1
|
Zhang S, Wang D, Ding Y, Li Y, Wang Y, Zeng J. Inhibition of calpain reduces oxidative stress and attenuates pyroptosis and ferroptosis in Clostridium perfringens Beta-1 toxin-induced macrophages. Microbiol Res 2024; 289:127916. [PMID: 39342748 DOI: 10.1016/j.micres.2024.127916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Clostridium perfringens Beta-1 toxin (CPB1) is a lethal toxin, which can lead to necrotic enteritis, but the pathological mechanism has not been elucidated. We investigated whether reactive oxygen species (ROS) participated in CPB1-induced pyroptosis and ferroptosis, and investigated the effects of calpain on CPB1-induced oxidative stress and inflammation. Scavenging ROS by N-Acetyl-L cysteine (NAC) led to the reduction of ROS, inhibited the death of macrophages, cytoplasmic swelling and membrane rupture, the expression of pyroptosis-related proteins and proinflammatory factor, while increased the expression of anti-inflammatory factors in cells treated with rCPB1. Adenosine triphosphate (ATP) synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 (ATP5A1) was identified specifically interact with rCPB1. Silencing ATP5A1 inhibited accumulation of ATP and ROS, leaded to less cytoplasmic swelling and membrane rupture, attenuated pyroptosis and inflammation in rCPB1-treated cells. We also found that rCPB1 induces ferroptosis in macrophages, and the level of ferroptosis was similar with H2O2. Of note, H2O2 is a major ROS source, indicated that ROS production may play a major role in the regulation of ferroptosis in macrophages treated with rCPB1. This finding was further corroborated in rCPB1- induced human acute monocytic leukemia cells, which were treated with NAC. In addition, the inhibition of ferroptosis using liproxstatin-1 inhibited the shriveled mitochondrial morphology, increased the expression of glutathione peroxidase 4, nicotinamide adenine dinucleotide (phosphate) hydrogen: quinone oxidoreductase 1 and cysteine/glutamic acid reverse transport solute carrier family 7 members 11, decreased the expression of heme oxygenase 1, nuclear receptor coactivator 4 and transferrin receptor proteins, reduced malondialdehyde and lipid peroxidation levels, and increased intracellular L-glutathione levels in cells treated with rCPB1. Furthermore, calpain inhibitor PD151746 was used to investigate how pyroptosis and ferroptosis were involved simultaneously in rCPB1-treated macrophages. We showed that PD151746 inhibited ATP and ROS production, reversed the representative pyroptosis/ferroptosis indicators and subsequently reduced inflammation. The above findings indicate that rCPB1 might lead to macrophage pyroptosis and ferroptosis through the large and sustained increase in intracellular calpain and oxidative stress, further lead to inflammation.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Dong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Yawen Ding
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China.
| | - Jin Zeng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Hussain H, Fadel A, Garcia E, Hernandez RJ, Saadoon ZF, Naseer L, Casmartino E, Hamad M, Schnepp T, Sarfraz R, Angly S, Jayakumar AR. Clostridial Myonecrosis: A Comprehensive Review of Toxin Pathophysiology and Management Strategies. Microorganisms 2024; 12:1464. [PMID: 39065232 PMCID: PMC11278868 DOI: 10.3390/microorganisms12071464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Clostridial myonecrosis, commonly known as gas gangrene (GG), is a rapidly progressing and potentially fatal bacterial infection that primarily affects muscle and soft tissue. In the United States, the incidence of GG is roughly 1000 cases per year, while, in developing countries, the incidence is higher. This condition is most often caused by Clostridium perfringens, a Gram-positive, spore-forming anaerobic bacterium widely distributed in the environment, although other Clostridium species have also been reported to cause GG. The CP genome contains over 200 transport-related genes, including ABC transporters, which facilitate the uptake of sugars, amino acids, nucleotides, and ions from the host environment. There are two main subtypes of GG: traumatic GG, resulting from injuries that introduce Clostridium spores into deep tissue, where anaerobic conditions allow for bacterial growth and toxin production, and spontaneous GG, which is rarer and often occurs in immunocompromised patients. Clostridium species produce various toxins (e.g., alpha, theta, beta) that induce specific downstream signaling changes in cellular pathways, causing apoptosis or severe, fatal immunological conditions. For example, the Clostridium perfringens alpha toxin (CPA) targets the host cell's plasma membrane, hydrolyzing sphingomyelin and phosphatidylcholine, which triggers necrosis and apoptosis. The clinical manifestations of clostridial myonecrosis vary. Some patients experience the sudden onset of severe pain, swelling, and muscle tenderness, with the infection progressing rapidly to widespread tissue necrosis, systemic toxicity, and, if untreated, death. Other patients present with discharge, pain, and features of cellulitis. The diagnosis of GG primarily involves clinical evaluation, imaging studies such as X-rays, computer tomography (CT) scans, and culture. The treatment of GG involves surgical exploration, broad-spectrum antibiotics, antitoxin, and hyperbaric oxygen therapy, which is considered an adjunctive treatment to inhibit anaerobic bacterial growth and enhance the antibiotic efficacy. Early recognition and prompt, comprehensive treatment are critical to improving the outcomes for patients affected by this severe and life-threatening condition.
