1
|
Xiao S, Tian M, Liao H, Xie J, Chai J, Li J, Nguyen T, Wu J, Gao Y, Li J, Chen X, Xu X, Qingwen W. The first Ranatuerin antimicrobial peptide with LPS-neutralizing and anti-inflammatory activities in vitro and in vivo. Life Sci 2025:123375. [PMID: 39788417 DOI: 10.1016/j.lfs.2025.123375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Pelophylax nigromaculata, common traditional Chinese medicinal material used for several hundreds of years, is one of the most widely distributed amphibians in China. In this study, a novel Ranatuerin-2 family antimicrobial peptide, Rana-2PN, was identified and characterized from its skin, and its structural characteristics and functional activities were studied extensively. First, Rana-2PN exhibited a broad spectrum of antimicrobial activity, displaying minimum inhibitory concentration (MIC) values ranging from 12.5 to 100 μM against all strains tested. Mechanistically, Rana-2PN exerted its bacteriostatic effects by binding to bacterial cells and inducing bacterial membrane rupture and subsequent bacterial death. Secondly, Rana-2PN effectively inhibited the inflammatory response in RAW264.7 cells induced by lipopolysaccharide (LPS) and reduced inflammation induced by carrageenan in mouse toes. Thus, Rana-2PN with LPS-neutralizing, anti-inflammatory, and antimicrobial properties, represents the first member of the Ranatuerin antimicrobial peptide family, and its discovery offers a promising therapeutic candidate for addressing inflammatory disorders resulting from bacterial infections.
Collapse
Affiliation(s)
- Shibai Xiao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Maolin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hang Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianpeng Xie
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Jinqiao Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tienthanh Nguyen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yihan Gao
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiali Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wang Qingwen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
2
|
Eleftherakos K, Polymeni RM, Mikropoulou EV, Vougogiannopoulou K, Georgiadis C, Petrakis EA, Skaltsounis LA, Halabalaki M. A skin secretion metabolome analysis of the Greek Dodecanese Lycian salamanders: Preliminary evidence of dietary alkaloid sequestration in urodeles. PLoS One 2024; 19:e0300278. [PMID: 39208286 PMCID: PMC11361651 DOI: 10.1371/journal.pone.0300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/25/2024] [Indexed: 09/04/2024] Open
Abstract
Lyciasalamandra species, like most amphibians, secrete a wide array of compounds from their granular and mucous skin glands, including the internally synthesized samandarine alkaloids, making their skin a complex organ performing a variety of functions. Lyciasalamandra helverseni and L. luschani basoglui are insular endemics of the Dodecanese islands of SE Greece, bearing distinct isolated populations, with well-documented phylogenetic profiles. Here, we employ a metabolomics approach, utilizing UPLC-ESI-HRMS/MS data of the skin secretions sampled from a number of specimens found in the islands of Karpathos, Kasos and Kastellorizo, in an effort to reveal aspects of their chemistry and diversity across populations. The results indicated statistically significant variation between all taxa examined, based on various secreted compounds. The underlying factors of variation highlighted by the multivariate analysis were differences in samandarine and other alkaloid content as well as in animal size. Metabolite annotation, based on dereplication tools and most importantly HRMS and HRMS/MS spectra, yielded a number of known samandarine alkaloids, reported for the first time in the currently studied Lyciasalamandra species. We also present documentation for novel members of the samandarine alkaloid family, as well as preliminary evidence for a possible dietary alkaloid sequestration. This work can set the basis for further research of this often-neglected endemic species of the Salamandridae, as well as the structural investigation of the samandarine alkaloid group.
Collapse
Affiliation(s)
- Karolos Eleftherakos
- Section of Zoology–Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Roza Maria Polymeni
- Section of Zoology–Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni V. Mikropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Vougogiannopoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Georgiadis
- Section of Zoology–Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios A. Petrakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros A. Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Loffredo M, Casciaro B, Bellavita R, Troiano C, Brancaccio D, Cappiello F, Merlino F, Galdiero S, Fabrizi G, Grieco P, Stella L, Carotenuto A, Mangoni ML. Strategic Single-Residue Substitution in the Antimicrobial Peptide Esc(1-21) Confers Activity against Staphylococcus aureus, Including Drug-Resistant and Biofilm Phenotype. ACS Infect Dis 2024; 10:2403-2418. [PMID: 38848266 PMCID: PMC11250030 DOI: 10.1021/acsinfecdis.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
Staphylococcus aureus, a bacterium resistant to multiple drugs, is a significant cause of illness and death worldwide. Antimicrobial peptides (AMPs) provide an excellent potential strategy to cope with this threat. Recently, we characterized a derivative of the frog-skin AMP esculentin-1a, Esc(1-21) (1) that is endowed with potent activity against Gram-negative bacteria but poor efficacy against Gram-positive strains. In this study, three analogues of peptide 1 were designed by replacing Gly8 with α-aminoisobutyric acid (Aib), Pro, and dPro (2-4, respectively). The single substitution Gly8 → Aib8 in peptide 2 makes it active against the planktonic form of Gram-positive bacterial strains, especially Staphylococcus aureus, including multidrug-resistant clinical isolates, with an improved biostability without resulting in cytotoxicity to mammalian cells. Moreover, peptide 2 showed a higher antibiofilm activity than peptide 1 against both reference and clinical isolates of S. aureus. Peptide 2 was also able to induce rapid bacterial killing, suggesting a membrane-perturbing mechanism of action. Structural analysis of the most active peptide 2 evidenced that the improved biological activity of peptide 2 is the consequence of a combination of higher biostability, higher α helical content, and ability to reduce membrane fluidity and to adopt a distorted helix, bent in correspondence of Aib8. Overall, this study has shown how a strategic single amino acid substitution is sufficient to enlarge the spectrum of activity of the original peptide 1, and improve its biological properties for therapeutic purposes, thus paving the way to optimize AMPs for the development of new broad-spectrum anti-infective agents.
Collapse
Affiliation(s)
- Maria
Rosa Loffredo
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Bruno Casciaro
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Rosa Bellavita
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Cassandra Troiano
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133 Rome, Italy
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Floriana Cappiello
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Francesco Merlino
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Stefania Galdiero
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Giancarlo Fabrizi
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, 00185 Rome, Italy
| | - Paolo Grieco
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Lorenzo Stella
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133 Rome, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Golda A, Kosikowska-Adamus P, Wadowska M, Dobosz E, Potempa J, Koziel J. Antiviral activity of temporin-1CEb analogues against gingival infection with herpes simplex virus type 1. FRONTIERS IN ORAL HEALTH 2024; 5:1430077. [PMID: 38953010 PMCID: PMC11215077 DOI: 10.3389/froh.2024.1430077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Oral herpes infections caused by herpes simplex virus type 1 (HSV-1) are one of the most common in the human population. Recently, they have been classified as an increasing problem in immunocompromised patients and those suffering from chronic inflammation of the oral mucosa and gums. Treatment mainly involves nucleoside analogues, such as acyclovir and its derivatives, which reduce virus replication and shedding. As drug-resistant strains of herpes emerge rapidly, there is a need for the development of novel anti-herpes agents. The aim of the study was to design an antiviral peptide, based on natural compounds, non-toxic to the host, and efficient against drug-resistant HSV-1. Here, we designed a lysine-rich derivative of amphibian temporin-1CEb conjugated to peptides penetrating the host cell membrane and examined their activity against HSV-1 infection of oral mucosa. Methods We assessed the antiviral efficiency of the tested compound in simple 2D cell models (VeroE6 and TIGKs cells) and a 3D organotypic model of human gingiva (OTG) using titration assay, qPCR, and confocal imaging. To identify the molecular mechanism of antiviral activity, we applied the Azure A metachromatic test, and attachment assays techniques. Toxicity of the conjugates was examined using XTT and LDH assays. Results Our results showed that temporin-1CEb analogues significantly reduce viral replication in oral mucosa. The mechanism of peptide analogues is based on the interaction with heparan sulfate, leading to the reduce attachment of HSV-1 to the cell membrane. Moreover, temporin-1CEb conjugates effectively penetrate the gingival tissue being effective against acyclovir-resistant strains. Collectively, we showed that temporin-1CEb can be regarded as a novel, naturally derived antiviral compound for HSV-1 treatment.
Collapse
Affiliation(s)
- Anna Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
5
|
Dias LM, Cilli EM, Medeiros KS, Brasil MCODA, Marin LM, Siqueira WL, Pavarina AC. Antibiofilm Activity and Biocompatibility of Temporin-SHa: A Promising Antimicrobial Peptide for Control of Fluconazole-Resistant Candida albicans. Microorganisms 2024; 12:99. [PMID: 38257927 PMCID: PMC10818419 DOI: 10.3390/microorganisms12010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The aim of the study was to investigate the effect of antimicrobial peptides (AMPs) Hylin-a1, KR-12-a5, and Temporin-SHa in Candida albicans as well as the biocompatibility of keratinocytes spontaneously immortalized (NOK-si) and human gingival fibroblasts (FGH) cells. Initially, the susceptible (CaS-ATCC 90028) and fluconazole-resistant (CaR-ATCC 96901) C. albicans strains were grown to evaluate the effect of each AMP in planktonic culture, biofilm, and biocompatibility on oral cells. Among the AMPs evaluated, temporin-SHa showed the most promising results. After 24 h of Temporin-SHa exposure, the survival curve results showed that CaS and CaR suspensions reduced 72% and 70% of cell viability compared to the control group. The minimum inhibitory/fungicide concentrations (MIC and MFC) showed that Temporin-SHa was able to reduce ≥50% at ≥256 µg/mL for both strains. The inhibition of biofilm formation, efficacy against biofilm formation, and total biomass assays were performed until 48 h of biofilm maturation, and Temporin-SHa was able to reduce ≥50% of CaS and CaR growth. Furthermore, Temporin-SHa (512 µg/mL) was classified as non-cytotoxic and slightly cytotoxic for NOK-si and FGH, respectively. Temporin-SHa demonstrated an anti-biofilm effect against CaS and CaR and was biocompatible with NOK-si and FGH oral cells in monolayer.
Collapse
Affiliation(s)
- Luana Mendonça Dias
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 16015-050, Brazil; (L.M.D.); (K.S.M.)
