N.Z.); (G.M.)
| | - Gaetano Mangiapia
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (N.Z.); (G.M.)
| | - Alex C. Hendry
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (A.C.H.); (J.L.O.-R.)
| | - Robert Barker
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK;
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (A.K.); (H.F.)
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (A.K.); (H.F.)
| | - Mario Campana
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Science & Technology Facilities Council, Didcot OX11 0QX, UK;
| | | | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (N.Z.); (G.M.)
| | - Jean-François Moulin
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (N.Z.); (G.M.)
| |
Collapse
|
22
|
Liu W, Zhou H, Qiu Z, Liu T, Yuan Y, Guan R, Li N, Wang W, Li X, Zhao C. Effect of short-chain chlorinated paraffins (SCCPs) on lipid membranes: Combination of molecular dynamics and membrane damage experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:144906. [PMID: 33631584 DOI: 10.1016/j.scitotenv.2020.144906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
In recent years, more attention has been paid to the biological effects of short-chain chlorinated paraffin (SCCP). Studies have shown that SCCPs exposure could cause metabolic damage and lipid metabolic damage. In the present work, based on E. coli membrane damage experiments and molecular dynamics (MD) simulation, the effects of SCCPs on the membrane structure and membrane properties were studied to explore the possible toxic damage effects of SCCPs on cell membrane. Experiments results showed that SCCPs had a significant inhibitory effect on E. coli. The E. coli cell membrane of the bacteria was broken and the macromolecules of the cell flowed out when exposed to SCCPs. SCCPs would lead to the decrease and depolarization of cell membrane potential, and then affect the integrity and permeability of cell membrane. The further molecular dynamic simulation revealed that SCCP molecules can easily enter the lipid DPPC membranes from the aqueous phase and tended to aggregate inside bilayer stably. The bound of SCCPs could lead to significant variations in DPPC bilayer with a less dense, more disorder and rougher layer, which thus made the damage of cell membrane. In a word, although the overall toxicity of SCCPs to cell was relatively weak, the damage to the cell membrane may be one of the mechanisms of its toxicity. MAIN FINDING OF THE WORK: The exposure of SCCPs could cause structural change of cell membrane in E. coli, which verified the damage to the cell membrane may be one of the mechanisms of its toxicity.
Collapse
Affiliation(s)
- Wencheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Haitao Zhou
- Neurology Department, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471009, China
| | - Zhiqiang Qiu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tingting Liu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730000, China
| | - Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruining Guan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningqi Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Weilin Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xin Li
- Henan University of Science and Technology, Luoyang 471023, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
23
|
Sharifian Gh M. Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules. Mol Pharm 2021; 18:2122-2141. [PMID: 33914545 DOI: 10.1021/acs.molpharmaceut.1c00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to measure the passive membrane permeation of drug-like molecules is of fundamental biological and pharmaceutical importance. Of significance, passive diffusion across the cellular membranes plays an effective role in the delivery of many pharmaceutical agents to intracellular targets. Hence, approaches for quantitative measurement of membrane permeability have been the topics of research for decades, resulting in sophisticated biomimetic systems coupled with advanced techniques. In this review, recent developments in experimental approaches along with theoretical models for quantitative and real-time analysis of membrane transport of drug-like molecules through mimetic and living cell membranes are discussed. The focus is on time-resolved fluorescence-based, surface plasmon resonance, and second-harmonic light scattering approaches. The current understanding of how properties of the membrane and permeant affect the permeation process is discussed.
Collapse
Affiliation(s)
- Mohammad Sharifian Gh
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
24
|
Prathyusha KR, Pagonabarraga I, Kumar PBS. Modification of lipid membrane compressibility induced by an electric field. Phys Rev E 2021; 102:062413. [PMID: 33466026 DOI: 10.1103/physreve.102.062413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/20/2020] [Indexed: 11/07/2022]
Abstract
Changes in membrane deformation and compressibility, induced by an external electric field, are investigated using coarse-grained martini force field simulations in a salt-free environment. We observe changes in the area of the membrane above a critical electric field. Below this value, the membrane compressibility modulus is found to decrease monotonically. For higher electric fields, the membrane projected area remains constant while the net interfacial area increases, with the corresponding compressibility moduli, show the opposite behavior. We find that the mechanical parameters, surface tension and bending modulus, of a freely floating membrane in the absence of explicit ions, are unaffected by the presence of the electric field. We believe these results have a bearing on our understanding of the electroformation of uncharged lipids in a salt-free environment.
