1
|
Bekalu ZE, Dionisio G, Madsen CK, Etzerodt T, Fomsgaard IS, Brinch-Pedersen H. Barley Nepenthesin-Like Aspartic Protease HvNEP-1 Degrades Fusarium Phytase, Impairs Toxin Production, and Suppresses the Fungal Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:702557. [PMID: 34394154 PMCID: PMC8358834 DOI: 10.3389/fpls.2021.702557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Nepenthesins are categorized under the subfamily of the nepenthesin-like plant aspartic proteases (PAPs) that form a distinct group of atypical PAPs. This study describes the effect of nepenthesin 1 (HvNEP-1) protease from barley (Hordeum vulgare L.) on fungal histidine acid phosphatase (HAP) phytase activity. Signal peptide lacking HvNEP-1 was expressed in Pichia pastoris and biochemically characterized. Recombinant HvNEP-1 (rHvNEP-1) strongly inhibited the activity of Aspergillus and Fusarium phytases, which are enzymes that release inorganic phosphorous from phytic acid. Moreover, rHvNEP-1 suppressed in vitro fungal growth and strongly reduced the production of mycotoxin, 15-acetyldeoxynivalenol (15-ADON), from Fusarium graminearum. The quantitative PCR analysis of trichothecene biosynthesis genes (TRI) confirmed that rHvNEP-1 strongly repressed the expression of TRI4, TRI5, TRI6, and TRI12 in F. graminearum. The co-incubation of rHvNEP-1 with recombinant F. graminearum (rFgPHY1) and Fusarium culmorum (FcPHY1) phytases induced substantial degradation of both Fusarium phytases, indicating that HvNEP-1-mediated proteolysis of the fungal phytases contributes to the HvNEP-1-based suppression of Fusarium.
Collapse
|
2
|
Mehdi C, Virginie L, Audrey G, Axelle B, Colette L, Hélène R, Elisabeth J, Fabienne G, Mathilde FA. Cell Wall Proteome of Wheat Grain Endosperm and Outer Layers at Two Key Stages of Early Development. Int J Mol Sci 2019; 21:ijms21010239. [PMID: 31905787 PMCID: PMC6981528 DOI: 10.3390/ijms21010239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
The cell wall is an important compartment in grain cells that fulfills both structural and functional roles. It has a dynamic structure that is constantly modified during development and in response to biotic and abiotic stresses. Non-structural cell wall proteins (CWPs) are key players in the remodeling of the cell wall during events that punctuate the plant life. Here, a subcellular and quantitative proteomic approach was carried out to identify CWPs possibly involved in changes in cell wall metabolism at two key stages of wheat grain development: the end of the cellularization step and the beginning of storage accumulation. Endosperm and outer layers of wheat grain were analyzed separately as they have different origins (maternal and seed) and functions in grains. Altogether, 734 proteins with predicted signal peptides were identified (CWPs). Functional annotation of CWPs pointed out a large number of proteins potentially involved in cell wall polysaccharide remodeling. In the grain outer layers, numerous proteins involved in cutin formation or lignin polymerization were found, while an unexpected abundance of proteins annotated as plant invertase/pectin methyl esterase inhibitors were identified in the endosperm. In addition, numerous CWPs were accumulating in the endosperm at the grain filling stage, thus revealing strong metabolic activities in the cell wall during endosperm cell differentiation, while protein accumulation was more intense at the earlier stage of development in outer layers. Altogether, our work gives important information on cell wall metabolism during early grain development in both parts of the grain, namely the endosperm and outer layers. The wheat cell wall proteome is the largest cell wall proteome of a monocot species found so far.
Collapse
Affiliation(s)
- Cherkaoui Mehdi
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Lollier Virginie
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Geairon Audrey
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Bouder Axelle
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Larré Colette
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Rogniaux Hélène
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Jamet Elisabeth
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet Tolosan, France;
| | - Guillon Fabienne
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Francin-Allami Mathilde
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
- Correspondence:
| |
Collapse
|
3
|
Characterisation of barley-associated bacteria and their impact on wort separation performance. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Goulao LF, Fernandes JC, Amâncio S. How the Depletion in Mineral Major Elements Affects Grapevine ( Vitis vinifera L.) Primary Cell Wall. FRONTIERS IN PLANT SCIENCE 2017; 8:1439. [PMID: 28871267 PMCID: PMC5566972 DOI: 10.3389/fpls.2017.01439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 05/29/2023]
Abstract
The noteworthy fine remodeling that plant cell walls (CWs) undergo to adapt to developmental, physiological and environmental cues and the observation that its composition and dynamics differ between species represents an opportunity to couple crop species agronomic studies with research on CW modifications. Vitis vinifera is one of the most important crops from an economic point-of-view due to the high value of the fruit, predominantly for winemaking. The availability of some information related to this species' CWs allows researching its responses to imposed conditions that affect the plant's development. Mineral deficiency, in particular nitrogen, phosphorus, potassium and sulfur, strongly affects plant metabolism, reducing both growth and crop yield. Despite the importance of mineral nutrition in development, its influence on CW synthesis and modifications is still insufficiently documented. Addressing this knowledge gap, V. vinifera experimental models were used to study CW responses to imposed mineral depletion in unorganized (callus) and organized (shoots) tissues. The discussion of the obtained results is the main focus of this review. Callus and shoots submitted to mineral restriction are impaired in specific CW components, predominantly cellulose. Reorganization on structure and deposition of several other polymers, in particular the degree and pattern of pectin methyl-esterification and the amount of xyloglucan (XyG), arabinan and extensin, is also observed. In view of recently proposed CW models that consider biomechanical hotspots and direct linkages between pectins and XyG/cellulose, the outcome of these modifications in explaining maintenance of CW integrity through compensatory stiffening can be debated. Nutrient stresses do not affect evenly all tissues with undifferentiated callus tissues showing more pronounced responses, followed by shoot mature internodes, and then newly formed internodes. The impact of nitrogen depletion leads to more noticeable responses, supporting this nutrient's primary role in plant development and metabolism. The consequential compensatory mechanisms highlight the pivotal role of CW in rearranging under environmental stresses.
Collapse
|
5
|
Grosse-Holz FM, van der Hoorn RAL. Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants. THE NEW PHYTOLOGIST 2016; 210:794-807. [PMID: 26800491 DOI: 10.1111/nph.13839] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/01/2015] [Indexed: 05/13/2023]
Abstract
Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design.
