1
|
Seixas AMM, Sousa SA, Leitão JH. Antibody-Based Immunotherapies as a Tool for Tackling Multidrug-Resistant Bacterial Infections. Vaccines (Basel) 2022; 10:1789. [PMID: 36366297 PMCID: PMC9695245 DOI: 10.3390/vaccines10111789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 07/27/2023] Open
Abstract
The discovery of antimicrobials is an outstanding achievement of mankind that led to the development of modern medicine. However, increasing antimicrobial resistance observed worldwide is rendering commercially available antimicrobials ineffective. This problem results from the bacterial ability to adapt to selective pressure, leading to the development or acquisition of multiple types of resistance mechanisms that can severely affect the efficacy of antimicrobials. The misuse, over-prescription, and poor treatment adherence by patients are factors strongly aggravating this issue, with an epidemic of infections untreatable by first-line therapies occurring over decades. Alternatives are required to tackle this problem, and immunotherapies are emerging as pathogen-specific and nonresistance-generating alternatives to antimicrobials. In this work, four types of antibody formats and their potential for the development of antibody-based immunotherapies against bacteria are discussed. These antibody isotypes include conventional mammalian polyclonal antibodies that are used for the neutralization of toxins; conventional mammalian monoclonal antibodies that currently have 100 IgG mAbs approved for therapeutic use; immunoglobulin Y found in birds and an excellent source of high-quality polyclonal antibodies able to be purified noninvasively from egg yolks; and single domain antibodies (also known as nanobodies), a recently discovered antibody format (found in camelids and nurse sharks) that allows for a low-cost synthesis in microbial systems, access to hidden or hard-to-reach epitopes, and exhibits a high modularity for the development of complex structures.
Collapse
Affiliation(s)
- António M. M. Seixas
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sílvia A. Sousa
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge H. Leitão
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Raeisi H, Azimirad M, Nabavi-Rad A, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Application of recombinant antibodies for treatment of Clostridioides difficile infection: Current status and future perspective. Front Immunol 2022; 13:972930. [PMID: 36081500 PMCID: PMC9445313 DOI: 10.3389/fimmu.2022.972930] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile (C. difficile), known as the major cause of antibiotic-associated diarrhea, is regarded as one of the most common healthcare-associated bacterial infections worldwide. Due to the emergence of hypervirulent strains, development of new therapeutic methods for C. difficile infection (CDI) has become crucially important. In this context, antibodies have been introduced as valuable tools in the research and clinical environments, as far as the effectiveness of antibody therapy for CDI was reported in several clinical investigations. Hence, production of high-performance antibodies for treatment of CDI would be precious. Traditional approaches of antibody generation are based on hybridoma technology. Today, application of in vitro technologies for generating recombinant antibodies, like phage display, is considered as an appropriate alternative to hybridoma technology. These techniques can circumvent the limitations of the immune system and they can be exploited for production of antibodies against different types of biomolecules in particular active toxins. Additionally, DNA encoding antibodies is directly accessible in in vitro technologies, which enables the application of antibody engineering in order to increase their sensitivity and specificity. Here, we review the application of antibodies for CDI treatment with an emphasis on recombinant fragment antibodies. Also, this review highlights the current and future prospects of the aforementioned approaches for antibody-mediated therapy of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Pang Q, Chen Y, Mukhtar H, Xiong J, Wang X, Xu T, Hammock BD, Wang J. Camelization of a murine single-domain antibody against aflatoxin B 1 and its antigen-binding analysis. Mycotoxin Res 2022; 38:51-60. [PMID: 35023020 PMCID: PMC8754551 DOI: 10.1007/s12550-021-00433-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
Aflatoxin B1 (AFB1), a highly toxic mycotoxin, always contaminated in a variety of agricultural products. Camelid variable domain of heavy chain antibody (VHH) is a noteworthy reagent in immunoassay, owing to its excellent characteristics. Immunization of camelid animals is a straightforward strategy to produce VHHs. In this study, to avoid the dependence on the large animals, the camelized, murine antibody (cVHs) against AFB1 was prepared in vitro based on the identities between murine VH and camelid VHH and then to develop an immunoassay for AFB1. A murine anti-AFB1 VH fragment (VH-2E6) was selected for camelization through replacement of conserved hydrophobic residues in framework region 2 (FR2) (cVH-FR2), point mutation at position 103 in the FR4 region (cVH-103), and CDR3-grafted with a high AFB1-affinity VHH (cVH-Nb26). The cVH-Nb26 had a yield of 5 mg/L as refolded protein expressed from Escherichia coli and 10 mg/L expressed from Pichia pastoris. Compared with anti-AFB1 single-chain fragment variable (scFv) 2E6, cVH-Nb26 performed more than 20-fold enhancement of AFB1-binding interactions. Although the AFB1-affinity of cVH-Nb26 cannot meet the application requirement in the present form, our study provides effective strategies for preparation of camelized antibody in vitro, which could be a promising immunoreagent for AFB1 detection.
