1
|
Riseh RS, Vazvani MG, Kennedy JF. β-glucan-induced disease resistance in plants: A review. Int J Biol Macromol 2023; 253:127043. [PMID: 37742892 DOI: 10.1016/j.ijbiomac.2023.127043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are caused by various factors, including both pathogenic and non-pathogenic ones. β-glucan primarily originates from bacteria and fungi, some species of these organisms work as biological agents in causing diseases. When β-glucan enters plants, it triggers the defense system, leading to various reactions such as the production of proteins related to pathogenicity and defense enzymes. By extracting β-glucan from disturbed microorganisms and using it as an inducing agent, plant diseases can be effectively controlled by activating the plant's defense system. β-glucan plays a crucial role during the interaction between plants and pathogens. Therefore, modeling the plant-pathogen relationship and using the molecules involved in this interaction can help in controlling plant diseases, as pathogens have genes related to resistance against pathogenicity. Thus, it is reasonable to identify and use biological induction agents at a large scale by extracting these compounds.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
2
|
Tundo S, Mandalà G, Sella L, Favaron F, Bedre R, Kalunke RM. Xylanase Inhibitors: Defense Players in Plant Immunity with Implications in Agro-Industrial Processing. Int J Mol Sci 2022; 23:ijms232314994. [PMID: 36499321 PMCID: PMC9739030 DOI: 10.3390/ijms232314994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Xylanase inhibitors (XIs) are plant cell wall proteins largely distributed in monocots that inhibit the hemicellulose degrading activity of microbial xylanases. XIs have been classified into three classes with different structures and inhibition specificities, namely Triticum aestivum xylanase inhibitors (TAXI), xylanase inhibitor proteins (XIP), and thaumatin-like xylanase inhibitors (TLXI). Their involvement in plant defense has been established by several reports. Additionally, these inhibitors have considerable economic relevance because they interfere with the activity of xylanases applied in several agro-industrial processes. Previous reviews highlighted the structural and biochemical properties of XIs and hypothesized their role in plant defense. Here, we aimed to update the information on the genomic organization of XI encoding genes, the inhibition properties of XIs against microbial xylanases, and the structural properties of xylanase-XI interaction. We also deepened the knowledge of XI regulation mechanisms in planta and their involvement in plant defense. Finally, we reported the recently studied strategies to reduce the negative impact of XIs in agro-industrial processes and mentioned their allergenicity potential.
Collapse
Affiliation(s)
- Silvio Tundo
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
- Correspondence:
| | - Giulia Mandalà
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Renesh Bedre
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, Weslaco, TX 78596, USA
| | - Raviraj M. Kalunke
- Donald Danforth Plant Science Center, 975 N Warson Rd, 7 Olivette, St. Louis, MO 63132, USA
| |
Collapse
|
3
|
Takeda T, Takahashi M, Shimizu M, Sugihara Y, Yamashita T, Saitoh H, Fujisaki K, Ishikawa K, Utsushi H, Kanzaki E, Sakamoto Y, Abe A, Terauchi R. Rice apoplastic CBM1-interacting protein counters blast pathogen invasion by binding conserved carbohydrate binding module 1 motif of fungal proteins. PLoS Pathog 2022; 18:e1010792. [PMID: 36173975 PMCID: PMC9521807 DOI: 10.1371/journal.ppat.1010792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
When infecting plants, fungal pathogens secrete cell wall-degrading enzymes (CWDEs) that break down cellulose and hemicellulose, the primary components of plant cell walls. Some fungal CWDEs contain a unique domain, named the carbohydrate binding module (CBM), that facilitates their access to polysaccharides. However, little is known about how plants counteract pathogen degradation of their cell walls. Here, we show that the rice cysteine-rich repeat secretion protein OsRMC binds to and inhibits xylanase MoCel10A of the blast fungus pathogen Magnaporthe oryzae, interfering with its access to the rice cell wall and degradation of rice xylan. We found binding of OsRMC to various CBM1-containing enzymes, suggesting that it has a general role in inhibiting the action of CBM1. OsRMC is localized to the apoplast, and its expression is strongly induced in leaves infected with M. oryzae. Remarkably, knockdown and overexpression of OsRMC reduced and enhanced rice defense against M. oryzae, respectively, demonstrating that inhibition of CBM1-containing fungal enzymes by OsRMC is crucial for rice defense. We also identified additional CBM-interacting proteins (CBMIPs) from Arabidopsis thaliana and Setaria italica, indicating that a wide range of plants counteract pathogens through this mechanism. Plants have evolved various activity-inhibiting proteins as a defense against fungal cell wall-degrading enzymes (CWDEs), but how plants counteract the function of fungal enzymes containing carbohydrate binding modules (CBMs) remains unknown. Here, we demonstrate that OsRMC, a member of the cysteine-rich repeat secretion protein family, interacts with fungal CBM1. OsRMC binding to CBM1 of a blast fungal xylanase blocks access to cellulose, resulting in the inhibition of xylanase enzymatic activity. Our study provides significant insights into plant countermeasures against CWDEs in the apoplastic space during plant-fungal pathogen interactions. It also reveals a molecular function of the DUF26 domain widely distributed in plant proteins.
Collapse
Affiliation(s)
- Takumi Takeda
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- * E-mail: (TT); (RT)
| | | | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Yu Sugihara
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto, Japan
| | | | - Hiromasa Saitoh
- Department of Molecular Microbiology, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Koki Fujisaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | | | - Hiroe Utsushi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Eiko Kanzaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | | | - Akira Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto, Japan
- * E-mail: (TT); (RT)
| |
Collapse
|
4
|
Pretreatment with Chitosan Prevents Fusarium Infection and Induces the Expression of Chitinases and β-1,3-Glucanases in Garlic (Allium sativum L.). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fusarium infection decreases the yield of garlic (Allium sativum L.); however, the knowledge about garlic response to fungal attack is limited. Chitosan induces plant defense response to stress conditions. Here, we analyzed the effects of chitosan with low (Ch1, 39 kDa) and medium (Ch2, 135 kDa) molecular weight on Fusarium infection in garlic. Ch1 and Ch2 at concentrations 0.125–0.400 mg/mL suppressed the growth of Fusarium proliferatum cultures in vitro. Pretreatment of garlic bulbs with Ch1 or Ch2 prevented disease symptoms after F. proliferatum inoculation, while exerting early inhibitory and late stimulatory effects on chitinase and β-1,3-glucanase activities. Ch1/Ch2 treatment of garlic already infected with F. proliferatum caused transcriptional upregulation of chitinases and β-1,3-glucanases at the early stage, which was maintained at the late stage in Ch2-treated samples, but not in Ch1-treated samples, where transcriptional inhibition was observed. The stimulatory effect of Ch2 pretreatment on the expression of chitinase and endo-β-1,3-glucanase genes was stronger than that of Ch1 pretreatment, suggesting that Ch2 could be more effective than Ch1 in pre-sowing treatment of garlic bulbs. Our results provide insights into the effects of chitosan on the garlic response to Fusarium, suggesting a novel strategy to protect garlic crop against fungal infection.