- College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Eduardo Maffud Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, Brazil; (E.M.C.); (M.C.O.d.A.B.)
| | - Karine Sousa Medeiros
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 16015-050, Brazil; (L.M.D.); (K.S.M.)
| | - Maria Carolina Oliveira de Arruda Brasil
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, Brazil; (E.M.C.); (M.C.O.d.A.B.)
| | - Lina Maria Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Walter L. Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 16015-050, Brazil; (L.M.D.); (K.S.M.)
| |
Collapse
|
6
|
Yao A, Liu T, Cai Y, Zhou S, Chen X, Zhou M, Ma C, Chen T, Shaw C, Wang L. Progressive Design of a Ranatuerin-2 Peptide from Amolops wuyiensis: Enhancement of Bioactivity and In Vivo Efficacy. Antibiotics (Basel) 2023; 13:5. [PMID: 38275314 PMCID: PMC10812557 DOI: 10.3390/antibiotics13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Antimicrobial peptides (AMPs) that exert multiple functions are considered promising candidates to combat the bacterial drug resistance crisis. Nowadays, targeted peptide modification has been widely recognised to improve biological activity and make up for deficiencies in clinical applications such as toxicity. In this study, a helix-loop peptide was isolated and identified from the skin secretion of the Wuyi torrent frog Amolops wuyiensis, namely, ranatuerin-2-AW (R2AW) (GFMDTAKNVAKNVAATLLDKLKCKITGGC). Target modifications were made to R2AW to study the structure-activity relationships and to optimise its bioactivities. Five analogues were progressively designed via residue substitution and truncation and the antibacterial and anticancer activities were evaluated. We found that the serine-substitution and cyclic-domain-deletion products showed similar antibacterial activity to the natural peptide R2AW, implying that the disulphide bridge and Rana box were dispensable for the antibacterial activity of ranatuerin-2 peptides. Notably, the cationicity- and hydrophobicity-enhanced variant, [Lys4,19, Leu20]R2AW(1-22)-NH2, exhibited significantly optimised antibacterial and anticancer activities. Additionally, it killed bacteria by membrane disruption at a highly efficient rate. Moreover, [Lys4,19, Leu20]R2AW(1-22)-NH2 exerted potential in vivo efficacy in a methicillin-resistant Staphylococcus aureus (MRSA)-infected waxworm model. Overall, this study demonstrated some rational design ideas for optimising the dual antibacterial and anticancer activities of ranatuerin-2 peptides and it proposes [Lys4,19, Leu20]R2AW(1-22)-NH2 as an appealing candidate for therapeutic development.
Collapse
Affiliation(s)
- Aifang Yao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Tianxing Liu
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Yuhai Cai
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Siqi Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| |
Collapse
|
7
|
Rollins-Smith LA. The importance of antimicrobial peptides (AMPs) in amphibian skin defense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104657. [PMID: 36754220 DOI: 10.1016/j.dci.2023.104657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial peptides (AMPs) are produced for defense in nearly all taxa from simple bacteria to complex mammalian species. Some amphibian families have developed this defensive strategy to a high level of sophistication by loading the AMPs into specialized granular glands within the dermis. Enervated by the sympathetic nervous system, the granular glands are poised to deliver an array of AMPs to cleanse the wound and facilitate healing. There have been a number of excellent review publications in recent years that describe amphibian AMPs with an emphasis on their possible uses for human medicine. Instead, my aim here is to review what is known about the nature of amphibian AMPs, the diversity of amphibian AMPs, regulation of their production, and to provide the accumulated evidence that they do, indeed, play an important role in the protection of amphibian skin, vital for survival. While much has been learned about amphibian AMPs, there are still important gaps in our understanding of peptide synthesis, storage, and functions.
Collapse
Affiliation(s)
- Louise A Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
9
|
Tian M, Wang K, Liang Y, Chai J, Wu J, Zhang H, Huang X, Chen X, Xu X. The first Brevinin-1 antimicrobial peptide with LPS-neutralizing and anti-inflammatory activities in vitro and in vivo. Front Microbiol 2023; 14:1102576. [PMID: 36937273 PMCID: PMC10020232 DOI: 10.3389/fmicb.2023.1102576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Antimicrobial peptide is one important component of the first protective barrier of organisms. They not only have potent antimicrobial activity which can protect the body from the invading pathogens, but also participate in the immune regulation of the body. In this study, a Brevinin-1 peptide named by Brevinin-1GHd was identified from Hoplobatrachus rugulosus, and the similarity of mature peptide sequence among Brevinin-1GHd, Brevinin-1HL and Brevinin-1GHa supported the close species relationship between H. rugulosus, Hylarana latouchii and Hylarana guertheri. Moreover, the secondary structure of Brevinin-1GHd was found to possess α-helical characteristics and high thermal stability. In addition, Brevinin-1GHd could bind to LPS with a Kd value of 6.49 ± 5.40 mM and suppress the release of TNF-α, NO, IL-6 and IL-1β by inactivation of MAPK signaling pathway in RAW 264.7 cells induced by LPS. Furtherly, Brevinin-1GHd had a significant inhibitory effect on acute edema development in the right paw of mice injected by carrageenan. Thus, the significant LPS-neutralizing and anti-inflammatory activities of Brevinin-1GHd were demonstrated in this study, which made it become the first Brevinin-1 family peptide with anti-inflammatory activity reported so far, and the biological activity of Brevinin-1GHd made it promising to be a novel therapeutic drug for infectious inflammation.
Collapse
Affiliation(s)
- Maolin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kai Wang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Liang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Haiyun Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Xin Chen,
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Xueqing Xu,
| |
Collapse
|
10
|
Tolpina MD, Vasileva ID, Samgina TY. Modern Approaches in de novo Sequencing of Nontryptic Peptides of Ranid and Hylid Frogs by Means of Mass Spectrometry: A Review. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822130081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Fan XL, Yu SS, Zhao JL, Li Y, Zhan DJ, Xu F, Lin ZH, Chen J. Brevinin-2PN, an antimicrobial peptide identified from dark-spotted frog (Pelophylax nigromaculatus), exhibits wound-healing activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 137:104519. [PMID: 36041640 DOI: 10.1016/j.dci.2022.104519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Brevinins exhibit a wide range of structural features and strong biological activities. Brevinin-2, derived from several amphibians, has shown antimicrobial activities. However, little is known about the wound-healing activity of brevinin-2. In this study, brevinin-2 cDNA was identified from the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus) and it comprises a signal peptide, a propeptide, and a mature peptide. Sequence alignment with brevinin-2 derived from other amphibians showed variability of the mature peptide, and the presence of a C-terminal cyclic heptapeptide domain (Cys-Lys-Xaa4-Cys) in the mature peptide. Dark-spotted frog brevinin-2 belonged to the brevinin-2 cluster and was closely related to brevinin-2HB1 from Pelophylax hubeiensis. Synthetic dark-spotted frog brevinin-2 mature peptide (brevinin-2PN) exhibited antibacterial activity against several pathogens by destroying cell membrane integrity and hydrolysis of genomic DNA. Brevinin-2PN exhibited significant wound-healing activity by accelerating the healing of human skin fibroblast cell scratches, influencing cell migration, and stimulating gene expression of growth factors.
Collapse
Affiliation(s)
- Xiao-Li Fan
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Shui-Sheng Yu
- Ecological Forestry Development Center of Suichang County, Lishui, 323000, China
| | - Jia-Le Zhao
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Yue Li
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Du-Juan Zhan
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Feng Xu
- Institute of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
12
|
Gao Y, Chai J, Wu J, Zeng Q, Guo R, Chen X, Xu X. Molecular Cloning and Characterization of a Novel Antimicrobial Peptide from the Skin of Kaloula pulchra. Curr Pharm Biotechnol 2022; 23:1873-1882. [PMID: 35249479 DOI: 10.2174/1389201023666220304204645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Bacterial resistance to all currently available conventional antibiotics has caused a global public health crisis and led to an imperative search for new agents. Antimicrobial peptides (AMPs) are essential components of host innate immune defense against microbial invasions. OBJECTIVES The objective of this study was to report a novel AMP, brevinin-2KP, from the skin of the black Kaloula pulchra frog and describe its structural and biological characterization. MATERIALS AND METHODS The physical and chemical parameters of brevinin-2KP were predicted with the ExPASy Bioinformatics Resource Portal. The assembled sequences were aligned with ClustalW, and the phylogenetic tree was constructed using Mega. Circular dichroism (CD) experiments were carried out to identify the secondary structure and the stability of peptide in different solvent environments. The cytotoxicity of brevinin-2KP was evaluated by the MTT test. To determine antibacterial activity of brevinin- 2KP, a standard two-fold broth dilution method was used. SEM was carried out to observe the morphological change in the bacterial treated by brevinin-2KP. The live/dead bacterial viability was measured with a LIVE/DEAD® BacLight kit. Histamine release and mast cell degranulation assays were performed. RESULTS The precursor of brevinin-2KP contains 72 amino acid residues, including a conserved signal peptide, acidic propeptide with KR residues, and mature peptide with a sequence of GVITDALKGAAKTVAAELLKKAHCKLTNSC. Phylogenetic analysis based on the amino acid sequences of 34 brevinin-2 peptides from 30 anuran species demonstrates that K. pulchra is genetically closely related to the genus Hylarana. The CD spectra analysis indicates that brevinin-2KP adopts random coil in the water and an organized α-helical conformation in SDS solution. Further, this secondary structure is stable under high salt and high-temperature conditions. Brevinin-2KP is weakly active towards the tested Gram-positive and Gram-negative bacteria as well as fungi due to its membranolytic action. Moreover, brevinin-2KP inhibits the proliferation of several mammal cells with IC50 values ranging from 3.27 to 59.75 μM. In addition, brevinin-2KP promotes degranulation and histamine release of mast cells, indicating that it is involved in the inflammatory response. CONCLUSION This is the first report on AMP identified from the skin of K. pulchra. Brevinin-2KP adopts a typical amphipathic α-helix conformation in membrane mimic environment and shows antimicrobial and antitumor activities by potential membranolytic mechanism. In addition, brevinin-2KP can promote degranulation and histamine release of mast cells. Brevinin-2KP is expected to become a good drug temple molecule.
Collapse
Affiliation(s)
- Yahua Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.,Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingye Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ruiyin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
13
|
Biological Characterization of Natural Peptide BcI-1003 from Boana cordobae (anura): Role in Alzheimer’s Disease and Microbial Infections. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Antimicrobial Activity Developed by Scorpion Venoms and Its Peptide Component. Toxins (Basel) 2022; 14:toxins14110740. [PMID: 36355990 PMCID: PMC9693228 DOI: 10.3390/toxins14110740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 10/23/2022] [Indexed: 01/26/2023] Open
Abstract
Microbial infections represent a problem of great importance at the public health level, with a high rate of morbidity-mortality worldwide. However, treating the different diseases generated by microorganisms requires a gradual increase in acquired resistance when applying or using them against various antibiotic therapies. Resistance is caused by various molecular mechanisms of microorganisms, thus reducing their effectiveness. Consequently, there is a need to search for new opportunities through natural sources with antimicrobial activity. One alternative is using peptides present in different scorpion venoms, specifically from the Buthidae family. Different peptides with biological activity in microorganisms have been characterized as preventing their growth or inhibiting their replication. Therefore, they represent an alternative to be used in the design and development of new-generation antimicrobial drugs in different types of microorganisms, such as bacteria, fungi, viruses, and parasites. Essential aspects for its disclosure, as shown in this review, are the studies carried out on different types of peptides in scorpion venoms with activity against pathogenic microorganisms, highlighting their high therapeutic potential.