Collapse
Affiliation(s)
- Friederike M Grosse-Holz
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
6
|
Kirsch R, Heckel DG, Pauchet Y. How the rice weevil breaks down the pectin network: Enzymatic synergism and sub-functionalization. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 71:72-82. [PMID: 26899322 DOI: 10.1016/j.ibmb.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 05/19/2023]
Abstract
Pectin is the most complex polysaccharide in nature and highly abundant in plant cell walls and middle lamellae, where it functions in plant growth and development. Phytopathogens utilize plant pectin as an energy source through enzyme-mediated degradation. These pectolytic enzymes include polygalacturonases (PGs) of the GH28 family and pectin methylesterases (PMEs) of the CE8 family. Recently, PGs were also identified in herbivorous insects of the distantly related plant bug, stick insect and Phytophaga beetle lineages. Unlike all other insects, weevils possess PMEs in addition to PGs. To investigate pectin digestion in insects and the role of PMEs in weevils, all PME and PG family members of the rice weevil Sitophilus oryzae were heterologously expressed and functionally characterized. Enzymatically active and inactive PG and PME family members were identified. The loss of activity can be explained by a lack of substrate binding correlating with substitutions of functionally important amino acid residues. We found subfunctionalization in both enzyme families, supported by expression pattern and substrate specificities as well as evidence for synergistic pectin breakdown. Our data suggest that the rice weevil might be able to use pectin as an energy source, and illustrates the potential of both PG and PME enzyme families to functionally diversify after horizontal gene transfer.
Collapse
Affiliation(s)
- Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, Jena, 07745, Germany.
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, Jena, 07745, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, Jena, 07745, Germany.
| |
Collapse
|
7
|
Fernandes JC, Goulao LF, Amâncio S. Regulation of cell wall remodeling in grapevine (Vitis vinifera L.) callus under individual mineral stress deficiency. JOURNAL OF PLANT PHYSIOLOGY 2016; 190:95-105. [PMID: 26735749 DOI: 10.1016/j.jplph.2015.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Cell wall (CW) is a dynamic structure that determines the plant form, growth and response to environmental conditions. Vitis vinifera callus grown under nitrogen (-N), phosphorous (-P) and sulfur (-S) deficiency were used as a model system to address the influence of mineral stress in CW remodeling. Callus cells morphology was altered, mostly under -N, resulting in changes in cell length and width compared with the control. CW composition ascertained with specific staining and immuno-detection showed a decrease in cellulose and altered pattern of pectin methylesterification. Under mineral stress genes expression from candidate families disclosed mainly a downregulation of a glycosyl hydrolase family 9C (GH9C), xyloglucan transglycosylase/hydrolases (XTHs) with predicted hydrolytic activity and pectin methylesterases (PMEs). Conversely, upregulation of PMEs inhibitors (PMEIs) was observed. While methylesterification patterns can be associated to PME/PMEI gene expression, the lower cellulose content cannot be attributed to altered cellulose synthase (CesA) gene expression suggesting the involvement of other gene families. Salt extracts from -N and -P callus tissues increased plastic deformation in cucumber hypocotyls while no effect was observed with -S extracts. The lower endo-acting glycosyl hydrolase activity of -N callus extracts pinpoints a more expressive impact of -N on CW-remodeling.
Collapse
Affiliation(s)
- João C Fernandes
- DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Luis F Goulao
- BioTrop, Instituto de Investigação Científica Tropical (IICT, IP), Pólo Mendes Ferrão-Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Sara Amâncio
- DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
| |
Collapse
|
8
|
Lionetti V, Raiola A, Mattei B, Bellincampi D. The Grapevine VvPMEI1 Gene Encodes a Novel Functional Pectin Methylesterase Inhibitor Associated to Grape Berry Development. PLoS One 2015. [PMID: 26204516 PMCID: PMC4512722 DOI: 10.1371/journal.pone.0133810] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pectin is secreted in a highly methylesterified form and partially de-methylesterified in the cell wall by pectin methylesterases (PMEs). PME activity is expressed during plant growth, development and stress responses. PME activity is controlled at the post-transcriptional level by proteins named PME inhibitors (PMEIs). We have identified, expressed and characterized VvPMEI1, a functional PME inhibitor of Vitis vinifera. VvPMEI1 typically affects the activity of plant PMEs and is inactive against microbial PMEs. The kinetics of PMEI-PME interaction, studied by surface plasmon resonance, indicates that the inhibitor strongly interacts with PME at apoplastic pH while the stability of the complex is reduced by increasing the pH. The analysis of VvPMEI1 expression in different grapevine tissues and during grape fruit development suggests that this inhibitor controls PME activity mainly during the earlier phase of berry development. A proteomic analysis performed at this stage indicates a PME isoform as possible target of VvPMEI1.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Alessandro Raiola
- Dipartimento Territorio e Sistemi Agroforestali, Università di Padova, Legnaro (PD), Italy
| | - Benedetta Mattei
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Daniela Bellincampi
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- * E-mail:
| |
Collapse
|
9
|
Collado-Romero M, Alós E, Prieto P. Effect of 7H(ch) Hordeum chilense chromosome introgressions on the wheat endosperm proteomic profile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3793-3802. [PMID: 25824108 DOI: 10.1021/jf5055672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hordeum chilense is an excellent genetic resource for wheat breeding due to its potential to improve breadmaking quality and nutritional value and provide resistance to some biotic and abiotic stresses. Hexaploid wheat lines carrying chromosome 7H(ch) introgressions, namely, chromosome additions of the whole chromosome 7H(ch) or the 7H(ch)α or the 7H(ch)β chromosome arms, and chromosome substitutions of the homeologous chromosomes 7A, 7B, or 7D by chromosome 7H(ch) were compared by 2D-PAGE analysis to study the effect of these alien introgressions on the wheat endosperm proteome. The addition of the 7H(ch)α chromosome arm did not alter the profile of most glutenins and gliadins, but showed higher quantities of puroindolines and lower xylanase inhibitors, which might improve also resistance to plant pathogens. On the other hand, (7A)7H(ch) or (7D)7H(ch) substitution lines showed enhanced avenin-like b proteins and triticin levels but reduced puroindolines, which could be desirable to improve dough properties and nutritional value and increase kernel hardness in wheat.
