1
|
Prosad Banik S, Kumar P, Bagchi D, Paul S, Goel A, Bagchi M, Chakraborty S. Fenfuro®-mediated arrest in the formation of protein-methyl glyoxal adducts: a new dimension in the anti-hyperglycemic potential of a novel fenugreek seed extract. Toxicol Mech Methods 2024; 34:877-885. [PMID: 38832450 DOI: 10.1080/15376516.2024.2358520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
The fenugreek plant (Trigonella foenum-graecum) is traditionally known for its anti-diabetic properties owing to its high content of furostanolic saponins, which can synergistically treat many human ailments. Non-enzymatic protein glycation leading to the formation of Advanced Glycation End products (AGE) is a common pathophysiology observed in diabetic or prediabetic individuals, which can initiate the development of neurodegenerative disorders. A potent cellular source of glycation is Methyl Glyoxal, a highly reactive dicarbonyl formed as a glycolytic byproduct. We demonstrate the in vitro glycation arresting potential of Fenfuro®, a novel patented formulation of Fenugreek seed extract with clinically proven anti-diabetic properties, in Methyl-Glyoxal (MGO) adducts of three abundant amyloidogenic cellular proteins, alpha-synuclein, Serum albumin, and Lysozyme. A 0.25% w/v Fenfuro® was able to effectively arrest glycation by more than 50% in all three proteins, as evidenced by AGE fluorescence. Glycation-induced amyloid formation was also arrested by more than 36%, 14% and 15% for BSA, Alpha-synuclein and Lysozyme respectively. An increase in MW by attachment of MGO was also partially prevented by Fenfuro® as confirmed by SDS-PAGE analysis. Glycation resulted in enhanced aggregation of the three proteins as revealed by Native PAGE and Dynamic Light Scattering. However, in the presence of Fenfuro®, aggregation was arrested substantially, and the normal size distribution was restored. The results cumulatively indicated the lesser explored potential of direct inhibition of glycation by fenugreek seed in addition to its proven role in alleviating insulin resistance. Fenfuro® boosts its therapeutic potential as an effective phytotherapeutic to arrest Type 2 diabetes.
Collapse
Affiliation(s)
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, India
| | - Debasis Bagchi
- Dept of Biology, College of Arts and Sciences, and Dept of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Souradip Paul
- Protein Folding & Dynamics Group, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | - Apurva Goel
- Regulatory Dept, Chemical Resources (CHERESO), Panchkula, India
| | | | - Sanjoy Chakraborty
- Dept of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| |
Collapse
|
2
|
Fakim A, Maatouk BI, Maiti B, Dey A, Alotaiby SH, Moosa BA, Lin W, Khashab NM. Flaring Inflammation and ER Stress by an Organelle-Specific Fluorescent Cage. Adv Healthc Mater 2024; 13:e2401117. [PMID: 38848965 DOI: 10.1002/adhm.202401117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Indexed: 06/09/2024]
Abstract
The endoplasmic reticulum (ER) plays an important role in protein synthesis and its disruption can cause protein unfolding and misfolding. Accumulation of such proteins leads to ER stress, which ultimately promotes many diseases. Routine screening of ER activity in immune cells can flag serious conditions at early stages, but the current clinically used bio-probes have limitations. Herein, an ER-specific fluorophore based on a biocompatible benzothiadiazole-imine cage (BTD-cage) with excellent photophysical properties is developed. The cage outperforms commercially available ER stains in long-term live cell imaging with no fading or photobleaching over time. The cage is responsive to different levels of ER stress where its fluorescence increases accordingly. Incorporating the bio-probe into an immune disorder model, a 6-, 21-, and 48-fold increase in intensity is shown in THP-1, Raw 246.7, and Jurkat cells, respectively (within 15 min). These results strongly support that this system can be used for rapid visual and selective detection of ER stress. It is envisaged that tailoring molecular interactions and molecular recognition using supramolecular improved fluorophores can expand the library of biological probes for enhanced selectivity and targetability toward cellular organelles.
Collapse
Affiliation(s)
- Aliyah Fakim
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Batoul I Maatouk
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bappa Maiti
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Avishek Dey
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shahad H Alotaiby
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Basem A Moosa
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Weibin Lin
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Chauhan C, Singh P, Muthu SA, Parvez S, Selvapandiyan A, Ahmad B. Plumbagin accelerates serum albumin's amyloid aggregation kinetics and generates fibril polymorphism by inducing non-native β-sheet structures. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141028. [PMID: 38849109 DOI: 10.1016/j.bbapap.2024.141028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
The ligand-induced conformational switch of proteins has great significance in understanding the biophysics and biochemistry of their self-assembly. In this work, we have investigated the ability of plumbagin (PL), a hydroxynaphthoquinone compound found in the root of the medicinal plant Plumbago zeylanica, to modulate aggregation precursor state, aggregation kinetics and generate distinct fibril of human serum albumin (HSA). PL was found to moderately bind (binding constant Ka ∼ 10-4 M-1)) to domain-II of HSA in the stoichiometric ratio of 1:1. We found that PL-HSA complex aggregation was accelerated as compared to that of HSA aggregation and it may be through an independent pathway. We also detected that fibril produced in the presence of PL is wider in diameter, contains a higher amount of β-sheet (∼18%) and disordered (∼46%) structures, and is less stable. We concluded that the acceleration of aggregation reaction and generation of fibril polymorphism was mainly because of the higher extent of unfolding and high content of non-native β-sheet structure in the aggregation precursor state of PL-HSA complex. This study offers opportunities to explore the ability of ligand binding to modulate aggregation reactions and generate polymorphic protein fibrils.
Collapse
Affiliation(s)
- Chanchal Chauhan
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India; Department of Molecular Medicine, Jamia Hamdard, New Delhi 10062, India
| | - Poonam Singh
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai 400098, India
| | - Shivani A Muthu
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India; Department of Molecular Medicine, Jamia Hamdard, New Delhi 10062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India
| | | | - Basir Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Guzzi R, Bartucci R. Thermal effects and drugs competition on the palmitate binding capacity of human serum albumin. Biochem Biophys Res Commun 2024; 722:150168. [PMID: 38797156 DOI: 10.1016/j.bbrc.2024.150168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Human serum albumin (HSA) is the most abundant plasma protein of the circulatory system. It is a multidomain, multifunctional protein that, combining diverse affinities and wide specificity, binds, stores, and transports a variety of biological compounds, pharmacores, and fatty acids. HSA is finding increasing uses in drug-delivery due to its ability to carry functionalized ligands and prodrugs. All this raises the question of competition for binding sites occupancy in case of multiple ligands, which in turn influences the protein structure/dynamic/function relationship and also has an impact on the biomedical applications. In this work, the effects of interactive binding of palmitic acid (PA), warfarin (War) and ibuprofen (Ibu) on the thermal stability of HSA were studied using DSC, ATR-FTIR, and EPR. PA is a high-affinity physiological ligand, while the two drugs are widely used for their anticoagulant (War) and anti-inflammatory (Ibu) efficacy, and are exogenous compounds that accommodate in the deputed drug site DS1 and DS2, respectively overlapping with some of the fatty acid binding sites. The results indicate that HSA acquires the highest thermal stability when it is fully saturated with PA. The binding of this physiological ligand does not hamper the binding of War or Ibu to the native state of the protein. In addition, the three ligands bind simultaneously, suggesting a synergic cooperative influence due to allosteric effects. The increased thermal stability subsequent to binary and multiple ligands binding moderates protein aggregation propensity and restricts protein dynamics. The biophysics findings provide interesting features about protein stability, aggregation, and dynamics in interaction with multiple ligands and are relevant in drug-delivery.
Collapse
Affiliation(s)
- Rita Guzzi
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036, Rende, Italy; CNR-NANOTEC, Department of Physics, University of Calabria, 87036, Rende, Italy.
| | - Rosa Bartucci
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036, Rende, Italy
| |
Collapse
|
5
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
6
|
Li J, Zhang Y, Dong J, Li D, Ba X, Wang S. Dissimilar effects of the hydrophilic carbon dots on the amyloid aggregation of two model proteins and the mechanism discussion. J Mol Recognit 2024; 37:e3085. [PMID: 38599335 DOI: 10.1002/jmr.3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Many proteins could aggregate into amyloid fibrils under certain conditions. However, the aggregation process and morphology of the fibrils may be significantly different because of the distinct protein structure. In this article, the hydrophilic carbon dots (Lys-CA-CDs) were prepared using lysine (Lys) and citric acid (CA) as reactant under the assistance of a microwave. The dissimilar modulation effect of Lys-CA-CDs on the aggregation process of distinct structure protein was further investigated, where bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) were chosen as model proteins. All results showed that Lys-CA-CDs displayed the contrary influence on the aggregation process of BSA and HEWL. Lys-CA-CDs could induce BSA to aggregate into more wormlike fibrils and inhibit the aggregation of HEWL into hair-like fibrils. The influence on the aggregation process of BSA may be assigned to the increased concentration of BSA around the Lys-CA-CDs caused by their interaction. However, inserting of Lys-CA-CDs into the inner structure of HEWL led to the change of protein secondary structure. The change of secondary structure further made it difficult for HEWL to aggregate into fibrils and Lys-CA-CDs showed the inhibition effect on HEWL aggregation.