Collapse
|
15
|
Peptides Isolated from Amphibian Skin Secretions with Emphasis on Antimicrobial Peptides. Toxins (Basel) 2022; 14:toxins14100722. [PMID: 36287990 PMCID: PMC9607450 DOI: 10.3390/toxins14100722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022] Open
Abstract
The skin of amphibians is a tissue with biological functions, such as defense, respiration, and excretion. In recent years, researchers have discovered a large number of peptides in the skin secretions of amphibians, including antimicrobial peptides, antioxidant peptides, bradykinins, insulin-releasing peptides, and other peptides. This review focuses on the origin, primary structure, secondary structure, length, and functions of peptides secreted from amphibians' skin. We hope that this review will provide further information and promote the further study of amphibian skin secretions, in order to provide reference for expanding the research and application of amphibian bioactive peptides.
Collapse
|
16
|
Samgina TY, Vasileva ID, Trebse P, Torkar G, Surin AK, Meng Z, Zubarev RA, Lebedev AT. Mass Spectrometry Differentiation between Rana arvalis Populations Based on Their Skin Peptidome Composition. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1480-1491. [PMID: 35820801 DOI: 10.1021/jasms.2c00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Skin secretion of amphibians often represents the only weapon of these species against pathogens and predators. Peptides constitute the major portion of active molecules of that weapon and may be treated as potential pharmaceuticals for future generations. The first step of their efficient use involves establishing of their primary structure, i.e., sequencing. De novo sequencing by means of mass spectrometry was applied to Rana arvalis species, collected in the spring 2021 in Central Slovenia (vicinity of Ljubljana). HPLC-ESI-HRMS/MS with Orbitrap instruments was used to establish the skin peptidome of these species and compare it with the earlier identified skin peptidome of the Moscow population of Rana arvalis. Application of CID, HCD, ETD, and EThcD enabled detecting and sequencing 18 peptides; five of them were novel and may be treated as possible biomarkers of the Ljubljana population of Rana arvalis. Interestingly, representatives of two peptide families (temporins and brevinins 2) were not found in the Moscow population. MS3 modes, first of all EThcD, demonstrated their great potential in the de novo sequencing, including extraction of the sequence information from the intact peptides with disulfide cycle (rana box) in their structure and differentiation of isomeric Leu/Ile residues. Thus, all six isomeric residues were reliably distinguished in the novel melittin-related peptide AK-23-1. In addition, another post-translational modification dealing with carbonylation of the N-terminal Gly of novel temporin AVa was established using the MS3 mode. The obtained results demonstrate the efficiency of the use of MS3 tools in proteomics/peptidomics.
Collapse
Affiliation(s)
- Tatiana Yu Samgina
- Lomonosov Moscow State University, Department of Organic Chemistry, Moscow 119991 Russia
| | - Irina D Vasileva
- Lomonosov Moscow State University, Department of Organic Chemistry, Moscow 119991 Russia
| | - Polonca Trebse
- University of Ljubljana Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana 1000 Slovenia
- MASSECO d.o.o. Erazmova 20, Postojna 6230, Slovenia
| | - Gregor Torkar
- University of Ljubljana Faculty of Education, Department for Biology, Chemistry and Home Economics, Kardeljeva ploščad 16, Ljubljana 1000 Slovenia
| | - Alexey K Surin
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow 142290, Russia
| | - Zhaowei Meng
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, Stockholm 17177 Sweden
| | - Roman A Zubarev
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, Stockholm 17177 Sweden
| | - Albert T Lebedev
- Lomonosov Moscow State University, Department of Organic Chemistry, Moscow 119991 Russia
- MASSECO d.o.o. Erazmova 20, Postojna 6230, Slovenia
| |
Collapse
|
17
|
Targeted Modification and Structure-Activity Study of GL-29, an Analogue of the Antimicrobial Peptide Palustrin-2ISb. Antibiotics (Basel) 2022; 11:antibiotics11081048. [PMID: 36009917 PMCID: PMC9405102 DOI: 10.3390/antibiotics11081048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) are considered as promising antimicrobial agents due to their potent bioactivity. Palustrin-2 peptides were previously found to exhibit broad-spectrum antimicrobial activity with low haemolytic activity. Therefore, GL-29 was used as a template for further modification and study. Firstly, the truncated analogue, GL-22, was designed to examine the function of the ‘Rana box’, which was confirmed to have no impact on antimicrobial activity. The results of antimicrobial activity assessment against seven microorganisms demonstrated GL-22 to have a broad-spectrum antimicrobial activity, but weak potency against Candida albicans (C. albicans). These data were similar to those of GL-29, but GL-22 showed much lower haemolysis and lower cytotoxicity against HaCaT cells. Moreover, GL-22 exhibited potent in vivo activity at 4 × MIC against Staphylococcus aureus (S. aureus)-infected larvae. Several short analogues, from the C-terminus and N-terminus of GL-22, were modified to identify the shortest functional motif. However, the results demonstrated that the shorter peptides did not exhibit potent antimicrobial activity, and the factors that affect the bioactive potency of these short analogues need to be further studied.
Collapse
|
18
|
Kara Ş, Kürekci C, Akcan M. Design and modification of frog skin peptide brevinin-1GHa with enhanced antimicrobial activity on Gram-positive bacterial strains. Amino Acids 2022; 54:1327-1336. [DOI: 10.1007/s00726-022-03189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
|
19
|
Ajayakumar N, Narayanan P, Anitha AK, R MK, Kumar S. Membrane disruptive action of cationic anti-bacterial peptide B1CTcu3. Chembiochem 2022; 23:e202200239. [PMID: 35713298 DOI: 10.1002/cbic.202200239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Indexed: 11/09/2022]
Abstract
A twenty-two-residue peptide Brevinin1 Clinotarsus curtipus-3 (B1CTcu3), identified from the skin secretion of frog Clinotarsus curtipes of the Western Ghats, exhibited a broad range of antibacterial activity against Gram-negative and Gram-positive bacteria, including the methicillin-resistant Staphylococcus aureus (MRSA). It showed anti-biofilm activity even at sub-Minimum Inhibitory Concentration (sub-MIC) against Pseudomonas aeruginosa and Staphylococcus aureus. Analysis of the scanning electron microscopic (SEM) images, confocal images, flow cytometric data and the effect of salt concentration on antibacterial potency suggests that the killing action of the peptide is through the membranolytic process. Single channel electric recording confirmed that the peptide elicited pores on the bacterial cell membrane as it induces a heterogeneous channel in the lipid bilayer. It also showed cytotoxicity against MDA-MB-231 breast cancer cell with IC50 of 25µM. B1CTcu3 peptide could serve as the template for next-generation antibacterial agents, particularly against antibiotic resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Neethu Ajayakumar
- Rajiv Gandhi Centre for Biotechnology, Chemical Biology Lab, RGCB-BIO innovation centre, Kinfra film and video park, Chandavila, kazhakoottam, 695523, trivandrum, INDIA
| | - Pratibha Narayanan
- Rajiv Gandhi Centre for Biotechnology, Chemical Biology Lab, rgcb-BIC Innovation Centre, Kinfra film and video park, Chandavila, Kazhakoottam, 695523, Trivandrum, INDIA
| | - Anju Krishnan Anitha
- Rajiv Gandhi Centre for Biotechnology, Chemical Biology Lab, RGCB-BIC Innovation Centre, Kinfra film and video park, Chandavila, Kazhakoottam, 695523, Trivandrum, INDIA
| | - Mahendran Kozhinjampara R
- Rajiv Gandhi Centre for Biotechnology, Membrane biology lab, RGCB-BIC Innovation centre, Kinfra film and video park, chandavila, kazhakoottam, 695523, rivandrum, INDIA
| | - Santhosh Kumar
- Rajiv Gandhi Centre for Biotechnology, Chemical Biology, Poojappura, 695014, Thiruvananthapuram, INDIA
| |
Collapse
|
20
|
Serum Stable and Low Hemolytic Temporin-SHa Peptide Analogs Disrupt Cell Membrane of Methicillin-Resistant Staphylococcus aureus (MRSA). Probiotics Antimicrob Proteins 2022; 14:391-405. [PMID: 35092568 DOI: 10.1007/s12602-022-09915-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 01/01/2023]
Abstract
Anti-microbial peptides (AMPs) have attracted major attention due to their potential bio-activities against some multidrug resistant pathogens. The present study evaluated the mechanism of actions of highly potent AMP temporin-SHa analogs, i.e., [G4a]-SHa, [G7a]-SHa, and [G10a]-SHa, against methicillin-resistant Staphylococcus aureus (MRSA) NCTC (13277) with minimum inhibitory concentrations (MICs) of 14.35, 7.16, and 3.58 µM, respectively. These analogs exhibited significant anti-MRSA activity at physiological salt concentration, 30% fetal bovine serum, and 30% human serum. [G4a]-SHa and [G7a]-SHa were non-hemolytic and non-cytotoxic to normal mouse fibroblast 3T3 cell and human Caco-2 cell line. Atomic force microscopy revealed that these analogs have profound effect on the morphological changes in MRSA surface with significant leakage of cell cytoplasmic content. Propidium iodide uptake kinetic assay and (bis-(1,3-dibutylbarbituric acid) trimethine oxonol) DiBAC4(3) membrane depolarization assay demonstrated that these analogs display a membrane disrupting property, characterized by elevation of plasma membrane permeability and rapid transmembrane potential depolarization. [G10a]-SHa showed a significant anti-biofilm activity against biofilm forming S. aureus (ATCC 6538). Acute in vivo toxicity studies revealed that [G10a]-SHa possesses some toxic effect at 100-mg/kg dose. While [G4a]-SHa at 100 mg/kg, i.p. has no toxic effect even after 48 h, [G7a]-SHa also did not show any toxic effect at the dose of 100 mg/kg, i.p. during 24-h observation of animals. In conclusion, [G4a]-SHa, [G7a]-SHa, and [G10a]-SHa show improved activity against MRSA and stability compared to SHa peptide. Although highly potent, [G10a]-SHa, due to its hemolytic activity, might be more suitable for topical application, whereas [G4a]-SHa and [G7a]-SHa have potential to be used for systemic application.