Collapse
Affiliation(s)
- Melania Collado-Romero
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Apartado 4084, E-14080 Córdoba, Spain
| | - Enriqueta Alós
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Apartado 4084, E-14080 Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Apartado 4084, E-14080 Córdoba, Spain
| |
Collapse
|
10
|
Smeets N, Nuyens F, Niewold T, Van Campenhout L. Temperature Resistance of Xylanase Inhibitors and the Presence of Grain-Associated Xylanases Affect the Activity of Exogenous Xylanases Added to Pelleted Wheat-Based Feeds. Cereal Chem 2014. [DOI: 10.1094/cchem-02-14-0032-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Natasja Smeets
- Nutrition and Health, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium
- Kemin Europa N.V., Toekomstlaan 42, 2200, Herentals, Belgium
- Corresponding author. Phone: +32 14 28 62 00
| | - Filip Nuyens
- Kemin Europa N.V., Toekomstlaan 42, 2200, Herentals, Belgium
| | - Theo Niewold
- Nutrition and Health, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee , Belgium
| | - Leen Van Campenhout
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee , Belgium
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Lab4Food, Kleinhoefstraat 4, 2440 Geel, Belgium
| |
Collapse
|
11
|
Sénéchal F, Wattier C, Rustérucci C, Pelloux J. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5125-60. [PMID: 25056773 PMCID: PMC4400535 DOI: 10.1093/jxb/eru272] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 05/18/2023]
Abstract
Understanding the changes affecting the plant cell wall is a key element in addressing its functional role in plant growth and in the response to stress. Pectins, which are the main constituents of the primary cell wall in dicot species, play a central role in the control of cellular adhesion and thereby of the rheological properties of the wall. This is likely to be a major determinant of plant growth. How the discrete changes in pectin structure are mediated is thus a key issue in our understanding of plant development and plant responses to changes in the environment. In particular, understanding the remodelling of homogalacturonan (HG), the most abundant pectic polymer, by specific enzymes is a current challenge in addressing its fundamental role. HG, a polymer that can be methylesterified or acetylated, can be modified by HGMEs (HG-modifying enzymes) which all belong to large multigenic families in all species sequenced to date. In particular, both the degrees of substitution (methylesterification and/or acetylation) and polymerization can be controlled by specific enzymes such as pectin methylesterases (PMEs), pectin acetylesterases (PAEs), polygalacturonases (PGs), or pectate lyases-like (PLLs). Major advances in the biochemical and functional characterization of these enzymes have been made over the last 10 years. This review aims to provide a comprehensive, up to date summary of the recent data concerning the structure, regulation, and function of these fascinating enzymes in plant development and in response to biotic stresses.
Collapse
Affiliation(s)
- Fabien Sénéchal
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Christopher Wattier
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Christine Rustérucci
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Jérôme Pelloux
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| |
Collapse
|
12
|
Kirsch R, Gramzow L, Theißen G, Siegfried BD, Ffrench-Constant RH, Heckel DG, Pauchet Y. Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:33-50. [PMID: 24978610 DOI: 10.1016/j.ibmb.2014.06.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 05/26/2023]
Abstract
Plant cell walls are the largest reservoir of organic carbon on earth. To breach and utilize this carbohydrate-rich protective barrier, microbes secrete plant cell wall degrading enzymes (PCWDEs) targeting pectin, cellulose and hemicelluloses. There is a growing body of evidence that genomes of some herbivorous insects also encode PCWDEs, raising questions about their evolutionary origins and functions. Among herbivorous beetles, pectin-degrading polygalacturonases (PGs) are found in the diverse superfamilies Chrysomeloidea (leaf beetles, long-horn beetles) and Curculionoidea (weevils). Here our aim was to test whether these arose from a common ancestor of beetles or via horizontal gene transfer (HGT), and whether PGs kept their ancestral function in degrading pectin or evolved novel functions. Transcriptome data derived from 10 beetle species were screened for PG-encoding sequences and used for phylogenetic comparisons with their bacterial, fungal and plant counterparts. These analyses revealed a large family of PG-encoding genes of Chrysomeloidea and Curculionoidea sharing a common ancestor, most similar to PG genes of ascomycete fungi. In addition, 50 PGs from beetle digestive systems were heterologously expressed and functionally characterized, showing a set of lineage-specific consecutively pectin-degrading enzymes, as well as conserved but enzymatically inactive PG proteins. The evidence indicates that a PG gene was horizontally transferred ∼200 million years ago from an ascomycete fungus to a common ancestor of Chrysomeloidea and Curculionoidea. This has been followed by independent duplications in these two lineages, as well as independent replacement in two sublineages of Chrysomeloidea by two other subsequent HGTs. This origin, leading to subsequent functional diversification of the PG gene family within its new hosts, was a key event promoting the evolution of herbivory in these beetles.
Collapse
Affiliation(s)
- Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Lydia Gramzow
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Blair D Siegfried
- Department of Entomology, University of Nebraska, 312A Entomology Hall, Lincoln, 68583-0816 NE, United States
| | | | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| |
Collapse
|
13
|
Xia L, Lin H, Staniek A, Panjikar S, Ruppert M, Hilgers P, Williardt J, Rajendran C, Wang M, Warzecha H, Jäger V, Stöckigt J. Ligand structures of synthetic deoxa-pyranosylamines with raucaffricine and strictosidine glucosidases provide structural insights into their binding and inhibitory behaviours. J Enzyme Inhib Med Chem 2014; 30:472-8. [PMID: 25140865 DOI: 10.3109/14756366.2014.949252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insight into the structure and inhibition mechanism of O-β-d-glucosidases by deoxa-pyranosylamine type inhibitors is provided by X-ray analysis of complexes between raucaffricine and strictosidine glucosidases and N-(cyclohexylmethyl)-, N-(cyclohexyl)- and N-(bromobenzyl)-β-d-gluco-1,5-deoxa-pyranosylamine. All inhibitors anchored exclusively in the catalytic active site by competition with appropriate enzyme substrates. Thus facilitated prospective elucidation of the binding networks with residues located at <3.9 Å distance will enable the development of potent inhibitors suitable for the production of valuable alkaloid glucosides, raucaffricine and strictosidine, by means of synthesis in Rauvolfia serpentina cell suspension cultures.
Collapse
Affiliation(s)
- Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bellincampi D, Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 24904623 DOI: 10.3389/fpls.2017.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.
Collapse
Affiliation(s)
- Daniela Bellincampi
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| |
Collapse
|
15
|
Bellincampi D, Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:228. [PMID: 24904623 PMCID: PMC4036129 DOI: 10.3389/fpls.2014.00228] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/06/2014] [Indexed: 05/20/2023]
Abstract
The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.
Collapse
Affiliation(s)
| | | | - Vincenzo Lionetti
- *Correspondence: Vincenzo Lionetti, Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome 00185, Italy e-mail:
| |
Collapse
|
16
|
Lionetti V, Raiola A, Cervone F, Bellincampi D. How do pectin methylesterases and their inhibitors affect the spreading of tobamovirus? PLANT SIGNALING & BEHAVIOR 2014; 9:e972863. [PMID: 25482766 PMCID: PMC4623000 DOI: 10.4161/15592316.2014.972863] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 05/24/2023]
Abstract
After replication in the cytoplasm, viruses spread from the infected cell into the neighboring cells through plasmodesmata, membranous channels embedded by the cell wall. As obligate parasites, viruses have acquired the ability to utilize host factors that unwillingly cooperate for the viral infection process. For example, the viral movement proteins (MP) interacts with the host pectin methylesterase (PME) and both proteins cooperate to sustain the viral spread. However, how and where PMEs interact with MPs and how the PME/MP complexes favor the viral translocation is not well understood. Recently, we demonstrated that the overexpression of PME inhibitors (PMEIs) in tobacco and Arabidopsis plants limits the movement of Tobacco mosaic virus and Turnip vein clearing virus and reduces plant susceptibility to these viruses. Here we discuss how overexpression of PMEI may reduce tobamovirus spreading.
Collapse
Key Words
- CP, coat protein.