Collapse
|
5
|
Alfeo V, De Francesco G, Sileoni V, Blangiforti S, Palmeri R, Aerts G, Perretti G, Todaro A. Physicochemical properties, sugar profile, and non-starch polysaccharides characterization of old wheat malt landraces. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Hebal H, Boucherba N, Binay B, Turunen O. Activity and stability of hyperthermostable cellulases and xylanases in ionic liquids. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1882430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hakim Hebal
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de La Nature et de La Vie (FSNV), Université de Bejaia, Bejaia, Algeria
- Faculty of Exact Sciences and Sciences of Nature and Life, Department of Biology, Mohamed Khider University of Biskra, Biskra, Algeria
| | - Nawel Boucherba
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de La Nature et de La Vie (FSNV), Université de Bejaia, Bejaia, Algeria
| | - Baris Binay
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Ossi Turunen
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
7
|
Benedetti M, Barera S, Longoni P, Guardini Z, Herrero Garcia N, Bolzonella D, Lopez‐Arredondo D, Herrera‐Estrella L, Goldschmidt‐Clermont M, Bassi R, Dall’Osto L. A microalgal-based preparation with synergistic cellulolytic and detoxifying action towards chemical-treated lignocellulose. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:124-137. [PMID: 32649019 PMCID: PMC7769238 DOI: 10.1111/pbi.13447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 05/28/2023]
Abstract
High-temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesophilic enzymes. Here, we report on the development of a platform to produce four different thermostable cell wall degrading enzymes in the chloroplast of Chlamydomonas reinhardtii. The enzyme blend was composed of the cellobiohydrolase CBM3GH5 from C. saccharolyticus, the β-glucosidase celB from P. furiosus, the endoglucanase B and the endoxylanase XynA from T. neapolitana. In addition, transplastomic microalgae were engineered for the expression of phosphite dehydrogenase D from Pseudomonas stutzeri, allowing for growth in non-axenic media by selective phosphite nutrition. The cellulolytic blend composed of the glycoside hydrolase (GH) domain GH12/GH5/GH1 allowed the conversion of alkaline-treated lignocellulose into glucose with efficiencies ranging from 14% to 17% upon 48h of reaction and an enzyme loading of 0.05% (w/w). Hydrolysates from treated cellulosic materials with extracts of transgenic microalgae boosted both the biogas production by methanogenic bacteria and the mixotrophic growth of the oleaginous microalga Chlorella vulgaris. Notably, microalgal treatment suppressed the detrimental effect of inhibitory by-products released from the alkaline treatment of biomass, thus allowing for efficient assimilation of lignocellulose-derived sugars by C. vulgaris under mixotrophic growth.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
- Present address:
Dipartimento MESVAUniversità dell'AquilaCoppitoAQItaly
| | - Simone Barera
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Paolo Longoni
- Faculty of ScienceInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Zeno Guardini
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | | | | | - Damar Lopez‐Arredondo
- StelaGenomics MexicoS de RL de CVIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | - Luis Herrera‐Estrella
- Laboratorio Nacional de Genómica para la BiodiversidadCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | | | - Roberto Bassi
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Luca Dall’Osto
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| |
Collapse
|
8
|
Giovannoni M, Gramegna G, Benedetti M, Mattei B. Industrial Use of Cell Wall Degrading Enzymes: The Fine Line Between Production Strategy and Economic Feasibility. Front Bioeng Biotechnol 2020; 8:356. [PMID: 32411686 PMCID: PMC7200985 DOI: 10.3389/fbioe.2020.00356] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cell Wall Degrading Enzymes (CWDEs) are a heterogeneous group of enzymes including glycosyl-hydrolases, oxidoreductases, lyases, and esterases. Microbes with degrading activities toward plant cell wall polysaccharides are the most relevant source of CWDEs for industrial applications. These organisms secrete a wide array of CWDEs in amounts strictly necessary for their own sustenance, nonetheless the production of CWDEs from wild type microbes can be increased at large-scale by using optimized fermentation strategies. In the last decades, advances in genetic engineering allowed the expression of recombinant CWDEs also in lab-domesticated organisms such as E. coli, yeasts and plants, dramatically increasing the available options for the large-scale production of CWDEs. The optimization of a CWDE-producing biofactory is a hard challenge that biotechnologists tackle by testing different expression strategies and expression-hosts. Although both the yield and production costs are critical factors to produce biomolecules at industrial scale, these parameters are often disregarded in basic research. This review presents the main characteristics and industrial applications of CWDEs directed toward the cell wall of plants, bacteria, fungi and microalgae. Different biofactories for CWDE expression are compared in order to highlight strengths and weaknesses of each production system and how these aspects impact the final enzyme cost and, consequently, the economic feasibility of using CWDEs for industrial applications.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Gramegna
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
9
|
Zhang P, Zhu Y, Zhou S. Comparative transcriptomic analyses of powdery mildew resistant and susceptible cultivated cucumber ( Cucumis sativus L.) varieties to identify the genes involved in the resistance to Sphaerotheca fuliginea infection. PeerJ 2020; 8:e8250. [PMID: 32337096 PMCID: PMC7169966 DOI: 10.7717/peerj.8250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022] Open
Abstract
Background Cucumber (Cucumis sativus L.) is a widely cultivated vegetable crop, and its yield and quality are greatly affected by various pathogen infections. Sphaerotheca fuliginea is a pathogen that causes powdery mildew (PM) disease in cucumber. However, the genes involved in the resistance to PM in cucumber are largely unknown. Methods In our study, a cucumber PM resistant cultivated variety “BK2” and a susceptible cultivated variety “H136” were used to screen and identify differential expressed genes (DEGs) under the S. fuliginea infection. Results There were only 97 DEGs between BK2 and H136 under the control condition, suggesting a similarity in the basal gene expression between the resistant and susceptible cultivated varieties. A large number of hormone signaling-related DEGs (9.2% of all DEGs) between resistant and susceptible varieties were identified, suggesting an involvement of hormone signaling pathways in the resistance to PM. In our study, the defense-related DEGs belonging to Class I were only induced in susceptible cultivated variety and the defense-related DEGs belonging to Class II were only induced in resistant cultivated variety. The peroxidase, NBS, glucanase and chitinase genes that were grouped into Class I and II might contribute to production of the resistance to PM in resistant cultivated variety. Furthermore, several members of Pathogen Response-2 family, such as glucanases and chitinases, were identified as DEGs, suggesting that cucumber might enhance the resistance to PM by accelerating the degradation of the pathogen cell walls. Our data allowed us to identify and analyze more potential genes related to PM resistance.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yuqiang Zhu
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Shengjun Zhou
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| |
Collapse
|
10
|
Green Production and Biotechnological Applications of Cell Wall Lytic Enzymes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
: Energy demand is constantly growing, and, nowadays, fossil fuels still play a dominant role in global energy production, despite their negative effects on air pollution and the emission of greenhouse gases, which are the main contributors to global warming. An alternative clean source of energy is represented by the lignocellulose fraction of plant cell walls, the most abundant carbon source on Earth. To obtain biofuels, lignocellulose must be efficiently converted into fermentable sugars. In this regard, the exploitation of cell wall lytic enzymes (CWLEs) produced by lignocellulolytic fungi and bacteria may be considered as an eco-friendly alternative. These organisms evolved to produce a variety of highly specific CWLEs, even if in low amounts. For an industrial use, both the identification of novel CWLEs and the optimization of sustainable CWLE-expressing biofactories are crucial. In this review, we focus on recently reported advances in the heterologous expression of CWLEs from microbial and plant expression systems as well as some of their industrial applications, including the production of biofuels from agricultural feedstock and of value-added compounds from waste materials. Moreover, since heterologous expression of CWLEs may be toxic to plant hosts, genetic strategies aimed in converting such a deleterious effect into a beneficial trait are discussed.