Collapse
Affiliation(s)
- Qian Pang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanhong Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hina Mukhtar
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jing Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ting Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Bruce D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Jia Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
4
|
Hanssens H, Meeus F, De Veirman K, Breckpot K, Devoogdt N. The antigen-binding moiety in the driver's seat of CARs. Med Res Rev 2022; 42:306-342. [PMID: 34028069 PMCID: PMC9292017 DOI: 10.1002/med.21818] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Immuno-oncology has been at the forefront of cancer treatment in recent decades. In particular immune checkpoint and chimeric antigen receptor (CAR)-T cell therapy have achieved spectacular results. Over the years, CAR-T cell development has followed a steady evolutionary path, focusing on increasing T cell potency and sustainability, which has given rise to different CAR generations. However, there was less focus on the mode of interaction between the CAR-T cell and the cancer cell; more specifically on the targeting moiety used in the CAR and its specific properties. Recently, the importance of optimizing this domain has been recognized and the possibilities have been exploited. Over the last 10 years-in addition to the classical scFv-based CARs-single domain CARs, natural receptor-ligand CARs, universal CARs and CARs targeting more than one antigen have emerged. In addition, the specific parameters of the targeting domain and their influence on T cell activation are being examined. In this review, we concisely present the history of CAR-T cell therapy, and then expand on various developments in the CAR ectodomain. We discuss different formats, each with their own advantages and disadvantages, as well as the developments in affinity tuning, avidity effects, epitope location, and influence of the extracellular spacer.
Collapse
Affiliation(s)
- Heleen Hanssens
- In Vivo Cellular and Molecular Imaging LaboratoryVrije Universiteit BrusselBrusselsBelgium
- Laboratory of Hematology and ImmunologyVrije Universiteit BrusselBrusselsBelgium
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Fien Meeus
- In Vivo Cellular and Molecular Imaging LaboratoryVrije Universiteit BrusselBrusselsBelgium
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Kim De Veirman
- Laboratory of Hematology and ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging LaboratoryVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
5
|
Bélanger K, Tanha J. High-efficacy, high-manufacturability human VH domain antibody therapeutics from transgenic sources. Protein Eng Des Sel 2021; 34:6276122. [PMID: 33991089 DOI: 10.1093/protein/gzab012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 11/14/2022] Open
Abstract
Interest in single-domain antibodies (sdAbs) stems from their unique structural/pronounced, hence therapeutically desirable, features. From the outset-as therapeutic modalities-human antibody heavy chain variable domains (VHs) attracted a particular attention compared with 'naturally-occurring' camelid and shark heavy-chain-only antibody variable domains (VHHs and VNARs, respectively) due to their perceived lack of immunogenicity. However, they have not quite lived up to their initial promise as the VH hits, primarily mined from synthetic VH phage display libraries, have too often been plagued with aggregation tendencies, low solubility and low affinity. Largely unexplored, synthetic camelized human VH display libraries appeared to have remediated the aggregation problem, but the low affinity of the VH hits still persisted, requiring undertaking additional, laborious affinity maturation steps to render VHs therapeutically feasible. A wholesome resolution has recently emerged with the development of non-canonical transgenic rodent antibody discovery platforms that appear to facilely and profusely generate high affinity, high solubility and aggregation-resistant human VHs.