Collapse
Affiliation(s)
- Jie Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Yuangong Zhang
- School of Basic Medical Sciences, Hebei University, Baoding, P. R. China
| | - Jiawei Dong
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Dexin Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Xinwu Ba
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Sujuan Wang
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, P. R. China
| |
Collapse
|
7
|
Banerjee S. Methylglyoxal-induced modification of myoglobin: An insight into glycation mediated protein aggregation. VITAMINS AND HORMONES 2024; 125:31-46. [PMID: 38997168 DOI: 10.1016/bs.vh.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with the proteins to form advanced glycation end products (AGEs) following a Maillard-like reaction. In a time-dependent reaction study of MG with the heme protein myoglobin (Mb), MG was found to induce significant structural alterations of the heme protein, such as heme loss, changes in tryptophan fluorescence, and decrease of α-helicity with increased β-sheet content. These changes were found to occur gradually with increasing period of incubation. Incubation of Mb with MG induced the formation of several AGE adducts, including, carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87, carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139. MG induced amyloid-like aggregation of Mb was detected at a longer period of incubation. MG-derived AGEs, therefore, appear to have an important role as the precursors of protein aggregation, which, in turn, may be associated with pathophysiological complications.
Collapse
|
8
|
Fan Y, Gan C, Li Y, Kang L, Yi J. Fabrication of bovine serum albumin nanofibrils: Physicochemical characteristics, emulsifying and foaming activities. Int J Biol Macromol 2024; 271:132549. [PMID: 38782331 DOI: 10.1016/j.ijbiomac.2024.132549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Bovine serum albumin nanofibrils (BSNs) were fabricated under thermal treatment (85 °C) at acidic condition (pH 2.0) and the incubation time on the structural, and physicochemical characteristics were probed. The formation and development of BSNs have been detected and confirmed by Thioflavin T (ThT) fluorescence and circular dichroism (CD) measurements. The structural alterations of bovine serum albumin (BSA) have also been investigated using intrinsic fluorescence and Congo red (CGR) UV-vis spectroscopy. Atomic force microscopy (AFM) outcomes displayed the morphologies of BSNs at varied time, with a diameter of about 3 nm and a contour length of about 200 nm at 24 h. The apparent viscosities of BSNs at three different pH were in the following order: pH 3.0 > pH 5.0 > pH 7.0. Emulsifying and foaming properties of BSA were pronouncedly enhanced through fibrillation, which was highly correlated with the interfacial properties and structural characteristics. Highest EAI 54.2 m2/g was attained at 48 h and no pronounced alterations were observed for EAI at 24 h and 48 h. Maximum value of FC was obtained at 48 h for BSA. This study will provide some useful information in understanding the formation of BSNs and broaden their application in food systems as functional food ingredients.
Collapse
Affiliation(s)
- Yuting Fan
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Chao Gan
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanmei Li
- Yining Customs Technology Center, Yining, Xinjiang 835000, China
| | - Ling Kang
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiang Yi
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
9
|
Du J, Shi LL, Jiang WW, Liu XA, Wu XH, Huang XX, Huo MW, Shi LZ, Dong J, Jiang X, Huang R, Cao QR, Zhang W. Crafting Docetaxel-Loaded Albumin Nanoparticles Through a Novel Thermal-Driven Self-Assembly/Microfluidic Combination Technology: Formulation, Process Optimization, Stability, and Bioavailability. Int J Nanomedicine 2024; 19:5071-5094. [PMID: 38846644 PMCID: PMC11155381 DOI: 10.2147/ijn.s457482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Background The commercial docetaxel (DTX) formulation causes severe side effects due to polysorbate 80 and ethanol. Novel surfactant-free nanoparticle (NP) systems are needed to improve bioavailability and reduce side effects. However, controlling the particle size and stability of NPs and improving the batch-to-batch variation are the major challenges. Methods DTX-loaded bovine serum albumin nanoparticles (DTX-BSA-NPs) were prepared by a novel thermal-driven self-assembly/microfluidic technology. Single-factor analysis and orthogonal test were conducted to obtain the optimal formulation of DTX-BSA-NPs in terms of particle size, encapsulation efficiency (EE), and drug loading (DL). The effects of oil/water flow rate and pump pressure on the particle size, EE, and DL were investigated to optimize the preparation process of DTX-BSA-NPs. The drug release, physicochemical properties, stability, and pharmacokinetics of NPs were evaluated. Results The optimized DTX-BSA-NPs were uniform, with a particle size of 118.30 nm, EE of 89.04%, and DL of 8.27%. They showed a sustained release of 70% over 96 hours and an increased stability. There were some interactions between the drug and excipients in DTX-BSA-NPs. The half-life, mean residence time, and area under the curve (AUC) of DTX-BSA-NPs increased, but plasma clearance decreased when compared with DTX. Conclusion The thermal-driven self-assembly/microfluidic combination method effectively produces BSA-based NPs that improve the bioavailability and stability of DTX, offering a promising alternative to traditional formulations.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| | - Li-Li Shi
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Wei-Wei Jiang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xue-Ai Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xin-Hong Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xiang-Xiang Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ming-Wei Huo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ling-Zhi Shi
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Jingjian Dong
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Xiaohong Jiang
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Renyu Huang
- College of Social Science, Soochow University, Institute of Culture and Tourism Development, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| |
Collapse
|
10
|
Sharma K, Sharma M. Invitro anti-biofilm activity and the artificial chaperone activity of quinoline-based ionic liquids. Colloids Surf B Biointerfaces 2024; 235:113773. [PMID: 38350204 DOI: 10.1016/j.colsurfb.2024.113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
The maintenance of protein conformation under stressful conditions is one of the prevailing challenges. This has led to a rapid growth in the ingenious protein therapies, in the past few decades, prioritizing the investigation of the structure and function of proteins in novel environments. Ionic Liquids (ILs) are currently dominating the biomedical industry, by endowing great solubility and stability to bio-molecules, especially proteins. Recently, researchers have devoted their attention towards the artificial chaperone activity of several classes of ILs. Thus, comprehending the long-term as well as momentary stability of protein conformation in IL formulations is an absolute necessity. In this context, we present the activity of quinoline-based ionic liquids (ILs) as artificial cheperones against time-dependent, self induced fibril formation in Bovine Serum Albumin (BSA). Herein, a series of quinoline-based ILs were synthesized and characterized. The structural and morphological changes induced in BSA in the presence and absence of these ILs are corroborated using several spectroscopic measurements and in-silico studies. The anti-microbial and antibiofilm activity of these compounds demonstrating their medicinal properties is substantiated in this study. Furthermore, the present research also gives an account of the toxicity of these compounds under in vivo conditions, using C. elegans as the model organism.
Collapse
Affiliation(s)
- Kajal Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (North Campus), Delhi 110007, India
| | - Meenakshi Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (North Campus), Delhi 110007, India.
| |
Collapse
|
11
|
Li T, Kambanis J, Sorenson TL, Sunde M, Shen Y. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics. Biomacromolecules 2024; 25:5-23. [PMID: 38147506 PMCID: PMC10777412 DOI: 10.1021/acs.biomac.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Proteins can self-assemble into a range of nanostructures as a result of molecular interactions. Amyloid nanofibrils, as one of them, were first discovered with regard to the relevance of neurodegenerative diseases but now have been exploited as building blocks to generate multiscale materials with designed functions for versatile applications. This review interconnects the mechanism of amyloid fibrillation, the current approaches to synthesizing amyloid protein-based materials, and the application in bioplastic development. We focus on the fundamental structures of self-assembled amyloid fibrils and how external factors can affect protein aggregation to optimize the process. Protein self-assembly is essentially the autonomous congregation of smaller protein units into larger, organized structures. Since the properties of the self-assembly can be manipulated by changing intrinsic factors and external conditions, protein self-assembly serves as an excellent building block for bioplastic development. Building on these principles, general processing methods and pathways from raw protein sources to mature state materials are proposed, providing a guide for the development of large-scale production. Additionally, this review discusses the diverse properties of protein-based amyloid nanofibrils and how they can be utilized as bioplastics. The economic feasibility of the protein bioplastics is also compared to conventional plastics in large-scale production scenarios, supporting their potential as sustainable bioplastics for future applications.
Collapse
Affiliation(s)
- Tianchen Li
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Jordan Kambanis
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Timothy L. Sorenson
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Margaret Sunde
- School
of Medical Sciences and Sydney Nano, The
University of Sydney, Sydney NSW 2006, Australia
| | - Yi Shen
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| |
Collapse
|
12
|
Naik K, Singh P, Yadav M, Srivastava SK, Tripathi S, Ranjan R, Dhar P, Verma AK, Chaudhary S, Parmar AS. 3D printable, injectable amyloid-based composite hydrogel of bovine serum albumin and aloe vera for rapid diabetic wound healing. J Mater Chem B 2023; 11:8142-8158. [PMID: 37431285 DOI: 10.1039/d3tb01151h] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Protein-based biomaterials, particularly amyloids, have sparked considerable scientific interest in recent years due to their exceptional mechanical strength, excellent biocompatibility and bioactivity. In this work, we have synthesized a novel amyloid-based composite hydrogel consisting of bovine serum albumin (BSA) and aloe vera (AV) gel to utilize the medicinal properties of the AV gel and circumvent its mechanical frangibility. The synthesized composite hydrogel demonstrated an excellent porous structure, self-fluorescence, non-toxicity, and controlled rheological properties. Moreover, this hydrogel possesses inherent antioxidant and antibacterial properties, which accelerate the rapid healing of wounds. The in vitro wound healing capabilities of the synthesized composite hydrogel were evaluated using 3T3 fibroblast cells. Moreover, the efficacy of the hydrogel in accelerating chronic wound healing via collagen crosslinking was investigated through in vivo experiments using a diabetic mouse skin model. The findings indicate that the composite hydrogel, when applied, promotes wound healing by inducing collagen deposition and upregulating the expression of vascular endothelial growth factor (VEGF) and its receptors. We also demonstrate the feasibility of the 3D printing of the BSA-AV hydrogel, which can be tailored to treat various types of wound. The 3D printed hydrogel exhibits excellent shape fidelity and mechanical properties that can be utilized for personalized treatment and rapid chronic wound healing. Taken together, the BSA-AV hydrogel has great potential as a bio-ink in tissue engineering as a dermal substitute for customizable skin regeneration.