Collapse
Affiliation(s)
- K R Prathyusha
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Ignacio Pagonabarraga
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Laussane (EPFL), Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland.,Departament de Física de la Matèria Condensada, Universitat de Barcelona, C. Martí Franquès 1, 08028 8 Barcelona, Spain.,University of Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 10 Barcelona, Spain
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai, India.,Indian Institute of Technology Palakkad, Ahalia Integrated Campus, Kozhippara, Palakkad - 678557, Kerala, India
| |
Collapse
|
25
|
Bochicchio A, Brandner AF, Engberg O, Huster D, Böckmann RA. Spontaneous Membrane Nanodomain Formation in the Absence or Presence of the Neurotransmitter Serotonin. Front Cell Dev Biol 2020; 8:601145. [PMID: 33330494 PMCID: PMC7734319 DOI: 10.3389/fcell.2020.601145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/06/2020] [Indexed: 11/23/2022] Open
Abstract
Detailed knowledge on the formation of biomembrane domains, their structure, composition, and physical characteristics is scarce. Despite its frequently discussed importance in signaling, e.g., in obtaining localized non-homogeneous receptor compositions in the plasma membrane, the nanometer size as well as the dynamic and transient nature of domains impede their experimental characterization. In turn, atomistic molecular dynamics (MD) simulations combine both, high spatial and high temporal resolution. Here, using microsecond atomistic MD simulations, we characterize the spontaneous and unbiased formation of nano-domains in a plasma membrane model containing phosphatidylcholine (POPC), palmitoyl-sphingomyelin (PSM), and cholesterol (Chol) in the presence or absence of the neurotransmitter serotonin at different temperatures. In the ternary mixture, highly ordered and highly disordered domains of similar composition coexist at 303 K. The distinction of domains by lipid acyl chain order gets lost at lower temperatures of 298 and 294 K, suggesting a phase transition at ambient temperature. By comparison of domain ordering and composition, we demonstrate how the domain-specific binding of the neurotransmitter serotonin results in a modified domain lipid composition and a substantial downward shift of the phase transition temperature. Our simulations thus suggest a novel mode of action of neurotransmitters possibly of importance in neuronal signal transmission.
Collapse
Affiliation(s)
- Anna Bochicchio
- Computational Biology, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Astrid F Brandner
- Computational Biology, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Oskar Engberg
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany.,Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Rainer A Böckmann
- Computational Biology, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
26
|
Bubnis G, Grubmüller H. Sequential Water and Headgroup Merger: Membrane Poration Paths and Energetics from MD Simulations. Biophys J 2020; 119:2418-2430. [PMID: 33189685 PMCID: PMC7822740 DOI: 10.1016/j.bpj.2020.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 01/06/2023] Open
Abstract
Membrane topology changes such as poration, stalk formation, and hemifusion rupture are essential to cellular function, but their molecular details, energetics, and kinetics are still not fully understood. Here, we present a unified energetic and mechanistic picture of metastable pore defects in tensionless lipid membranes. We used an exhaustive committor analysis to test and select optimal reaction coordinates and also to determine the nucleation mechanism. These reaction coordinates were used to calculate free-energy landscapes that capture the full process and end states. The identified barriers agree with the committor analysis. To enable sufficient sampling of the complete transition path for our molecular dynamics simulations, we developed a “gizmo” potential biasing scheme. The simulations suggest that the essential step in the nucleation is the initial merger of lipid headgroups at the nascent pore center. To facilitate this event, an indentation pathway is energetically preferred to a hydrophobic defect. Continuous water columns that span the indentation were determined to be on-path transients that precede the nucleation barrier. This study gives a quantitative description of the nucleation mechanism and energetics of small metastable pores and illustrates a systematic approach to uncover the mechanisms of diverse cellular membrane remodeling processes.
Collapse
Affiliation(s)
- Greg Bubnis
- Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; Weill Institute for Neurosciences and Department of Neurology, University of California San Francisco, San Francisco, California.
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
27
|
Remington JM, Liao C, Sharafi M, Marie ES, Ferrell JB, Hondal R, Wargo MJ, Schneebeli ST, Li J. Aggregation State of Synergistic Antimicrobial Peptides. J Phys Chem Lett 2020; 11:9501-9506. [PMID: 33108730 PMCID: PMC8299379 DOI: 10.1021/acs.jpclett.0c02094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
By integrating various simulation and experimental techniques, we discovered that antimicrobial peptides (AMPs) may achieve synergy at an optimal concentration and ratio, which can be caused by aggregation of the synergistic peptides. On multiple time and length scales, our studies obtain novel evidence of how peptide coaggregation in solution can affect the disruption of membranes by synergistic AMPs. Our findings provide crucial details about the complex molecular origins of AMP synergy, which will help guide the future development of synergistic AMPs as well as applications of anti-infective peptide cocktail therapies.