Collapse
Affiliation(s)
- Kasandra Bélanger
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada.,Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
6
|
Birchenough HL, Nivia HDR, Jowitt TA. Interaction standards for biophysics: anti-lysozyme nanobodies. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:333-343. [PMID: 33839878 PMCID: PMC8189969 DOI: 10.1007/s00249-021-01524-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
There is a significant demand in the molecular biophysics community for robust standard samples. They are required by researchers, instrument developers and pharmaceutical companies for instrumental quality control, methodological development and in the design and validation of devices, diagnostics and instrumentation. To-date there has been no clear consensus on the need and type of standards that should be available and different research groups and instrument manufacturers use different standard systems which significantly hinders comparative analysis. One of the major objectives of the Association of Resources for Biophysical Research in Europe (ARBRE) is to establish a common set of standard samples that can be used throughout the biophysics community and instrument developers. A survey was circulated among ARBRE members to ascertain the requirements of laboratories when using standard systems and the results are documented in this article. In summary, the major requirements are protein samples which are cheap, relatively small, stable and have different binding strengths. We have developed a panel of sdAb’s or ‘nanobodies’ against hen-egg white lysozyme with different binding strengths and suitable stability characteristics. Here we show the results of the survey, the selection procedure, validation and final selection of a panel of nanobody interaction standards.
Collapse
Affiliation(s)
- Holly L Birchenough
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology Medicine and Health, University of Manchester, Manchester, England
| | - Hilda D Ruiz Nivia
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology Medicine and Health, University of Manchester, Manchester, England
| | - Thomas A Jowitt
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology Medicine and Health, University of Manchester, Manchester, England.
| |
Collapse
|
7
|
Rossotti MA, Bélanger K, Henry KA, Tanha J. Immunogenicity and humanization of single‐domain antibodies. FEBS J 2021; 289:4304-4327. [DOI: 10.1111/febs.15809] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Martin A. Rossotti
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kasandra Bélanger
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kevin A. Henry
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| | - Jamshid Tanha
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| |
Collapse
|
8
|
Imaculada de Queiroz Rodrigues M, Ohana de Lima Martins J, Silva PGDB, Carlos Ferreira Júnior AE, Quezado Lima Verde ME, Sousa FB, Lima Mota MR, Negreiros Nunes Alves AP. Tocilizumab, a Potent Interleukin-6 Receptor Inhibitor, Decreases Bone Resorption and Increases the Rate of Bacterial Infection After Tooth Extraction in Rats. J Oral Maxillofac Surg 2020; 78:2138-2146. [PMID: 32919953 PMCID: PMC7428756 DOI: 10.1016/j.joms.2020.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Our objective was to evaluate the influence of pretreatment with tocilizumab (TCZ) in bone healing after tooth extraction in rats. METHODS Wistar male rats were equally divided into sham (ie, nonoperated), saline (both treated with 0.1 ml/kg saline), and six TCZ groups treated with 1, 2, 4, 8, 16, and 32 mg/kg TCZ (TCZ1 to TCZ32, respectively). Twenty-four hours after administration of vehicle or TCZ, exodontia of the first lower left molar was performed, and the animals were euthanized three days later for hematological analysis and organ (liver, spleen, and kidney mass indexes, and histological evaluation), gingiva (myeloperoxidase [MPO] assay), and mandible (radiographic, histomorphometric analysis, and IL-6 immunostaining) evaluation. Analysis of variance/Bonferroni test (statistical significance, P < .05) was performed using GraphPad Prism version 5.0 (GraphPad Inc, San Diego, CA, USA). RESULTS There was no difference in radiographic results; however, leukopenia (P = .039) and neutropenia (P < .001) were statistically significant in the TCZ16 and TCZ32 groups. Weight loss (P < .001) and reduced liver index (P = .001) were significantly dose-dependent; however, no histological alterations were observed in the other organs. Osteoclast counts were reduced in groups TCZ4 to TCZ32 (P < .001), and IL-6 immunostaining increased in the TCZ8 to TCZ32 groups (P < .001). Alveolar infection rates increased in groups TCZ4 to TCZ32 (P < .001), and MPO had a biphasic response, exhibiting a reduction in groups TCZ2 and TCZ4, and an increase in group TCZ32 (P = .004). CONCLUSION TCZ-induced immunosuppression led to a reduction in osteoclast function, an increase in alveolar infection, and compensatory neutrophil infiltration.