Collapse
|
11
|
Zhang P, Zhu Y, Luo X, Zhou S. Comparative proteomic analysis provides insights into the complex responses to Pseudoperonospora cubensis infection of cucumber (Cucumis sativus L.). Sci Rep 2019; 9:9433. [PMID: 31263111 PMCID: PMC6603182 DOI: 10.1038/s41598-019-45111-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/28/2019] [Indexed: 02/04/2023] Open
Abstract
Cucumber (Cucumis sativus L.) is an important crop distributed in many countries. Downy mildew (DM) caused by the obligate oomycete Pseudoperonospora cubensis is especially destructive in cucumber production. So far, few studies on the changes in proteomes during the P. cubensis infection have been performed. In the present study, the proteomes of DM-resistant variety ‘ZJ’ and DM-susceptible variety ‘SDG’ under the P. cubensis infection were investigated. In total, 6400 peptides were identified, 5629 of which were quantified. KEGG analysis showed that a number of metabolic pathways were significantly altered under P. cubensis infection, such as terpenoid backbone biosynthesis, and selenocompound metabolism in ZJ, and starch and sucrose metabolism in SDG. For terpenoid backbone synthesis, 1-deoxy-D-xylulose-5-phosphate synthase, 1-deoxy-D-xylulose 5-phosphate reductoisomerase, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, and geranylgeranyl pyrophosphate synthase were significantly accumulated in ZJ rather than in SDG, suggesting that pathogen-induced terpenoids accumulation might play an important role in the resistance against P. cubensis infection. Furthermore, a number of pathogenesis-related proteins, such as endochitinases, peroxidases, PR proteins and heat shock proteins were identified as DAPs, suggesting that DM resistance was controlled by a complex network. Our data allowed us to identify and screen more potential proteins related to the DM resistance.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yuqiang Zhu
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Xiujun Luo
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
| | - Shengjun Zhou
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China.
| |
Collapse
|
12
|
Benedetti M, Vecchi V, Betterle N, Natali A, Bassi R, Dall'Osto L. Design of a highly thermostable hemicellulose-degrading blend from Thermotoga neapolitana for the treatment of lignocellulosic biomass. J Biotechnol 2019; 296:42-52. [PMID: 30885654 DOI: 10.1016/j.jbiotec.2019.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
The biological conversion of lignocellulose into fermentable sugars is a key process for the sustainable production of biofuels from plant biomass. Polysaccharides in plant feedstock can be valorized using thermostable mixtures of enzymes that degrade the cell walls, thus avoiding harmful and expensive pre-treatments. (Hyper)thermophilic bacteria of the phylum Thermotogae provide a rich source of enzymes for such industrial applications. Here we selected T. neapolitana as a source of hyperthermophilic hemicellulases for the degradation of lignocellulosic biomass. Two genes encoding putative hemicellulases were cloned from T. neapolitana genomic DNA and expressed in Escherichia coli. Further characterization revealed that the genes encoded an endo-1,4-β-galactanase and an α-l-arabinofuranosidase with optimal temperatures of ˜90 °C and high turnover numbers during catalysis (kcat values of ˜177 and ˜133 s-1, respectively, on soluble substrates). These enzymes were combined with three additional T. neapolitana hyperthermophilic hemicellulases - endo-1,4-β-xylanase (XynA), endo-1,4-β-mannanase (ManB/Man5A) and β-glucosidase (GghA) - to form a highly thermostable hemicellulolytic blend. The treatment of barley straw and corn bran with this enzymatic cocktail resulted in the solubilization of multiple hemicelluloses and boosted the yield of fermentable sugars by up to 65% when the complex substrates were further degraded by cellulases.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Nico Betterle
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Alberto Natali
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
13
|
Alfeo V, Jaskula-Goiris B, Venora G, Schimmenti E, Aerts G, Todaro A. Screening of durum wheat landraces (Triticum turgidum subsp. durum) for the malting suitability. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Hardham AR, Blackman LM. Phytophthora cinnamomi. MOLECULAR PLANT PATHOLOGY 2018; 19:260-285. [PMID: 28519717 PMCID: PMC6637996 DOI: 10.1111/mpp.12568] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 05/12/2023]
Abstract
Phytophthora cinnamomi is one of the most devastating plant pathogens in the world. It infects close to 5000 species of plants, including many of importance in agriculture, forestry and horticulture. The inadvertent introduction of P. cinnamomi into natural ecosystems, including a number of recognized Global Biodiversity Hotspots, has had disastrous consequences for the environment and the biodiversity of flora and fauna. The genus Phytophthora belongs to the Class Oomycetes, a group of fungus-like organisms that initiate plant disease through the production of motile zoospores. Disease control is difficult in agricultural and forestry situations and even more challenging in natural ecosystems as a result of the scale of the problem and the limited range of effective chemical inhibitors. The development of sustainable control measures for the future management of P. cinnamomi requires a comprehensive understanding of the cellular and molecular basis of pathogen development and pathogenicity. The application of next-generation sequencing technologies to generate genomic and transcriptomic data promises to underpin a new era in P. cinnamomi research and discovery. The aim of this review is to integrate bioinformatic analyses of P. cinnamomi sequence data with current knowledge of the cellular and molecular basis of P. cinnamomi growth, development and plant infection. The goal is to provide a framework for future research by highlighting potential pathogenicity genes, shedding light on their possible functions and identifying suitable targets for future control measures. TAXONOMY Phytophthora cinnamomi Rands; Kingdom Chromista; Phylum Oomycota or Pseudofungi; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; genus Phytophthora. HOST RANGE Infects about 5000 species of plants, including 4000 Australian native species. Host plants important for agriculture and forestry include avocado, chestnut, macadamia, oak, peach and pineapple. DISEASE SYMPTOMS A root pathogen which causes rotting of fine and fibrous roots, but which can also cause stem cankers. Root damage may inhibit water movement from roots to shoots, leading to dieback of young shoots. USEFUL WEBSITES: http://fungidb.org/fungidb/; http://genome.jgi.doe.gov/Phyci1/Phyci1.home.html; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314365.1; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314505.1.
Collapse
Affiliation(s)
- Adrienne R. Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberraACT 2601Australia
| | - Leila M. Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberraACT 2601Australia
| |
Collapse
|
15
|
Johnson George K, Rosana Babu O, Vijesh Kumar IP, Santhosh Eapen J, Anandaraj M. Interplay of genes in plant-pathogen interactions: In planta expression and docking studies of a beta 1,3 glucanase gene from Piper colubrinum and a glucanase inhibitor gene from Phytophthora capsici. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:567-573. [PMID: 27924129 PMCID: PMC5120035 DOI: 10.1007/s12298-016-0378-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 09/01/2016] [Accepted: 09/23/2016] [Indexed: 05/27/2023]
Abstract
Oomycete pathogen, Phytophthora capsici is devastating for black pepper (Piper nigrum L.) and causes foot rot disease at all stages of plant growth. Phytophthora secretes a glucanase inhibitor protein (GIP), which is capable of inhibiting defence proteins like endoglucanases. In this particular study Quantitative PCR analysis, molecular docking studies and analysis of sequences of Glucanase inhibitor protein and beta-1,3 glucanse genes were done mainly depending on the data derived from Phytophthora capsici whole genome sequencing and Piper colubrinum RNA-sequencing (RNA-Seq). Amino acid sequence length of GIP gene from P. capsici was about 353 amino acids and that of glucanase pcEGase gene from P. colubrinum was about 312 amino acids. GIP gene from P. capsici showed high level of expression at early hours of the inoculation time period and pcEGase gene showed high level of expression at 16 hpi. High level of expression of pcEGase gene at 16 hpi is an indication that the GIP gene is successfully inhibited by the glucanase protein from the plant. Moreover insilico studies gave some hint on the importance of certain sites on the surfaces of both interacting proteins that might be having a role in binding of the two proteins and subsequent reactions thereof. Insilico analysis also conclusively proved that inhibition of glucanase inhibitor protein is mainly caused by recognition of an arginine as well as an isoleucine residue during the interaction of the two proteins.