Collapse
Affiliation(s)
| | - Chenyi Liao
- Department of Chemistry, University of Vermont, Burlington, VT 05405
| | - Mona Sharafi
- Department of Chemistry, University of Vermont, Burlington, VT 05405
| | - Emma Ste. Marie
- Department of Chemistry, University of Vermont, Burlington, VT 05405
- Department of Biochemistry, University of Vermont, Burlington, VT 05405
| | | | - Robert Hondal
- Department of Chemistry, University of Vermont, Burlington, VT 05405
- Department of Biochemistry, University of Vermont, Burlington, VT 05405
| | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405
| | | | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT 05405
- Corresponding Author Jianing Li ()
| |
Collapse
|
28
|
Kholina EG, Kovalenko IB, Bozdaganyan ME, Strakhovskaya MG, Orekhov PS. Cationic Antiseptics Facilitate Pore Formation in Model Bacterial Membranes. J Phys Chem B 2020; 124:8593-8600. [PMID: 32896131 DOI: 10.1021/acs.jpcb.0c07212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antiseptics are an essential line of defense against bacterial and viral infections in modern medical practice. Many of them are supposed to act on microbial membranes. However, the detailed mechanisms of their action are still elusive. Here, we utilized coarse-grained molecular dynamics simulations to investigate interactions of different types of cationic antiseptics (CAs) with a model bacterial membrane. The simulations revealed qualitatively distinct patterns of dynamic and structural alterations of membrane induced by different types of antiseptics although none of them caused disintegration or solubilization of the bilayer even at the highest explored concentration. At the same time, the adsorption of antiseptics rendered membranes more vulnerable to poration under exposure to the external electric field. We further discuss the possible relation of the enhanced pore formation induced by CAs to their cytotoxic action.
Collapse
Affiliation(s)
- E G Kholina
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - I B Kovalenko
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sechenov University, Moscow 119991, Russia.,Astrakhan State University, Astrakhan 414056, Russia.,Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - M E Bozdaganyan
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.,Moscow Polytechnic University, Moscow 107023, Russia
| | - M G Strakhovskaya
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, Moscow 115682, Russia
| | - P S Orekhov
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sechenov University, Moscow 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| |
Collapse
|
29
|
Tang J, Ma J, Guo L, Wang K, Yang Y, Bo W, Yang L, Jiang H, Wu Z, Zeng B, Gong Y. The Effect of KcsA Channel on Lipid Bilayer Electroporation Induced by Picosecond Pulse Trains. J Membr Biol 2020; 253:271-286. [PMID: 32405692 DOI: 10.1007/s00232-020-00123-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/05/2020] [Indexed: 02/03/2023]
Abstract
Membrane proteins are the major component of plasma membranes, and they play crucial roles in all organisms. To understand the influence of the presence of KcsA channel on cell membrane electroporation induced by picosecond pulse trains (psPT), in this paper, the electroporation of KcsA membrane protein system and bare lipid bilayer system (POPC) with the applied psPT are simulated using molecular dynamics (MD) method. First, we find that the average pore formation time of the KcsA system is longer than the bare system with the applied psPT. In the KcsA system, water protrusions appear more slowly. Then, the system size effects of psPT in the MD simulations are investigated. When the system size decreases, the average pore formation time of small KcsA membrane protein system is shorter than the bare system with the applied psPT. It is found that the psPT makes the protein fluctuation of small system increase greatly; meanwhile the instability of protein disturbs the water and then affects the water protrusion appearance time. Furthermore, it shows that the protein fluctuation of constant electric field is smaller than that of psPT and no field, and protein fluctuation increases with the psPT repetition frequency increasing.
Collapse
Affiliation(s)
- Jingchao Tang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,CNRS, UMR 7565, 54506, Vandoeuvre les Nancy, France
| | - Jialu Ma
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lianghao Guo
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Kaicheng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yang Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wenfei Bo
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lixia Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Haibo Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhe Wu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Baoqing Zeng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
30
|
Tuerkova A, Kabelka I, Králová T, Sukeník L, Pokorná Š, Hof M, Vácha R. Effect of helical kink in antimicrobial peptides on membrane pore formation. eLife 2020; 9:47946. [PMID: 32167466 PMCID: PMC7069690 DOI: 10.7554/elife.47946] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Every cell is protected by a semipermeable membrane. Peptides with the right properties, for example Antimicrobial peptides (AMPs), can disrupt this protective barrier by formation of leaky pores. Unfortunately, matching peptide properties with their ability to selectively form pores in bacterial membranes remains elusive. In particular, the proline/glycine kink in helical peptides was reported to both increase and decrease antimicrobial activity. We used computer simulations and fluorescence experiments to show that a kink in helices affects the formation of membrane pores by stabilizing toroidal pores but disrupting barrel-stave pores. The position of the proline/glycine kink in the sequence further controls the specific structure of toroidal pore. Moreover, we demonstrate that two helical peptides can form a kink-like connection with similar behavior as one long helical peptide with a kink. The provided molecular-level insight can be utilized for design and modification of pore-forming antibacterial peptides or toxins.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Ivo Kabelka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Tereza Králová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic
| | - Lukáš Sukeník
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic.,Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská, Czech Republic
| | - Šárka Pokorná
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Hof
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Czech Republic.,Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská, Czech Republic
| |
Collapse
|
31
|
Chemical manipulations to facilitate membrane blebbing and vesicle shedding on the cellular cortex. Biotechnol Lett 2020; 42:1137-1145. [PMID: 32112174 DOI: 10.1007/s10529-020-02848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Most attention has been focused on physiologically generated membrane blebs on the cellular cortex, whereas artificial membrane blebs induced by chemicals are studied to a lesser extent. RESULTS We found that exposure of HeLa human cervical cancer cells to paraformaldehyde (PFA), followed by incubation in phosphate-buffered saline (PBS) efficiently induced large membrane blebs on the cellular cortex. Intriguingly, sequential exposure of the PFA-treated cells to PBS containing dimethyl sulfoxide (DMSO) facilitated shedding of the blebs from the cellular cortex, yielding a high quantity of large extracellular vesicles in the supernatant, which was applicable to assess the potentials of compounds and proteins as membrane influencers. Similar effects of PFA and DMSO were detected on the cellular cortex of other human, mouse, and fish cells. CONCLUSIONS Our procedure to facilitate membrane blebbing and vesicle shedding by chemicals may be practical for the manipulation of membrane dynamics and the development of vesicle-inspired technologies using a wide variety of cell types.