Collapse
Affiliation(s)
- Kaustubh Naik
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Priyanka Singh
- Nanobiotech Lab, Kirorimal College, University of Delhi, 110007, Delhi, India.
| | - Monika Yadav
- Nanobiotech Lab, Kirorimal College, University of Delhi, 110007, Delhi, India.
| | - Saurabh Kr Srivastava
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Shikha Tripathi
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Rahul Ranjan
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Anita Kamra Verma
- Nanobiotech Lab, Kirorimal College, University of Delhi, 110007, Delhi, India.
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, 160012, India.
| | - Avanish Singh Parmar
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
- Centre for Biomaterials and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
13
|
Burgos MI, Dassie SA, Fidelio GD. The effect of denaturants on protein thermal stability analyzed through a theoretical model considering multiple binding sites. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140920. [PMID: 37207817 DOI: 10.1016/j.bbapap.2023.140920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
A novel mathematical development applied to protein ligand binding thermodynamics is proposed, which allows the simulation, and therefore the analysis of the effects of multiple and independent binding sites to the Native and/or Unfolded protein conformations, with different binding constant values. Protein stability is affected when it binds to a small number of high affinity ligands or to a high number of low affinity ligands. Differential scanning calorimetry (DSC) measures released or absorbed energy of thermally induced structural transitions of biomolecules. This paper presents the general theoretical development for the analysis of thermograms of proteins obtained for n-ligands bound to the native protein and m-ligands bound to their unfolded form. In particular, the effect of ligands with low affinity and with a high number of binding sites (n and/or m > 50) is analyzed. If the interaction with the native form of the protein is the one that predominates, they are considered stabilizers and if the binding with the unfolded species predominates, it is expected a destabilizing effect. The formalism presented here can be adapted to fitting routines in order to simultaneously obtain the unfolding energy and ligand binding energy of the protein. The effect of guanidinium chloride on bovine serum albumin thermal stability, was successfully analyzed with the model considering low number of middle affinity binding sites to the native state and a high number of weak binding sites to the unfolded state.
Collapse
Affiliation(s)
- M Ines Burgos
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | - Sergio A Dassie
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), CONICET, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Gerardo D Fidelio
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
14
|
Parau M, Pullen J, Bracewell DG. Depth filter material process interaction in the harvest of mammalian cells. Biotechnol Prog 2023; 39:e3329. [PMID: 36775837 PMCID: PMC10909467 DOI: 10.1002/btpr.3329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
Upstream advances have led to increased mAb titers above 5 g/L in 14-day fed-batch cultures. This is accompanied by higher cell densities and process-related impurities such as DNA and Host Cell Protein (HCP), which have caused challenges for downstream operations. Depth filtration remains a popular choice for harvesting CHO cell culture, and there is interest in utilizing these to remove process-related impurities at the harvest stage. Operation of the harvest stage has also been shown to affect the performance of the Protein A chromatography step. In addition, manufacturers are looking to move away from natural materials such as cellulose and Diatomaceous Earth (DE) for better filter consistency and security of supply. Therefore, there is an increased need for further understanding and knowledge of depth filtration. This study investigates the effect of depth filter material and loading on the Protein A resin lifetime with an industrially relevant high cell density feed material (40 million cells/ml). It focuses on the retention of process-related impurities such as DNA and HCP through breakthrough studies and a novel confocal microscopy method for imaging foulant in-situ. An increase in loading of the primary-synthetic filter by a third, led to earlier DNA breakthrough in the secondary filter, with DNA concentration at a throughput of 50 L/m2 being more than double. Confocal imaging of the depth filters showed that the foulant was pushed forward into the filter structure with higher loading. The additional two layers in the primary-synthetic filter led to better pressure profiles in both primary and secondary filters but did not help to retain HCP or DNA. Reduced filtrate clarity, as measured by OD600, was 1.6 fold lower in the final filtrate where a synthetic filter train was used. This was also associated with precipitation in the Protein A column feed. Confocal imaging of resin after 100 cycles showed that DNA build-up around the outside of the bead was associated with synthetic filter trains, leading to potential mass transfer problems.
Collapse
Affiliation(s)
- Maria Parau
- Department of Biochemical EngineeringUniversity College LondonLondonUK
| | - James Pullen
- Research and DevelopmentFUJIFILM Diosynth Biotechnologies (FDB)BillinghamUK
| | | |
Collapse
|
15
|
Solid state synthesis of bispyridyl-ferrocene conjugates with unusual site selective 1,4-Michael addition, as potential inhibitor and electrochemical probe for fibrillation in amyloidogenic protein. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
The role of surface activity on the amyloid fibrillation pathway of bovine serum albumin upon interaction with glyphosate. Int J Biol Macromol 2023; 226:1166-1177. [PMID: 36427623 DOI: 10.1016/j.ijbiomac.2022.11.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
As an active ingredient in its derivative products, glyphosate has emerged as the most widespread herbicide in recent decades. Bovine serum albumin (BSA) as a carrier protein may be adversely affected by structural changes due to binding affinity with glyphosate, which may lead to dysfunctionality or metabolic disorders. This study aimed to investigate the interaction of glyphosate with BSA and its thermal fibrillation pathway employing techniques such as dynamic surface tension, fluorescence quenching, ThT binding, circular dichroism spectroscopy, and reactive oxygen species (ROS) measurement, as well as molecular dynamics (MD) studies. The adsorption dynamic analysis suggested hydrophobic moiety at higher concentrations of glyphosate upon interaction with BSA. MD results suggested a slight fluctuation due to glyphosate interaction with protein molecules. The carboxy group presented in glyphosate made a hydrogen bond with the hydroxyl group of TYR147. The fluorescence quenching and diffusion studies approved BSA's increased unfolding and hydrophobicity resulting from glyphosate interaction, which would induce fibrillation/aggregation, according to our fibrillation kinetics data. The surface activity of glyphosate at higher concentrations and its approved involvement in structural changes of BSA through hydrogen bonding may raise concerns about its potential side effect on farm animals and the food cycle.
Collapse
|
17
|
Zhang M, Li X, Zhou L, Chen W, Marchioni E. Protein-Based High Internal Phase Pickering Emulsions: A Review of Their Fabrication, Composition and Future Perspectives in the Food Industry. Foods 2023; 12:482. [PMID: 36766011 PMCID: PMC9914728 DOI: 10.3390/foods12030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Protein-based high internal phase Pickering emulsions (HIPEs) are emulsions using protein particles as a stabilizer in which the volume fraction of the dispersed phase exceeds 74%. Stabilizers are irreversibly adsorbed at the interface of the oil phase and water phase to maintain the droplet structure. Protein-based HIPEs have shown great potential for a variety of fields, including foods, due to the wide range of materials, simple preparation, and good biocompatibility. This review introduces the preparation routes of protein-based HIPEs and summarizes and classifies the preparation methods of protein stabilizers according to their formation mechanism. Further outlined are the types and properties of protein stabilizers used in the present studies, the composition of the oil phase, the encapsulating substances, and the properties of the constituted protein-based HIPEs. Finally, future development of protein-based HIPEs was explored, such as the development of protein-based stabilizers, the improvement of emulsification technology, and the quality control of stabilizers and protein-based HIPEs.
Collapse
Affiliation(s)
- Minghao Zhang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Xiang Li
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Weilin Chen
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Eric Marchioni
- Inst Pluridisciplinaire Hubert Curien, CNRS, Equipe Chim Analyt Mol Bioact & Pharmacognoise, UMR 7178, UDS, F-67400 Illkirch Graffenstaden, France
| |
Collapse
|
18
|
De France KJ, Kummer N, Campioni S, Nyström G. Phase Behavior, Self-Assembly, and Adhesive Potential of Cellulose Nanocrystal-Bovine Serum Albumin Amyloid Composites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1958-1968. [PMID: 36576901 DOI: 10.1021/acsami.2c14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Structural organization is ubiquitous throughout nature and contributes to the outstanding mechanical/adhesive performance of organisms including geckoes, barnacles, and crustaceans. Typically, these types of structures are composed of polysaccharide and protein-based building blocks, and therefore, there is significant research interest in using similar building blocks in the fabrication of high-performance synthetic materials. Via evaporation-induced self-assembly, the organization of cellulose nanocrystals (CNCs) into a chiral nematic regime results in the formation of structured CNC films with prominent mechanical, optical, and photonic properties. However, there remains an important knowledge gap in relating equilibrium suspension behavior to dry film structuring and other functional properties of CNC-based composite materials. Herein, we systematically investigate the phase behavior of composite suspensions of rigid CNCs and flexible bovine serum albumin (BSA) amyloids in relation to their self-assembly into ordered films and structural adhesives. Increasing the concentration of BSA amyloids in the CNC suspensions results in a clear decrease in the anisotropic fraction volume percent via the preferential accumulation of BSA amyloids in the isotropic regime (as a result of depletion interactions). This translates to a blue shift or compression of the chiral nematic pitch in dried films. Finally, we also demonstrate the synergistic adhesive potential of CNC-BSA amyloid composites, with ultimate lap shear strengths in excess of 500 N/mg. We anticipate that understanding the systematic relationships between material interactions and self-assembly in suspension such as those investigated here will pave the way for a new generation of structured composite materials with a variety of enhanced functionalities.