Collapse
Affiliation(s)
- Hussain Hussain
- Department of Internal Medicine, Kendall Hospital-HCA Florida Healthcare, Miami, FL 33136, USA;
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Aya Fadel
- Department of Internal Medicine, Ocean University Medical Center—Hackensack Meridian Health, Brick, NJ 08724, USA;
| | - Efrain Garcia
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Robert J. Hernandez
- Department of Internal Medicine, Kendall Hospital-HCA Florida Healthcare, Miami, FL 33136, USA;
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Zahraa F. Saadoon
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Lamia Naseer
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Ekaterina Casmartino
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Mohammad Hamad
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Taylor Schnepp
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Rehan Sarfraz
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Sohair Angly
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Hoonakker M, Zariri A, de Brouwer L, David D, Borgman A, Sloots A. An in vitro assay for toxicity testing of Clostridium perfringens type C β-toxin. Front Immunol 2024; 15:1373411. [PMID: 38646535 PMCID: PMC11026656 DOI: 10.3389/fimmu.2024.1373411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Veterinary vaccines against Clostridium perfringens type C need to be tested for absence of toxicity, as mandated by pharmacopoeias worldwide. This toxicity testing is required at multiple manufacturing steps and relies on outdated mouse tests that involve severe animal suffering. Clostridium perfringens type C produces several toxins of which the β-toxin is the primary component responsible for causing disease. Here, we describe the successful development of a new cell-based in vitro assay that can address the specific toxicity of the β-toxin. Methods Development of the cell-based assay followed the principle of in vitro testing developed for Cl. septicum vaccines, which is based on Vero cells. We screened four cell lines and selected the THP-1 cell line, which was shown to be the most specific and sensitive for β-toxin activity, in combination with a commercially available method to determine cell viability (MTS assay) as a readout. Results The current animal test is estimated to detect 100 - 1000-fold dilutions of the Cl. perfringens type C non-inactivated antigen. When tested with an active Cl. perfringens type C antigen preparation, derived from a commercial vaccine manufacturing process, our THP-1 cell-based assay was able to detect toxin activity from undiluted to over 10000-fold dilution, showing a linear range between approximately 1000- and 10000-fold dilutions. Assay specificity for the β-toxin was confirmed with neutralizing antibodies and lack of reaction to Cl. perfringens culture medium. In addition, assay parameters demonstrated good repeatability. Conclusions Here, we have shown proof of concept for a THP-1 cell-based assay for toxicity testing of veterinary Cl. perfringens type C vaccines that is suitable for all vaccine production steps. This result represents a significant step towards the replacement of animal-based toxicity testing of this veterinary clostridial antigen. As a next step, assessment of the assay's sensitivity and repeatability and validation of the method will have to be performed in a commercial manufacturing context in order to formally implement the assay in vaccine quality control.