Collapse
Affiliation(s)
- K. Johnson George
- Division of Crop Improvement and Division of Crop Protection, Indian Institute of Spices Research, Calicut, 673012 India
| | - O. Rosana Babu
- Division of Crop Improvement and Division of Crop Protection, Indian Institute of Spices Research, Calicut, 673012 India
| | - I. P. Vijesh Kumar
- Division of Crop Improvement and Division of Crop Protection, Indian Institute of Spices Research, Calicut, 673012 India
| | - J. Santhosh Eapen
- Division of Crop Improvement and Division of Crop Protection, Indian Institute of Spices Research, Calicut, 673012 India
| | - M. Anandaraj
- Division of Crop Improvement and Division of Crop Protection, Indian Institute of Spices Research, Calicut, 673012 India
| |
Collapse
|
16
|
Choupina AB, Estevinho L, Martins IM. Scientifically advanced solutions for chestnut ink disease. Appl Microbiol Biotechnol 2014; 98:3905-9. [DOI: 10.1007/s00253-014-5654-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 01/22/2023]
|
17
|
Martins IM, Martins F, Belo H, Vaz M, Carvalho M, Cravador A, Choupina A. Cloning, characterization and in vitro and in planta expression of a glucanase inhibitor protein (GIP) of Phytophthora cinnamomi. Mol Biol Rep 2014; 41:2453-62. [DOI: 10.1007/s11033-014-3101-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 01/04/2014] [Indexed: 11/30/2022]
|
18
|
Choi HW, Kim NH, Lee YK, Hwang BK. The pepper extracellular xyloglucan-specific endo-β-1,4-glucanase inhibitor protein gene, CaXEGIP1, is required for plant cell death and defense responses. PLANT PHYSIOLOGY 2013; 161:384-96. [PMID: 23093361 PMCID: PMC3532269 DOI: 10.1104/pp.112.203828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/19/2012] [Indexed: 05/19/2023]
Abstract
Plants produce various proteinaceous inhibitors to protect themselves against microbial pathogen attack. A xyloglucan-specific endo-β-1,4-glucanase inhibitor1 gene, CaXEGIP1, was isolated and functionally characterized in pepper (Capsicum annuum) plants. CaXEGIP1 was rapidly and strongly induced in pepper leaves infected with avirulent Xanthomonas campestris pv vesicatoria, and purified CaXEGIP1 protein significantly inhibited the hydrolytic activity of the glycoside hydrolase74 family xyloglucan-specific endo-β-1,4-glucanase from Clostridium thermocellum. Soluble-modified green fluorescent protein-tagged CaXEGIP1 proteins were mainly localized to the apoplast of onion (Allium cepa) epidermal cells. Agrobacterium tumefaciens-mediated overexpression of CaXEGIP1 triggered pathogen-independent, spontaneous cell death in pepper and Nicotiana benthamiana leaves. CaXEGIP1 silencing in pepper conferred enhanced susceptibility to virulent and avirulent X. campestris pv vesicatoria, accompanied by a compromised hypersensitive response and lowered expression of defense-related genes. Overexpression of dexamethasone:CaXEGIP1 in Arabidopsis (Arabidopsis thaliana) enhanced resistance to Hyaloperonospora arabidopsidis infection. Comparative histochemical and proteomic analyses revealed that CaXEGIP1 overexpression induced a spontaneous cell death response and also increased the expression of some defense-related proteins in transgenic Arabidopsis leaves. This response was also accompanied by cell wall thickening and darkening. Together, these results suggest that pathogen-inducible CaXEGIP1 positively regulates cell death-mediated defense responses in plants.
Collapse
|
19
|
Mechanistic insights into the inhibition of endo-β 1,4 xyloglucan hydrolase by a classical aspartic protease inhibitor. J Fluoresc 2012; 23:311-21. [PMID: 23212130 DOI: 10.1007/s10895-012-1149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
Abstract
This is the first report of inactivation of xyloglucanase from Thermomonospora sp by pepstatin A, a specific inhibitor towards aspartic proteases. The steady state kinetics revealed a reversible, competitive, two-step inhibition mechanism with IC 50 and K i values of 3.5 ± 0.5 μM and 1.25 ± 0.5 μM respectively. The rate constants determined for the isomerization of EI to EI(*) and the dissociation of EI* were 14.5 ± 1.5 × 10(-5) s(-1) and 2.85 ± 1.2 × 10(-8) s(-1) respectively, whereas the overall inhibition constant K i(*) was 27 ± 1 nM. The conformational changes induced upon inhibitor binding to xyloglucanase were monitored by fluorescence analysis and the rate constants derived were in agreement with the kinetic data. The abolished isoindole fluorescence of o-phthalaldehyde (OPTA)-labeled xyloglucanase and far UV analysis suggested that pepstatin binds to the active site of the enzyme. Our results revealed that the inactivation of xyloglucanase is due to the interference in the electronic microenvironment and disruption of the hydrogen-bonding network between the essential histidine and other residues involved in catalysis.
Collapse
|
20
|
Menon V, Rao M. Inhibition of xyloglucanase from an alkalothermophilic Thermomonospora sp. by a peptidic aspartic protease inhibitor from Penicillium sp. VM24. BIORESOURCE TECHNOLOGY 2012; 123:390-399. [PMID: 22940347 DOI: 10.1016/j.biortech.2012.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 07/14/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
A bifunctional inhibitor from Penicillium sp VM24 causing inactivation of xyloglucanase from Thermomonospora sp and an aspartic protease from Aspergillus saitoi was identified. Steady state kinetics studies of xyloglucanase and the inhibitor revealed an irreversible, non-competitive, two-step inhibition mechanism with IC(50) and K(i) values of 780 and 500nM respectively. The interaction of o-phthalaldehyde (OPTA)-labeled xyloglucanase with the inhibitor revealed that the inhibitor binds to the active site of the enzyme. Far- and near-UV spectrophotometric analysis suggests that the conformational changes induced in xyloglucanase by the inhibitor may be due to irreversible denaturation of enzyme. The bifunctional inhibitor may have potential as a biocontrol agent for the protection of plants against phytopathogenic fungi.