Collapse
Affiliation(s)
- Kevin J De France
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf8600, Switzerland
- Department of Chemical Engineering, Queen's University, 19 Division Street, Kingston, OntarioK7L 3N6, Canada
| | - Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf8600, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zürich8092, Switzerland
| | - Silvia Campioni
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf8600, Switzerland
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf8600, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zürich8092, Switzerland
| |
Collapse
|
19
|
Burrelli A, Moretti P, Gerelli Y, Ortore MG. Effects of model membranes on lysozyme amyloid aggregation. Biomol Concepts 2023; 14:bmc-2022-0034. [PMID: 37542518 DOI: 10.1515/bmc-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/13/2023] [Indexed: 08/07/2023] Open
Abstract
The study of the interaction between lipid membranes and amyloidogenic peptides is a turning point for understanding the processes involving the cytotoxicity of peptides involved in neurodegenerative diseases. In this work, we perform an experimental study of model membrane-lysozyme interaction to understand how the formation of amyloid fibrils can be affected by the presence of polar and zwitterionic phospholipid molecules (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine [POPC] and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol [POPG]). The study was conducted above and below the critical micellar concentration (CMC) using dynamic light scattering (DLS), atomic force microscopy (AFM), UV-Vis spectrophotometry, and the quartz crystal microbalance (QCM). Our results show that the presence of phospholipids appears to be a factor favoring the formation of amyloid aggregates. Spectrophotometric and DLS data revealed that the quantity of β -structure increases in the presence of POPG and POPC at different concentrations. The presence of POPG and POPC increases the speed of the nucleation process, without altering the overall structures of the fibrillar final products.
Collapse
Affiliation(s)
- Annaclaudia Burrelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Paolo Moretti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- CNR Institute for Complex Systems, Piazzale Aldo Moro 5, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
20
|
Mir FM, Bano B. Amyloid aggregation and secondary structure changes of liver cystatin: Acidic denaturation and TFE induced studies. J Biomol Struct Dyn 2022; 40:12506-12515. [PMID: 34488562 DOI: 10.1080/07391102.2021.1971565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A cysteine proteinase inhibitor has been purified by affinity chromatography from the liver of buffalo. Liver cystatin is subjected to incubation at low pH with co-solvent TFE, where we have studied the effect on the conformation, activity and tendency to form aggregates or fibrils. ANS fluorescence was used to study conformational changes. The fibril formation and aggregation was studied using ThT assay, CD, FTIR and fluorescence spectroscopy. At pH 3.0 there was no fibril formation though aggregates were formed but in presence of TFE fibrils appeared. At pH 2.0 and 1.0, TFE induced rapid fibril formation compared to only acid induced state as assessed by Thioflavin T (ThT) fluorescence.TFE stabilized each of the three acid induced intermediates at predenaturational concentrations (20%) and accelerated fibril formation. Solvent conditions had a profound effect on the tendency of liver cystatin to produce fibrils and aggregation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faisal Mustafa Mir
- Department of Biochemistry, faculty of Life Sciences, A.M.U, Aligarh, Uttar Pradesh, India.,School of Biotechnology and Graduate school of Biochemistry, Yeungnum University, Gyeongsan, South Korea
| | - Bilqees Bano
- Department of Biochemistry, faculty of Life Sciences, A.M.U, Aligarh, Uttar Pradesh, India
| |
Collapse
|
21
|
Sedov I, Khaibrakhmanova D. Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models. Int J Mol Sci 2022; 23:13428. [PMID: 36362217 PMCID: PMC9657184 DOI: 10.3390/ijms232113428] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Inhibition of fibril formation is considered a possible treatment strategy for amyloid-related diseases. Understanding the molecular nature of inhibitor action is crucial for the design of drug candidates. In the present review, we describe the common kinetic models of fibril formation and classify known inhibitors by the mechanism of their interactions with the aggregating protein and its oligomers. This mechanism determines the step or steps of the aggregation process that become inhibited and the observed changes in kinetics and equilibrium of fibril formation. The results of numerous studies indicate that possible approaches to antiamyloid inhibitor discovery include the search for the strong binders of protein monomers, cappers blocking the ends of the growing fibril, or the species absorbing on the surface of oligomers preventing nucleation. Strongly binding inhibitors stabilizing the native state can be promising for the structured proteins while designing the drug candidates targeting disordered proteins is challenging.
Collapse
Affiliation(s)
- Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | | |
Collapse
|
22
|
Huyst AM, Deleu LJ, Luyckx T, Van der Meeren L, Housmans JA, Grootaert C, Monge-Morera M, Delcour JA, Skirtach AG, Rousseau F, Schymkowitz J, Dewettinck K, Van der Meeren P. Impact of heat and enzymatic treatment on ovalbumin amyloid-like fibril formation and enzyme-induced gelation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Albumin/Thiacalix[4]arene Nanoparticles as Potential Therapeutic Systems: Role of the Macrocycle for Stabilization of Monomeric Protein and Self-Assembly with Ciprofloxacin. Int J Mol Sci 2022; 23:ijms231710040. [PMID: 36077448 PMCID: PMC9455997 DOI: 10.3390/ijms231710040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The therapeutic application of serum albumin is determined by the relative content of the monomeric form compared to dimers, tetramers, hexamers, etc. In this paper, we propose and develop an approach to synthesize the cone stereoisomer of p-tert-butylthiacalix[4]arene with sulfobetaine fragments stabilization of monomeric bovine serum albumin and preventing aggregation. Spectral methods (UV-vis, CD, fluorescent spectroscopy, and dynamic light scattering) established the influence of the synthesized compounds on the content of monomeric and aggregated forms of BSA even without the formation of stable thiacalixarene/protein associates. The effect of thiacalixarenes on the efficiency of protein binding with the antibiotic ciprofloxacin was shown by fluorescence spectroscopy. The binding constant increases in the presence of the macrocycles, likely due to the stabilization of monomeric forms of BSA. Our study clearly shows the potential of this macrocycle design as a platform for the development of the fundamentally new approaches for preventing aggregation.
Collapse
|
24
|
Ximenes VF. Concomitant binding of two fluorescent probes at site-I of human serum albumin: The protein acting as a scaffold enabling fluorescence resonance energy transfer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112542. [PMID: 35973286 DOI: 10.1016/j.jphotobiol.2022.112542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Human serum albumin (HSA) is the primary drug carrier in the blood plasma. Here, I aimed to show that two ligands can be accommodated simultaneously in the binding site-I of HSA. To do so, I studied the interaction inside the protein among site-I ligands of HSA via fluorescence resonance energy transfer (FRET), synchronous fluorescence, red edge excitation shift (REES), and induced circular dichroism (ICD). Warfarin (WAR), coumarin-153 (C153), 6-(p-toluidino)-2-naphthalenesulfonic acid sodium salt (TNS), dansylglycine (DGY), and 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) were enrolled in the investigation. I found that WAR can transfer energy to C153 only in the presence of the protein. In addition, the presence of WAR at site-I altered the protein microenvironment felt by C153. The alteration was detected by measuring the synchronous fluorescence, REES, and ICD in C153. The findings were validated by measuring the energy transfer from TNS to DCM and the alteration in synchronous fluorescence and REES. FRET was not observed using WAR as donor and DGY as acceptor. The result is consistent, as DGY is a site-II ligand at a higher WAR distance. In all studied cases, the effects were only observed in the presence of HSA. In conclusion, the protein acted as a scaffold approximating the ligands. These findings prove that more than one ligand can simultaneously be complex at site-I of HSA.
Collapse
Affiliation(s)
- Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University, 17033-360 Bauru, São Paulo, Brazil.
| |
Collapse
|
25
|
Thomas AR, Swetha K, C K A, Ashraf R, Kumar J, Kumar S, Mandal SS. Protein fibril assisted chiral assembly of gold nanorods. J Mater Chem B 2022; 10:6360-6371. [PMID: 35946470 DOI: 10.1039/d2tb01419j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Template mediated assembly of plasmonic nanomaterials is a promising approach to induce chirality. Naturally occurring macromolecules can self-assemble to form chiral superstructures, with dimensions extending from nanometer to micrometer length scales. These structures can serve as templates for host plasmonic nanomaterials on their surface through a variety of interactions. The arrangement of nanomaterials on these structures results in a transfer of symmetry from these templates to nanomaterials, which finally generates a chiral response in circular dichroism (CD) spectroscopy. For biosensing and in vitro applications of chiral plasmonics, long-term stability of these templates will be crucial for this approach of chirality induction. Here, we have demonstrated how protein amyloid fibrils can be used as templates to generate a chiroptical response with plasmonic nanomaterials. The temperature and ionic strength of the solution were carefully altered to convert the three-dimensional protein structure into amyloid fibrils. Changes in solution conditions affected the amyloid geometry, long-term stability, and interaction with AuNRs. The modified interactions influenced the orientation of the AuNRs, which affected the intensity of the CD response. The MTT assay indicated that the chiral AuNRs exhibited considerable cell viability, making them ideal for in vivo applications.