- CW, cell wall
- ER, Endoplasmic Reticulum
- MP, movement protein
- MeOH, methanol
- PD, plasmodesmata
- PM, Plasma membrane
- PME, pectin methylesterase
- PMEI, pectin methylesterase inhibitor
- TMV, Tobacco mosaic virus
- cell wall
- methanol
- pectin methylesterase
- pectin methylesterase inhibitors
- pectin methylesterification
- plasmodesmata
- virus spreading
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie ‘C. Darwin'; ‘Sapienza' Università di Roma; Roma, Italy
| | - Alessandro Raiola
- Dipartimento Territorio e Sistemi Agroforestali; Università di Padova; Legnaro (PD), Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie ‘C. Darwin'; ‘Sapienza' Università di Roma; Roma, Italy
| | - Daniela Bellincampi
- Dipartimento di Biologia e Biotecnologie ‘C. Darwin'; ‘Sapienza' Università di Roma; Roma, Italy
| |
Collapse
|
17
|
Agrawal L, Narula K, Basu S, Shekhar S, Ghosh S, Datta A, Chakraborty N, Chakraborty S. Comparative Proteomics Reveals a Role for Seed Storage Protein AmA1 in Cellular Growth, Development, and Nutrient Accumulation. J Proteome Res 2013; 12:4904-30. [DOI: 10.1021/pr4007987] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lalit Agrawal
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Kanika Narula
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Swaraj Basu
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Shubhendu Shekhar
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Sudip Ghosh
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Asis Datta
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Niranjan Chakraborty
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Subhra Chakraborty
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
18
|
Abstract
Patterns of diversity distribution in the Isa defense locus in wild-barley populations suggest adaptive selection at this locus. The extent to which environmental selection may act at additional nuclear-encoded defense loci and within the whole chloroplast genome has now been examined by analyses in two grass species. Analysis of genetic diversity in wild barley (Hordeum spontaneum) defense genes revealed much greater variation in biotic stress-related genes than abiotic stress-related genes. Genetic diversity at the Isa defense locus in wild populations of weeping ricegrass [Microlaena stipoides (Labill.) R. Br.], a very distant wild-rice relative, was more diverse in samples from relatively hotter and drier environments, a phenomenon that reflects observations in wild barley populations. Whole-chloroplast genome sequences of bulked weeping ricegrass individuals sourced from contrasting environments showed higher levels of diversity in the drier environment in both coding and noncoding portions of the genome. Increased genetic diversity may be important in allowing plant populations to adapt to greater environmental variation in warmer and drier climatic conditions.
Collapse
|
19
|
Wang H, Chen C, Jeng T, Sung J. Comparisons of α-amylase inhibitors from seeds of common bean mutants extracted through three phase partitioning. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Schacht T, Unger C, Pich A, Wydra K. Endo- and exopolygalacturonases of Ralstonia solanacearum are inhibited by polygalacturonase-inhibiting protein (PGIP) activity in tomato stem extracts. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:377-387. [PMID: 21367611 DOI: 10.1016/j.plaphy.2011.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/28/2011] [Indexed: 05/27/2023]
Abstract
Polygalacturonases (PGs) of wild-type and non-virulent phenotype conversion mutant (PC) strains of Ralstonia solanacearum were compared by investigating their activities and their inhibition by polygalacturonase-inhibiting proteins (PGIPs) from tomato stems. In cultures of wild-type strain ToUdk2, slimy (s), retarded slimy (rs) and non-slimy (ns) colonies appeared. The conversion of the 's' into the 'rs' colony form coincided with the beginning of PG production. PG activity of the PC strain increased about 5 h earlier (at 6 hpi), and was up to 35 times higher in media supplemented with two different tomato stem extracts or polygalacturonic acid, compared to the wild-type at 6 hpi, and generally 4-8 times higher across test media and time. By hydrophobic interaction chromatography (HIC), fluorophor-assisted carbohydrate-polyacrylamid-gel electrophoresis (FACE-PAGE) and mass spectrometry analyses, endo-PG PehA, exo-PGs PehB and PehC were identified. PGs of the PC mutant consisted mainly of endo-PG. The increased PG production after supplementing the medium with tomato cell wall extract was reflected by a higher activity of exo-PGs for both strains. Total PGs (endo-PG and exo-PGs) activities were inhibited by PGIPs of tomato stem extracts. PGIP activity was concentration dependent, constitutively present, and not related to resistance nor susceptibility of tomato recombinant inbred lines to R. solanacearum. The proteinaceous character of the inhibiting component was inferred from ammonium sulphate precipitation. For the first time a plant PGIP activity against a bacterial pathogen is reported. Observations support that endo- and exo-PG synthesis is governed by a sensitive regulatory network, which, in interaction with PGIP and cell wall degradation products, leads to generation or avoidance of elicitor-active oligomers, and, thus, may contribute to the development of the compatible or incompatible interaction.
Collapse
Affiliation(s)
- Tanja Schacht
- Institute of Plant Diseases and Plant Protection, Leibniz University Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
21
|
De Caroli M, Lenucci MS, Di Sansebastiano GP, Dalessandro G, De Lorenzo G, Piro G. Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:295-308. [PMID: 21223393 DOI: 10.1111/j.1365-313x.2010.04421.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The secretory pathway in plants involves sustained traffic to the cell wall, as matrix components, polysaccharides and proteins reach the cell wall through the endomembrane system. We studied the secretion pattern of cell-wall proteins in tobacco protoplasts and leaf epidermal cells using fluorescent forms of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2). The two most representative protein fusions, secGFP-PMEI1 and PGIP2-GFP, reached the cell wall by passing through ER and Golgi stacks but using distinct mechanisms. secGFP-PMEI1 was linked to a glycosylphosphatidylinositol (GPI) anchor and stably accumulated in the cell wall, regulating the activity of the endogenous pectin methylesterases (PMEs) that are constitutively present in this compartment. A mannosamine-induced non-GPI-anchored form of PMEI1 as well as a form (PMEI1-GFP) that was unable to bind membranes failed to reach the cell wall, and accumulated in the Golgi stacks. In contrast, PGIP2-GFP moved as a soluble cargo protein along the secretory pathway, but was not stably retained in the cell wall, due to internalization to an endosomal compartment and eventually the vacuole. Stable localization of PGIP2 in the wall was observed only in the presence of a specific fungal endopolygalacturonase ligand in the cell wall. Both secGFP-PMEI1 and PGIP2-GFP sorting were distinguishable from that of a secreted GFP, suggesting that rigorous and more complex controls than the simple mechanism of bulk flow are the basis of cell-wall growth and differentiation.
Collapse
Affiliation(s)
- Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Diversity of beetle genes encoding novel plant cell wall degrading enzymes. PLoS One 2010; 5:e15635. [PMID: 21179425 PMCID: PMC3003705 DOI: 10.1371/journal.pone.0015635] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 11/18/2010] [Indexed: 11/19/2022] Open
Abstract
Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs) are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent "disappearance" of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology.