Collapse
|
32
|
Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:273-403. [PMID: 32145948 PMCID: PMC7109768 DOI: 10.1016/bs.pmbts.2020.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between proteins and membranes play critical roles in signal transduction, cell motility, and transport, and they are involved in many types of diseases. Molecular dynamics (MD) simulations have greatly contributed to our understanding of protein-membrane interactions, promoted by a dramatic development of MD-related software, increasingly accurate force fields, and available computer power. In this chapter, we present available methods for studying protein-membrane systems with MD simulations, including an overview about the various all-atom and coarse-grained force fields for lipids, and useful software for membrane simulation setup and analysis. A large set of case studies is discussed.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Olujide O Olubiyi
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
33
|
Anosov AA, Smirnova EY, Sharakshane AA, Nikolayeva EA, Zhdankina YS. Increase in the current variance in bilayer lipid membranes near phase transition as a result of the occurrence of hydrophobic defects. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183147. [PMID: 31812627 DOI: 10.1016/j.bbamem.2019.183147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/23/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Most researchers associate the increase in the permeability of lipid bilayers of artificial and biological membranes observed in various experiments with the formation of hypothetical hydrophobic and hydrophilic pores. Although the existence of hydrophobic defects, as the first stage of the formation of a hydrophilic pore, was hypothesized decades ago from electroporation experiments, the difficulty of describing this stage is determined by the lack of experimental data confirming the existence or at least associated with hydrophobic pores. We explored the increase in the current variance through the lipid membrane, observed when approaching the phase transition from the side of high temperatures, and have associated it with capacitive currents arising in response to the formation of hydrophobic pores. Assuming that the number of hydrophobic pores in a membrane follows a Poisson distribution, and thus, the mean number of hydrophobic pores is equal to the variance of that number, we used the measurements of the membrane current variance to evaluate the number of hydrophobic pores. Analysis of experimental data within this model allows us to estimate the number of hydrophobic pores at or above the phase transition and shows that the number of hydrophobic pores in a membrane close to the phase transition increased 20 times compared to the number of hydrophobic pores existing in the membrane far from the melting transition.
Collapse
Affiliation(s)
- A A Anosov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 2-4 Bolshaya Pirogovskaya st., 119435 Moscow, Russia; Kotel'nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, Moscow 125009, Russia.
| | - E Yu Smirnova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 2-4 Bolshaya Pirogovskaya st., 119435 Moscow, Russia
| | - A A Sharakshane
- Kotel'nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, Moscow 125009, Russia
| | - E A Nikolayeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 2-4 Bolshaya Pirogovskaya st., 119435 Moscow, Russia
| | - Yu S Zhdankina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 2-4 Bolshaya Pirogovskaya st., 119435 Moscow, Russia
| |
Collapse
|
34
|
F Brandner A, Timr S, Melchionna S, Derreumaux P, Baaden M, Sterpone F. Modelling lipid systems in fluid with Lattice Boltzmann Molecular Dynamics simulations and hydrodynamics. Sci Rep 2019; 9:16450. [PMID: 31712588 PMCID: PMC6848203 DOI: 10.1038/s41598-019-52760-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/21/2019] [Indexed: 11/09/2022] Open
Abstract
In this work we present the coupling between Dry Martini, an efficient implicit solvent coarse-grained model for lipids, and the Lattice Boltzmann Molecular Dynamics (LBMD) simulation technique in order to include naturally hydrodynamic interactions in implicit solvent simulations of lipid systems. After validating the implementation of the model, we explored several systems where the action of a perturbing fluid plays an important role. Namely, we investigated the role of an external shear flow on the dynamics of a vesicle, the dynamics of substrate release under shear, and inquired the dynamics of proteins and substrates confined inside the core of a vesicle. Our methodology enables future exploration of a large variety of biological entities and processes involving lipid systems at the mesoscopic scale where hydrodynamics plays an essential role, e.g. by modulating the migration of proteins in the proximity of membranes, the dynamics of vesicle-based drug delivery systems, or, more generally, the behaviour of proteins in cellular compartments.