Collapse
Affiliation(s)
| | | | - Paulo Goberlânio de Barros Silva
- Professor, Laboratory of Bucodental Pathology, Federal University of Ceará, Fortaleza, Ceará, Brazil; Professor, Unichristus, Department of Dentistry, Fortaleza, Ceará, Brazil.
| | | | - Maria Elisa Quezado Lima Verde
- PhD Student, Laboratory of Bucodental Pathology, Federal University of Ceará, Fortaleza, Ceará, Brazil; PhD Student, Unichristus, Department of Dentistry, Fortaleza, Ceará, Brazil
| | - Fabrício Bitú Sousa
- Professor, Laboratory of Bucodental Pathology, Federal University of Ceará, Fortaleza, Ceará, Brazil; Professor, Unichristus, Department of Dentistry, Fortaleza, Ceará, Brazil
| | - Mário Rogério Lima Mota
- Professor, Laboratory of Bucodental Pathology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | |
Collapse
|
9
|
Sawant MS, Streu CN, Wu L, Tessier PM. Toward Drug-Like Multispecific Antibodies by Design. Int J Mol Sci 2020; 21:E7496. [PMID: 33053650 PMCID: PMC7589779 DOI: 10.3390/ijms21207496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The success of antibody therapeutics is strongly influenced by their multifunctional nature that couples antigen recognition mediated by their variable regions with effector functions and half-life extension mediated by a subset of their constant regions. Nevertheless, the monospecific IgG format is not optimal for many therapeutic applications, and this has led to the design of a vast number of unique multispecific antibody formats that enable targeting of multiple antigens or multiple epitopes on the same antigen. Despite the diversity of these formats, a common challenge in generating multispecific antibodies is that they display suboptimal physical and chemical properties relative to conventional IgGs and are more difficult to develop into therapeutics. Here we review advances in the design and engineering of multispecific antibodies with drug-like properties, including favorable stability, solubility, viscosity, specificity and pharmacokinetic properties. We also highlight emerging experimental and computational methods for improving the next generation of multispecific antibodies, as well as their constituent antibody fragments, with natural IgG-like properties. Finally, we identify several outstanding challenges that need to be addressed to increase the success of multispecific antibodies in the clinic.
Collapse
Affiliation(s)
- Manali S. Sawant
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Streu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemistry, Albion College, Albion, MI 49224, USA
| | - Lina Wu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Bélanger K, Iqbal U, Tanha J, MacKenzie R, Moreno M, Stanimirovic D. Single-Domain Antibodies as Therapeutic and Imaging Agents for the Treatment of CNS Diseases. Antibodies (Basel) 2019; 8:antib8020027. [PMID: 31544833 PMCID: PMC6640712 DOI: 10.3390/antib8020027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023] Open
Abstract
Antibodies have become one of the most successful therapeutics for a number of oncology and inflammatory diseases. So far, central nervous system (CNS) indications have missed out on the antibody revolution, while they remain 'hidden' behind several hard to breach barriers. Among the various antibody modalities, single-domain antibodies (sdAbs) may hold the 'key' to unlocking the access of antibody therapies to CNS diseases. The unique structural features of sdAbs make them the smallest monomeric antibody fragments suitable for molecular targeting. These features are of particular importance when developing antibodies as modular building blocks for engineering CNS-targeting therapeutics and imaging agents. In this review, we first introduce the characteristic properties of sdAbs compared to traditional antibodies. We then present recent advances in the development of sdAbs as potential therapeutics across brain barriers, including their use for the delivery of biologics across the blood-brain and blood-cerebrospinal fluid (CSF) barriers, treatment of neurodegenerative diseases and molecular imaging of brain targets.