Collapse
|
23
|
Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 2010; 345:2583-95. [DOI: 10.1016/j.carres.2010.10.002] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/30/2010] [Accepted: 10/03/2010] [Indexed: 11/23/2022]
|
24
|
Dornez E, Croes E, Gebruers K, Carpentier S, Swennen R, Laukens K, Witters E, Urban M, Delcour JA, Courtin CM. 2-D DIGE reveals changes in wheat xylanase inhibitor protein families due to Fusarium graminearum DeltaTri5 infection and grain development. Proteomics 2010; 10:2303-19. [PMID: 20391529 DOI: 10.1002/pmic.200900493] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wheat contains three different classes of proteinaceous xylanase inhibitors (XIs), i.e. Triticum aestivum xylanase inhibitors (TAXIs) xylanase-inhibiting proteins (XIPs), and thaumatin-like xylanase inhibitors (TLXIs) which are believed to act as a defensive barrier against phytopathogenic attack. In the absence of relevant data in wheat kernels, we here examined the response of the different members of the XI protein population to infection with a DeltaTri5 mutant of Fusarium graminearum, the wild type of which is one of the most important wheat ear pathogens, in early developing wheat grain. Wheat ears were inoculated at anthesis, analyzed using 2-D DIGE and multivariate analysis at 5, 15, and 25 days post anthesis (DPA), and compared with control samples. Distinct abundance patterns could be distinguished for different XI forms in response to infection with F. graminearum DeltaTri5. Some (iso)forms were up-regulated, whereas others were down-regulated. This pathogen-specific regulation of proteins was mostly visible at five DPA and levelled off in the samples situated further from the inoculation point. Furthermore, it was shown that most identified TAXI- and XIP-type XI (iso)forms significantly increased in abundance from the milky (15 DPA) to the soft dough stages (25 DPA) on a per kernel basis, although the extent of increase differed greatly. Non-glycosylated XIP forms increased more strongly than their glycosylated counterparts.
Collapse
Affiliation(s)
- Emmie Dornez
- Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Barbosa AEAD, Albuquerque EVS, Silva MCM, Souza DSL, Oliveira-Neto OB, Valencia A, Rocha TL, Grossi-de-Sa MF. Alpha-amylase inhibitor-1 gene from Phaseolus vulgaris expressed in Coffea arabica plants inhibits alpha-amylases from the coffee berry borer pest. BMC Biotechnol 2010; 10:44. [PMID: 20565807 PMCID: PMC2914071 DOI: 10.1186/1472-6750-10-44] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 06/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coffee is an important crop and is crucial to the economy of many developing countries, generating around US$70 billion per year. There are 115 species in the Coffea genus, but only two, C. arabica and C. canephora, are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer (Hypotheneumus hampei), is responsible for worldwide annual losses of around US$500 million. The coffee berry borer exclusively damages the coffee berries, and it is mainly controlled by organochlorine insecticides that are both toxic and carcinogenic. Unfortunately, natural resistance in the genus Coffea to H. hampei has not been documented. To overcome these problems, biotechnological strategies can be used to introduce an alpha-amylase inhibitor gene (alpha-AI1), which confers resistance against the coffee berry borer insect-pest, into C. arabica plants. RESULTS We transformed C. arabica with the alpha-amylase inhibitor-1 gene (alpha-AI1) from the common bean, Phaseolus vulgaris, under control of the seed-specific phytohemagglutinin promoter (PHA-L). The presence of the alpha-AI1 gene in six regenerated transgenic T1 coffee plants was identified by PCR and Southern blotting. Immunoblotting and ELISA experiments using antibodies against alpha-AI1 inhibitor showed a maximum alpha-AI1 concentration of 0.29% in crude seed extracts. Inhibitory in vitro assays of the alpha-AI1 protein against H. hampei alpha-amylases in transgenic seed extracts showed up to 88% inhibition of enzyme activity. CONCLUSIONS This is the first report showing the production of transgenic coffee plants with the biotechnological potential to control the coffee berry borer, the most important insect-pest of crop coffee.
Collapse
|
26
|
|
27
|
Fierens E, Gebruers K, Voet AR, De Maeyer M, Courtin CM, Delcour JA. Biochemical and structural characterization of TLXI, the Triticum aestivum L. thaumatin-like xylanase inhibitor. J Enzyme Inhib Med Chem 2009; 24:646-54. [DOI: 10.1080/14756360802321831] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Ellen Fierens
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Box 24633001, Leuven, Belgium
| | - Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Box 24633001, Leuven, Belgium
| | - Arnout R.D. Voet
- Laboratory of Biomolecular Modelling and BioMacS, Katholieke Universiteit Leuven, Celestijnenlaan 200G3001, Leuven, Belgium
| | - Marc De Maeyer
- Laboratory of Biomolecular Modelling and BioMacS, Katholieke Universiteit Leuven, Celestijnenlaan 200G3001, Leuven, Belgium
| | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Box 24633001, Leuven, Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Box 24633001, Leuven, Belgium
| |
Collapse
|
28
|
Reca IB, Brutus A, D'Avino R, Villard C, Bellincampi D, Giardina T. Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato (Solanum lycopersicum) and its use to purify a vacuolar invertase. Biochimie 2008; 90:1611-23. [PMID: 18573306 DOI: 10.1016/j.biochi.2008.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
Protein inhibitors are molecules secreted by many plants. In a functional genomics approach, an invertase inhibitor (SolyCIF) of Solanum lycopersicum was identified at the Solanaceae Cornell University data bank (www.sgn.cornell.edu). It was established that this inhibitor is expressed mainly in the leaves, flowers and green fruit of the plant and localized in the cell wall compartment. The SolyCIF cDNA was cloned by performing RT-PCR, fully sequenced and heterologously expressed in Pichia pastoris X-33. The purified recombinant protein obtained by performing ion-exchange chromatography and gel filtration was further biochemically characterized and used to perform affinity chromatography. The latter step made it possible to purify natural vacuolar invertase (TIV-1), which showed high rates of catalytic activity (438.3 U mg(-1)) and efficiently degraded saccharose (K(m)=6.4mM, V(max)=2.9 micromol saccharosemin(-1) and k(c)(at)=7.25 x 10(3)s(-1) at pH 4.9 and 37 degrees C). The invertase activity was strongly inhibited in a dose-dependent manner by SolyCIF produced in P. pastoris. In addition, Gel-SDS-PAGE analysis strongly suggests that TIV-1 was proteolyzed in planta and it was established that the fragments produced have to be tightly associated for its enzymatic activity to occur. We further investigated the location of the proteolytic sites by performing NH(2)-terminal Edman degradation on the fragments. The molecular model for TIV-1 shows that the fragmentation splits the catalytic site of the enzyme into two halves, which confirms that the enzymatic activity is possible only when the fragments are tightly associated.