Collapse
Affiliation(s)
- Angel Rose Thomas
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - K Swetha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Aparna C K
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Rahail Ashraf
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Sanjay Kumar
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Soumit S Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India. .,Center for Atomic, Molecular, and Optical Sciences & Technologies, Indian Institute of Science Education and Research (IISER), Tirupati 517507, Andhra Pradesh, India
| |
Collapse
|
26
|
Arghavani P, Badiei A, Ghadami SA, Habibi-Rezaei M, Moosavi-Movahedi F, Delphi L, Moosavi-Movahedi AA. Inhibiting mTTR Aggregation/Fibrillation by a Chaperone-like Hydrophobic Amino Acid-Conjugated SPION. J Phys Chem B 2022; 126:1640-1654. [PMID: 35090112 DOI: 10.1021/acs.jpcb.1c08796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transthyretin (TTR) aggregation via misfolding of a mutant or wild-type protein leads to systemic or partial amyloidosis (ATTR). Here, we utilized variable biophysical assays to characterize two distinct aggregation pathways for mTTR (a synthesized monomer TTR incapable of association into a tetramer) at pH 4.3 and also pH 7.4 with agitation, referred to as mTTR aggregation and fibrillation, respectively. The findings suggest that early-stage conformational changes termed monomer activation here determine the aggregation pathway, resulting in developing either amorphous aggregates or well-organized fibrils. Less packed partially unfolded monomers consisting of more non-regular secondary structures that were rapidly produced via a mildly acidic condition form amorphous aggregates. Meanwhile, more hydrophobic and packed monomers consisting of rearranged β sheets and increased helical content developed well-organized fibrils. Conjugating superparamagnetic iron oxide nanoparticles (SPIONs) with leucine and glutamine (L-SPIONs and G-SPIONs in order) via a trimethoxysilane linker provided the chance to study the effect of hydrophobic/hydrophilic surfaces on mTTR aggregation. The results indicated a powerful inhibitory effect of hydrophobic L-SPIONs on both mTTR aggregation and fibrillation. Monomer depletion was introduced as the governing mechanism for inhibiting mTTR aggregation, while a chaperone-like property of L-SPIONs by maintaining an mTTR native structure and adsorbing oligomers suppressed the progression of further fibril formation.
Collapse
Affiliation(s)
- Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Seyyed Abolghasem Ghadami
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran 1993893973, Iran
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417614411, Iran
| | | | - Ladan Delphi
- Department of Animal Biology, College of Science, University of Tehran, Tehran 1417614411, Iran
| | | |
Collapse
|
27
|
Vahedifar A, Wu J. Self-assembling peptides: Structure, function, in silico prediction and applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
John R, Mathew J, Mathew A, Aravindakumar CT, Aravind UK. Probing the Role of Cu(II) Ions on Protein Aggregation Using Two Model Proteins. ACS OMEGA 2021; 6:35559-35571. [PMID: 34984287 PMCID: PMC8717569 DOI: 10.1021/acsomega.1c05119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Copper is an essential trace element for human biology where its metal dyshomeostasis accounts for an increased level of serum copper, which accelerates protein aggregation. Protein aggregation is a notable feature for many neurodegenerative disorders. Herein, we report an experimental study using two model proteins, bovine serum albumin (BSA) and human serum albumin (HSA), to elucidate the mechanistic pathway by which serum albumins get converted from a fully folded globular protein to a fibril and an amorphous aggregate upon interaction with copper. Steady-state fluorescence, time-resolved fluorescence studies, and Raman spectroscopy were used to monitor the unfolding of serum albumin with increasing copper concentrations. Steady-state fluorescence studies have revealed that the fluorescence quenching of BSA/HSA by Cu(II) has occurred through a static quenching mechanism, and we have evaluated both the quenching constants individually. The binding constants of BSA-Cu(II) and HSA-Cu(II) were found to be 2.42 × 104 and 0.05 × 104 M-1, respectively. Further nanoscale morphological changes of BSA mediated by oligomers to fibril and HSA to amorphous aggregate formation were studied using atomic force microscopy. This aggregation process correlates with the Stern-Volmer plots in the absence of discernible lag phase. Raman spectroscopy results obtained are in good agreement with the increase in antiparallel β-sheet structures formed during the aggregation of BSA in the presence of Cu(II) ions. However, an increase in α-helical fractions is observed for the amorphous aggregate formed from HSA.
Collapse
Affiliation(s)
- Reshmi John
- Inter
University Instrumentation Centre, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
- Research
Department of Chemistry, S. B. College,
Assumption College, Changanacherry, Kottayam 686101, Kerala, India
| | - Jissy Mathew
- Research
Department of Chemistry, S. B. College,
Assumption College, Changanacherry, Kottayam 686101, Kerala, India
| | - Anu Mathew
- Sophisticated
Analytical Instrument Facility, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
| | - Charuvila T. Aravindakumar
- Inter
University Instrumentation Centre, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
- Sophisticated
Analytical Instrument Facility, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
- School
of Environmental Sciences, Mahatma Gandhi
University, Kottayam 686560, Kerala, India
| | - Usha K. Aravind
- School
of Environmental Studies, Cochin University
of Science and Technology (CUSAT), Kochi 682022, Kerala, India
| |
Collapse
|
29
|
Gänz N, Becher T, Drusch S, Titze J. Interaction of proteins and amino acids with iso-α-acids during wort preparation in the brewhouse. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03926-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThis paper investigates the binding behavior of iso-α-acids from hops on free wort amino acids and proteins concerning the wort production process in breweries. The studies were carried out with different amino acids, bovine serum albumin and wort. To identify the nature of reaction between iso-α-acids and these substances, analyses of free amino nitrogen, HPLC and isothermal titration calorimetry were performed. According to the results, the iso-α-acids do not form covalent bonds with free amino acids of wort. However, iso-α-acids, especially isohumulone and isoadhumulone, form ionic bonds with wort proteins. A distinction must be made between proteins that are present in the hot trub, and those that are still dissolved in the hot wort. Proteins that are already coagulated and precipitated no longer react with iso-α-acids. Future experiments will investigate whether the established ionic bonds between iso-α-acids and proteins from the wort preparation process are maintained during fermentation until the finished beer or beer foam. If this is the case, which is induced by the experiments, there is a measurable loss of iso-α-acids in the hot wort, but at the same time, a gain for the later beer foam retention, as the iso-α-acids will stabilize it.
Collapse
|
30
|
Romero-Peña M, Ng EK, Ghosh S. Development of thermally stable coarse water-in-oil emulsions as potential DNA bioreactors. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2020.1794886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Maria Romero-Peña
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | | | - Supratim Ghosh
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
31
|
Han Y, Shen X, Chen S, Wang X, Du J, Zhu T. A Nanofiber Mat With Dual Bioactive Components and a Biomimetic Matrix Structure for Improving Osteogenesis Effect. Front Chem 2021; 9:740191. [PMID: 34778203 PMCID: PMC8586446 DOI: 10.3389/fchem.2021.740191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022] Open
Abstract
The challenge of effectively regenerating bone tissue through tissue engineering technology is that most tissue engineering scaffolds cannot imitate the three-dimensional structure and function of the natural extracellular matrix. Herein, we have prepared the poly(L-lactic acid)–based dual bioactive component reinforced nanofiber mats which were named as poly(L-lactic acid)/bovine serum albumin/nanohydroxyapatite (PLLA/BSA/nHAp) with dual bioactive components by combining homogeneous blending and electrospinning technology. The results showed that these nanofiber mats had sufficient mechanical properties and a porous structure suitable for cell growth and migration. Furthermore, the results of cell experiments in vitro showed that PLLA/BSA/nHAp composite nanofiber mat could preferably stimulate the proliferation of mouse osteoblastic cells (MC3T3 cells) compared with pure PLLA nanofiber mats. Based on these results, the scaffolds developed in this study are considered to have a great potential to be adhibited as bone repair materials.