Collapse
Affiliation(s)
- Astrid F Brandner
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Stepan Timr
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Simone Melchionna
- ISC-CNR, Dipartimento di Fisica, Università Sapienza, P.le A. Moro 5, 00185, Rome, Italy.,Lexma Technology 1337 Massachusetts Avenue, Arlington, MA, 02476, USA
| | - Philippe Derreumaux
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Marc Baaden
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France. .,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
35
|
Chirality-Dependent Adsorption between Amphipathic Peptide and POPC Membrane. Int J Mol Sci 2019; 20:ijms20194760. [PMID: 31557910 PMCID: PMC6801444 DOI: 10.3390/ijms20194760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 01/01/2023] Open
Abstract
The interactions between chiral molecules and cell membranes have attracted more and more attention in recent decades, due to their importance in molecular science and medical applications. It is observed that some peptides composed of different chiral amino acids may have distinct interactions with a membrane. How does the membrane exhibit a selective behavior related to the chirality of the peptides? Microscopically, the interactions between the peptides and the membrane are poorly understood. In this work, we study the interactions between an amphipathic peptide (C6) and POPC membrane with simulations. The kinetics and thermodynamics of peptide enantiomers during the adsorption to the membrane are characterized with direct simulations and umbrella sampling. It is observed that there are slow kinetics for the peptide composed of D-type amino acids. Along the observed pathways, the free energy landscapes are determined with umbrella sampling techniques. A free-energy barrier for the peptide composed of D-amino acids is observed, which is consistent with the kinetic observations. The results indicate the concurrent adsorption and rotation of the peptide helix. The local interactions between the peptides and the membrane are examined in detail, including the contact interactions between the peptides and the membrane, and the distributions of the lipids around the peptide. There are observable differences of the local interactions for the cases related to different peptide enantiomers. These results further demonstrate the importance of the rotation of peptide helix during the adsorption. More interestingly, all these kinetic differences between peptide enantiomers can be explained based on the conformations of the residue Trp and interactions between Trp and lipid molecules. These results give us a molecular understanding of the mechanism of the chirality-dependent peptide-membrane interactions, and may provide clues to designing systems which are sensitive to the chirality of membranes.
Collapse
|
36
|
Barrera EE, Machado MR, Pantano S. Fat SIRAH: Coarse-Grained Phospholipids To Explore Membrane-Protein Dynamics. J Chem Theory Comput 2019; 15:5674-5688. [PMID: 31433946 DOI: 10.1021/acs.jctc.9b00435] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The capability to handle highly heterogeneous molecular assemblies in a consistent manner is among the greatest challenges faced when deriving simulation parameters. This is particularly the case for coarse-grained (CG) simulations in which chemical functional groups are lumped into effective interaction centers for which transferability between different chemical environments is not guaranteed. Here, we introduce the parametrization of a set of CG phospholipids compatible with the latest version of the SIRAH force field for proteins. The newly introduced lipid species include different acylic chain lengths and partial unsaturation, as well as polar and acidic head groups that show a very good reproduction of structural membrane determinants, such as areas per lipid, thickness, order parameter, etc., and their dependence with temperature. Simulation of membrane proteins showed unprecedented accuracy in the unbiased description of the thickness-dependent membrane-protein orientation in systems where this information is experimentally available (namely, the SarcoEndoplasmic Reticulum Calcium-SERCA-pump and its regulator Phospholamban). The interactions that lead to this faithful reproduction can be traced down to the single amino acid-lipid interaction level and show full agreement with biochemical data present in the literature. Finally, the present parametrization is implemented in the GROMACS and AMBER simulation packages facilitating its use by a wide portion of the biocomputing community.
Collapse
Affiliation(s)
- Exequiel E Barrera
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Matías R Machado
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay.,Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
37
|
Spontaneous and Stress-Induced Pore Formation in Membranes: Theory, Experiments and Simulations. J Membr Biol 2019; 252:241-260. [PMID: 31363808 DOI: 10.1007/s00232-019-00083-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
The large plasticity, dynamics and adaptability of biological membranes allow different modes of intrinsic and inducible permeability. These phenomena are of physiological importance for a number of natural functions related to cell death and can also be manipulated artificially for practical purposes like gene transfer, drug delivery, prevention of infections or anticancer therapy. For these advances to develop in a controllable and specific way, we need a sufficient understanding of the membrane permeability phenomena. Since the formulation of early concepts of pore formation, there has been an enormous effort to describe membrane permeability by using theory, simulations and experiments. A major breakthrough has come recently through theoretical developments that allow building continuous trajectories of pore formation both in the absence and presence of stress conditions. The new model provides a coherent quantitative view of membrane permeabilization, useful to test the impact of known lipid properties, make predictions and postulate specific pore intermediates that can be studied by simulations. For example, this theory predicts unprecedented dependencies of the line tension on the pore radius and on applied lateral tension which explain previous puzzling results. In parallel, important concepts have also come from molecular dynamics simulations, of which the role of water for membrane permeabilization is of special interest. These advances open new challenges and perspectives for future progress in the study of membrane permeability, as experiments and simulations will need to test the theoretical predictions, while theory achieves new refinements that provide a physical ground for observations.