Collapse
Affiliation(s)
- Ida Barbara Reca
- ISM2/BiosCiences UMR CNRS 6263, Université Aix Marseille III/CNRS, Ingénierie et Mécanismes d'Action des Glycosidases, Université Paul Cézanne, 13397 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
29
|
Biely P, Leathers TD, Cziszárová M, Vršanská M, Cotta MA. Endo-β-1,4-xylanase inhibitors in leaves and roots of germinated maize. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Micheelsen PO, Vévodová J, De Maria L, Østergaard PR, Friis EP, Wilson K, Skjøt M. Structural and Mutational Analyses of the Interaction between the Barley α-Amylase/Subtilisin Inhibitor and the Subtilisin Savinase Reveal a Novel Mode of Inhibition. J Mol Biol 2008; 380:681-90. [DOI: 10.1016/j.jmb.2008.05.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 05/09/2008] [Accepted: 05/14/2008] [Indexed: 11/28/2022]
|
31
|
Ziliotto F, Begheldo M, Rasori A, Bonghi C, Tonutti P. Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2781-91. [PMID: 18515268 PMCID: PMC2486471 DOI: 10.1093/jxb/ern136] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 05/19/2023]
Abstract
A large-scale transcriptome analysis has been conducted using microPEACH1.0 microarray on nectarine (Prunus persica L. Batsch) fruit treated with 1-methylcyclopropene (1-MCP). 1-MCP maintained flesh firmness but did not block ethylene biosynthesis. Compared with samples at harvest, only nine genes appeared to be differentially expressed when fruit were sampled immediately after treatment, while a total of 90 targets were up- or down-regulated in untreated fruit. The effect of 1-MCP was confirmed by a direct comparison of transcript profiles in treated and untreated fruit after 24 h of incubation with 106 targets differentially expressed. About 30% of these targets correspond to genes involved in primary metabolism and response processes related to ethylene, auxin, and other hormones. In treated fruit, altered transcript accumulation was detected for some genes with a role in ripening-related events such as softening, colour development, and sugar metabolism. A rapid decrease in flesh firmness and an increase in ethylene production were observed in treated fruit maintained for 48 h in air at 20 degrees C after the end of the incubation period. Microarray comparison of this sample with untreated fruit 24 h after harvest revealed that about 45% of the genes affected by 1-MCP at the end of the incubation period changed their expression during the following 48 h in air. Among these genes, an ethylene receptor (ETR2) and three ethylene-responsive factors (ERF) were present, together with other transcription factors and ethylene-dependent genes involved in quality parameter changes.
Collapse
Affiliation(s)
- Fiorenza Ziliotto
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell’ Università 16, I-35025 Legnaro (Padova), Italy
| | - Maura Begheldo
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell’ Università 16, I-35025 Legnaro (Padova), Italy
| | - Angela Rasori
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell’ Università 16, I-35025 Legnaro (Padova), Italy
| | - Claudio Bonghi
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell’ Università 16, I-35025 Legnaro (Padova), Italy
| | - Pietro Tonutti
- Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, I-56127 Pisa, Italy
| |
Collapse
|
32
|
Effects of fungicide treatment, N-fertilisation and harvest date on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Dornez E, Gebruers K, Joye IJ, De Ketelaere B, Lenartz J, Massaux C, Bodson B, Delcour JA, Courtin CM. Effects of genotype, harvest year and genotype-by-harvest year interactions on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.03.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Jamet E, Albenne C, Boudart G, Irshad M, Canut H, Pont-Lezica R. Recent advances in plant cell wall proteomics. Proteomics 2008; 8:893-908. [DOI: 10.1002/pmic.200700938] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Affiliation(s)
- Stefan Biastoff
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | | |
Collapse
|
36
|
Micheelsen PO, Ostergaard PR, Lange L, Skjøt M. High-level expression of the native barley alpha-amylase/subtilisin inhibitor in Pichia pastoris. J Biotechnol 2007; 133:424-32. [PMID: 18207271 DOI: 10.1016/j.jbiotec.2007.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 10/15/2007] [Accepted: 11/28/2007] [Indexed: 11/16/2022]
Abstract
An expression system for high-level expression of the native Hordeum vulgare alpha-amylase/subtilisin inhibitor (BASI) has been developed in Pichia pastoris, using the methanol inducible alcohol oxidase 1 (AOX1) promoter. To optimize expression, two codon-optimized coding regions have been designed and expressed alongside the wild-type coding region. To ensure secretion of the native mature protein, a truncated version of the alpha mating factor secretion signal from Saccharomyces cerevisiae was used. In order to be able to compare expression levels from different clones, single insertion transformants generated by gene replacement of the AOX1 gene was selected by PCR screening. Following methanol induction, expression levels reached 125 mgL(-1) from the wild-type coding region while expression from the two codon-optimized variants reached 65 and 125 mgL(-1), respectively. The protein was purified and characterized by Edman degradation, liquid chromatography mass spectrometry and insoluble blue starch assay, and was shown to possess the same characteristics as wild-type protein purified from barley grains.
Collapse
Affiliation(s)
- Pernille Ollendorff Micheelsen
- Copenhagen Biocenter, Department of Molecular Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
37
|
Beaugrand J, Gebruers K, Ververken C, Fierens E, Dornez E, Goddeeris BM, Delcour JA, Courtin CM. Indirect enzyme-antibody sandwich enzyme-linked immunosorbent assay for quantification of TAXI and XIP type xylanase inhibitors in wheat and other cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:7682-8. [PMID: 17715986 DOI: 10.1021/jf071087b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To quantify Triticum aestivum xylanase inhibitor (TAXI) and xylanase inhibiting protein (XIP) type proteins in cereals in general and wheat ( T. aestivum) in particular, a robust enzyme-linked immunosorbent assay (ELISA) using an uncommon enzyme-antibody sandwich format was developed. Bacillus subtilis glycoside hydrolase family (GH) 11 and Aspergillus oryzae GH 10 xylanases were selected for coating ELISA plate wells to capture TAXI and XIP, respectively, prior to probing with antibodies. The detection threshold of the developed ELISA was much lower than that of the currently used xylanase inhibitor assay and the recently described Western blot approach. Because of its broad dynamic range (TAXI, 30-600 ng/mL, and XIP, 3-60 ng/mL), one proper standard extract dilution can be used for analyzing different wheat varieties, whereas for the currently used colorimetric assay, often different dilutions need to be analyzed. The TAXI ELISA for wheat was successfully adapted for barley ( Hordeum vulgare) and could also be used for other cereals.
Collapse
Affiliation(s)
- Johnny Beaugrand
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 30, B-3001 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Padar P, Bokros A, Paragi G, Forgó P, Kele Z, Howarth NM, Kovacs L. Single Diastereomers of Polyhydroxylated 9-Oxa-1-azabicyclo[4.2.1]nonanes from Intramolecular 1,3-Dipolar Cycloaddition of ω-Unsaturated Nitrones. J Org Chem 2006; 71:8669-72. [PMID: 17064056 DOI: 10.1021/jo061503b] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
8-Benzyloxymethyl-3,4,5-tribenzoyloxy-9-oxa-1-azabicyclo[4.2.1]nonane has been prepared as the single diastereoisomer 8 from an intramolecular 1,3-dipolar cycloaddition involving 2-(benzyloxy)acetaldehyde and omega-unsaturated hydroxylamine 7 derived from methyl alpha-D-glucopyranoside. The analogous 8-methoxycarbonyl 9-oxa-1-azabicyclo[4.2.1]nonane was afforded in a similar manner, from methyl D-galactopyranoside and methyl glyoxylate, as a 3:1 mixture of diastereoisomers 15 and 16. When conducted in achiral ionic liquid 17 this ratio increased to 8:1, and in chiral ionic liquid 18, compound 15 was formed exclusively.