Collapse
Affiliation(s)
- Vishnu Menon
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| | | |
Collapse
|
21
|
Sánchez-Rangel D, Sánchez-Nieto S, Plasencia J. Fumonisin B1, a toxin produced by Fusarium verticillioides, modulates maize β-1,3-glucanase activities involved in defense response. PLANTA 2012; 235:965-78. [PMID: 22120123 DOI: 10.1007/s00425-011-1555-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/13/2011] [Indexed: 05/07/2023]
Abstract
Fusarium verticillioides is an important pathogen in maize that causes various diseases affecting all stages of plant development worldwide. The fungal pathogen could be seed borne or survive in soil and penetrate the germinating seed. Most F. verticillioides strains produce fumonisins, which are of concern because of their toxicity to animals and possibly humans, and because they enhance virulence against seedlings of some maize genotypes. In this work, we studied the action of fumonisin B1 (FB1) on the activity of maize β-1,3-glucanases involved in plant defense response. In maize embryos, FB1 induced an acidic isoform while suppressing the activity of two basic isoforms. This acidic isoform was induced also with 2,6-dichloroisonicotinic acid, an analog of salicylic acid. Repression of the basic isoforms suggested a direct interaction of the enzymes with the mycotoxin as in vitro experiments showed that pure FB1 inhibited the basic β-1,3-glucanases with an IC(50) of 53 μM. When germinating maize embryos were inoculated with F. verticillioides the same dual effect on β-1,3-glucanase activities that we observed with the pure toxin was reproduced. Similar levels of FB1 were recovered at 24 h germination in maize tissue when they were treated with pure FB1 or inoculated with an FB1-producing strain. These results suggest that β-1,3-glucanases are a relevant physiological target and their modulation by FB1 might contribute to F. verticillioides colonization.
Collapse
Affiliation(s)
- Diana Sánchez-Rangel
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Mexico, D.F., Mexico
| | | | | |
Collapse
|
22
|
Yoshizawa T, Shimizu T, Yamabe M, Taichi M, Nishiuchi Y, Shichijo N, Unzai S, Hirano H, Sato M, Hashimoto H. Crystal structure of basic 7S globulin, a xyloglucan-specific endo-β-1,4-glucanase inhibitor protein-like protein from soybean lacking inhibitory activity against endo-β-glucanase. FEBS J 2011; 278:1944-54. [PMID: 21457461 DOI: 10.1111/j.1742-4658.2011.08111.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Linked glucans such as cellulose and xyloglucan are important components of the cell walls of most dicotyledonous plants. These β-linked glucans are constantly exposed to degradation by various endo-β-glucanases from pathogenic bacteria and fungi. To protect the cell wall from degradation by such enzymes, plants secrete proteinaceous endo-β-glucanases inhibitors, such as xyloglucan-specific endo-β-1,4-glucanase inhibitor protein (XEGIP) in tomato. XEGIPs typically inhibit xyloglucanase, a member of the glycoside hydrolase (GH)12 family. XEGIPs are also found in legumes, including soybean and lupin. To date, tomato XEGIP has been well studied, whereas XEGIPs from legumes are less well understood. Here, we determined the crystal structure of basic 7S globulin (Bg7S), a XEGIP from soybean, which represents the first three-dimensional structure of XEGIP. Bg7S formed a tetramer with pseudo-222 symmetry. Analytical centrifugation and size exclusion chromatography experiments revealed that the assembly of Bg7S in solution depended on pH. The structure of Bg7S was similar to that of a xylanase inhibitor protein from wheat (Tritinum aestivum xylanase inhibitor) that inhibits GH11 xylanase. Surprisingly, Bg7S lacked inhibitory activity against not only GH11 but also GH12 enzymes. In addition, we found that XEGIPs from azukibean, yardlongbean and mungbean also had no impact on the activity of either GH12 or GH11 enzymes, indicating that legume XEGIPs generally do not inhibit these enzymes. We reveal the structural basis of why legume XEGIPs lack this inhibitory activity. This study will provide significant clues for understanding the physiological role of Bg7S.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gusakov AV. Proteinaceous inhibitors of microbial xylanases. BIOCHEMISTRY (MOSCOW) 2010; 75:1185-99. [DOI: 10.1134/s0006297910100019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Shutov AD, Prak K, Fukuda T, Rudakov SV, Rudakova AS, Tandang-Silvas MR, Fujiwara K, Mikami B, Utsumi S, Maruyama N. Soybean basic 7S globulin: subunit heterogeneity and molecular evolution. Biosci Biotechnol Biochem 2010; 74:1631-4. [PMID: 20699573 DOI: 10.1271/bbb.100234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Basic 7S globulin, a cysteine-rich protein from soybean seeds, consists of subunits containing 27 kD and 16 kD chains linked by disulfide bonding. Three differently sized subunits of the basic 7S globulin were detected and partially separated by SP Sepharose chromatography. The basic 7S globulin was characterized as a member of a superfamily of structurally related but functionally distinct proteins descended from a specific group of plant aspartic proteinases.
Collapse
Affiliation(s)
- Andrei D Shutov
- Laboratory of Plant Biochemistry, State University of Moldova, Mateevicii str, Chişinău, Moldova
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lagaert S, Beliën T, Volckaert G. Plant cell walls: Protecting the barrier from degradation by microbial enzymes. Semin Cell Dev Biol 2009; 20:1064-73. [DOI: 10.1016/j.semcdb.2009.05.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
|
26
|
|
27
|
Ibatullin FM, Baumann MJ, Greffe L, Brumer H. Kinetic Analyses of Retaining endo-(Xylo)glucanases from Plant and Microbial Sources Using New Chromogenic Xylogluco-Oligosaccharide Aryl Glycosides. Biochemistry 2008; 47:7762-9. [DOI: 10.1021/bi8009168] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Farid M. Ibatullin
- School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, SE-106 91 Stockholm, Sweden, and Petersburg Nuclear Physics Institute, Molecular and Radiation Biology Division, Russian Academy of Science, Gatchina, St. Petersburg 188300, Russia
| | - Martin J. Baumann
- School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, SE-106 91 Stockholm, Sweden, and Petersburg Nuclear Physics Institute, Molecular and Radiation Biology Division, Russian Academy of Science, Gatchina, St. Petersburg 188300, Russia
| | - Lionel Greffe
- School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, SE-106 91 Stockholm, Sweden, and Petersburg Nuclear Physics Institute, Molecular and Radiation Biology Division, Russian Academy of Science, Gatchina, St. Petersburg 188300, Russia
| | - Harry Brumer
- School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, SE-106 91 Stockholm, Sweden, and Petersburg Nuclear Physics Institute, Molecular and Radiation Biology Division, Russian Academy of Science, Gatchina, St. Petersburg 188300, Russia
| |
Collapse
|
28
|
Damasceno CMB, Bishop JG, Ripoll DR, Win J, Kamoun S, Rose JKC. Structure of the glucanase inhibitor protein (GIP) family from phytophthora species suggests coevolution with plant endo-beta-1,3-glucanases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:820-830. [PMID: 18624645 DOI: 10.1094/mpmi-21-6-0820] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
During invasion of their plant hosts, species of the oomycete genus Phytophthora secrete glucanase inhibitor proteins (GIPs) into the plant apoplast, which bind and inhibit the activity of plant extracellular endo-beta-1,3-glucanases (EGases). GIPs show structural homology to the chymotrypsin class of serine proteases (SP) but lack proteolytic activity due to the absence of an intact catalytic triad and, thus, belong to a broader class of proteins called serine protease homologs (SPH). To study the evolutionary relationship between GIPs and functional SP, database searches were used to identify 48 GIP homologs in the P. sojae, P. ramorum, and P. infestans genomes, composing GIPs, SPH, and potentially functional SP. Analyses of P. infestans-inoculated tomato leaves showed that P. infestans GIPs and tomato EGases are present in the apoplast and form stable complexes in planta. Studies of the temporal expression of a four-membered GIP family from P. infestans (PiGIP1 to PiGIP4) further revealed that the genes show distinctly different patterns during an infection timecourse. Codon evolution analyses of GIP homologs identified several positively selected peptide sites and structural modeling revealed them to be in close proximity to rapidly evolving EGase residues, suggesting that the interaction between GIPs and EGases has the hallmarks of a coevolving molecular arms race.