Collapse
|
38
|
Man VH, Li MS, Wang J, Derreumaux P, Nguyen PH. Interaction mechanism between the focused ultrasound and lipid membrane at the molecular level. J Chem Phys 2019; 150:215101. [PMID: 31176320 PMCID: PMC7043851 DOI: 10.1063/1.5099008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022] Open
Abstract
Focused ultrasound (FUS) has a wide range of medical applications. Nowadays, the diagnostic and therapeutic ultrasound procedures are routinely used; effects of ultrasound on biological systems at the molecular level are, however, not fully understood. Experimental results on the interaction of the cell membrane, a simplest but important system component, with ultrasound are controversial. Molecular dynamics (MD) simulations could provide valuable insights, but there is no single study on the mechanism of the FUS induced structural changes in cell membranes. With this in mind, we develop a simple method to include FUS into a standard MD simulation. Adopting the 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid membrane as a representative model described by the MARTINI coarse-grained force field, and using experimental values of the ultrasound frequency and intensity, we show that the heat and bubble cavitation are not the primary direct mechanisms that cause structural changes in the membrane. The spatial pressure gradients between the focused and free regions and between the parallel and perpendicular directions to the membrane are the origin of the mechanism. These gradients force lipids to move out of the focused region, forming a lipid flow along the membrane diagonal. Lipids in the free region move in the opposite direction due to the conservation of the total momentum. These opposite motions create wrinkles along the membrane diagonal at low FUS intensities and tear up the membrane at high FUS intensities. Once the membrane is torn up, it is not easy to reform. The implication of our findings in the FUS-induced drug delivery is discussed in some detail.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
39
|
Kirsch SA, Böckmann RA. Coupling of Membrane Nanodomain Formation and Enhanced Electroporation near Phase Transition. Biophys J 2019; 116:2131-2148. [PMID: 31103234 PMCID: PMC6554532 DOI: 10.1016/j.bpj.2019.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/29/2022] Open
Abstract
Biological cells are enveloped by a heterogeneous lipid bilayer that prevents the uncontrolled exchange of substances between the cell interior and its environment. In particular, membranes act as a continuous barrier for salt and macromolecules to ensure proper physiological functions within the cell. However, it has been shown that membrane permeability strongly depends on temperature and, for phospholipid bilayers, displays a maximum at the transition between the gel and fluid phase. Here, extensive molecular dynamics simulations of dipalmitoylphosphatidylcholine bilayers were employed to characterize the membrane structure and dynamics close to phase transition, as well as its stability with respect to an external electric field. Atomistic simulations revealed the dynamic appearance and disappearance of spatially related nanometer-sized thick ordered and thin interdigitating domains in a fluid-like bilayer close to the phase transition temperature (Tm). These structures likely represent metastable precursors of the ripple phase that vanished at increased temperatures. Similarly, a two-phase bilayer with coexisting gel and fluid domains featured a thickness minimum at the interface because of splaying and interdigitating lipids. For all systems, application of an external electric field revealed a reduced bilayer stability with respect to pore formation for temperatures close to Tm. Pore formation occurred exclusively in thin interdigitating membrane nanodomains. These findings provide a link between the increased membrane permeability and the structural heterogeneity close to phase transition.
Collapse
Affiliation(s)
- Sonja A Kirsch
- Computational Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
40
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
41
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
42
|
Kondrashov OV, Galimzyanov TR, Jiménez-Munguía I, Batishchev OV, Akimov SA. Membrane-mediated interaction of amphipathic peptides can be described by a one-dimensional approach. Phys Rev E 2019; 99:022401. [PMID: 30934249 DOI: 10.1103/physreve.99.022401] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 01/03/2023]
Abstract
Amphipathic alpha-helical peptides, among other peripheral components of plasma membranes, are promising antimicrobial agents. Partial incorporation of a peptide into a lipid monolayer causes elastic deformations. Deformations induced by two peptides distant from each other are independent; when peptides get closer, interference between the deformations causes effective lateral interaction. We quantified the energy of membrane deformations for arbitrary configuration of two amphipathic peptides on the membrane surface. The global minimum of the deformation energy proved to be achieved when two parallel peptides are in registry at the distance of about 6 nm between the axes of peptides. The energy calculated in the unidimensional approach provides a good approximation for the dependence of the energy of peptides being in the registered configuration upon the distance between them, valid for a broad range of peptide lengths. The effective interactional length of peptides for the unidimensional approach is close to their actual length. If two parallel peptides are shifted along their axes with respect to each other, the interaction energy is also well approximated by the unidimensional potential, within the projection of one peptide onto the other. In the case when the axes of alpha helices cross at a substantial angle, the main contribution to peptide interactions comes from their edges: the effective length of peptides for the unidimensional approach is almost equal to the characteristic length of decay of deformations. Based on the results we obtained it can be concluded that interaction of membrane inclusions is quite adequately described by the potential calculated in the unidimensional approach.