Collapse
Affiliation(s)
- Petra Padar
- Department of Medicinal Chemistry, University of Szeged, H-6720, Hungary
| | | | | | | | | | | | | |
Collapse
|
39
|
Juge N. Plant protein inhibitors of cell wall degrading enzymes. TRENDS IN PLANT SCIENCE 2006; 11:359-67. [PMID: 16774842 DOI: 10.1016/j.tplants.2006.05.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/04/2006] [Accepted: 05/25/2006] [Indexed: 05/10/2023]
Abstract
Plant cell walls, which consist mainly of polysaccharides (i.e. cellulose, hemicelluloses and pectins), play an important role in defending plants against pathogens. Most phytopathogenic microorganisms secrete an array of cell wall degrading enzymes (CWDEs) capable of depolymerizing the polysaccharides in the plant host wall. In response, plants have evolved a diverse battery of defence responses including protein inhibitors of these enzymes. These include inhibitors of pectin degrading enzymes such as polygalacturonases, pectinmethyl esterases and pectin lyases, and hemicellulose degrading enzymes such as endoxylanases and xyloglucan endoglucanases. The discovery of these plant inhibitors and the recent resolution of their three-dimensional structures, free or in complex with their target enzymes, provide new lines of evidence regarding their function and evolution in plant-pathogen interactions.
Collapse
Affiliation(s)
- Nathalie Juge
- Institut Méditerranéen de Recherche en Nutrition, Faculté des Sciences de St Jérôme, F-13397 Marseilles Cedex 20, France.
| |
Collapse
|
40
|
Beaugrand J, Gebruers K, Ververken C, Fierens E, Croes E, Goddeeris B, Courtin CM, Delcour JA. Antibodies against wheat xylanase inhibitors as tools for the selective identification of their homologues in other cereals. J Cereal Sci 2006. [DOI: 10.1016/j.jcs.2006.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Production and biochemical characterization of polygalacturonases produced byAureobasidium pullulans from forest soil. ANN MICROBIOL 2006. [DOI: 10.1007/bf03174967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
42
|
Brito N, Espino JJ, González C. The endo-beta-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:25-32. [PMID: 16404950 DOI: 10.1094/mpmi-19-0025] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phytopathogenic fungi can degrade xylan, an abundant hemicellulose in plant cell walls, by the coordinate action of a group of extracellular enzymes. Among these, endo-beta-1,4-xylanases carry out the initial breakdown by cleaving internal bonds in the polymer backbone. We have isolated and characterized a gene, xyn11A, coding for an endo-beta-1,4-xylanase belonging to family 11 of glycosyl hydrolases. xyn11A was shown to be induced by xylan and repressed by glucose and to be expressed in planta. The disruption of xyn11A caused only a moderate decrease, about 30%, in the level of extracellular endo-beta-1-4-xylanase activity and in the growth rate, with beechwood xylan as the only carbon source. However, deletion of the gene had a more pronounced effect on virulence, delaying the appearance of secondary lesions and reducing the average lesion size by more than 70%. Reintroducing the wild-type gene into the mutant strains reversed this phenotype back to wild type.
Collapse
Affiliation(s)
- Nélida Brito
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna. E-38206 La Laguna Tenerife, Spain
| | | | | |
Collapse
|
43
|
da Silva FG, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H, Ergul A, Figueroa R, Kabuloglu EK, Osborne C, Rowe J, Tattersall E, Leslie A, Xu J, Baek J, Cramer GR, Cushman JC, Cook DR. Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. PLANT PHYSIOLOGY 2005; 139:574-97. [PMID: 16219919 PMCID: PMC1255978 DOI: 10.1104/pp.105.065748] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 07/28/2005] [Accepted: 08/04/2005] [Indexed: 05/04/2023]
Abstract
We report the analysis and annotation of 146,075 expressed sequence tags from Vitis species. The majority of these sequences were derived from different cultivars of Vitis vinifera, comprising an estimated 25,746 unique contig and singleton sequences that survey transcription in various tissues and developmental stages and during biotic and abiotic stress. Putatively homologous proteins were identified for over 17,752 of the transcripts, with 1,962 transcripts further subdivided into one or more Gene Ontology categories. A simple structured vocabulary, with modules for plant genotype, plant development, and stress, was developed to describe the relationship between individual expressed sequence tags and cDNA libraries; the resulting vocabulary provides query terms to facilitate data mining within the context of a relational database. As a measure of the extent to which characterized metabolic pathways were encompassed by the data set, we searched for homologs of the enzymes leading from glycolysis, through the oxidative/nonoxidative pentose phosphate pathway, and into the general phenylpropanoid pathway. Homologs were identified for 65 of these 77 enzymes, with 86% of enzymatic steps represented by paralogous genes. Differentially expressed transcripts were identified by means of a stringent believability index cutoff of > or =98.4%. Correlation analysis and two-dimensional hierarchical clustering grouped these transcripts according to similarity of expression. In the broadest analysis, 665 differentially expressed transcripts were identified across 29 cDNA libraries, representing a range of developmental and stress conditions. The groupings revealed expected associations between plant developmental stages and tissue types, with the notable exception of abiotic stress treatments. A more focused analysis of flower and berry development identified 87 differentially expressed transcripts and provides the basis for a compendium that relates gene expression and annotation to previously characterized aspects of berry development and physiology. Comparison with published results for select genes, as well as correlation analysis between independent data sets, suggests that the inferred in silico patterns of expression are likely to be an accurate representation of transcript abundance for the conditions surveyed. Thus, the combined data set reveals the in silico expression patterns for hundreds of genes in V. vinifera, the majority of which have not been previously studied within this species.
Collapse
|
44
|
Durand A, Hughes R, Roussel A, Flatman R, Henrissat B, Juge N. Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18. FEBS J 2005; 272:1745-55. [PMID: 15794761 DOI: 10.1111/j.1742-4658.2005.04606.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The xylanase inhibitor protein I (XIP-I), recently identified in wheat, inhibits xylanases belonging to glycoside hydrolase families 10 (GH10) and 11 (GH11). Sequence and structural similarities indicate that XIP-I is related to chitinases of family GH18, despite its lack of enzymatic activity. Here we report the identification and biochemical characterization of a XIP-type inhibitor from rice. Despite its initial classification as a chitinase, the rice inhibitor does not exhibit chitinolytic activity but shows specificities towards fungal GH11 xylanases similar to that of its wheat counterpart. This, together, with an analysis of approximately 150 plant members of glycosidase family GH18 provides compelling evidence that xylanase inhibitors are largely represented in this family, and that this novel function has recently emerged based on a common scaffold. The plurifunctionality of GH18 members has major implications for genomic annotations and predicted gene function. This study provides new information which will lead to a better understanding of the biological significance of a number of GH18 'inactivated' chitinases.