Collapse
|
21
|
Tian M, Liu J, Chai J, Wu J, Xu X. Antimicrobial and Anti-inflammatory Effects of a Novel Peptide From the Skin of Frog Microhyla pulchra. Front Pharmacol 2022; 12:783108. [PMID: 34975482 PMCID: PMC8718063 DOI: 10.3389/fphar.2021.783108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
Brevinins are an important antimicrobial peptide (AMP) family identified in the skin of Ranidae frogs and generally contain a characteristic ranabox structure at their C-terminal sequence. Herein a novel AMP named brevinin-2MP has been identified from the skin of the frog Microhyla pulchra by molecular cloning. Brevinin-2MP (GVITDTLKGVAKTVAAELLRKAHCKLTNSC) with a high amphipathic α-helix in sodium dodecyl sulfate solutions can destroy bacterial cell membrane and kill microbes. Furthermore, brevinin-2MP has been found to inhibit the lipopolysaccharide (LPS)-induced expression of pro-inflammatory NO, MCP-1, IL-6, and TNF-α via binding unidentified targets on the cell membrane and consequently suppressing the activation of MAPK/NF-κB signaling cascades induced by LPS in RAW 264.7 cells. Consistently, brevinin-2MP significantly alleviates the acute inflammatory response in carrageenan-induced mice paw. In conclusion, brevinin-2MP with anti-inflammatory and antimicrobial properties will be an ideal candidate drug molecule for bacterial inflammation treatment.
Collapse
Affiliation(s)
- Maolin Tian
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Junfang Liu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Lin Y, Lin T, Cheng N, Wu S, Huang J, Chen X, Chen T, Zhou M, Wang L, Shaw C. Evaluation of antimicrobial and anticancer activities of three peptides identified from the skin secretion of Hylarana latouchii. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1469-1483. [PMID: 34508563 DOI: 10.1093/abbs/gmab126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
The skins of frogs of the family Ranidae are particularly rich sources of biologically active peptides, among which antimicrobial peptides (AMPs) constitute the major portion. Some of these have attracted the interest of researchers because they possess both antimicrobial and anticancer activities. In this study, with 'shotgun' cloning and MS/MS fragmentation, three AMPs, homologues of family brevinin-1 (brevinin-1HL), and temporin (temporin-HLa and temporin-HLb), were discovered from the skin secretion of the broad-folded frog, Hylarana latouchii. They exhibited various degrees of antimicrobial and antibiofilm activities against test microorganisms and hemolysis on horse erythrocytes. It was found that they could induce bacteria death through disrupting cell membranes and binding to bacterial DNA. In addition, they also showed different potencies towards human cancer cell lines. The secondary structure and physicochemical properties of each peptide were investigated to preliminarily reveal their structure-activity relationships. Circular dichroism spectrometry showed that they all adopted a canonical α-helical conformation in membrane-mimetic solvents. Notably, the prepropeptide of brevinin-1HL from H. latouchii was highly identical to that of brevinin-1GHd from Hylarana guentheri, indicating a close relationship between these two species. Accordingly, this study provides candidates for the design of novel anti-infective and antineoplastic agents to fight multidrug-resistant bacteria and malignant tumors and also offers additional clues for the taxonomy of ranid frogs.
Collapse
Affiliation(s)
- Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK
| | - Tianxing Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ningna Cheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuting Wu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiancai Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK
| |
Collapse
|
23
|
Feng G, Wu J, Yang HL, Mu L. Discovery of Antioxidant Peptides from Amphibians: A Review. Protein Pept Lett 2021; 28:1220-1229. [PMID: 34493183 DOI: 10.2174/0929866528666210907145634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 01/19/2023]
Abstract
In recent years, bioactive peptide drugs have attracted growing attention due to the increasing difficulty in developing new drugs with novel chemical structures. In addition, many diseases are linked to excessive oxidation in the human body. Therefore, the role of peptides with antioxidant activity in counteracting diseases related to oxidative stress is worth exploring. Amphibians are a major repository for bioactive peptides that protect the skin from biotic and abiotic stresses, such as microbial infection and radiation injury. We characterized the first amphibian- derived gene-encoded antioxidant peptides in 2008. Since then, a variety of antioxidant peptides have been detected in different amphibian species. In this work, the physicochemical properties of antioxidant peptides identified from amphibians are reviewed for the first time, particularly acquisition methods, amino acid characteristics, antioxidant mechanisms, and application prospects. This review should provide a reference for advancing the identification, structural analysis, and potential therapeutic value of natural antioxidant peptides.
Collapse
Affiliation(s)
- Guizhu Feng
- School of Basic Medical Sciences, Kunming Medical University, Kunming Yunnan 650500,China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming Yunnan 650500,China
| | - Hai-Long Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming Yunnan 650500,China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming Yunnan 650500,China
| |
Collapse
|
24
|
Modification Strategy of D-leucine Residue Addition on a Novel Peptide from Odorrana schmackeri, with Enhanced Bioactivity and In Vivo Efficacy. Toxins (Basel) 2021; 13:toxins13090611. [PMID: 34564615 PMCID: PMC8473181 DOI: 10.3390/toxins13090611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Brevinins are a well-characterised, frog-skin-derived, antimicrobial peptide (AMP) family, but their applications are limited by high cytotoxicity. In this study, a wild-type des-Leu2 brevinin peptide, named brevinin-1OS (B1OS), was identified from Odorrana schmackeri. To explore the significant role of the leucine residue at the second position, two variants, B1OS-L and B1OS-D-L, were designed by adding L-leucine and D-leucine residues at this site, respectively. The antibacterial and anticancer activities of B1OS-L and B1OS-D-L were around ten times stronger than the parent peptide. The activity of B1OS against the growth of Gram-positive bacteria was markedly enhanced after modification. Moreover, the leucine-modified products exerted in vivo therapeutic potential in an methicillin-resistant Staphylococcus aureus (MRSA)-infected waxworm model. Notably, the single substitution of D-leucine significantly increased the killing speed on lung cancer cells, where no viable H838 cells survived after 2 h of treatment with B1OS-D-L at 10 μM with low cytotoxicity on normal cells. Overall, our study suggested that the conserved leucine residue at the second position from the N-terminus is vital for optimising the dual antibacterial and anticancer activities of B1OS and proposed B1OS-D-L as an appealing therapeutic candidate for development.
Collapse
|
25
|
Samgina TY, Vasileva ID, Kovalev SV, Trebse P, Torkar G, Surin AK, Zubarev RA, Lebedev AT. Differentiation of Central Slovenian and Moscow populations of Rana temporaria frogs using peptide biomarkers of temporins family. Anal Bioanal Chem 2021; 413:5333-5347. [PMID: 34235566 DOI: 10.1007/s00216-021-03506-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022]
Abstract
Skin secretion represents the only means of defense for the majority of frog species. That phenomenon is based on the fact that the main components of the secretion are peptides demonstrating greatly varying types of bioactivity. They fulfill regulatory functions, fight microorganisms and may be even helpful against predators. These peptides are considered to be rather promising pharmaceuticals of future generation as according to the present knowledge microorganisms are unlikely to develop resistance to them. Mass spectrometry sequencing of these peptides is the most efficient first step of their study providing reliably their primary structures, i.e., amino acids sequence and S-S bond motif. Besides discovering new bioactive peptides, mass spectrometry appears to be an efficient tool of taxonomy studies, allowing for distinguishing not only between closely related species, but also between populations of the same species. Application of several tandem mass spectrometry tools (CID, HCD, ETD, EThcD) available with Orbitrap mass analyzer allowed us to obtain full sequence of about 60 peptides in the secretion of Slovenian population of brown ranid frog Rana temporaria. The problem of sequence inside C-terminal cycle formed by two Cys and differentiation of isomeric Leu and Ile residues was done in top-down mode without any derivatization steps. Besides general biomarkers of Rana temporaria species, Central Slovenian population of Rana temporaria demonstrates six novel temporins and one brevinin 1, which may be treated as biomarkers of that population.
Collapse
Affiliation(s)
- T Yu Samgina
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia.
| | - I D Vasileva
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - S V Kovalev
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - P Trebse
- University of Ljubljana Faculty of Health Sciences, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - G Torkar
- Department for Biology, Chemistry and Home Economics, University of Ljubljana Faculty of Education, Kardeljeva ploščad 16, 1000, Ljubljana, Slovenia
| | - A K Surin
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow, 142290, Russia
| | - R A Zubarev
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, 17177, Stockholm, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - A T Lebedev
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
26
|
Liu H, Guo X, Yi T, Zhu Y, Ren X, Guo R, Dai Y, Liang S. Frog Skin Derived Peptides With Potential Protective Effects on Ultraviolet B-Induced Cutaneous Photodamage. Front Immunol 2021; 12:613365. [PMID: 34149681 PMCID: PMC8206783 DOI: 10.3389/fimmu.2021.613365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Hyla annectans is a tree frog living in the southwestern plateau area of China where there is strong ultraviolet radiation and long duration of sunshine. So their naked skin may possess chemical defense components that protect it from acute photo-damage. However, no such peptide or components has been identified till to date. In the current work, two novel peptides (FW-1, FWPLI-NH2 and FW-2, FWPMI-NH2) were identified from the skin of the tree frog. Five copies of FW-1 and four copies of FW-2 are encoded by an identical gene and released from the same protein precursor, which possess 167 amino acid residues. FW-1 and -2 can exert significant anti-inflammatory functions by directly inhibiting Ultraviolet B irradiation (UVB)-induced secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). They may achieve this function by modulating the UV-induced stress signaling pathways such as Mitogen-activated protein kinases (MAPK) and Nuclear Factor Kappa B (NF-κB). Besides, FW-1 and -2 showed potential antioxidant effects on epidermis by attenuating the UVB-induced reactive oxygen species (ROS) production through an unknown mechanism. Considering small peptides' easy production, storage, and potential photo-protective activity, FW-1/2 might be exciting leading compounds or templates for the development of novel pharmacological agents for the suppression of UVB-induced skin inflammation. Moreover, this study might expand our knowledge on skin defensive mechanism of tree frog upon UVB irradiation.
Collapse
Affiliation(s)
- Han Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaopu Guo
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tangwei Yi
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yihan Zhu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinyi Ren
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Renxian Guo
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shaohui Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
de Freitas Rosa Remiro P, de Sousa CP, Alves HC, Bernardo A, Aguiar ML. In Situ Evaluation of Filter Media Modified by Biocidal Nanomaterials to Control Bioaerosols in Internal Environments. WATER, AIR, AND SOIL POLLUTION 2021; 232:176. [PMID: 33897067 PMCID: PMC8055056 DOI: 10.1007/s11270-021-05105-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Controlling the bioaerosol present in indoor environments has been evidenced to be extremely necessary. An alternative is to develop filter media for air conditioners that have biocidal properties. This study aimed to verify the biocidal effect of a high-efficiency particulate air (HEPA) filter medium modified with the deposition of nanoparticles on its surface. For this purpose, Ag, TiO2, and Ag/TiO2 nanoparticles were used and the antimicrobial activities of these nanomaterials against Escherichia coli, Staphylococcus aureus, and Candida albicans microorganisms were evaluated, as well as the biocidal efficacy of the modified HEPA filter with these nanomaterials in a real environment. The percentages of elimination obtained for the Ag, TiO2, and Ag/TiO2 nanomaterials, respectively, were 53%, 63%, and 68% (E. coli); 67%, 67%, and 69% (S. aureus); and 68%, 73%, and 75% (C. albicans). The HEPA filter media had their surfaces modified by aspersion and deposition of Ag, TiO2, and Ag/TiO2 nanomaterials. We could conclude that the nanoparticles adhered to the filter medium do not affect its permeability. The modified filters were arranged in an internal environment (bathroom) for the collection of the bioaerosols, and after the collection, the filter cake was plated and arranged to grow in a liquid medium. The results showed that the filters have 100% of biocidal action in passing air, and 55.6%, 72.2%, and 81% of inhibition to microbial growth in their surface for modification with Ag, TiO2, and Ag/TiO2, respectively, compared to unmodified filters.