Collapse
|
29
|
Xie W, Hao L, Goodwin PH. Role of a xyloglucan-specific endo-beta-1,4-glucanase inhibitor in the interactions of Nicotiana benthamiana with Colletotrichum destructivum, C. orbiculare or Pseudomonas syringae pv. tabaci. MOLECULAR PLANT PATHOLOGY 2008; 9:191-202. [PMID: 18705851 PMCID: PMC6640507 DOI: 10.1111/j.1364-3703.2007.00457.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A xyloglucan-specific endo-beta-1,4-glucanase inhibitor cDNA, NbXEGIP1, was amplified from diseased leaves of Nicotiana benthamiana. The sequence was similar to the tomato xyloglucan-specific endo-beta-1,4-glucanase inhibitor (XEGIP) and tobacco nectarin IV genes that have been described as binding and inactivating fungal Family 12 xyloglucan-specific endo-beta-1,4-glucanases. Expression of NbXEGIP1 was not detected in healthy leaves, but the gene was induced during the later stages of infection by the fungi Colletotrichum destructivum and C. orbiculare. Induction of NbXEGIP1 also occurred during disease development by the bacterium Pseudomonas syringae pv. tabaci and during the hypersensitive response produced by P. syringae pv. tabaci expressing avrPto. A portion of NbXEGIP1 was cloned into a tobacco rattle virus vector for virus-induced gene silencing in N. benthamiana. Silencing NbXEGIP1 did not affect the interactions with either Colletotrichum species but did significantly reduce population levels of P. syringae pv. tabaci in the compatible interaction and P. syringae pv. tabaci expressing avrPto in the incompatible interaction. In the susceptible response to P. syringae pv. tabaci, silencing of NbXEGIP1 also resulted in visibly wilted leaves several hours prior to necrosis, which was not observed in control plants. This was related to a significantly higher level of electrolyte leakage and higher expression of a defensin gene from infected NbXEGIP1-silenced leaves compared with control leaves. Silencing appeared to be specific as it did not affect expression of a related gene, NbXEGIP2. NbXEGIP1 may act as an inhibitor of a bacterial enzyme that degrades the xyloglucan-cellulose plant cell-wall network, and degradation of the cell wall results in host membrane disruption and signalling of defence responses.
Collapse
Affiliation(s)
- W Xie
- Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
30
|
Couldridge C, Newbury HJ, Ford-Lloyd B, Bale J, Pritchard J. Exploring plant responses to aphid feeding using a full Arabidopsis microarray reveals a small number of genes with significantly altered expression. BULLETIN OF ENTOMOLOGICAL RESEARCH 2007; 97:523-32. [PMID: 17916270 DOI: 10.1017/s0007485307005160] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The aim of this study was to determine which Arabidopsis thaliana (L.) genes had significantly altered expression following 2-36 h of infestation by the aphid Myzus persicae (Sulzer). Six biological replicates were performed for both control and treatment at each time point, allowing rigorous statistical analysis of any changes. Only two genes showed altered expression after 2 h (one up- and one down-regulated) while two were down-regulated and twenty three were up-regulated at 36 h. The transcript annotation allowed classification of the significantly altered genes into a number of classes, including those involved in cell wall modification, carbon metabolism and signalling. Additionally, a number of genes were implicated in oxidative stress and defence against other pathogens. Five genes could not currently be assigned any function. The changes in gene expression are discussed in relation to current models of plant-insect interactions.
Collapse
Affiliation(s)
- C Couldridge
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
31
|
Hématy K, Sado PE, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou JP, Höfte H. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 2007; 17:922-31. [PMID: 17540573 DOI: 10.1016/j.cub.2007.05.018] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 04/22/2007] [Accepted: 05/03/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND A major challenge is to understand how the walls of expanding plant cells are correctly assembled and remodeled, often in the presence of wall-degrading micro-organisms. Plant cells, like yeast, react to cell-wall perturbations as shown by changes in gene expression, accumulation of ectopic lignin, and growth arrest caused by the inhibition of cellulose synthesis. RESULTS We have identified a plasma-membrane-bound receptor-like kinase (THESEUS1), which is present in elongating cells. Mutations in THE1 and overexpression of a functional THE1-GFP fusion protein did not affect wild-type (WT) plants but respectively attenuated and enhanced growth inhibition and ectopic lignification in seedlings mutated in cellulose synthase CESA6 without influencing the cellulose deficiency. A T-DNA insertion mutant for THE1 also attenuated the growth defect and ectopic-lignin production in other but not all cellulose-deficient mutants. The deregulation of a small number of genes in cesA6 mutants depended on the presence of THE1. Some of these genes are involved in pathogen defense, in wall crosslinking, or in protecting the cell against reactive oxygen species. CONCLUSIONS The results show that THE1 mediates the response of growing plant cells to the perturbation of cellulose synthesis and may act as a cell-wall-integrity sensor.
Collapse
Affiliation(s)
- Kian Hématy
- Laboratoire de Biologie Cellulaire, UR501, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique Centre de Versailles, Route de St Cyr, 78026 Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hong W, Xu YP, Zheng Z, Cao JS, Cai XZ. Comparative transcript profiling by cDNA-AFLP reveals similar patterns of Avr4/Cf-4- and Avr9/Cf-9-dependent defence gene expression. MOLECULAR PLANT PATHOLOGY 2007; 8:515-527. [PMID: 20507518 DOI: 10.1111/j.1364-3703.2007.00412.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Tomato Cf genes confer resistance to the fungal pathogen Cladosporium fulvum. Although the Cf-4 and Cf-9 proteins are very similar, the Cf-4- and Cf-9-dependent hypersensitive responses (HRs) are distinct in cell death pattern, intensity and sensitivity to environmental conditions. To investigate the mechanism leading to these differences, comparative transcript profiling of Avr4/Cf-4- and Avr9/Cf-9-dependent defence gene expression was performed. To do this, cDNA-AFLP analysis was conducted on Avr/Cf tomato seedlings undergoing early HR. Both Avr4/Cf-4 and Avr9/Cf-9 signalling elicited the same spectrum of genes, referred to here as Avr/Cf-elicited (ACE) genes. Of approximately 25 000 transcript-derived fragments (TDFs), 367 (1.5%) showed significant differential expression between HR(+) and HR(-) seedlings (either Avr4/Cf-4- or Avr9/Cf-9-dependent). However, 42.8% of the ACE TDFs (157/367 in total) showed quantitatively different expression in the two types of HR(+) seedlings. The majority of these (135/157, 86.0%) displayed significantly greater differential expression (either induced or repressed) in Avr4/Cf-4 HR(+) seedlings than in Avr9/Cf-9 HR(+) seedlings. Our results are consistent with the previous observation that Avr4/Cf-4-dependent HR is more severe than Avr9/Cf-9-dependent HR, and indicate that the distinction between Avr4/Cf-4- and Avr9/Cf-9-dependent HR is most probably a result of events upstream of the defence responses. Sequencing of 189 ACE fragments identified genes associated with: defence and resistance (33.3%), signal transduction (7.4%), HR and cell death (5.3%), transcriptional regulation and post-transcriptional modification (4.3%). Expression data revealed that defence response, respiration and biological oxidation are strongly induced while photosynthesis is severely repressed in the HR(+) seedlings.