Collapse
Affiliation(s)
- Anne Durand
- Institute of Food Research (IFR), Norwich, UK
| | | | | | | | | | | |
Collapse
|
45
|
Beliën T, Van Campenhout S, Van Acker M, Volckaert G. Cloning and characterization of two endoxylanases from the cereal phytopathogen Fusarium graminearum and their inhibition profile against endoxylanase inhibitors from wheat. Biochem Biophys Res Commun 2005; 327:407-14. [PMID: 15629130 DOI: 10.1016/j.bbrc.2004.12.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Indexed: 11/27/2022]
Abstract
Two genes encoding family 11 endo-beta-1,4-xylanases (XylA, XylB) from Fusarium graminearum were cloned and expressed in Escherichia coli. The amount of active endoxylanase in the cytoplasmic soluble fraction was considerably improved by varying different expression parameters, including host strain and temperature during induction. Both recombinant endoxylanases showed a temperature optimum around 35 degrees C and neutral pH optima (around pH 7 and 8 for XylB and XylA, respectively). For the first time this allowed one to test endoxylanases of a phytopathogenic organism for inhibition by proteinaceous endoxylanase inhibitors TAXI and XIP. Whereas XylA and XylB were inhibited by TAXI-I, no inhibition activity could be detected upon incubation with XIP-I. The insensitivity of both F. graminearum endoxylanases towards XIP is surprising, since the latter is typically active against endoxylanases produced by (aerobic) fungi. As F. graminearum is an important phytopathogen, these findings have implications for the role of endoxylanase inhibitors in plant defence.
Collapse
Affiliation(s)
- Tim Beliën
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium
| | | | | | | |
Collapse
|
46
|
D'Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O'Sullivan D, De Lorenzo G. Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. PLANT PHYSIOLOGY 2004; 135:2424-35. [PMID: 15299124 PMCID: PMC520809 DOI: 10.1104/pp.104.044644] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 06/10/2004] [Accepted: 06/14/2004] [Indexed: 05/19/2023]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are extracellular plant inhibitors of fungal endopolygalacturonases (PGs) that belong to the superfamily of Leu-rich repeat proteins. We have characterized the full complement of pgip genes in the bean (Phaseolus vulgaris) genotype BAT93. This comprises four clustered members that span a 50-kb region and, based on their similarity, form two pairs (Pvpgip1/Pvpgip2 and Pvpgip3/Pvpgip4). Characterization of the encoded products revealed both partial redundancy and subfunctionalization against fungal-derived PGs. Notably, the pair PvPGIP3/PvPGIP4 also inhibited PGs of two mirid bugs (Lygus rugulipennis and Adelphocoris lineolatus). Characterization of Pvpgip genes of Pinto bean showed variations limited to single synonymous substitutions or small deletions. A three-amino acid deletion encompassing a residue previously identified as crucial for recognition of PG of Fusarium moniliforme was responsible for the inability of BAT93 PvPGIP2 to inhibit this enzyme. Consistent with the large variations observed in the promoter sequences, reverse transcription-PCR expression analysis revealed that the different family members differentially respond to elicitors, wounding, and salicylic acid. We conclude that both biochemical and regulatory redundancy and subfunctionalization of pgip genes are important for the adaptation of plants to pathogenic fungi and phytophagous insects.
Collapse
Affiliation(s)
- Renato D'Ovidio
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, 01100 Viterbo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Goesaert H, Elliott G, Kroon PA, Gebruers K, Courtin CM, Robben J, Delcour JA, Juge N. Occurrence of proteinaceous endoxylanase inhibitors in cereals. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:193-202. [PMID: 14871660 DOI: 10.1016/j.bbapap.2003.08.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 08/07/2003] [Indexed: 11/20/2022]
Abstract
Cereals contain proteinaceous inhibitors of endoxylanases, which affect the efficiency and functionality of these enzymes in cereal processing. This review relates their first discovery in wheat and the subsequent purification of two distinct classes of endoxylanase inhibitors, namely Triticum aestivum xylanase inhibitor (TAXI)-type and xylanase inhibitor protein (XIP)-type inhibitors in cereals. Both inhibitor classes occur in monocots as multi-isoform families. The reported data provide an overview of the relative quantitative and qualitative variation of these inhibitors in cereals. Wheat and rye are particularly rich in TAXI-type and XIP-type inhibitors with the latter inhibitors being more abundant. Lower inhibitor levels are present in durum wheat and barley, while maize contains solely XIP-type inhibitors. No inhibitors have been isolated from rice, oats and buckwheat.
Collapse
Affiliation(s)
- Hans Goesaert
- KU Leuven, Laboratory of Food Chemistry, Kasteelpark Arenberg 20, B-3001 Louvain, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Gebruers K, Brijs K, Courtin CM, Fierens K, Goesaert H, Rabijns A, Raedschelders G, Robben J, Sansen S, Sørensen JF, Van Campenhout S, Delcour JA. Properties of TAXI-type endoxylanase inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:213-21. [PMID: 14871662 DOI: 10.1016/j.bbapap.2003.08.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 08/07/2003] [Indexed: 12/20/2022]
Abstract
Two types of proteinaceous endoxylanase inhibitors occur in different cereals, i.e. the TAXI [Triticum aestivum endoxylanase inhibitor]-type and XIP [endoxylanase inhibiting protein]-type inhibitors. The present paper focuses on the TAXI-type proteins and deals with their structural characteristics and the identification, characterisation and heterologous expression of a TAXI gene from wheat. In addition, to shed light on the mechanism by which TAXI-type endoxylanase inhibitors work, the enzyme specificity, the optimal conditions for maximal inhibition activity, the molar complexation ratio and the inhibition kinetics of the inhibitors are explained and the effect of mutations of an endoxylanase on the inhibition by TAXIs is discussed.
Collapse
Affiliation(s)
- Kurt Gebruers
- KU Leuven, Laboratory of Food Chemistry, Kasteelpark Arenberg 20, B-3001 Louvain, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Svensson B, Fukuda K, Nielsen PK, Bønsager BC. Proteinaceous α-amylase inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:145-56. [PMID: 14871655 DOI: 10.1016/j.bbapap.2003.07.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 07/15/2003] [Indexed: 11/30/2022]
Abstract
Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous alpha-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological approaches have been outlined for exploitation of the inhibitory function.
Collapse
Affiliation(s)
- Birte Svensson
- Carlsberg Laboratory, Department of Chemistry, Gamle Carlsberg Vej 10, DK-2500 Copenhagen, Denmark.
| | | | | | | |
Collapse
|