Collapse
Affiliation(s)
| | - Cristina Paiva de Sousa
- Morphology and Pathology Department, Federal University of São Carlos, São Carlos, SP Brazil
| | - Henrique Cezar Alves
- Morphology and Pathology Department, Federal University of São Carlos, São Carlos, SP Brazil
| | - André Bernardo
- Chemical Engineering Department, Federal University of São Carlos, São Carlos, SP Brazil
| | - Mônica Lopes Aguiar
- Chemical Engineering Department, Federal University of São Carlos, São Carlos, SP Brazil
| |
Collapse
|
28
|
Samgina TY, Tolpina MD, Surin AK, Kovalev SV, Bosch RA, Alonso IP, Garcia FA, Gonzalez Lopez LJ, Lebedev AT. Manual mass spectrometry de novo sequencing of the anionic host defense peptides of the Cuban Treefrog Osteopilus septentrionalis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9061. [PMID: 33527491 DOI: 10.1002/rcm.9061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Host defense peptides accumulated in the skin glands of the animals constitute the basis of the adaptive and immune system of amphibians. The peptidome of the Cuban frog Osteopilus septentrionalis was established using tandem mass spectrometry as the best analytical tool to elucidate the sequence of these peptides. METHODS Manual interpretation of complementary collision-induced dissociation (CID), higher energy collision-induced dissociation (HCD), and electron transfer dissociation (ETD) tandem mass spectra recorded with an Orbitrap Elite mass spectrometer in liquid chromatography/mass spectrometry (LC/MS) mode was used to sequence the peptide components of the frog skin secretion, obtained by mild electrostimulation. RESULTS Although the vast majority of amphibian peptides discovered so far are cationic, surprisingly only anionic peptides were identified in the skin secretion of the Cuban frog Osteopilus septentrionalis. Mass spectrometry allowed the sequences to be established of 16 representatives of new peptide families: septenins 1 and septenins 2. The highest sequence coverage when dealing with these anionic peptides was obtained with CID normalized collision energy 35 and HCD normalized collision energy 28. CONCLUSIONS Mirror-symmetrical peptides are sequenced using N-terminal acetylation. Acetylated Ser is reliably distinguished from isomeric Glu by the loss of ketene from b-ions containing the corresponding residue. Calculations of the physicochemical and structural properties of the discovered anionic septenins 1 and 2 allowed the mechanism of their interaction with microbe cells to be postulated.
Collapse
Affiliation(s)
- Tatiana Y Samgina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Maria D Tolpina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Alexey K Surin
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow, 142290, Russia
| | - Sergey V Kovalev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Roberto Alonso Bosch
- Museum of Natural History "Felipe Poey", Faculty of Biology, University of Havana, Havana, Cuba
| | - Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | | | - Luis Javier Gonzalez Lopez
- Mass Spectrometry Laboratory, Department of Proteomics, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Albert T Lebedev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| |
Collapse
|
29
|
Wang Y, Ouyang J, Luo X, Zhang M, Jiang Y, Zhang F, Zhou J, Wang Y. Identification and characterization of novel bi-functional cathelicidins from the black-spotted frog (Pelophylax nigromaculata) with both anti-infective and antioxidant activities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103928. [PMID: 33242568 DOI: 10.1016/j.dci.2020.103928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Cathelicidins are an important family of antimicrobial peptides (AMPs), which play pivotal roles in vertebrate immune responses against microbial infections. They are regarded as potential drug leads for the development of novel antimicrobial agents and three related drugs have been developed into clinical trials. Thus, it is meaningful to identify more cathelicidins from vertebrate species. Cathelicidins from ranid frogs possess special structural characteristics and activities, but to date only 12 ranid frog cathelicidins have been identified. In the present study, two novel cathelicidins (PN-CATH1 and 2) were identified from the black-spotted frog, Pelophylax nigromaculata. PN-CATHs possess low sequence similarity with the known cathelicidins. They exhibited moderate, but broad-spectrum and rapid antimicrobial activities against the tested bacteria. They kill bacteria by mainly inducing bacterial membrane disruption and possibly generating intracellular ROS formation. They also possess potent anti-biofilm and persister cell killing activity, indicating their potential in combating infections induced by biofilms-forming bacteria. Besides direct antimicrobial activity, they exhibited potent anti-inflammatory activity by effectively inhibiting the LPS-induced production of pro-inflammatory cytokines in mouse macrophages, which could be partly ascribed to their direct LPS-neutralizing ability. Furthermore, PN-CATHs demonstrated powerful in vitro free radical scavenging activities. Ultraviolet radiation significantly increased their in vivo gene expression in frog skin. Meanwhile, they possess weak cytotoxic activity and extremely low hemolytic activity. PN-CATHs represent the first discovery of cathelicidins family AMPs with both potent anti-infective and antioxidant activities. The discovery of PN-CATHs provides potential peptide leads for the development of novel anti-infective and antioxidant drugs.
Collapse
Affiliation(s)
- Yan Wang
- Biology Department, Guizhou Normal University, Guiyang, Guizhou, 550000, China
| | - Jianhong Ouyang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xuanjin Luo
- Biology Department, Guizhou Normal University, Guiyang, Guizhou, 550000, China
| | - Minghui Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Jiang
- Biology Department, Guizhou Normal University, Guiyang, Guizhou, 550000, China
| | - Fen Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jiang Zhou
- Biology Department, Guizhou Normal University, Guiyang, Guizhou, 550000, China.
| | - Yipeng Wang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
30
|
Pereira KE, Woodley SK. Skin defenses of North American salamanders against a deadly salamander fungus. Anim Conserv 2021. [DOI: 10.1111/acv.12666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- K. E. Pereira
- Department of Biological Sciences Duquesne University Pittsburgh PA USA
| | - S. K. Woodley
- Department of Biological Sciences Duquesne University Pittsburgh PA USA
| |
Collapse
|
31
|
Tran TTN, Tran DP, Nguyen VC, Tran TDT, Bui TTT, Bowie JH. Antioxidant activities of major tryptophyllin L peptides: A joint investigation of Gaussian-based 3D-QSAR and radical scavenging experiments. J Pept Sci 2021; 27:e3295. [PMID: 33410242 DOI: 10.1002/psc.3295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
The red tree frog Litoria rubella from Australia has been studied for several decades showing that their dorsal skin glands secrete a number of small peptides containing a Pro-Trp sequence, known as tryptophyllin L peptides. Although peptides from many genera of Australian frogs have been reported to possess a variety of biological activities, the bioactivities of this peptide family have remained to be discovered. In this study, we investigated the antioxidant potency of a number of tryptophyllin L peptides for the first time using a joint statistical and experimental approach in which predictions based on Gaussian three-dimensional quantitative structure-activity relationship (3D-QSAR) models were employed to guide an in vitro experimental investigation. Two tryptophyllin tripeptides P-W-L (OH) and P-W-L (NH2 ) were predicted to have the Trolox equivalent antioxidant capacity (TEAC) values of 0.80 and 0.87 μM Trolox/μM peptide, respectively. With those promising results, antioxidant capabilities of five tryptophyllin L peptides with the common core Pro-Trp-Leu were synthesized and subjected to 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing ability of plasma (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation (ABTS˙+ ) radical scavenging assays. The tests indicated that all the tested tryptophyllin L peptides, noticeably S-P-W-L (OH) and F-P-W-L (NH2 ), are strong ABTS˙+ radical scavengers and moderate scavengers in the other two assays. The results, thus, suggested that the tryptophyllin L peptides are likely to be a part of the skin antioxidant system helping the frog to cope with drastic change in oxygen exposure and humidity, as they inhabit over a large area of Australia with a wide climate variation.
Collapse
Affiliation(s)
- Thi Thanh Nha Tran
- Faculty of Chemical Engineering, Industrial University of HoChiMinh City, 12 Nguyen Van Bao, Ho Chi Minh, 700000, Vietnam
| | - Dinh Phien Tran
- Department of Chemistry and Environment, Vietnam-Russia Tropical Centre, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Ha Noi, 11307, Vietnam
| | - Van Cuong Nguyen
- Faculty of Chemical Engineering, Industrial University of HoChiMinh City, 12 Nguyen Van Bao, Ho Chi Minh, 700000, Vietnam
| | - Thi Dieu Thuan Tran
- Faculty of Chemical Engineering, Industrial University of HoChiMinh City, 12 Nguyen Van Bao, Ho Chi Minh, 700000, Vietnam
| | | | - John Hamilton Bowie
- Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
32
|
Bakare OO, Keyster M, Pretorius A. Identification of biomarkers for the accurate and sensitive diagnosis of three bacterial pneumonia pathogens using in silico approaches. BMC Mol Cell Biol 2020; 21:82. [PMID: 33218302 PMCID: PMC7678116 DOI: 10.1186/s12860-020-00328-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background Pneumonia ranks as one of the main infectious sources of mortality among kids under 5 years of age, killing 2500 a day; late research has additionally demonstrated that mortality is higher in the elderly. A few biomarkers, which up to this point have been distinguished for its determination lack specificity, as these biomarkers fail to build up a differentiation between pneumonia and other related diseases, for example, pulmonary tuberculosis and Human Immunodeficiency Infection (HIV). There is an inclusive global consensus of an improved comprehension of the utilization of new biomarkers, which are delivered in light of pneumonia infection for precision identification to defeat these previously mentioned constraints. Antimicrobial peptides (AMPs) have been demonstrated to be promising remedial specialists against numerous illnesses. This research work sought to identify AMPs as biomarkers for three bacterial pneumonia pathogens such as Streptococcus pneumoniae, Klebsiella pneumoniae, Acinetobacter baumannii using in silico technology. Hidden Markov Models (HMMER) was used to identify putative anti-bacterial pneumonia AMPs against the identified receptor proteins of Streptococcus pneumoniae, Klebsiella pneumoniae, and Acinetobacter baumannii. The physicochemical parameters of these putative AMPs were computed and their 3-D structures were predicted using I-TASSER. These AMPs were subsequently subjected to docking interaction analysis against the identified bacterial pneumonia pathogen proteins using PATCHDOCK. Results The in silico results showed 18 antibacterial AMPs which were ranked based on their E values with significant physicochemical parameters in conformity with known experimentally validated AMPs. The AMPs also bound the pneumonia receptors of their respective pathogens sensitively at the extracellular regions. Conclusions The propensity of these AMPs to bind pneumonia pathogens proteins justifies that they would be potential applicant biomarkers for the recognizable detection of these bacterial pathogens in a point-of-care POC pneumonia diagnostics. The high sensitivity, accuracy, and specificity of the AMPs likewise justify the utilization of HMMER in the design and discovery of AMPs for disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Bioinformatics Research Group, Biotechnology Department, University of the Western Cape, Cape Town, 7535, South Africa. .,Environmental Biotechnology Laboratory, Biotechnology Department, University of the Western Cape, Cape Town, 7535, South Africa.