Collapse
Affiliation(s)
- Wei Hong
- College of Agriculture and Biotechnology, Zhejiang University, 268 Kai Xuan Road, Hangzhou 310029, PR China
| | | | | | | | | |
Collapse
|
33
|
van den Burg HA, Harrison SJ, Joosten MHAJ, Vervoort J, de Wit PJGM. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1420-30. [PMID: 17153926 DOI: 10.1094/mpmi-19-1420] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Resistance against the leaf mold fungus Cladosporium fulvum is mediated by the tomato Cf proteins which belong to the class of receptor-like proteins and indirectly recognize extracellular avirulence proteins (Avrs) of the fungus. Apart from triggering disease resistance, Avrs are believed to play a role in pathogenicity or virulence of C. fulvum. Here, we report on the avirulence protein Avr4, which is a chitin-binding lectin containing an invertebrate chitin-binding domain (CBM14). This domain is found in many eukaryotes, but has not yet been described in fungal or plant genomes. We found that interaction of Avr4 with chitin is specific, because it does not interact with other cell wall polysaccharides. Avr4 binds to chitin oligomers with a minimal length of three N-acetyl glucosamine residues. In vitro, Avr4 protects chitin against hydrolysis by plant chitinases. Avr4 also binds to chitin in cell walls of the fungi Trichoderma viride and Fusarium solani f. sp. phaseoli and protects these fungi against normally deleterious concentrations of plant chitinases. In situ fluorescence studies showed that Avr4 also binds to cell walls of C. fulvum during infection of tomato, where it most likely protects the fungus against tomato chitinases, suggesting that Avr4 is a counter-defensive virulence factor.
Collapse
Affiliation(s)
- Harrold A van den Burg
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, NL-6703 HA Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Juge N. Plant protein inhibitors of cell wall degrading enzymes. TRENDS IN PLANT SCIENCE 2006; 11:359-67. [PMID: 16774842 DOI: 10.1016/j.tplants.2006.05.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/04/2006] [Accepted: 05/25/2006] [Indexed: 05/10/2023]
Abstract
Plant cell walls, which consist mainly of polysaccharides (i.e. cellulose, hemicelluloses and pectins), play an important role in defending plants against pathogens. Most phytopathogenic microorganisms secrete an array of cell wall degrading enzymes (CWDEs) capable of depolymerizing the polysaccharides in the plant host wall. In response, plants have evolved a diverse battery of defence responses including protein inhibitors of these enzymes. These include inhibitors of pectin degrading enzymes such as polygalacturonases, pectinmethyl esterases and pectin lyases, and hemicellulose degrading enzymes such as endoxylanases and xyloglucan endoglucanases. The discovery of these plant inhibitors and the recent resolution of their three-dimensional structures, free or in complex with their target enzymes, provide new lines of evidence regarding their function and evolution in plant-pathogen interactions.
Collapse
Affiliation(s)
- Nathalie Juge
- Institut Méditerranéen de Recherche en Nutrition, Faculté des Sciences de St Jérôme, F-13397 Marseilles Cedex 20, France.
| |
Collapse
|
35
|
Bargmann BOR, Laxalt AM, Riet BT, Schouten E, van Leeuwen W, Dekker HL, de Koster CG, Haring MA, Munnik T. LePLDbeta1 activation and relocalization in suspension-cultured tomato cells treated with xylanase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:358-68. [PMID: 16412083 DOI: 10.1111/j.1365-313x.2005.02631.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phospholipase D (PLD) has been implicated in various cellular processes including membrane degradation, vesicular trafficking and signal transduction. Previously, we described a PLD gene family in tomato (Lycopersicon esculentum) and showed that expression of one of these genes, LePLDbeta1, was induced by treatment with the fungal elicitor xylanase. To further investigate the function of this PLD, a gene-specific RNAi construct was used to knock down levels of LePLDbeta1 transcript in suspension-cultured tomato cells. Silenced cells exhibited a strong decrease in xylanase-induced PLD activity and responded to xylanase treatment with a disproportionate oxidative burst. Furthermore, LePLDbeta1-silenced cell-suspension cultures were found to have increased polyphenol oxidase activity, to secrete less of the beta-d-xylosidase LeXYL2 and to secrete and express more of the xyloglucan-specific endoglucanase inhibitor protein XEGIP. Using an LePLDbeta1-green fluorescent protein (GFP) fusion protein for confocal laser scanning microscopy-mediated localization studies, untreated cells displayed a cytosolic localization, whereas treatment with xylanase induced relocalization to punctuate structures within the cytosol. Possible functions for PLDbeta in plant-pathogen interactions are discussed.
Collapse
Affiliation(s)
- Bastiaan O R Bargmann
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, NL-1098 SM, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brito N, Espino JJ, González C. The endo-beta-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:25-32. [PMID: 16404950 DOI: 10.1094/mpmi-19-0025] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phytopathogenic fungi can degrade xylan, an abundant hemicellulose in plant cell walls, by the coordinate action of a group of extracellular enzymes. Among these, endo-beta-1,4-xylanases carry out the initial breakdown by cleaving internal bonds in the polymer backbone. We have isolated and characterized a gene, xyn11A, coding for an endo-beta-1,4-xylanase belonging to family 11 of glycosyl hydrolases. xyn11A was shown to be induced by xylan and repressed by glucose and to be expressed in planta. The disruption of xyn11A caused only a moderate decrease, about 30%, in the level of extracellular endo-beta-1-4-xylanase activity and in the growth rate, with beechwood xylan as the only carbon source. However, deletion of the gene had a more pronounced effect on virulence, delaying the appearance of secondary lesions and reducing the average lesion size by more than 70%. Reintroducing the wild-type gene into the mutant strains reversed this phenotype back to wild type.
Collapse
Affiliation(s)
- Nélida Brito
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna. E-38206 La Laguna Tenerife, Spain
| | | | | |
Collapse
|
37
|
Naqvi SMS, Harper A, Carter C, Ren G, Guirgis A, York WS, Thornburg RW. Nectarin IV, a potent endoglucanase inhibitor secreted into the nectar of ornamental tobacco plants. Isolation, cloning, and characterization. PLANT PHYSIOLOGY 2005; 139:1389-400. [PMID: 16244157 PMCID: PMC1283774 DOI: 10.1104/pp.105.065227] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/15/2005] [Accepted: 09/12/2005] [Indexed: 05/05/2023]
Abstract
We have isolated and characterized the Nectarin IV (NEC4) protein that accumulates in the nectar of ornamental tobacco plants (Nicotiana langsdorffii x Nicotiana sanderae var LxS8). This 60-kD protein has a blocked N terminus. Three tryptic peptides of the protein were isolated and sequenced using tandem mass spectroscopy. These unique peptides were found to be similar to the xyloglucan-specific fungal endoglucanase inhibitor protein (XEGIP) precursor in tomato (Lycopersicon esculentum) and its homolog in potato (Solanum tuberosum). A pair of oligonucleotide primers was designed based on the potato and tomato sequences that were used to clone a 1,018-bp internal piece of nec4 cDNA from a stage 6 nectary cDNA library. The remaining portions of the cDNA were subsequently captured by 5' and 3' rapid amplification of cDNA ends. Complete sequencing of the nec4 cDNA demonstrated that it belonged to a large family of homologous proteins from a wide variety of angiosperms. Related proteins include foliage proteins and seed storage proteins. Based upon conserved identity with the wheat (Triticum aestivum) xylanase inhibitor TAXI-1, we were able to develop a protein model that showed that NEC4 contains additional amino acid loops that are not found in TAXI-1 and that glycosylation sites are surface exposed. Both these loops and sites of glycosylation are on the opposite face of the NEC4 molecule from the site that interacts with fungal hemicellulases, as indicated by homology to TAXI-I. NEC4 also contains a region homologous to the TAXI-1 knottin domain; however, a deletion in this domain restructures the disulfide bridges of this domain, resulting in a pseudoknottin domain. Inhibition assays were performed to determine whether purified NEC4 was able to inhibit fungal endoglucanases and xylanases. These studies showed that NEC4 was a very effective inhibitor of a family GH12 xyloglucan-specific endoglucanase with a K(i) of 0.35 nm. However, no inhibitory activity was observed against other family GH10 or GH11 xylanases. The patterns of expression of the NEC4 protein indicate that, while expressed in nectar at anthesis, it is most strongly expressed in the nectary gland after fertilization, indicating that inhibition of fungal cell wall-degrading enzymes may be more important after fertilization than before.