Collapse
Affiliation(s)
- Yadi Han
- Frontier Institute of Medical & Pharmaceutical Science and Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Xiaofeng Shen
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Sihao Chen
- Frontier Institute of Medical & Pharmaceutical Science and Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Du
- Frontier Institute of Medical & Pharmaceutical Science and Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Tonghe Zhu
- Frontier Institute of Medical & Pharmaceutical Science and Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| |
Collapse
|
32
|
Jaunay EL, Dhillon VS, Semple SJ, Simpson BS, Ghetia M, Deo P, Fenech M. Genotoxicity of advanced glycation end products in vitro is influenced by their preparation temperature, purification, and cell exposure time. Mutagenesis 2021; 36:445-455. [PMID: 34612487 DOI: 10.1093/mutage/geab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Advanced glycation end products (AGEs) are formed via non-enzymatic reactions between amino groups of proteins and the carbonyl groups of reducing sugars. Previous studies have shown that highly glycated albumin prepared using a glucose-bovine serum albumin (Glu-BSA) model system incubated at 60°C for 6 weeks induces genotoxicity in WIL2-NS cells at 9 days of exposure measured by the cytokinesis-block micronucleus cytome (CBMNcyt) assay. However, this AGE model system is not physiologically relevant as normal body temperature is 37°C and the degree of glycation may exceed the extent of albumin modification in vivo. We hypothesised that the incubation temperature and purification method used in these studies may cause changes to the chemical profile of the glycated albumin and may influence the extent of genotoxicity observed at 3, 6 and 9 days of exposure. We prepared AGEs generated using Glu-BSA model systems incubated at 60°C or 37°C purified using trichloroacetic acid (TCA) precipitation or ultrafiltration (UF) and compared their chemical profile (glycation, oxidation, and aggregation) and genotoxicity in WIL2-NS cells using the CBMNcyt assay after 3, 6, and 9 days of exposure. The number of micronuclei (MNi) was significantly higher for cells treated with Glu-BSA incubated at 60°C and purified via TCA (12 ± 1 MNi/1000 binucleated cells) compared to Glu-BSA incubated at 37°C and purified using UF (6 ± 1 MNi/1000 binucleated cells) after 9 days (p < 0.0001). The increase in genotoxicity observed could be explained by a higher level of protein glycation, oxidation, and aggregation of the Glu-BSA model system incubated at 60°C relative to 37°C. This study highlighted that the incubation temperature, purification method and cell exposure time are important variables to consider when generating AGEs in vitro and will enable future studies to better reflect in vivo situations of albumin glycation.
Collapse
Affiliation(s)
- Emma L Jaunay
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia.,University of South Australia, Clinical and Health Sciences, Quality Use of Medicines and Pharmacy Research Centre, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Varinderpal S Dhillon
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Susan J Semple
- University of South Australia, Clinical and Health Sciences, Quality Use of Medicines and Pharmacy Research Centre, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Bradley S Simpson
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Maulik Ghetia
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Permal Deo
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Michael Fenech
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia.,Faculty of Health Sciences, University Kebangsaan Malaysia, Malaysia
| |
Collapse
|
33
|
Nirwal S, Bharathi V, Patel BK. Amyloid-like aggregation of bovine serum albumin at physiological temperature induced by cross-seeding effect of HEWL amyloid aggregates. Biophys Chem 2021; 278:106678. [PMID: 34492451 DOI: 10.1016/j.bpc.2021.106678] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 01/16/2023]
Abstract
BSA can form amyloid-like aggregates in vitro at 65 °C. Heterologous amyloid can proposedly cross-seed other protein's aggregation, however, general mechanisms and driving conditions remain to be vividly elucidated. Here, we examined if pre-formed HEWL amyloid can cross-seed the aggregation of BSA at physiological temperature, 37 °C, and whether the efficacy depends on the BSA conformation. We find that at pH 3.0, 37 °C where BSA manifests exposure of abundant hydrophobic patches, HEWL amyloid efficiently drives BSA into ThT-positive, sarkosyl-resistant, β-sheet rich amyloid-like aggregates exhibiting fibrils in TEM. On the contrary, HEWL amyloid fails to cross-seed the BSA aggregation at pH 7.0, 37 °C where BSA has largely internalized hydrophobic patches. Strikingly, human lysozyme amyloid could also cross-seed human serum albumin aggregation at pH 3.0, 37 °C. Thus, heterologous amyloid cross-seeding can help overcome the energy-barrier for aggregation of other proteins that, for any reason, may have perturbed and promiscuous structural conformation at physiological temperatures.
Collapse
Affiliation(s)
- Sadhana Nirwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Vidhya Bharathi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India.
| |
Collapse
|
34
|
Sharma S, Modi P, Sharma G, Deep S. Kinetics theories to understand the mechanism of aggregation of a protein and to design strategies for its inhibition. Biophys Chem 2021; 278:106665. [PMID: 34419715 DOI: 10.1016/j.bpc.2021.106665] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Protein aggregation phenomenon is closely related to the formation of amyloids which results in many neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis. In order to prevent and treat these diseases, a clear understanding of the mechanism of misfolding and self-assembly of peptides and proteins is very crucial. The aggregation of a protein may involve various microscopic events. Multiple simulations utilizing the solutions of the master equation have given a better understanding of the kinetic profiles involved in the presence and absence of a particular microscopic event. This review focuses on understanding the contribution of these molecular events to protein aggregation based on the analysis of kinetic profiles of aggregation. We also discuss the effect of inhibitors, which target various species of aggregation pathways, on the kinetic profile of protein aggregation. At the end of this review, some strategies for the inhibition of aggregation that can be utilized by combining the chemical kinetics approach with thermodynamics are proposed.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priya Modi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Gargi Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
35
|
Anand BG, Prajapati KP, Purohit S, Ansari M, Panigrahi A, Kaushik B, Behera RK, Kar K. Evidence of Anti-amyloid Characteristics of Plumbagin via Inhibition of Protein Aggregation and Disassembly of Protein Fibrils. Biomacromolecules 2021; 22:3692-3703. [PMID: 34375099 DOI: 10.1021/acs.biomac.1c00344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biological consequences associated with the conversion of soluble proteins into insoluble toxic amyloids are not only limited to the onset of neurodegenerative diseases but also to the potential health risks associated with supplements of protein therapeutic agents as well. Hence, finding inhibitors against amyloid formation is important, and natural product-based anti-amyloid compounds have gained much interest because of their higher efficacy and biocompatibility. Plumbagin has been identified as a potential natural product with multiple medical benefits; however, it remains largely unclear whether plumbagin can act against amyloid formation of proteins. Here, we show that plumbagin can effectively inhibit the temperature-induced amyloid aggregation of important proteins (insulin and serum albumin). Both experimental and computational data revealed that the presence of plumbagin in protein solutions, under aggregating conditions, promotes a direct protein-plumbagin interaction, which is predominantly stabilized by stronger H-bonds and hydrophobic interactions. Plumbagin-mediated retention of the native structures of proteins appears to play a crucial role in preventing their conversion into insoluble β-sheet-rich amyloid aggregates. More importantly, the addition of plumbagin into a suspension of protein fibrils triggered their spontaneous disassembly, promoting the release of soluble proteins. The results highlight that a possible synergistic effect via both the stabilization of protein structures and the restriction of the monomer recruitment at the fibril growth sites could be important for the mechanism of plumbagin's anti-aggregation effect. These findings may inspire the development of plumbagin-based formulations to benefit both the prevention and treatment of amyloid-related health complications.
Collapse
Affiliation(s)
- Bibin G Anand
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kailash P Prajapati
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sampreeta Purohit
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ayoushna Panigrahi
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bharti Kaushik
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Kumar Behera
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
36
|
Naftaly A, Izgilov R, Omari E, Benayahu D. Revealing Advanced Glycation End Products Associated Structural Changes in Serum Albumin. ACS Biomater Sci Eng 2021; 7:3179-3189. [PMID: 34143596 DOI: 10.1021/acsbiomaterials.1c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural alterations in proteins have a significant impact on their function and body physiology. Glycation via nonenzymatic forms of cross-linking leads to proteins' conformational changes, the macromolecule being recognized as a stable fibrillary structure, oligomerization, and becoming advanced glycation end products (AGEs). Protein that undergoes glycation-related modifications, namely, β-sheet enriched structural changes, are recognized as amyloid. In the current study, we characterized a single protein modified in vitro under physiological conditions to represent a protein glycation model. The glycation altered the helical conformation of serum albumin (SA) and promoted the formation of a β-sheet enriched with amyloid fibrils detected at multidimensional levels. The nanoscale resolution by spectroscopy in the presence of thioflavin-T (ThT) and 8-anilinonaphthalene-1-sulfonic acid (8-ANS) showed binding of the fibrils formed in the presence of glucose (GLU) and the carbonyl metabolites methylglyoxal (MGO) and glycolaldehyde (GAD). In the presence of MGO and GAD, the SA becomes insoluble aggregates, demonstrated by TEM microscopy and dynamic light scattering (DLS). The protein oligomerization was visualized when separated via SDS gel electrophoresis and mass photometry (MP) assays. Following the glycation, eventually, the material polymerized and became stiffer. The level of stiffness was analyzed by a rheometer that revealed a quick alteration under MGO and GAD. This is the first study to combine multiple spectroscopy assays, imaging, and rheology measurements of SA and to demonstrate a resolution on a nanoscale structural toward better resolution of the conformational changes of glycated SA, oligomerization, and protein aggregations under physiological conditions.