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Biotechnology Department, University of the Western Cape, Cape Town, 7535, South Africa
| | - Ashley Pretorius
- Bioinformatics Research Group, Biotechnology Department, University of the Western Cape, Cape Town, 7535, South Africa
| |
Collapse
|
33
|
Functional Characterization of Temporin-SHe, a New Broad-Spectrum Antibacterial and Leishmanicidal Temporin-SH Paralog from the Sahara Frog ( Pelophylax saharicus). Int J Mol Sci 2020; 21:ijms21186713. [PMID: 32933215 PMCID: PMC7555312 DOI: 10.3390/ijms21186713] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Amphibian skin is a promising natural resource for antimicrobial peptides (AMPs), key effectors of innate immunity with attractive therapeutic potential to fight antibiotic-resistant pathogens. Our previous studies showed that the skin of the Sahara Frog (Pelophylax saharicus) contains broad-spectrum AMPs of the temporin family, named temporins-SH. Here, we focused our study on temporin-SHe, a temporin-SHd paralog that we have previously identified in this frog but was never structurally and functionally characterized. We synthesized and determined the structure of temporin-SHe. This non-amphipathic α-helical peptide was demonstrated to strongly destabilize the lipid chain packing of anionic multilamellar vesicles mimicking bacterial membranes. Investigation of the antimicrobial activity revealed that temporin-SHe targets Gram-negative and Gram-positive bacteria, including clinical isolates of multi-resistant Staphylococcus aureus strains. Temporin-SHe exhibited also antiparasitic activity toward different Leishmania species responsible for visceral leishmaniasis, as well as cutaneous and mucocutaneous forms. Functional assays revealed that temporin-SHe exerts bactericidal effects with membrane depolarization and permeabilization, via a membranolytic mechanism observed by scanning electron microscopy. Temporin-SHe represents a new member of the very limited group of antiparasitic temporins/AMPs. Despite its cytotoxicity, it is nevertheless an interesting tool to study the AMP antiparasitic mechanism and design new antibacterial/antiparasitic agents.
Collapse
|
34
|
Loudon AH, Kurtz A, Esposito E, Umile TP, Minbiole KPC, Parfrey LW, Sheafor BA. Columbia spotted frogs (Rana luteiventris) have characteristic skin microbiota that may be shaped by cutaneous skin peptides and the environment. FEMS Microbiol Ecol 2020; 96:5894915. [DOI: 10.1093/femsec/fiaa168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/13/2020] [Indexed: 01/20/2023] Open
Abstract
ABSTRACT
Global amphibian declines due to the fungal pathogen Batrachochytrium dendrobatidis (Bd) have led to questions about how amphibians defend themselves against skin diseases. A total of two amphibian defense mechanisms are antimicrobial peptides (AMPs), a component of amphibian innate immune defense and symbiotic skin bacteria, which can act in synergy. We characterized components of these factors in four populations of Columbia spotted frogs (Rana luteiventris) to investigate their role in disease defense. We surveyed the ability of their AMPs to inhibit Bd, skin bacterial community composition, skin metabolite profiles and presence and intensity of Bd infection. We found that AMPs from R. luteiventris inhibited Bd in bioassays, but inhibition did not correlate with Bd intensity on frogs. R. luteiventris had two prevalent and abundant core bacteria: Rhizobacter and Chryseobacterium. Rhizobacter relative abundance was negatively correlated with AMP's ability to inhibit Bd, but was not associated with Bd status itself. There was no relationship between metabolites and Bd. Bacterial communities and Bd differ by location, which suggests a strong environmental influence. R. luteiventris are dominated by consistent core bacteria, but also house transient bacteria that are site specific. Our emergent hypothesis is that host control and environmental factors shape the microbiota on R. luteiventris.
Collapse
Affiliation(s)
- A H Loudon
- Department of Zoology and Biodiversity Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, CA
| | - A Kurtz
- Biology Department, Carroll College, Helena, Montana, 59625-0002, USA
| | - E Esposito
- Biology Department, Carroll College, Helena, Montana, 59625-0002, USA
| | - T P Umile
- Department of Chemistry, Villanova University, Villanova, Pennsylvania, 19085-1603, USA
| | - K P C Minbiole
- Department of Chemistry, Villanova University, Villanova, Pennsylvania, 19085-1603, USA
| | - L W Parfrey
- Department of Zoology and Biodiversity Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, CA
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, CA
| | - B A Sheafor
- Biology Department, Carroll College, Helena, Montana, 59625-0002, USA
| |
Collapse
|
35
|
Modification and Targeted Design of N-Terminal Truncates Derived from Brevinin with Improved Therapeutic Efficacy. BIOLOGY 2020; 9:biology9080209. [PMID: 32781587 PMCID: PMC7464788 DOI: 10.3390/biology9080209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022]
Abstract
Antimicrobial peptides (AMPs) are a class of molecules that play an essential role in innate immune regulation. The Brevinin-1 family are AMPs that show strong pharmacological and antimicrobial potential. A novel peptide, B1A, was designed based on the primary structure of brevinin-1PLb and brevinin-1PLc. Subsequently, a synthesised replicate was subjected to a series of bioassays and was found to display antimicrobial activity. However, it also displayed high levels of haemolysis in a horse red blood cell haemolytic assay, suggesting potential toxicity. Therefore, we rationally designed a number of B1A analogues with aim of retaining antimicrobial activity, lowering toxicity, and to explore the structure–activity relationship of its N-terminus. B1A and its analogues still retained the “Rana Box” and the FLP-motif, which is a feature of this subfamily. However, the introduction of Lys and Trp residues into the peptide sequences revealed that antimicrobial activity of these analogues remained unchanged once the hydrophobicity and the charge reached the threshold. Hence, the idea that the hydrophobicity saturation in different situations is related to antimicrobial activity can be understood via the structure–activity relationship. Meanwhile, it could also be the starting point for the generation of peptides with specific antimicrobial activity.
Collapse
|
36
|
Zhou X, Liu Y, Gao Y, Wang Y, Xia Q, Zhong R, Ma C, Zhou M, Xi X, Shaw C, Chen T, Wu D, Kwok HF, Wang L. Enhanced Antimicrobial Activity of N-Terminal Derivatives of a Novel Brevinin-1 Peptide from The Skin Secretion of Odorrana schmackeri. Toxins (Basel) 2020; 12:E484. [PMID: 32751489 PMCID: PMC7472354 DOI: 10.3390/toxins12080484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising therapeutic alternatives compared to conventional antibiotics for the treatment of drug-resistant bacterial infections. However, the application of the overwhelming majority of AMPs is limited because of the high toxicity and high manufacturing costs. Amphibian skin secretion has been proven to be a promising source for the discovery and development of novel AMPs. Herein, we discovered a novel AMP from the skin secretion of Odorrana schmackeri, and designed the analogues by altering the key factors, including conformation, net charge and amphipathicity, to generate short AMPs with enhanced therapeutic efficacy. All the peptides were chemically synthesised, followed by evaluating their biological activity, stability and cytotoxicity. OSd, OSe and OSf exhibited broad-spectrum antibacterial effects, especially OSf, which presented the highest therapeutic index for the tested bacteria. Moreover, these peptides displayed good stability. The results from scanning electron microscopy and transmission electron microscopy studies, indicated that brevinin-OS, OSd, OSe and OSf possessed rapid bactericidal ability by disturbing membrane permeability and causing the release of cytoplasmic contents. In addition, OSd, OSe and OSf dramatically decreased the mortality of waxworms acutely infected with MRSA. Taken together, these data suggested that a balance between positive charge, degrees of α-helicity and hydrophobicity, is necessary for maintaining antimicrobial activity, and these data successfully contributed to the design of short AMPs with significant bactericidal activity and cell selectivity.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Nutrition, Henry Fok School of Food Science and Engineering, Shaoguan University; Shaoguan 512005, China; (X.Z.); (R.Z.)
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK; (Y.L.); (C.M.); (M.Z.); (C.S.); (T.C.); (L.W.)
| | - Yue Liu
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK; (Y.L.); (C.M.); (M.Z.); (C.S.); (T.C.); (L.W.)
| | - Yitian Gao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Yuanxing Wang
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;
| | - Qiang Xia
- Department of Food Science and Engineering, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China;
| | - Ruimin Zhong
- Department of Nutrition, Henry Fok School of Food Science and Engineering, Shaoguan University; Shaoguan 512005, China; (X.Z.); (R.Z.)
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK; (Y.L.); (C.M.); (M.Z.); (C.S.); (T.C.); (L.W.)
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK; (Y.L.); (C.M.); (M.Z.); (C.S.); (T.C.); (L.W.)
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK; (Y.L.); (C.M.); (M.Z.); (C.S.); (T.C.); (L.W.)