Collapse
Affiliation(s)
| | | | | | | | | | - Arjen Sloots
- Department of Product Characterization and Formulation, Intravacc B.V., Bilthoven, Netherlands
| |
Collapse
|
4
|
Vinken M. Toxic talk: pannexin1 channel communication as an emerging mechanism of toxicity. Toxicology 2022; 478:153295. [PMID: 35998787 DOI: 10.1016/j.tox.2022.153295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Pannexin1 channels facilitate the extracellular release of a number of messengers, including adenosine triphosphate. Although fulfilling some physiological functions, pannexin1 channel communication has to date been primarily studied in the context of inflammation and cell death. In the past decade, a variety of chemical substances have been reported to induce pannexin1 channel opening, including metals, chelating agents, particulate matter, nanoparticles and drugs. While the pathophysiological aspects of pannexin1 channel communication have been reviewed on many previous occasions, the present paper intends to provide a short perspective in order to motivate research that will advance mechanistic understanding of the roles of pannexin1 signaling in chemical toxicity.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
5
|
Mehdizadeh Gohari I, A. Navarro M, Li J, Shrestha A, Uzal F, A. McClane B. Pathogenicity and virulence of Clostridium perfringens. Virulence 2021; 12:723-753. [PMID: 33843463 PMCID: PMC8043184 DOI: 10.1080/21505594.2021.1886777] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens is an extremely versatile pathogen of humans and livestock, causing wound infections like gas gangrene (clostridial myonecrosis), enteritis/enterocolitis (including one of the most common human food-borne illnesses), and enterotoxemia (where toxins produced in the intestine are absorbed and damage distant organs such as the brain). The virulence of this Gram-positive, spore-forming, anaerobe is largely attributable to its copious toxin production; the diverse actions and roles in infection of these toxins are now becoming established. Most C. perfringens toxin genes are encoded on conjugative plasmids, including the pCW3-like and the recently discovered pCP13-like plasmid families. Production of C. perfringens toxins is highly regulated via processes involving two-component regulatory systems, quorum sensing and/or sporulation-related alternative sigma factors. Non-toxin factors, such as degradative enzymes like sialidases, are also now being implicated in the pathogenicity of this bacterium. These factors can promote toxin action in vitro and, perhaps in vivo, and also enhance C. perfringens intestinal colonization, e.g. NanI sialidase increases C. perfringens adherence to intestinal tissue and generates nutrients for its growth, at least in vitro. The possible virulence contributions of many other factors, such as adhesins, the capsule and biofilms, largely await future study.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Soare AY, Freeman TL, Min AK, Malik HS, Osota EO, Swartz TH. P2RX7 at the Host-Pathogen Interface of Infectious Diseases. Microbiol Mol Biol Rev 2021; 85:e00055-20. [PMID: 33441488 PMCID: PMC7849353 DOI: 10.1128/mmbr.00055-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The P2X7 receptor (P2RX7) is an important molecule that functions as a danger sensor, detecting extracellular nucleotides from injured cells and thus signaling an inflammatory program to nearby cells. It is expressed in immune cells and plays important roles in pathogen surveillance and cell-mediated responses to infectious organisms. There is an abundance of literature on the role of P2RX7 in inflammatory diseases and the role of these receptors in host-pathogen interactions. Here, we describe the current knowledge of the role of P2RX7 in the host response to a variety of pathogens, including viruses, bacteria, fungi, protozoa, and helminths. We describe in vitro and in vivo evidence for the critical role these receptors play in mediating and modulating immune responses. Our observations indicate a role for P2X7 signaling in sensing damage-associated molecular patterns released by nearby infected cells to facilitate immunopathology or protection. In this review, we describe how P2RX7 signaling can play critical roles in numerous cells types in response to a diverse array of pathogens in mediating pathogenesis and immunity to infectious agents.