Collapse
Affiliation(s)
- Alex Naftaly
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Levanon St., P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Roza Izgilov
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Levanon St., P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Eman Omari
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Levanon St., P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Levanon St., P.O. Box 39040, Tel Aviv 6997801, Israel
| |
Collapse
|
37
|
Pasandideh S, Arasteh A. Evaluation of antioxidant and inhibitory properties of Citrus aurantium L. on the acetylcholinesterase activity and the production of amyloid nano-bio fibrils. Int J Biol Macromol 2021; 182:366-372. [PMID: 33848544 DOI: 10.1016/j.ijbiomac.2021.04.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022]
Abstract
The blossoms of Citrus aurantium are considered for the treatment of Alzheimer's disease because of their fragrant essential oils. The aim of this study was to investigate the antioxidant and inhibitory effects of Citrus aurantium extract on the acetylcholinesterase and production of amyloid nanobiofibrils from bovine serum albumin (BSA). The Citrus aurantium petals were harvested from Rasht city in northern IRAN. Chemical composition was investigated by GC-MS. The anti-Alzheimer's effects were evaluated by determining the antioxidant percentage by DPPH method and determining acetylcholinesterase activity. Congored spectroscopy was used for investigation of the inhibitory properties of the extract on the production of amyloid nanobiofibrils, and amyloid fibers was confirmed by electron microscopy. The most abundant ingredients were D-Glucuronic acid (9.53%), D-Limonene (5.54%), Linalool (2.06%), Daphnetin (3.73%), Phthalic acid (0.72%), Octadecenoic acid (3.98%), Hexadecanoic acid (2.13%), Pyrrolidinone (1.17%) and the highest antioxidant capacity was at 8 mg/ml (EC50: 2.36 mg/ml). The extract reduced the Acetylcholinesterase activity less than 47.04% (IC50: 42.8 mg/ml) and amyloid production less than 22% (EC50: 3.135). Citrus aurantium petals with inhibitory properties for the production of amyloid nanobiofibrils, can be used as a beneficial drugs for reducing side effects of Alzheimer's disease.
Collapse
Affiliation(s)
- Shayan Pasandideh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Amir Arasteh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| |
Collapse
|
38
|
|
39
|
Heat-induced self-assembling of BSA at the isoelectric point. Int J Biol Macromol 2021; 177:40-47. [PMID: 33607130 DOI: 10.1016/j.ijbiomac.2021.02.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 11/21/2022]
Abstract
Materials based on ordered protein aggregates have recently received a lot of attention for their application as drug carriers, due to their biocompatibility and their ability to sequester many biological fluids. Bovine serum albumin (BSA) is a good candidate for this use due to its high availability and tendency to aggregate and gel under acidic conditions. In the present work, we employ spectroscopic techniques to investigate the heat-induced BSA aggregation at the molecular scale, in the 12-84 °C temperature range, at pH = 5 where two different isoforms of the protein are stable. Samples at low and high protein concentration are examined. With the advantage of the combined use of FTIR and CD, we recognize the aggregation-prone species and the different distribution of secondary structures, conformational rearrangements and types of aggregates, of millimolar compared to micromolar BSA solutions. Further, as a new tool, we use the Maximum Entropy Method to fit the kinetic curves to investigate the distribution of kinetic constants of the complex hierarchical aggregation process. Finally, we characterize the activation energy of the initial self-assembling step to observe that the formation of both small and large aggregates is driven by the same interactions.
Collapse
|
40
|
Huyst AM, Deleu LJ, Luyckx T, Lambrecht MA, Van Camp J, Delcour JA, Van der Meeren P. Influence of hydrophobic interfaces and shear on ovalbumin amyloid-like fibril formation in oil-in-water emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Ahanger I, Parray ZA, Nasreen K, Ahmad F, Hassan MI, Islam A, Sharma A. Heparin Accelerates the Protein Aggregation via the Downhill Polymerization Mechanism: Multi-Spectroscopic Studies to Delineate the Implications on Proteinopathies. ACS OMEGA 2021; 6:2328-2339. [PMID: 33521471 PMCID: PMC7841943 DOI: 10.1021/acsomega.0c05638] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Heparin is one of the members of the glycosaminoglycan (GAG) family, which has been associated with protein aggregation diseases including Alzheimer's disease, Parkinson's disease, and prion diseases. Here, we investigate heparin-induced aggregation of bovine serum albumin (BSA) using different spectroscopic techniques [absorption, 8-anilino-1-naphthalene sulfonic acid (ANS) and thioflavin T (ThT) fluorescence binding, and far- and near-UV circular dichroism]. Kinetic measurements revealed that heparin is involved in the significant enhancement of aggregation of BSA. The outcomes showed dearth of the lag phase and a considerable change in rate constant, which provides conclusive evidence, that is, heparin-induced BSA aggregation involves the pathway of the downhill polymerization mechanism. Heparin also causes enhancement of fluorescence intensity of BSA significantly. Moreover, heparin was observed to form amyloids and amorphous aggregates of BSA which were confirmed by ThT and ANS fluorescence, respectively. Circular dichroism measurements exhibit a considerable change in the secondary and tertiary structure of the protein due to heparin. In addition, binding studies of heparin with BSA to know the cause of aggregation, isothermal titration calorimetry measurements were exploited, from which heparin was observed to promote the aggregation of BSA by virtue of electrostatic interactions between positively charged amino acid residues of protein and negatively charged groups of GAG. The nature of binding of heparin with BSA is very much apparent with an appreciable heat of interaction and is largely exothermic in nature. Moreover, the Gibbs free energy change (ΔG) is negative, which indicates spontaneous nature of binding, and the enthalpy change (ΔH) and entropy change (ΔS) are also largely negative, which suggest that the interaction is driven by hydrogen bonding.
Collapse
Affiliation(s)
- Ishfaq
Ahmad Ahanger
- Department
of Chemistry, Biochemistry and Forensic Science, Amity School of Applied
Sciences, Amity University Haryana, Gurugram 122 413, India
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Zahoor Ahmad Parray
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Khalida Nasreen
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anurag Sharma
- Department
of Chemistry, Biochemistry and Forensic Science, Amity School of Applied
Sciences, Amity University Haryana, Gurugram 122 413, India
| |
Collapse
|
42
|
Khanna S, Singh AK, Behera SP, Gupta S. Thermoresponsive BSA hydrogels with phase tunability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111590. [PMID: 33321635 DOI: 10.1016/j.msec.2020.111590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022]
Abstract
Amyloids are fibrillar structures formed due to protein aggregation or misfolding when the molecules undergo a conformational change from α-helix to β-sheet. Although this self-assembly is associated with many neurodegenerative diseases in vivo, the highly ordered amyloidic structures formed in vitro are ideal scaffolds for many bionanotechnological applications. Amyloid fibrillar networks under specific stimuli can also form stable hydrogels. We have used bovine serum albumin (BSA) as a model amyloidogenic protein to obtain thermally-induced hydrogels that display tunable sol-gel-sol transitions spanning over minutes to days. High concentrations of BSA (14-22% w/v) were heated at 65 °C for less than 3 min without any cross-linking agent to yield soft, injectable gels that were non-toxic to mammalian cells. A detailed investigation of temperature, concentration, incubation time and ionic strength on the formation and reversal of these gels was carried out using visual inspection, rheology, electron microscopy, fluorescence spectroscopy, UV-visible spectroscopy and circular dichroism spectroscopy. The optimum gelation temperature (Tg) for phase reversal of BSA gels was found to lie between 60 and 70 °C. An increase in protein concentration led to a reduction in the gelation time and increase in the gel-to-rev sol transition time. Gels heated for longer duration than their minimum gelation time yielded irreversible gels suggesting that low incubation periods were favourable for partial protein denaturation and hydrogel formation. This was supported by time-resolved secondary and tertiary structural ensemble studies. Further, the hydrogel networks demonstrated a zero-order drug release kinetics and the rev sol was found to be cytocompatible with HaCaT skin cell lines. Overall, our approach demonstrates rapid, crosslinker-free thermoresponsive BSA gelation with wide tunability and control on the time and material property, ideal for topical drug delivery applications.
Collapse
Affiliation(s)
- Shruti Khanna
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ajay Kumar Singh
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Soumya Prakash Behera
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
43
|
Mandal P, Molla AR. Solvent Perturbation of Protein Structures - A Review Study with Lectins. Protein Pept Lett 2020; 27:538-550. [PMID: 31682206 DOI: 10.2174/0929866526666191104145511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
Use of organic molecules as co-solvent with water, the ubiquitous biological solvent, to perturb the structure of proteins is popular in the research area of protein structure and folding. These organic co-solvents are believed to somehow mimic the environment near the cell membrane. Apart from that they induce non-native states which can be present in the protein folding pathway or those states also may be representative of the off pathway structures leading to amyloid formation, responsible for various fatal diseases. In this review, we shall focus on organic co-solvent induced structure perturbation of various members of lectin family. Lectins are excellent model systems for protein folding study because of its wide occurrence, diverse structure and versatile biological functions. Lectins were mainly perturbed by two fluoroalcohols - 2,2,2- trifluoroethanol and 1,1,1,3,3,3-hexafluoroisopropanol whereas glycerol, ethylene glycol and polyethylene glycols were used in some cases. Overall, all native lectins were denatured by alcohols and most of the denatured lectins have predominant helical secondary structure. But characterization of the helical states and the transition pathway for various lectins revealed diverse result.
