1
|
Scorza S, Brunetti V, Scarpellino G, Certini M, Gerbino A, Moccia F. Targeting the Ca 2+ signaling toolkit as an alternative strategy to mitigate SARS-CoV-2-induced cardiovascular adverse events. Vascul Pharmacol 2024; 158:107458. [PMID: 39701403 DOI: 10.1016/j.vph.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Ca2+ signaling events are essential for maintaining cardiovascular health, regulating critical functions in both endothelial and cardiac cells. SARS-CoV-2 infection impinges this delicate balance, leading to severe cardiovascular complications. SARS-CoV-2 binds to the ACE2 receptor on endothelial and cardiomyocyte surfaces, triggering abnormal increases in intracellular Ca2+ levels that promote endothelial dysfunction, inflammation, and hypercoagulation. In endothelial cells, this dysregulation activates a pro-inflammatory state and compromises vascular integrity. In cardiomyocytes, SARS-CoV-2-induced Ca2+ imbalances contribute to arrhythmias and heart failure by promoting abnormal Ca2+ cycling and energy metabolism disruptions. Additionally, the cytokine storm associated with COVID-19 amplifies these effects by further altering Ca2+ handling, enhancing inflammatory responses, and promoting thrombosis. Targeting Ca2+ channels, particularly endolysosomal two-pore channels, represents a promising therapeutic approach to counteract SARS-CoV-2's effects on Ca2+ dynamics. Several FDA-approved drugs that modulate Ca2+ signaling could be repurposed to prevent viral entry and mitigate cardiovascular damage. Understanding these Ca2+-related mechanisms offers valuable insights for developing treatments to reduce cardiovascular risk in COVID-19 and potentially future viral infections impacting the cardiovascular system.
Collapse
Affiliation(s)
- Simona Scorza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maira Certini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy.
| | - Francesco Moccia
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| |
Collapse
|
2
|
Kolokouris D, Kalenderoglou IE, Duncan AL, Corey RA, Sansom MSP, Kolocouris A. The Role of Cholesterol in M2 Clustering and Viral Budding Explained. J Chem Theory Comput 2024. [PMID: 39494590 DOI: 10.1021/acs.jctc.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The influenza A M2 homotetrameric channel consists of four transmembrane (TM) and four amphipathic helices (AHs). This viral proton channel is suggested to form clusters in the catenoid budding neck areas in raft-like domains of the plasma membrane, resulting in cell membrane scission and viral release. The channel clustering environment is rich in cholesterol. Previous experiments have shown that cholesterol significantly contributes to lipid bilayer undulations in viral buds. However, a clear explanation of membrane curvature from the distribution of cholesterol around the M2TM-AH clusters is lacking. Using coarse-grained molecular dynamics simulations of M2TM-AH in bilayers, we observed that M2 channels form specific, C2-symmetric, clusters with conical shapes driven by the attraction of their AHs. We showed that cholesterol stabilized the formation of M2 channel clusters by filling and bridging the conical gap between M2 channels at specific sites in the N-termini of adjacent channels or via the C-terminal region of TM and AHs, with the latter sites displaying a longer interaction time and higher stability. The potential of mean force calculations showed that when cholesterols occupy the identified interfacial binding sites between two M2 channels, the dimer is stabilized by 11 kJ/mol. This translates to the cholesterol-bound dimer being populated by almost 2 orders of magnitude compared to a dimer lacking cholesterol. We demonstrated that the cholesterol-bridged M2 channels can exert a lateral force on the surrounding membrane to induce the necessary negative Gaussian curvature profile, which permits spontaneous scission of the catenoid membrane neck and leads to viral buds and scission.
Collapse
Affiliation(s)
- Dimitrios Kolokouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Iris E Kalenderoglou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Robin A Corey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| |
Collapse
|
3
|
Cubisino SAM, Milenkovic S, Conti-Nibali S, Musso N, Bonacci P, De Pinto V, Ceccarelli M, Reina S. Electrophysiological properties and structural prediction of the SARS-CoV-2 viroprotein E. Front Mol Biosci 2024; 11:1334819. [PMID: 38606285 PMCID: PMC11007222 DOI: 10.3389/fmolb.2024.1334819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 04/13/2024] Open
Abstract
COVID-19, the infectious disease caused by the most recently discovered coronavirus SARS- CoV-2, has caused millions of sick people and thousands of deaths all over the world. The viral positive-sense single-stranded RNA encodes 31 proteins among which the spike (S) is undoubtedly the best known. Recently, protein E has been reputed as a potential pharmacological target as well. It is essential for the assembly and release of the virions in the cell. Literature describes protein E as a voltage-dependent channel with preference towards monovalent cations whose intracellular expression, though, alters Ca2+ homeostasis and promotes the activation of the proinflammatory cascades. Due to the extremely high sequence identity of SARS-CoV-2 protein E (E-2) with the previously characterized E-1 (i.e., protein E from SARS-CoV) many data obtained for E-1 were simply adapted to the other. Recent solid state NMR structure revealed that the transmembrane domain (TMD) of E-2 self-assembles into a homo-pentamer, albeit the oligomeric status has not been validated with the full-length protein. Prompted by the lack of a common agreement on the proper structural and functional features of E-2, we investigated the specific mechanism/s of pore-gating and the detailed molecular structure of the most cryptic protein of SARS-CoV-2 by means of MD simulations of the E-2 structure and by expressing, refolding and analyzing the electrophysiological activity of the transmembrane moiety of the protein E-2, in its full length. Our results show a clear agreement between experimental and predictive studies and foresee a mechanism of activity based on Ca2+ affinity.