Collapse
Affiliation(s)
- Oleg V Kondrashov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.,National University of Science and Technology "MISiS," 4 Leninskiy Prospect, Moscow 119049, Russia
| | - Irene Jiménez-Munguía
- National University of Science and Technology "MISiS," 4 Leninskiy Prospect, Moscow 119049, Russia
| | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.,National University of Science and Technology "MISiS," 4 Leninskiy Prospect, Moscow 119049, Russia
| |
Collapse
|
43
|
Kotnik T, Rems L, Tarek M, Miklavčič D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu Rev Biophys 2019; 48:63-91. [PMID: 30786231 DOI: 10.1146/annurev-biophys-052118-115451] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure of biological cells to high-voltage, short-duration electric pulses causes a transient increase in their plasma membrane permeability, allowing transmembrane transport of otherwise impermeant molecules. In recent years, large steps were made in the understanding of underlying events. Formation of aqueous pores in the lipid bilayer is now a widely recognized mechanism, but evidence is growing that changes to individual membrane lipids and proteins also contribute, substantiating the need for terminological distinction between electroporation and electropermeabilization. We first revisit experimental evidence for electrically induced membrane permeability, its correlation with transmembrane voltage, and continuum models of electropermeabilization that disregard the molecular-level structure and events. We then present insights from molecular-level modeling, particularly atomistic simulations that enhance understanding of pore formation, and evidence of chemical modifications of membrane lipids and functional modulation of membrane proteins affecting membrane permeability. Finally, we discuss the remaining challenges to our full understanding of electroporation and electropermeabilization.
Collapse
Affiliation(s)
- Tadej Kotnik
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| | - Lea Rems
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17165 Solna, Sweden;
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France;
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| |
Collapse
|
44
|
Tang J, Yin H, Ma J, Bo W, Yang Y, Xu J, Liu Y, Gong Y. Terahertz Electric Field-Induced Membrane Electroporation by Molecular Dynamics Simulations. J Membr Biol 2018; 251:681-693. [PMID: 30094474 DOI: 10.1007/s00232-018-0045-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
In this paper, the membrane electroporation induced by the terahertz electric field is simulated by means of the molecular dynamics method. The influences of the waveform and frequency of the applied terahertz electric field on the electroporation and the unique features of the process of the electroporation with the applied terahertz electric field are given. It shows that whether the electroporation can happen depends on the waveform of the applied terahertz electric field when the magnitude is not large enough. No pore appears if the terahertz electric field direction periodically reverses, and dipole moments of the interfacial water and the bulk water keep reversing. The nm-scale single pore forms with the applied terahertz trapezoidal electric field. It is found that the average pore formation time is strongly influenced by the terahertz electric field frequency. An abnormal variation region that shows decline exists on the correlation curve of the average pore formation time and the trapezoidal electric field frequency, whereas the overall trend of the curve is increasing. The decrease of the water oriented polarization degree results in the increase of the electroporation time, and the abnormal variation region appearance may be related to the drastic change of average water hydrogen bond number that is resulted from the resonance of water hydrogen bond network and the applied electric field. Compared to the nanosecond electric pulse and constant electric field, the numbers of the water protrusions and the water bridges are smaller and the pore formation time is relatively longer with the applied terahertz electric field.
Collapse
Affiliation(s)
- Jingchao Tang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hairong Yin
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jialu Ma
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wenfei Bo
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yang Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jin Xu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China. .,Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
45
|
Lipkin R, Lazaridis T. Computational studies of peptide-induced membrane pore formation. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630158 DOI: 10.1098/rstb.2016.0219] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A variety of peptides induce pores in biological membranes; the most common ones are naturally produced antimicrobial peptides (AMPs), which are small, usually cationic, and defend diverse organisms against biological threats. Because it is not possible to observe these pores directly on a molecular scale, the structure of AMP-induced pores and the exact sequence of steps leading to their formation remain uncertain. Hence, these questions have been investigated via molecular modelling. In this article, we review computational studies of AMP pore formation using all-atom, coarse-grained, and implicit solvent models; evaluate the results obtained and suggest future research directions to further elucidate the pore formation mechanism of AMPs.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Richard Lipkin
- Department of Chemistry, City College of New York, 160 Convent Avenue, New York, NY 10031, USA.,Graduate Program in Chemistry, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
46
|
Deplazes E. Molecular simulations of venom peptide-membrane interactions: Progress and challenges. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Evelyne Deplazes
- School of Pharmacy and Biomedical Sciences; Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University; Bentley, Perth WA 6102 Australia
| |
Collapse
|
47
|
Rabinovich AL, Lyubartsev AP, Zhurkin DV. Unperturbed hydrocarbon chains and liquid phase bilayer lipid chains: a computer simulation study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:109-130. [PMID: 28698919 PMCID: PMC5834621 DOI: 10.1007/s00249-017-1231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
In this work, the properties of saturated and unsaturated fatty acid acyl chains 16:0, 18:0, 18:1(n-9)cis, 18:2(n-6)cis, 18:3(n-3)cis, 18:4(n-3)cis, 18:5(n-3)cis, 20:4(n-6)cis, 20:5(n-3)cis and 22:6(n-3)cis in a bilayer liquid crystalline state and similar hydrocarbon chains (with CH[Formula: see text] terminal groups instead of C=O groups) in the unperturbed state characterised by a lack of long-range interaction were investigated. The unperturbed hydrocarbon chains were modelled by Monte Carlo simulations at temperature [Formula: see text] K; sixteen fully hydrated homogeneous liquid crystalline phosphatidylcholine bilayers containing these chains were studied by molecular dynamics simulations at the same temperature. To eliminate effects of the simulation parameters, the molecular dynamics and Monte Carlo simulations were carried out using the same structural data and force field coefficients. From these computer simulations, the average distances between terminal carbon atoms of the chains (end-to-end distances) were calculated and compared. The trends in the end-to-end distances obtained for the unperturbed chains were found to be qualitatively similar to those obtained for the same lipid chains in the bilayers. So, for understanding of a number of processes in biological membranes (e.g., changes in fatty acid composition caused by environmental changes such as temperature and pressure), it is possible to use, at least as a first approximation, the relationships between the structure and properties for unperturbed or isolated hydrocarbon chains.