Collapse
Affiliation(s)
- Kasandra Bélanger
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Umar Iqbal
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Maria Moreno
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| |
Collapse
|
11
|
Bannas P, Koch-Nolte F. Perspectives for the Development of CD38-Specific Heavy Chain Antibodies as Therapeutics for Multiple Myeloma. Front Immunol 2018; 9:2559. [PMID: 30459772 PMCID: PMC6232533 DOI: 10.3389/fimmu.2018.02559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/17/2018] [Indexed: 01/12/2023] Open
Abstract
The NAD+-metabolizing ectoenzyme CD38 is an established therapeutic target in multiple myeloma. The CD38-specific monoclonal antibodies daratumumab and isatuximab show promising results in the clinic. Nanobodies correspond to the single variable domains (VHH) derived from heavy chain antibodies that naturally occur in camelids. VHHs display high solubility and excellent tissue penetration in vivo. We recently generated a panel of CD38-specific nanobodies, some of which block or enhance the enzymatic activity of CD38. Fusion of such a nanobody to the hinge, CH2, and CH3 domains of human IgG1 generates a chimeric llama/human hcAb of about half the size of a conventional moAb (75 vs. 150 kDa). Similarly, a fully human CD38-specific hcAb can be generated using a CD38-specific human VH3 instead of a CD38-specific camelid nanobody. Here we discuss the advantages and disadvantages of CD38-specific hcAbs vs. conventional moAbs and provide an outlook for the potential use of CD38-specific hcAbs as novel therapeutics for multiple myeloma.
Collapse
Affiliation(s)
- Peter Bannas
- Deptartment of Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology University, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Abstract
Bispecific antibodies have moved from being an academic curiosity with therapeutic promise to reality, with two molecules being currently commercialized (Hemlibra® and Blincyto®) and many more in clinical trials. The success of bispecific antibodies is mainly due to the continuously growing number of mechanisms of actions (MOA) they enable that are not accessible to monoclonal antibodies. One of the earliest MOA of bispecific antibodies and currently the one with the largest number of clinical trials is the redirecting of the cytotoxic activity of T-cells for oncology applications, now extending its use in infective diseases. The use of bispecific antibodies for crossing the blood-brain barrier is another important application because of its potential to advance the therapeutic options for neurological diseases. Another noteworthy application due to its growing trend is enabling a more tissue-specific delivery or activity of antibodies. The different molecular solutions to the initial hurdles that limited the development of bispecific antibodies have led to the current diverse set of bispecific or multispecific antibody formats that can be grouped into three main categories: IgG-like formats, antibody fragment-based formats, or appended IgG formats. The expanded applications of bispecific antibodies come at the price of additional challenges for clinical development. The rising complexity in their structure may increase the risk of immunogenicity and the multiple antigen specificity complicates the selection of relevant species for safety assessment.