Collapse
Affiliation(s)
| | | | - Stefano Conti-Nibali
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- We.MitoBiotech S.R.L, Catania, Italy
| | | | - Simona Reina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- We.MitoBiotech S.R.L, Catania, Italy
| |
Collapse
|
4
|
Bekdash R, Yoshida K, Nair MS, Qiu L, Ahdout J, Tsai HY, Uryu K, Soni RK, Huang Y, Ho DD, Yazawa M. Developing inhibitory peptides against SARS-CoV-2 envelope protein. PLoS Biol 2024; 22:e3002522. [PMID: 38483887 PMCID: PMC10939250 DOI: 10.1371/journal.pbio.3002522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/25/2024] [Indexed: 03/17/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has affected approximately 800 million people since the start of the Coronavirus Disease 2019 (COVID-19) pandemic. Because of the high rate of mutagenesis in SARS-CoV-2, it is difficult to develop a sustainable approach for prevention and treatment. The Envelope (E) protein is highly conserved among human coronaviruses. Previous studies reported that SARS-CoV-1 E deficiency reduced viral propagation, suggesting that E inhibition might be an effective therapeutic strategy for SARS-CoV-2. Here, we report inhibitory peptides against SARS-CoV-2 E protein named iPep-SARS2-E. Leveraging E-induced alterations in proton homeostasis and NFAT/AP-1 pathway in mammalian cells, we developed screening platforms to design and optimize the peptides that bind and inhibit E protein. Using Vero-E6 cells, human-induced pluripotent stem cell-derived branching lung organoid and mouse models with SARS-CoV-2, we found that iPep-SARS2-E significantly inhibits virus egress and reduces viral cytotoxicity and propagation in vitro and in vivo. Furthermore, the peptide can be customizable for E protein of other human coronaviruses such as Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The results indicate that E protein can be a potential therapeutic target for human coronaviruses.
Collapse
Affiliation(s)
- Ramsey Bekdash
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, United States of America
- Columbia Stem Cell Initiative, Columbia University, New York, New York, United States of America
- Department of Pharmacology, Columbia University, New York, New York, United States of America
| | - Kazushige Yoshida
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, United States of America
- Columbia Stem Cell Initiative, Columbia University, New York, New York, United States of America
| | - Manoj S. Nair
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States of America
| | - Lauren Qiu
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, United States of America
- Columbia Stem Cell Initiative, Columbia University, New York, New York, United States of America
- Department of Biological Science, Columbia University, New York, New York, United States of America
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Johnathan Ahdout
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Hsiang-Yi Tsai
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kunihiro Uryu
- EMSCOPIC, New York, New York, United States of America
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, New York, United States of America
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States of America
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York, United States of America
| | - Masayuki Yazawa
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, United States of America
- Columbia Stem Cell Initiative, Columbia University, New York, New York, United States of America
- Department of Pharmacology, Columbia University, New York, New York, United States of America
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
5
|
Wölk C, Shen C, Hause G, Surya W, Torres J, Harvey RD, Bello G. Membrane Condensation and Curvature Induced by SARS-CoV-2 Envelope Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2646-2655. [PMID: 38258382 PMCID: PMC10851660 DOI: 10.1021/acs.langmuir.3c03079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
The envelope (E) protein of SARS-CoV-2 participates in virion encapsulation and budding at the membrane of the endoplasmic reticulum Golgi intermediate compartment (ERGIC). The positively curved membrane topology required to fit an 80 nm viral particle is energetically unfavorable; therefore, viral proteins must facilitate ERGIC membrane curvature alteration. To study the possible role of the E protein in this mechanism, we examined the structural modification of the host lipid membrane by the SARS-CoV-2 E protein using synchrotron-based X-ray methods. Our reflectometry results on solid-supported planar bilayers show that E protein markedly condenses the surrounding lipid bilayer. For vesicles, this condensation effect differs between the two leaflets such that the membrane becomes asymmetric and increases its curvature. The formation of such a curved and condensed membrane is consistent with the requirements to stably encapsulate a viral core and supports a role for E protein in budding during SARS-CoV-2 virion assembly.