Collapse
Affiliation(s)
- Alexandra Y Soare
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracey L Freeman
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alice K Min
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hagerah S Malik
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Elizabeth O Osota
- University of California San Diego, Graduate School of Biomedical Sciences, San Diego, California, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Takehara M, Bandou H, Kobayashi K, Nagahama M. Clostridium perfringens α-toxin specifically induces endothelial cell death by promoting ceramide-mediated apoptosis. Anaerobe 2020; 65:102262. [PMID: 32828915 DOI: 10.1016/j.anaerobe.2020.102262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 01/14/2023]
Abstract
Clostridium perfringens type A-induced gas gangrene is characterized by severe myonecrosis, and α-toxin has been revealed to be a major virulence factor involved in the pathogenesis. However, the detailed mechanism is unclear. Here, we show that CD31+ endothelial cell counts decrease in muscles infected with C. perfringens in an α-toxin-dependent manner. In vitro experiments revealed that α-toxin preferentially and rapidly induces the death of human umbilical vein endothelial cells (HUVECs) compared with C2C12 murine muscle cells. The toxin induces apoptosis of HUVECs by increasing ceramide. Furthermore, the specificity might be dependent on differences in the sensitivity to ceramide between these cell lines. Together, our results suggest that α-toxin-induced endothelial cell death promotes severe myonecrosis and is involved in the pathogenesis of C. perfringens.
Collapse
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Hiroto Bandou
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| |
Collapse
|
8
|
Ding G, Bai J, Feng B, Wang L, Qiao X, Zhou H, Jiang Y, Cui W, Tang L, Li Y, Xu Y. An EGFP-marked recombinant lactobacillus oral tetravalent vaccine constitutively expressing α, ε, β1, and β2 toxoids for Clostridium perfringens elicits effective anti-toxins protective immunity. Virulence 2020; 10:754-767. [PMID: 31429624 PMCID: PMC6735629 DOI: 10.1080/21505594.2019.1653720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Clostridium perfringens is a common opportunistic pathogen endangering livestock and poultry breeds. Here, using enhanced green fluorescent protein as screening marker, a recombinant lactobacillus tetravalent vaccine constitutively expressing α, ϵ, β1, and β2 toxoids of C. perfringens was developed, and its immunogenicity in mice was investigated via oral administration. This probiotic vaccine could effectively induce antigen-specific secretory IgA (sIgA)-based mucosal and IgG-based humoral immune responses, and significantly high levels (p< 0.05) of cytokines IL-2, IL-4, IL-10, IL-12, IL-17, and IFN-γ were produced in immunized mice. Moreover, lymphoproliferation and percentage of CD4+ and CD8+ T cells significantly increased in mice of the probiotic vaccine group. Challenge experiments were performed in mice with C. perfringens toxinotypes A, C, and D crude toxins to evaluate protection efficiency of the probiotic vaccine, using a commercial inactivated C. perfringens vaccine made by C. perfringens toxinotypes A, C, and D as vaccine control. We observed 80% protection rate in the probiotic vaccine group, which was higher than commercial vaccine group, whereas all mice in control groups died and obvious histopathological changes were observed in liver, spleen, kidney, and intestines of mice. Significantly, we compared the immunogenicity and protection efficiency of lactobacillus constitutive expression system and lactobacillus inducible expression system, and results showed that lactobacillus constitutive expression system has obvious advantages. Our study clearly demonstrated that the probiotics vaccine could effectively induce mucosal, humoral, and cellular immunity, and provide effective protection against C. perfringens toxins, suggesting a promising strategy for the development of oral vaccine against C. perfringens.