Collapse
Affiliation(s)
- Alexander L Rabinovich
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya 11, Petrozavodsk, 185910, Russian Federation
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden.
| | - Dmitrii V Zhurkin
- Physics and Technology Department, Petrozavodsk State University, Universitetskaya 10, Petrozavodsk, 185910, Russian Federation
| |
Collapse
|
48
|
Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci 2017; 11:73. [PMID: 28261050 PMCID: PMC5306396 DOI: 10.3389/fnins.2017.00073] [Citation(s) in RCA: 346] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/31/2017] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed.
Collapse
Affiliation(s)
- Jianguo Li
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Agency for Science, Technology and Research (ASTAR), Bioinformatics InstituteSingapore, Singapore
- Duke-NUS Graduate Medical School, SRP Neuroscience and BDSingapore, Singapore
| | - Jun-Jie Koh
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
| | - Shouping Liu
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
| | | | - Chandra S. Verma
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Agency for Science, Technology and Research (ASTAR), Bioinformatics InstituteSingapore, Singapore
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| | - Roger W. Beuerman
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Duke-NUS Graduate Medical School, SRP Neuroscience and BDSingapore, Singapore
| |
Collapse
|
49
|
da Hora GCA, Archilha NL, Lopes JLS, Müller DM, Coutinho K, Itri R, Soares TA. Membrane negative curvature induced by a hybrid peptide from pediocin PA-1 and plantaricin 149 as revealed by atomistic molecular dynamics simulations. SOFT MATTER 2016; 12:8884-8898. [PMID: 27722742 DOI: 10.1039/c6sm01714b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides (AMPs) are cationic peptides that kill bacteria with a broad spectrum of action, low toxicity to mammalian cells and exceptionally low rates of bacterial resistance. These features have led to considerable efforts in developing AMPs as an alternative antibacterial therapy. In vitro studies have shown that AMPs interfere with membrane bilayer integrity via several possible mechanisms, which are not entirely understood. We have performed the synthesis, membrane lysis measurements, and biophysical characterization of a novel hybrid peptide. These measurements show that PA-Pln149 does not form nanopores, but instead promotes membrane rupture. It causes fast rupture of the bacterial model membrane (POPG-rich) at concentrations 100-fold lower than that required for the disruption of mammalian model membranes (POPC-rich). Atomistic molecular dynamics (MD) simulations were performed for single and multiple copies of PA-Pln149 in the presence of mixed and pure POPC/POPG bilayers to investigate the concentration-dependent membrane disruption by the hybrid peptide. These simulations reproduced the experimental trend and provided a potential mechanism of action for PA-Pln149. It shows that the PA-Pln149 does not form nanopores, but instead promotes membrane destabilization through peptide aggregation and induction of membrane negative curvature with the collapse of the lamellar arrangement. The sequence of events depicted for PA-Pln149 may offer insights into the mechanism of action of AMPs previously shown to induce negative deformation of membrane curvature and often associated with peptide translocation via non-bilayer intermediate structures.
Collapse
Affiliation(s)
- G C A da Hora
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Cidade Universitária, Recife, Brazil.
| | - N L Archilha
- Instituto de Física, Universidade de São Paulo, 05508-090 Cidade Universitária, São Paulo, Brazil.
| | - J L S Lopes
- Instituto de Física, Universidade de São Paulo, 05508-090 Cidade Universitária, São Paulo, Brazil.
| | - D M Müller
- Departamento de Química Orgánica, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral (U.N.L). Ciudad Universitaria, C.C.242, (C.P:3000) Santa Fe, Argentina
| | - K Coutinho
- Instituto de Física, Universidade de São Paulo, 05508-090 Cidade Universitária, São Paulo, Brazil.
| | - R Itri
- Instituto de Física, Universidade de São Paulo, 05508-090 Cidade Universitária, São Paulo, Brazil.
| | - T A Soares
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Cidade Universitária, Recife, Brazil. and Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
50
|
Vattulainen I, Róg T. Lipid membranes: Theory and simulations bridged to experiments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2251-2253. [PMID: 27316372 DOI: 10.1016/j.bbamem.2016.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland; Department of Physics, University of Helsinki, P. O. Box 64, FI-00014, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland; Department of Physics, University of Helsinki, P. O. Box 64, FI-00014, Finland
| |
Collapse
|