Collapse
Affiliation(s)
- S M Saqlan Naqvi
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IW 50011, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Yadav V, Mandhan R, Dabur R, Chhillar AK, Gupta J, Sharma GL. A fraction from Escherichia coli with anti-Aspergillus properties. J Med Microbiol 2005; 54:375-379. [PMID: 15770023 DOI: 10.1099/jmm.0.45748-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The products of various strains of Escherichia coli (BL21, DH5alpha, HB101 and XL Blue) were investigated for antimycotic properties using pathogenic isolates of Aspergillus. Co-culture experiments revealed that E. coli strains exhibited variable activity against Aspergillus fumigatus. The lysates prepared from DH5alpha, HB101 and XL Blue strains of E. coli showed inhibitory activity against A. fumigatus in the protein concentration range of 62.50 to 250.00 microg ml(-1). The highest activity was seen in the lysate of BL21, which inhibited the growth of A. fumigatus and Aspergillus flavus completely at a concentration of 31.25 microg protein ml(-1). The MIC of BL21 lysate against Aspergillus niger was found to be 62.50 microg ml(-1). The in vitro toxicity of BL21 lysate was evaluated using a haemolytic assay. A BL21 lysate protein concentration of 1250.00 microg ml(-1) was found to be nontoxic to human erythrocytes. The standard drug amphotericin B lysed 100 % of erythrocytes at a concentration of 37.50 microg ml(-1). SDS-PAGE showed the presence of at least 15 major proteins in the lysate of BL21. Ion-exchange chromatography resolved the BL21 lysate into five fractions and fraction III was found to be endowed with anti-Aspergillus properties. The MIC of this fraction was found to be 3.90 microg ml(-1). Further work on the purification of the active molecule and its characterization is in progress.
Collapse
Affiliation(s)
- V Yadav
- Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, India 2Department of Biotechnology, Kurukshetra University, Kurukshetra, India 3Department of Biomedical Sciences, Bundelkhund University, Jhansi, India
| | - R Mandhan
- Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, India 2Department of Biotechnology, Kurukshetra University, Kurukshetra, India 3Department of Biomedical Sciences, Bundelkhund University, Jhansi, India
| | - Rajesh Dabur
- Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, India 2Department of Biotechnology, Kurukshetra University, Kurukshetra, India 3Department of Biomedical Sciences, Bundelkhund University, Jhansi, India
| | - A K Chhillar
- Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, India 2Department of Biotechnology, Kurukshetra University, Kurukshetra, India 3Department of Biomedical Sciences, Bundelkhund University, Jhansi, India
| | - J Gupta
- Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, India 2Department of Biotechnology, Kurukshetra University, Kurukshetra, India 3Department of Biomedical Sciences, Bundelkhund University, Jhansi, India
| | - G L Sharma
- Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, India 2Department of Biotechnology, Kurukshetra University, Kurukshetra, India 3Department of Biomedical Sciences, Bundelkhund University, Jhansi, India
| |
Collapse
|
39
|
McCarthy T, Hanniffy O, Lalor E, Savage A, Tuohy M. Evaluation of three thermostable fungal endo-β-glucanases from Talaromyces emersonii for brewing and food applications. Process Biochem 2005. [DOI: 10.1016/j.procbio.2004.06.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Shang C, Sassa H, Hirano H. The role of glycosylation in the function of a 48-kDa glycoprotein from carrot. Biochem Biophys Res Commun 2005; 328:144-9. [PMID: 15670762 DOI: 10.1016/j.bbrc.2004.12.166] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Indexed: 10/26/2022]
Abstract
Carrot extracellular dermal glycoprotein (EDGP) may play an important role in plant defense systems and in signal transduction. Our experiments show that differences in pI values of EDGP isoforms are caused by differences in amino acid sequence and not by heterogeneity in phosphorylation. The binding affinity of native EDGP for a 4-kDa hormone-like peptide from soybean was approximately one-third that of deglycosylated EDGP, and deglycosylation of EDGP caused complete loss of its ability to inhibit xyloglucan-specific endo-beta-1,4-glucanase. Experiments using tunicamycin-treated carrot cell cultures showed that glycosylation is essential for correct EDGP folding and secretion, and that tunicamycin does not affect EDGP gene transcription.
Collapse
Affiliation(s)
- Chengwei Shang
- Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama City University, Japan
| | | | | |
Collapse
|
41
|
Bishop JG, Ripoll DR, Bashir S, Damasceno CMB, Seeds JD, Rose JKC. Selection on Glycine beta-1,3-endoglucanase genes differentially inhibited by a Phytophthora glucanase inhibitor protein. Genetics 2005; 169:1009-19. [PMID: 15545660 PMCID: PMC1449112 DOI: 10.1534/genetics.103.025098] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 11/10/2004] [Indexed: 11/18/2022] Open
Abstract
Plant endo-beta-1,3-glucanases (EGases) degrade the cell wall polysaccharides of attacking pathogens and release elicitors of additional plant defenses. Isozymes EGaseA and EGaseB of soybean differ in susceptibility to a glucanase inhibitor protein (GIP1) produced by Phytophthora sojae, a major soybean pathogen. EGaseA, the major elicitor-releasing isozyme, is a high-affinity ligand for GIP1, which completely inhibits it, whereas EGaseB is unaffected by GIP1. We tested for departures from neutral evolution on the basis of partial sequences of EGaseA and EGaseB from 20 widespread accessions of Glycine soja (the wild progenitor of soybean), from 4 other Glycine species, and across dicotyledonous plants. G. soja exhibited little intraspecific variation at either locus. Phylogeny-based codon evolution models detected strong evidence of positive selection on Glycine EGaseA and weaker evidence for selection on dicot EGases and Glycine EGaseB. Positively selected peptide sites were identified and located on a structural model of EGase bound to GIP1. Positively selected sites and highly variable sites were found disproportionately within 4.5 angstroms of bound GIP1. Low variation within G. soja EGases, coupled with positive selection in both Glycine and dicot lineages and the proximity of rapidly evolving sites to GIP1, suggests an arms race involving repeated adaptation to pathogen attack and inhibition.
Collapse
Affiliation(s)
- J G Bishop
- School of Biological Sciences, Washington State University, Vancouver, Washington 98686-9600, USA.
| | | | | | | | | | | |
Collapse
|