Collapse
Affiliation(s)
- Guojie Ding
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Jing Bai
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Baohua Feng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Han Zhou
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China.,Northeast Science Inspection Station, Key Laboratory of Animal Pathogen Biology of Ministry of Agriculture of China, Northeast Agricultural University , Harbin , P.R. China
| | - Yijing Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China.,Northeast Science Inspection Station, Key Laboratory of Animal Pathogen Biology of Ministry of Agriculture of China, Northeast Agricultural University , Harbin , P.R. China
| | - Yigang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China.,Northeast Science Inspection Station, Key Laboratory of Animal Pathogen Biology of Ministry of Agriculture of China, Northeast Agricultural University , Harbin , P.R. China
| |
Collapse
|
9
|
Vijayamahantesh, Vijayalaxmi. Tinkering with targeting nucleotide signaling for control of intracellular Leishmania parasites. Cytokine 2019; 119:129-143. [PMID: 30909149 DOI: 10.1016/j.cyto.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
Nucleotides are one of the most primitive extracellular signalling molecules across all phyla and regulate a multitude of responses. The biological effects of extracellular nucleotides/sides are mediated via the specific purinergic receptors present on the cell surface. In mammalian system, adenine nucleotides are the predominant nucleotides found in the extracellular milieu and mediate a constellation of physiological functions. In the context of host-pathogen interaction, extracellular ATP is recognized as a danger signal and potentiates the release of pro-inflammatory mediators from activated immune cells, on the other hand, its breakdown product adenosine exerts potential anti-inflammatory and immunosuppressive actions. Therefore, it is increasingly apparent that the interplay between extracellular ATP/adenosine ratios has a significant role in coordinating the regulation of the immune system in health and diseases. Several pathogens express ectonucleotidases on their surface and exploit the purinergic signalling as one of the mechanisms to modulate the host immune response. Leishmania pathogens are one of the most successful intracellular pathogens which survive within host macrophages and manipulate protective Th1 response into disease promoting Th2 response. In this review, we discuss the regulation of extracellular ATP and adenosine levels, the role of ATP/adenosine counter signalling in regulating the inflammation and immune responses during infection and how Leishmania parasites exploit the purinergic signalling to manipulate host response. We also discuss the challenges and opportunities in targeting purinergic signalling and the future prospects.
Collapse
Affiliation(s)
- Vijayamahantesh
- Department of Biochemistry, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| | - Vijayalaxmi
- Department of Zoology, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
10
|
Takehara M, Seike S, Sonobe Y, Bandou H, Yokoyama S, Takagishi T, Miyamoto K, Kobayashi K, Nagahama M. Clostridium perfringens α-toxin impairs granulocyte colony-stimulating factor receptor-mediated granulocyte production while triggering septic shock. Commun Biol 2019; 2:45. [PMID: 30729183 PMCID: PMC6355902 DOI: 10.1038/s42003-019-0280-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
During bacterial infection, granulocyte colony-stimulating factor (G-CSF) is produced and accelerates neutrophil production from their progenitors. This process, termed granulopoiesis, strengthens host defense, but Clostridium perfringens α-toxin impairs granulopoiesis via an unknown mechanism. Here, we tested whether G-CSF accounts for the α-toxin-mediated impairment of granulopoiesis. We find that α-toxin dramatically accelerates G-CSF production from endothelial cells in response to Toll-like receptor 2 (TLR2) agonists through activation of the c-Jun N-terminal kinase (JNK) signaling pathway. Meanwhile, α-toxin inhibits G-CSF-mediated cell proliferation of Ly-6G+ neutrophils by inducing degradation of G-CSF receptor (G-CSFR). During sepsis, administration of α-toxin promotes lethality and tissue injury accompanied by accelerated production of inflammatory cytokines in a TLR4-dependent manner. Together, our results illustrate that α-toxin disturbs G-CSF-mediated granulopoiesis by reducing the expression of G-CSFR on neutrophils while augmenting septic shock due to excess inflammatory cytokine release, which provides a new mechanism to explain how pathogenic bacteria modulate the host immune system.
Collapse
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Soshi Seike
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Yuuta Sonobe
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Hiroto Bandou
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Saki Yokoyama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Teruhisa Takagishi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Kazuaki Miyamoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| |
Collapse
|
11
|
Makarenkova HP, Shah SB, Shestopalov VI. The two faces of pannexins: new roles in inflammation and repair. J Inflamm Res 2018; 11:273-288. [PMID: 29950881 PMCID: PMC6016592 DOI: 10.2147/jir.s128401] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pannexins belong to a family of ATP-release channels expressed in almost all cell types. An increasing body of literature on pannexins suggests that these channels play dual and sometimes contradictory roles, contributing to normal cell function, as well as to the pathological progression of disease. In this review, we summarize our understanding of pannexin "protective" and "harmful" functions in inflammation, regeneration and mechanical signaling. We also suggest a possible basis for pannexin's dual roles, related to extracellular ATP and K+ levels and the activation of various types of P2 receptors that are associated with pannexin. Finally, we speculate upon therapeutic strategies related to pannexin using eyes, lacrimal glands, and peripheral nerves as examples of interesting therapeutic targets.