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK; (Y.L.); (C.M.); (M.Z.); (C.S.); (T.C.); (L.W.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK; (Y.L.); (C.M.); (M.Z.); (C.S.); (T.C.); (L.W.)
| | - Di Wu
- Chemical Biology Research Centre, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China;
| | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK; (Y.L.); (C.M.); (M.Z.); (C.S.); (T.C.); (L.W.)
| |
Collapse
|
37
|
Guo X, Li B, Liang S, Lai R, Liu H. A novel Kunitz-type neurotoxin peptide identified from skin secretions of the frog Amolops loloensis. Biochem Biophys Res Commun 2020; 528:99-104. [DOI: 10.1016/j.bbrc.2020.05.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/09/2020] [Indexed: 01/11/2023]
|
38
|
Casciaro B, Cappiello F, Loffredo MR, Ghirga F, Mangoni ML. The Potential of Frog Skin Peptides for Anti-Infective Therapies: The Case of Esculentin-1a(1-21)NH2. Curr Med Chem 2020; 27:1405-1419. [PMID: 31333082 DOI: 10.2174/0929867326666190722095408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022]
Abstract
Antimicrobial Peptides (AMPs) are the key effectors of the innate immunity and represent promising molecules for the development of new antibacterial drugs. However, to achieve this goal, some problems need to be overcome: (i) the cytotoxic effects at high concentrations; (ii) the poor biostability and (iii) the difficulty in reaching the target site. Frog skin is one of the richest natural storehouses of AMPs, and over the years, many peptides have been isolated from it, characterized and classified into several families encompassing temporins, brevinins, nigrocins and esculentins. In this review, we summarized how the isolation/characterization of peptides belonging to the esculentin-1 family drove us to the design of an analogue, i.e. esculentin-1a(1-21)NH2, with a powerful antimicrobial action and immunomodulatory properties. The peptide had a wide spectrum of activity, especially against the opportunistic Gram-negative bacterium Pseudomonas aeruginosa. We described the structural features and the in vitro/in vivo biological characterization of this peptide as well as the strategies used to improve its biological properties. Among them: (i) the design of a diastereomer carrying Damino acids in order to reduce the peptide's cytotoxicity and improve its half-life; (ii) the covalent conjugation of the peptide to gold nanoparticles or its encapsulation into poly(lactide- co-glycolide) nanoparticles; and (iii) the peptide immobilization to biomedical devices (such as silicon hydrogel contact lenses) to obtain an antibacterial surface able to reduce microbial growth and attachment. Summing up the best results obtained so far, this review traces all the steps that led these frog-skin AMPs to the direction of peptide-based drugs for clinical use.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.,Center for Life Nano Science@ Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Ghirga
- Center for Life Nano Science@ Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
39
|
Cortázar-Chinarro M, Meyer-Lucht Y, Van der Valk T, Richter-Boix A, Laurila A, Höglund J. Antimicrobial peptide and sequence variation along a latitudinal gradient in two anurans. BMC Genet 2020; 21:38. [PMID: 32228443 PMCID: PMC7106915 DOI: 10.1186/s12863-020-00839-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While there is evidence of both purifying and balancing selection in immune defense genes, large-scale genetic diversity in antimicrobial peptides (AMPs), an important part of the innate immune system released from dermal glands in the skin, has remained uninvestigated. Here we describe genetic diversity at three AMP loci (Temporin, Brevinin and Palustrin) in two ranid frogs (Rana arvalis and R. temporaria) along a 2000 km latitudinal gradient. We amplified and sequenced part of the Acidic Propiece domain and the hypervariable Mature Peptide domain (~ 150-200 bp) in the three genes using Illumina Miseq and expected to find decreased AMP genetic variation towards the northern distribution limit of the species similarly to studies on MHC genetic patterns. RESULTS We found multiple loci for each AMP and relatively high gene diversity, but no clear pattern of geographic genetic structure along the latitudinal gradient. We found evidence of trans-specific polymorphism in the two species, indicating a common evolutionary origin of the alleles. Temporin and Brevinin did not form monophyletic clades suggesting that they belong to the same gene family. By implementing codon evolution models we found evidence of strong positive selection acting on the Mature Peptide. We also found evidence of diversifying selection as indicated by divergent allele frequencies among populations and high Theta k values. CONCLUSION Our results suggest that AMPs are an important source of adaptive diversity, minimizing the chance of microorganisms developing resistance to individual peptides.
Collapse
Affiliation(s)
- Maria Cortázar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.
| | - Yvonne Meyer-Lucht
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.,Centre for Paleogenetics Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | - Tom Van der Valk
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Alex Richter-Boix
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| |
Collapse
|
40
|
Bezerra AM, Passos LO, de Luna-Dias C, Quintanilha AS, de Carvalho-e-Silva SP. A Missing Piece of the Puzzle: Re-Encounter of Aplastodiscus musicus, its Call, and Phylogenetic Placement (Anura: Hylidae: Cophomantini). HERPETOLOGICA 2020. [DOI: 10.1655/herpetologica-d-18-00061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Andressa M. Bezerra
- Laboratório de Anfíbios e Répteis, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), RJ 21944-902, Brazil
| | - Lucas O. Passos
- Laboratório de Anfíbios e Répteis, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), RJ 21944-902, Brazil
| | - Cyro de Luna-Dias
- Laboratório de Anfíbios e Répteis, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), RJ 21944-902, Brazil
| | - Amanda S. Quintanilha
- Laboratório de Anfíbios e Répteis, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), RJ 21944-902, Brazil
| | - Sergio P. de Carvalho-e-Silva
- Laboratório de Anfíbios e Répteis, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), RJ 21944-902, Brazil
| |
Collapse
|
41
|
Raaymakers C, Stijlemans B, Martin C, Zaman S, Ballet S, Martel A, Pasmans F, Roelants K. A New Family of Diverse Skin Peptides from the Microhylid Frog Genus Phrynomantis. Molecules 2020; 25:E912. [PMID: 32085597 PMCID: PMC7070584 DOI: 10.3390/molecules25040912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 01/10/2023] Open
Abstract
A wide range of frogs produce skin poisons composed of bioactive peptides for defence against pathogens, parasites and predators. While several frog families have been thoroughly screened for skin-secreted peptides, others, like the Microhylidae, have remained mostly unexplored. Previous studies of microhylids found no evidence of peptide secretion, suggesting that this defence adaptation was evolutionarily lost. We conducted transcriptome analyses of the skins of Phrynomantis bifasciatus and Phrynomantis microps, two African microhylid species long suspected to be poisonous. Our analyses reveal 17 evolutionary related transcripts that diversified from to those of cytolytic peptides found in other frog families. The 19 peptides predicted to be processed from these transcripts, named phrynomantins, show a striking structural diversity that is distinct from any previously identified frog skin peptide. Functional analyses of five phrynomantins confirm the loss of a cytolytic function and the absence of insecticidal or proinflammatory activity, suggesting that they represent an evolutionary transition to a new, yet unknown function. Our study shows that peptides have been retained in the defence poison of at least one microhylid lineage and encourages research on similarly understudied taxa to further elucidate the diversity and evolution of skin defence molecules.
Collapse
Affiliation(s)
- Constantijn Raaymakers
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium; (C.R.); (S.Z.)
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (A.M.); (F.P.)
| | - Benoit Stijlemans
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium;
- Myeloid Cell Immunology Lab, VIB Centre for Inflammation Research, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Department of Chemistry and Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium; (C.M.); (S.B.)
| | - Shabnam Zaman
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium; (C.R.); (S.Z.)
| | - Steven Ballet
- Research Group of Organic Chemistry, Department of Chemistry and Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium; (C.M.); (S.B.)
| | - An Martel
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (A.M.); (F.P.)
| | - Frank Pasmans
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (A.M.); (F.P.)
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium; (C.R.); (S.Z.)
| |
Collapse
|
42
|
Chen G, Miao Y, Ma C, Zhou M, Shi Z, Chen X, Burrows JF, Xi X, Chen T, Wang L. Brevinin-2GHk from Sylvirana guentheri and the Design of Truncated Analogs Exhibiting the Enhancement of Antimicrobial Activity. Antibiotics (Basel) 2020; 9:antibiotics9020085. [PMID: 32075067 PMCID: PMC7168151 DOI: 10.3390/antibiotics9020085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Brevinins are an important antimicrobial peptide (AMP) family discovered in the skin secretions of Ranidae frogs. The members demonstrate a typical C-terminal ranabox, as well as a diverse range of other structural characteristics. In this study, we identified a novel brevinin-2 peptide from the skin secretion of Sylvirana guentheri, via cloning transcripts, and identifying the expressed mature peptide, in the skin secretion. The confirmed amino acid sequence of the mature peptide was designated brevinin-2GHk (BR2GK). Moreover, as a previous study had demonstrated that the N-terminus of brevinin-2 is responsible for exerting antimicrobial activity, we also designed a series of truncated derivatives of BR2GK. The results show that the truncated derivatives exhibit significantly improved antimicrobial activity and cytotoxicity compared to the parent peptide, except a Pro14 substituted analog. The circular dichroism (CD) analysis of this analog revealed that it did not fold into a helical conformation in the presence of either lipopolysaccharides (LPS) or TFE, indicating that position 14 is involved in the formation of the α-helix. Furthermore, three more analogs with the substitutions of Ala, Lys and Arg at the position 14, respectively, revealed the influence on the membrane disruption potency on bacteria and mammalian cells by the structural changes at this position. Overall, the N-terminal 25-mer truncates demonstrated the potent antimicrobial activity with low cytotoxicity.
Collapse
Affiliation(s)
- Guanzhu Chen
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - Yuxi Miao
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - Zhanzhong Shi
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London NW4 4BT, UK;
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - James F. Burrows
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - Xinping Xi
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
- Correspondence: ; Tel.: +44-28-9097-1673
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, Northern Ireland BT9 7BL, UK; (G.C.); (Y.M.); (C.M.); (M.Z.); (X.C.); (J.F.B.); (T.C.); (L.W.)
| |
Collapse
|
43
|
Han X, Kou Z, Jiang F, Sun X, Shang D. Interactions of Designed Trp-Containing Antimicrobial Peptides with DNA of Multidrug-Resistant Pseudomonas aeruginosa. DNA Cell Biol 2020; 40:414-424. [PMID: 32023094 DOI: 10.1089/dna.2019.4874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To investigate the intracellular mechanisms of seven Trp-containing peptides in clinically isolated multidrug-resistant Pseudomonas aeruginosa (MRPA0108). The results showed that the Trp-containing peptides had high antibacterial activity against the MRPA0108 strain, with minimal inhibitory concentration (MIC) values ranging from 6.25 to 25 μM. The peptides rapidly and completely killed the MRPA0108 at a concentration of 16 × MIC at 60-90 min. The Trp-containing peptides were found to penetrate the bacterial cell membrane and accumulate in the cells. A DNA gel retardation assay indicated that the peptides were able to bind with the genomic DNA of MRPA0108 cells; L5W exhibited a stronger DNA binding ability than that of the other peptides, and the ratio of peptide to DNA was 0.62/1. Next, the UV absorption spectrum of the DNA indicated that L5W interacted with the MRPA0108 genomic DNA and intercalated into the groove of the DNA molecule, resulting in loosening of the double-helical structure of the originally contracted DNA and leading to the occurrence of a hyperchromic effect. The circular dichroism spectrum suggested that I1W and L5W associated with the DNA via a trench combination mode resulting from the compact structure of the DNA double helix and reduction in ππ accumulation between base pairs. Furthermore, real-time quantitative PCR demonstrated that the Trp-containing peptides could downregulate the expression of DNA replication-initiating genes in MRPA0108 cells. MRPA0108 DNA may be a potential active target for the antimicrobial activity of Trp-containing peptides.