Collapse
Affiliation(s)
- Pritha Mandal
- Department of Chemistry, Krishnagar Government College, Krishnagar, West Bengal-741101, India
| | - Anisur R Molla
- Department of Chemistry, Bidhannagar College, Salt Lake, Kolkata -700 064, India
| |
Collapse
|
44
|
Lutzweiler G, Barthes J, Charles AL, Ball V, Louis B, Geny B, Vrana NE. Improving the colonization and functions of Wharton's Jelly-derived mesenchymal stem cells by a synergetic combination of porous polyurethane scaffold with an albumin-derived hydrogel. ACTA ACUST UNITED AC 2020; 16:015005. [PMID: 33300500 DOI: 10.1088/1748-605x/abaf05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of neo-tissues assisted by artificial scaffolds is continually progressing, but the reproduction of the extracellular environment surrounding cells is quite complex. While synthetic scaffolds can support cell growth, they lack biochemical cues that can prompt cell proliferation or differentiation. In this study, Wharton's Jelly-derived mesenchymal stem cells are seeded on a polyurethane (PU) scaffold combined with a hydrogel based on bovine serum albumin (BSA). BSA hydrogel is obtained through thermal treatment. While such treatment leads to partial unfolding of the protein, we show that the extent of denaturation is small enough to maintain its bioactivity, such as protein binding. Therefore, BSA provides a suitable playground for cells inside the scaffold, allowing higher spreading, proliferation and matrix secretions. Furthermore, the poor mechanical properties of the hydrogel are compensated for by the porous PU scaffold, whose architecture is well controlled. We show that even though PU by itself can allow cell adhesion and protein secretion, cell proliferation is 3.5 times higher in the PU + BSA scaffolds as compared to pure PU after 21 d, along with the non-collagenous protein secretions (389 versus 134 μmmg -1). Conversely, the secretion of sulphated glycosaminoglycans is 12.3-fold higher in the scaffold made solely of PU. Thereby, we propose a simple approach to generating a hybrid material composed of a combination of PU and BSA hydrogel as a promising scaffold for tissue regeneration.
Collapse
Affiliation(s)
- G Lutzweiler
- Institut National de la Santé et de la Recherche Medicale, UMR_S 1121, 11 rue Humann, 67085, Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Ghosh R, Raveendranath R, Kishore N. Unraveling diverse action of triton X-100 and methimazole on lysozyme fibrillation/aggregation: Physicochemical insights. Int J Biol Macromol 2020; 167:736-745. [PMID: 33278448 DOI: 10.1016/j.ijbiomac.2020.11.210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 01/18/2023]
Abstract
Identification of functionalities responsible for prevention of fibrillation in proteins is important to design effective drugs in addressing neurodegenerative diseases. We have used nonionic surfactant triton X-100 (TX-100) and antithyroid drug methimazole (MMI) to understand mechanistic aspects of action of these molecules having different functionalities on hen egg-white lysozyme at different stages of fibrillation. After establishing the nucleation, elongation and maturation stages of fibrillation of protein at 57 °C, energetics of interactions with these molecules have been determined by using isothermal titration calorimetry. Differential scanning calorimetry has permitted assessment of thermal stability of the protein at these stages, with or without these molecular entities. The enthalpies of interaction of TX-100 and MMI with protein fibrils suggest importance of hydrogen bonding and polar interactions in their effectiveness towards prevention of fibrils. TX-100, in spite of several polar centres, is unable to prevent fibrillation, rather it promotes. MMI is able to establish polar interactions with interacting strands of the protein and disintegrate fibrils. A rigorous comparison with inhibitors reported in literature highlights importance -OH and >CO functionalities in fibrillation prevention. Even though MMI has hydrogen bonding centres, its efficiency as inhibitor falls after the inhibited lysozyme fibrils further interact and form amorphous aggregates.
Collapse
Affiliation(s)
- Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Revathy Raveendranath
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
46
|
Prasanna G, Jing P. Polyphenols redirects the self-assembly of serum albumin into hybrid nanostructures. Int J Biol Macromol 2020; 164:3932-3942. [PMID: 32898539 DOI: 10.1016/j.ijbiomac.2020.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Chronic hyperglycemia results in the formation of advanced glycation end-products (AGEs) and triggers amyloid fibril formation. Molecules designed to inhibit amyloid fibrils function by eliminating toxic oligomers or reducing fibril formation. Here, the bioactivity of polyphenols in redirecting the self-assembly of amyloid fibrils was reported through microscopic, spectroscopic and molecular docking studies. Our findings illustrate that glycation causes BSA to self-assemble into amyloid fibrils. 17 Lys residues had modified to carboxy methyl lysine (CML) but only Lys523 was probable of modifying into carboxy ethyl lysine (CEL). In contrast, only 6 Arg residues are identified to be modified to Argpyrimidine (Arg-p). A simple polyphenol baicalein (BLN) redirect the self-assembly of amyloid fibrils into off-pathway hybrid nanostructures. Circular dichroism spectroscopic studies suggested that in the presence of BLN helical conformation was favored. Molecular modeling studies suggested that hydrogen bonding and hydrophobic interaction of polyphenols preferentially at crucial amyloidogenic regions can hinder amyloid fibrillation (Phe133, Lys136, Tyr137, Ile141, Tyr160 and Arg185). Mass spectrometric results illustrated that the presence of a simple polyphenol BLN several residues are unmodified to CML, CEL or Arg-p. Together, our findings suggest that polyphenols could have a protective effect and the redirection can help alleviate the amyloid fibril formation.
Collapse
Affiliation(s)
- Govindarajan Prasanna
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
47
|
Muthu SA, Jadav HC, Srivastava S, Pissurlenkar RRS, Ahmad B. The reorganization of conformations, stability and aggregation of serum albumin isomers through the interaction of glycopeptide antibiotic teicoplanin: A thermodynamic and spectroscopy study. Int J Biol Macromol 2020; 163:66-78. [PMID: 32615213 DOI: 10.1016/j.ijbiomac.2020.06.258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 11/18/2022]
Abstract
The drugs-protein binding study is of growing importance for drug-repurposing against amyloidosis. In this work, we study the binding of teicoplanin (TPN), a glycopeptide antibiotic, with bovine serum albumin (BSA) in its neutral (N), physiological (P) and basic (B) forms, which exist at pH 6, pH 7.4 and pH 9, respectively. The binding and thermodynamic parameters of TPN binding were determined by isothermal titration calorimetry (ITC) and fluorescence quench titration methods. Two binding sites were observed for N and P forms, whereas B form showed only one binding site. ITC and molecular docking results indicated that TPN-BSA complex formation is stabilized by hydrogen bonds, salt bridges and hydrophobic interaction. The red-edge excitation shift (REES) study indicated an ordered compact and spatial arrangement of the TPN bound protein molecule. TPN was found to affect the secondary and tertiary structures of B form only. The TPN binding was observed to marginally stabilize BSA isomers. TPN was also found to inhibit BSA aggregation as monitored by Rayleigh light scattering and thioflavin T binding assay. The current in vitro study will open a new path to explore the possible use of TPN as potential drugs to treat amyloidosis.
Collapse
Affiliation(s)
- Shivani A Muthu
- Protein Assembly Laboratory (PAL), JH-Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Helly Chetan Jadav
- School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai 400098, India
| | - Sadhavi Srivastava
- School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai 400098, India; Department of Biotechnology, Central University of South Bihar, Gaya 824236, India
| | - Raghuvir R S Pissurlenkar
- Department of Pharmaceutical and Medicinal Chemistry, Goa College of Pharmacy, 18th June Road, Panaji, Goa 403001, India
| | - Basir Ahmad
- Protein Assembly Laboratory (PAL), JH-Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
48
|
Molecular Interaction of Protein-Pigment C-Phycocyanin with Bovine Serum Albumin in a Gomphosis Structure Inhibiting Amyloid Formation. Int J Mol Sci 2020; 21:ijms21218207. [PMID: 33147881 PMCID: PMC7663302 DOI: 10.3390/ijms21218207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Accumulation of amyloid fibrils in organisms accompanies many diseases. Natural extracts offer an alternative strategy to control the process with potentially fewer side effects. In this study, the inhibition of C-phycocyanin from Spirulina sp. on amyloid formation of bovine serum albumin (BSA) during a 21-day incubation was investigated using fluorescence and circular dichroism (CD), and mechanisms were explored via kinetic fitting and molecular docking. C-phycocyanin (0-50 µg/mL) hindered the amyloid formation process of BSA with increased half-lives (12.43-17.73 days) based on fluorescence intensity. A kinetic model was built and showed that the k1 decreased from 1.820 × 10-2 d-1 to 2.62 × 10-3 d-1 with the increase of C-phycocyanin, while k2 showed no changes, indicating that the inhibition of BSA fibrillation by C-phycocyanin occurred in a spontaneous process instead of self-catalyzed one. CD results show that C-phycocyanin inhibited conformational conversion (α-helices and β-sheets) of BSA from day 6 to day 18. Molecular docking suggested that C-phycocyanin may hinder BSA fibrillation by hydrogen-bonding > 6 of 27 α-helices of BSA in a gomphosis-like structure, but the unblocked BSA α-helices might follow the self-catalytic process subsequently.
Collapse
|
49
|
Ghosh R, Kishore N. Physicochemical Insights into the Role of Drug Functionality in Fibrillation Inhibition of Bovine Serum Albumin. J Phys Chem B 2020; 124:8989-9008. [DOI: 10.1021/acs.jpcb.0c06167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
50
|
Ghosh P, De P. Modulation of Amyloid Protein Fibrillation by Synthetic Polymers: Recent Advances in the Context of Neurodegenerative Diseases. ACS APPLIED BIO MATERIALS 2020; 3:6598-6625. [DOI: 10.1021/acsabm.0c01021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| |
Collapse
|