Collapse
Affiliation(s)
- Christian Wölk
- Pharmaceutical
Technology, Medical Faculty, University
Leipzig, Eilenburger
Straße 15a, 04317 Leipzig, Germany
| | - Chen Shen
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Gerd Hause
- Biocenter, Martin-Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Wahyu Surya
- School
of Biological Sciences, Nanyang Technological
University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jaume Torres
- School
of Biological Sciences, Nanyang Technological
University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Richard D. Harvey
- Division
of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, UZA 2, Vienna 1090, Austria
| | - Gianluca Bello
- Division
of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, UZA 2, Vienna 1090, Austria
| |
Collapse
|
6
|
Medeiros-Silva J, Dregni AJ, Somberg NH, Duan P, Hong M. Atomic structure of the open SARS-CoV-2 E viroporin. SCIENCE ADVANCES 2023; 9:eadi9007. [PMID: 37831764 PMCID: PMC10575589 DOI: 10.1126/sciadv.adi9007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
The envelope (E) protein of the SARS-CoV-2 virus forms cation-conducting channels in the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of infected cells. The calcium channel activity of E is associated with the inflammatory responses of COVID-19. Using solid-state NMR (ssNMR) spectroscopy, we have determined the open-state structure of E's transmembrane domain (ETM) in lipid bilayers. Compared to the closed state, open ETM has an expansive water-filled amino-terminal chamber capped by key glutamate and threonine residues, a loose phenylalanine aromatic belt in the middle, and a constricted polar carboxyl-terminal pore filled with an arginine and a threonine residue. This structure gives insights into how protons and calcium ions are selected by ETM and how they permeate across the hydrophobic gate of this viroporin.
Collapse
Affiliation(s)
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
7
|
Somberg NH, Medeiros-Silva J, Jo H, Wang J, DeGrado WF, Hong M. Hexamethylene amiloride binds the SARS-CoV-2 envelope protein at the protein-lipid interface. Protein Sci 2023; 32:e4755. [PMID: 37632140 PMCID: PMC10503410 DOI: 10.1002/pro.4755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
The SARS-CoV-2 envelope (E) protein forms a five-helix bundle in lipid bilayers whose cation-conducting activity is associated with the inflammatory response and respiratory distress symptoms of COVID-19. E channel activity is inhibited by the drug 5-(N,N-hexamethylene) amiloride (HMA). However, the binding site of HMA in E has not been determined. Here we use solid-state NMR to measure distances between HMA and the E transmembrane domain (ETM) in lipid bilayers. 13 C, 15 N-labeled HMA is combined with fluorinated or 13 C-labeled ETM. Conversely, fluorinated HMA is combined with 13 C, 15 N-labeled ETM. These orthogonal isotopic labeling patterns allow us to conduct dipolar recoupling NMR experiments to determine the HMA binding stoichiometry to ETM as well as HMA-protein distances. We find that HMA binds ETM with a stoichiometry of one drug per pentamer. Unexpectedly, the bound HMA is not centrally located within the channel pore, but lies on the lipid-facing surface in the middle of the TM domain. This result suggests that HMA may inhibit the E channel activity by interfering with the gating function of an aromatic network. These distance data are obtained under much lower drug concentrations than in previous chemical shift perturbation data, which showed the largest perturbation for N-terminal residues. This difference suggests that HMA has higher affinity for the protein-lipid interface than the channel pore. These results give insight into the inhibition mechanism of HMA for SARS-CoV-2 E.
Collapse
Affiliation(s)
- Noah H Somberg
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Voelz VA, Pande VS, Bowman GR. Folding@home: Achievements from over 20 years of citizen science herald the exascale era. Biophys J 2023; 122:2852-2863. [PMID: 36945779 PMCID: PMC10398258 DOI: 10.1016/j.bpj.2023.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Simulations of biomolecules have enormous potential to inform our understanding of biology but require extremely demanding calculations. For over 20 years, the Folding@home distributed computing project has pioneered a massively parallel approach to biomolecular simulation, harnessing the resources of citizen scientists across the globe. Here, we summarize the scientific and technical advances this perspective has enabled. As the project's name implies, the early years of Folding@home focused on driving advances in our understanding of protein folding by developing statistical methods for capturing long-timescale processes and facilitating insight into complex dynamical processes. Success laid a foundation for broadening the scope of Folding@home to address other functionally relevant conformational changes, such as receptor signaling, enzyme dynamics, and ligand binding. Continued algorithmic advances, hardware developments such as graphics processing unit (GPU)-based computing, and the growing scale of Folding@home have enabled the project to focus on new areas where massively parallel sampling can be impactful. While previous work sought to expand toward larger proteins with slower conformational changes, new work focuses on large-scale comparative studies of different protein sequences and chemical compounds to better understand biology and inform the development of small-molecule drugs. Progress on these fronts enabled the community to pivot quickly in response to the COVID-19 pandemic, expanding to become the world's first exascale computer and deploying this massive resource to provide insight into the inner workings of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and aid the development of new antivirals. This success provides a glimpse of what is to come as exascale supercomputers come online and as Folding@home continues its work.
Collapse
Affiliation(s)
- Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | | | - Gregory R Bowman
- Departments of Biochemistry & Biophysics and of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|