Collapse
Affiliation(s)
- Xue Han
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Zhiru Kou
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Fengquan Jiang
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaomi Sun
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian, China.,Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
44
|
Wang G. The antimicrobial peptide database provides a platform for decoding the design principles of naturally occurring antimicrobial peptides. Protein Sci 2020; 29:8-18. [PMID: 31361941 PMCID: PMC6933855 DOI: 10.1002/pro.3702] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022]
Abstract
This article is written for the 2020 tool issue of Protein Science. It briefly introduces the widely used antimicrobial peptide database, initially online in 2003. After a description of the main features of each database version and some recent additions, the focus is on the peptide design parameters for each of the four unified classes of natural antimicrobial peptides (AMPs). The amino acid signature in AMPs varies substantially, leading to a variety of structures for functional and mechanistic diversity. Also, Nature is a master of combinatorial chemistry by deploying different amino acids onto the same structural scaffold to tune peptide functions. In addition, the single-domain AMPs may be posttranslationally modified, self-assembled, or combined with other AMPs for function. Elucidation of the design principles of natural AMPs will facilitate future development of novel molecules for various applications.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraska
| |
Collapse
|
45
|
Liu N, Li Z, Meng B, Bian W, Li X, Wang S, Cao X, Song Y, Yang M, Wang Y, Tang J, Yang X. Accelerated Wound Healing Induced by a Novel Amphibian Peptide (OA-FF10). Protein Pept Lett 2019; 26:261-270. [PMID: 30678611 DOI: 10.2174/0929866526666190124144027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 12/04/2018] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Despite the continued development of modern medicine, chronic wounds are still a critical issue in clinical treatment, placing a great physiological, psychological, and financial burden on patients. Researchers have investigated many methods to solve this problem, with bioactive peptides gaining increasing attention due to their considerable advantages and diverse functions, as well as low cost, simple storage, and easy transportation. METHODS In this research, a novel peptide (named OA-FF10) was identified from the skin secretions of the odorous frog species Odorrana andersonii. The sequence of mature OA-FF10 was "FFTTSCRSGC", which was produced by the post-translational processing of a 61-residue prepropeptide. RESULTS Similar to most frog peptides, OA-FF10 showed an intramolecular disulfide bridge at the C-terminus. OA-FF10 demonstrated no antibacterial, antioxidant, hemolytic, or acute toxic activity, but promoted wound healing and proliferation of human keratinocytes (HaCaT) both time- and dose-dependently. Furthermore, while OA-FF10 had no effect on wound healing of Human Skin Fibroblasts (HSF), it did accelerate healing in a full-thickness skin-wound mouse model. CONCLUSION Our research revealed the strong wound-healing activity of OA-FF10 in vivo and in vitro, thus providing a new candidate for the development of novel wound-healing drugs.
Collapse
Affiliation(s)
- Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhe Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Buliang Meng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Wenxin Bian
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Siyuan Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Xiaoqing Cao
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yongli Song
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
46
|
Patocka J, Nepovimova E, Klimova B, Wu Q, Kuca K. Antimicrobial Peptides: Amphibian Host Defense Peptides. Curr Med Chem 2019; 26:5924-5946. [PMID: 30009702 DOI: 10.2174/0929867325666180713125314] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/05/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Antimicrobial Peptides (AMPs) are one of the most common components of the innate immune system that protect multicellular organisms against microbial invasion. The vast majority of AMPs are isolated from the frog skin. Anuran (frogs and toads) skin contains abundant AMPs that can be developed therapeutically. Such peptides are a unique but diverse group of molecules. In general, more than 50% of the amino acid residues form the hydrophobic part of the molecule. Normally, there are no conserved structural motifs responsible for activity, although the vast majority of the AMPs are cationic due to the presence of multiple lysine residues; this cationicity has a close relationship with antibacterial activity. Notably, recent evidence suggests that synthesis of AMPs in frog skin may confer an advantage on a particular species, although they are not essential for survival. Frog skin AMPs exert potent activity against antibiotic-resistant bacteria, protozoa, yeasts, and fungi by permeating and destroying the plasma membrane and inactivating intracellular targets. Importantly, since they do not bind to a specific receptor, AMPs are less likely to induce resistance mechanisms. Currently, the best known amphibian AMPs are esculentins, brevinins, ranacyclins, ranatuerins, nigrocin-2, magainins, dermaseptins, bombinins, temporins, and japonicins-1 and -2, and palustrin-2. This review focuses on these frog skin AMPs and the mechanisms underlying their antimicrobial activity. We hope that this review will provide further information that will facilitate further study of AMPs and cast new light on novel and safer microbicides.
Collapse
Affiliation(s)
- Jiri Patocka
- Department of Radiology and Toxicology, Faculty of Health and Social Studies, University of South Bohemia Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Blanka Klimova
- Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
47
|
Olleik H, Baydoun E, Perrier J, Hijazi A, Raymond J, Manzoni M, Dupuis L, Pauleau G, Goudard Y, Villéon BDL, Goin G, Sockeel P, Choudhary MI, Pasquale ED, Nadeem-Ul-Haque M, Ali H, Khan AI, Shaheen F, Maresca M. Temporin-SHa and Its Analogs as Potential Candidates for the Treatment of Helicobacter pylori. Biomolecules 2019; 9:biom9100598. [PMID: 31614561 PMCID: PMC6843786 DOI: 10.3390/biom9100598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is one of the most prevalent pathogens colonizing 50% of the world's population and causing gastritis and gastric cancer. Even with triple and quadruple antibiotic therapies, H. pylori shows increased prevalence of resistance to conventional antibiotics and treatment failure. Due to their pore-forming activity, antimicrobial peptides (AMP) are considered as a good alternative to conventional antibiotics, particularly in the case of resistant bacteria. In this study, temporin-SHa (a frog AMP) and its analogs obtained by Gly to Ala substitutions were tested against H. pylori. Results showed differences in the antibacterial activity and toxicity of the peptides in relation to the number and position of D-Ala substitution. Temporin-SHa and its analog NST1 were identified as the best molecules, both peptides being active on clinical resistant strains, killing 90-100% of bacteria in less than 1 h and showing low to no toxicity against human gastric cells and tissue. Importantly, the presence of gastric mucins did not prevent the antibacterial effect of temporin-SHa and NST1, NST1 being in addition resistant to pepsin. Taken together, our results demonstrated that temporin-SHa and its analog NST1 could be considered as potential candidates to treat H. pylori, particularly in the case of resistant strains.
Collapse
Affiliation(s)
- Hamza Olleik
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France.
- Department of Biology, American University of Beirut, Beirut-1107 2020, Lebanon.
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut-1107 2020, Lebanon
| | - Josette Perrier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Akram Hijazi
- Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Lebanese University, Beirut 5, Lebanon
| | - Josette Raymond
- Université Paris 5, Hôpital Cochin, Service de bactériologie, 75014 Paris, France
| | - Marine Manzoni
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Lucas Dupuis
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Ghislain Pauleau
- Departement of Digestive, Endocrine and Metabolic Surgery, Hôpital Laveran, Military Health Service, 13013 Marseille, France
| | - Yvain Goudard
- Departement of Digestive, Endocrine and Metabolic Surgery, Hôpital Laveran, Military Health Service, 13013 Marseille, France
| | - Bruno de La Villéon
- Departement of Digestive, Endocrine and Metabolic Surgery, Hôpital Laveran, Military Health Service, 13013 Marseille, France
| | - Géraldine Goin
- Departement of Digestive, Endocrine and Metabolic Surgery, Hôpital Laveran, Military Health Service, 13013 Marseille, France
| | - Philippe Sockeel
- Departement of Digestive, Endocrine and Metabolic Surgery, Hôpital Laveran, Military Health Service, 13013 Marseille, France
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Eric Di Pasquale
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Muhammad Nadeem-Ul-Haque
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Hunain Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Arif Iftikhar Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Farzana Shaheen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France.
| |
Collapse
|
48
|
Golda A, Kosikowska-Adamus P, Kret A, Babyak O, Wójcik K, Dobosz E, Potempa J, Lesner A, Koziel J. The Bactericidal Activity of Temporin Analogues Against Methicillin Resistant Staphylococcus aureus. Int J Mol Sci 2019; 20:ijms20194761. [PMID: 31557917 PMCID: PMC6801822 DOI: 10.3390/ijms20194761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a major infectious agent responsible for a plethora of superficial skin infections and systemic diseases, including endocarditis and septic arthritis. Recent epidemiological data revealed the emergence of resistance to commonly used antibiotics, including increased numbers of both hospital- and community-acquired methicillin-resistant S. aureus (MRSA). Due to their potent antimicrobial functions, low potential to develop resistance, and immunogenicity, antimicrobial peptides (AMPs) are a promising alternative treatment for multidrug-resistant strains. Here, we examined the activity of a lysine-rich derivative of amphibian temporin-1CEb (DK5) conjugated to peptides that exert pro-proliferative and/or cytoprotective activity. Analysis of a library of synthetic peptides to identify those with antibacterial potential revealed that the most potent agent against multidrug-resistant S. aureus was a conjugate of a temporin analogue with the synthetic Leu-enkephalin analogue dalargin (DAL). DAL-PEG-DK5 exerted direct bactericidal effects via bacterial membrane disruption, leading to eradication of both planktonic and biofilm-associated staphylococci. Finally, we showed that accumulation of the peptide in the cytoplasm of human keratinocytes led to a marked clearance of intracellular MRSA, resulting in cytoprotection against invading bacteria. Collectively, the data showed that DAL-PEG-DK5 might be a potent antimicrobial agent for treatment of staphylococcal skin infections.
Collapse
Affiliation(s)
- Anna Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | | | - Aleksandra Kret
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Olena Babyak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, University of Louisville, Louisville, KY 40202, USA.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland.
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| |
Collapse
|
49
|
Insights into conformation and membrane interactions of the acyclic and dicarba-bridged brevinin-1BYa antimicrobial peptides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:701-710. [DOI: 10.1007/s00249-019-01395-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 02/03/2023]
|
50
|
Bioevaluation of Ranatuerin-2Pb from the Frog Skin Secretion of Rana pipiens and its Truncated Analogues. Biomolecules 2019; 9:biom9060249. [PMID: 31242693 PMCID: PMC6627226 DOI: 10.3390/biom9060249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) are considered as a promising agent to overcome the drug-resistance of bacteria. Large numbers of AMPs have been identified from the skin secretion of Rana pipiens, including brevinins, ranatuerins, temporins and esculentins. In this study, the cDNA precursor of a broad-spectrum antimicrobial peptide, ranatuerin-2Pb, was cloned and identified. Additionally, two truncated analogues, RPa and RPb, were synthesised to investigate the structure-activity relationship of ranatuerin-2Pb. RPa lost antimicrobial activity against Candida albicans, MRSA, Enterococcus faecalis and Pseudomonas aeruginosa, while RPb retained its broad-spectrum antimicrobial activity. Additionally, ranatuerin-2Pb, RPa and RPb demonstrated inhibition and eradication effects against Staphylococcus aureus biofilm. RPb showed a rapid bacterial killing manner via membrane permeabilization without damaging the cell membrane of erythrocytes. Moreover, RPb decreased the mortality of S. aureus infected Galleria mellonella larvae. Collectively, our results suggested that RPb may pave a novel way for natural antimicrobial drug design.
Collapse
|