Collapse
Affiliation(s)
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California.,Research Division, Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Valery I Shestopalov
- Bascom Eye Institute, Department of Ophthalmology, University of Miami, Miami, FL, USA.,Vavilov Institute for General Genetics, Russian Academy of Sciences.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Mechanisms of Action and Cell Death Associated with Clostridium perfringens Toxins. Toxins (Basel) 2018; 10:toxins10050212. [PMID: 29786671 PMCID: PMC5983268 DOI: 10.3390/toxins10050212] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 12/26/2022] Open
Abstract
Clostridium perfringens uses its large arsenal of protein toxins to produce histotoxic, neurologic and intestinal infections in humans and animals. The major toxins involved in diseases are alpha (CPA), beta (CPB), epsilon (ETX), iota (ITX), enterotoxin (CPE), and necrotic B-like (NetB) toxins. CPA is the main virulence factor involved in gas gangrene in humans, whereas its role in animal diseases is limited and controversial. CPB is responsible for necrotizing enteritis and enterotoxemia, mostly in neonatal individuals of many animal species, including humans. ETX is the main toxin involved in enterotoxemia of sheep and goats. ITX has been implicated in cases of enteritis in rabbits and other animal species; however, its specific role in causing disease has not been proved. CPE is responsible for human food-poisoning and non-foodborne C. perfringens-mediated diarrhea. NetB is the cause of necrotic enteritis in chickens. In most cases, host–toxin interaction starts on the plasma membrane of target cells via specific receptors, resulting in the activation of intracellular pathways with a variety of effects, commonly including cell death. In general, the molecular mechanisms of cell death associated with C. perfringens toxins involve features of apoptosis, necrosis and/or necroptosis.
Collapse
|
13
|
Effect of Clostridium perfringens β-Toxin on Platelets. Toxins (Basel) 2017; 9:toxins9100336. [PMID: 29064418 PMCID: PMC5666382 DOI: 10.3390/toxins9100336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Clostridium perfringensβ-toxin (CPB) is the major virulence factor of C.perfringens type C causing a hemorrhagic enteritis in animals and humans. In experimentally infected pigs, endothelial binding of CPB was shown to be associated with early vascular lesions and hemorrhage but without obvious thrombosis of affected vessels, suggesting altered hemostasis in the early phase of the disease. The objective of the present study was to investigate the effect of CPB on platelets, with respect to primary hemostasis. Our results demonstrate that CPB binds to porcine and human platelets and forms oligomers resulting in a time- and dose-dependent cell death. Platelets showed rapid ultrastructural changes, significantly decreased aggregation and could no longer be activated by thrombin. This indicates that CPB affects the physiological function of platelets and counteracts primary hemostasis. Our results add platelets to the list of target cells of CPB and extend the current hypothesis of its role in the pathogenesis of C. perfringens type C enteritis.
Collapse
|
14
|
Xu J, Chen L, Li L. Pannexin hemichannels: A novel promising therapy target for oxidative stress related diseases. J Cell Physiol 2017; 233:2075-2090. [PMID: 28295275 DOI: 10.1002/jcp.25906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022]
Abstract
Pannexins, which contain three subtypes: pannexin-1, -2, and -3, are vertebrate glycoproteins that form non-junctional plasma membrane intracellular hemichannels via oligomerization. Oxidative stress refers to an imbalance of the generation and elimination of reactive oxygen species (ROS). Studies have shown that elevated ROS levels are pivotal in the development of a variety of diseases. Recent studies indicate that the occurrence of these oxidative stress related diseases is associated with pannexin hemichannels. It is also reported that pannexins regulate the production of ROS which in turn may increase the opening of pannexin hemichannels. In this paper, we review recent researches about the important role of pannexin hemichannels in oxidative stress related diseases. Thus, pannexin hemichannels, novel therapeutic targets, hold promise in managing oxidative stress related diseases such as the tumor, inflammatory bowel diseases (IBD), pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, insulin resistance (IR), and neural degeneration diseases.
Collapse
Affiliation(s)
- Jin Xu
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Linxi Chen
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Lanfang Li
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| |
Collapse
|