Collapse
Affiliation(s)
- Bushra Husain
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Diego Ellerman
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
13
|
Wu X, Demarest SJ. Building blocks for bispecific and trispecific antibodies. Methods 2018; 154:3-9. [PMID: 30172007 DOI: 10.1016/j.ymeth.2018.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies (BsAbs), which target two antigens or epitopes, incorporate the specificities and properties of two distinct monoclonal antibodies (mAbs) into a single molecule. As such, BsAbs can elicit synergistic activities and provide the capacity for enhanced therapeutic efficacy and/or safety compared to what can be achieved with conventional monospecific IgGs. There are many building block formats to generate BsAbs and Trispecific antibodies (TsAbs) based on combining the antigen recognition domains of monoclonal antibodies (mAbs). This review describes the many and varied antibody-based building blocks used to achieve multivalency and multispecificity. These diverse building blocks provide opportunities to tailor the design of BsAbs and TsAbs to match the desired applications.
Collapse
Affiliation(s)
- Xiufeng Wu
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States.
| | - Stephen J Demarest
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States
| |
Collapse
|
14
|
Kato T, Hasegawa M, Yamamoto T, Miyazaki T, Suzuki R, Wakita T, Suzuki T, Park EY. Expression of a functional intrabody against hepatitis C virus core protein in Escherichia coli and silkworm pupae. Protein Expr Purif 2018; 150:61-66. [PMID: 29778543 DOI: 10.1016/j.pep.2018.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 11/27/2022]
Abstract
It has been shown that the single-domain intrabody 2H9-L against the hepatitis C virus (HCV) capsid (core) protein inhibits the viral propagation and NF-κB promoter activity induced by the HCV core. In this study, 2H9-L fused with the FLAG tag sequence was expressed in both Escherichia coli and silkworm pupae and then purified. In addition, the full-length and its C terminal deletions of the HCV core protein, i.e., 1-123 amino acid residues (C123), 1-152 amino acid residues (C152), 1-177 amino acid residues (C177) and 1-191 amino acid residues (C191), were expressed as fusion proteins with a 6 × His tag at their N-terminus in E. coli and then purified. Approximately 175 and 132 μg of the intrabody were purified from 100 ml of E. coli culture and 10 silkworm pupae, respectively, by affinity chromatography. The C123, C152, C177 and C191 HCV core protein variants were purified to approximately 152, 127, 103 and 155 μg, respectively, from 100 ml of E. coli culture. An ELISA in which the intrabodies were immobilized revealed that the intrabodies purified from both hosts were bound to all HCV core protein variants. However, their binding to the C191 appeared to be weak compared to their bindings to the other HCV core protein variants. When C152 was immobilized in the ELISA, the binding of each intrabody to the core protein was also observed. These purified intrabodies can be used in biochemical analyses of the inhibitory mechanism of HCV propagation and as protein interference reagents, thus providing a potential pathway to developing a new type of antiviral drug.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Applied Biological Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Moeko Hasegawa
- Department of Applied Biological Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Takeshi Yamamoto
- Department of Applied Biological Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Takatsugu Miyazaki
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Applied Biological Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Applied Biological Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
15
|
Verdino P, Atwell S, Demarest SJ. Emerging trends in bispecific antibody and scaffold protein therapeutics. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Henry KA, Tanha J. Performance evaluation of phage-displayed synthetic human single-domain antibody libraries: A retrospective analysis. J Immunol Methods 2018; 456:81-86. [PMID: 29462605 DOI: 10.1016/j.jim.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/25/2018] [Accepted: 02/15/2018] [Indexed: 02/06/2023]
Abstract
Fully human synthetic single-domain antibodies (sdAbs) are desirable therapeutic molecules but their development is a considerable challenge. Here, using a retrospective analysis of in-house historical data, we examined the parameters that impact the outcome of screening phage-displayed synthetic human sdAb libraries to discover antigen-specific binders. We found no evidence for a differential effect of domain type (VH or VL), library randomization strategy, incorporation of a stabilizing disulfide linkage or sdAb display format (monovalent vs. multivalent) on the probability of obtaining any antigen-binding human sdAbs, instead finding that the success of library screens was primarily related to properties of target antigens, especially molecular mass. The solubility and binding affinity of sdAbs isolated from successful screens depended both on properties of the sdAb libraries (primarily domain type) and the target antigens. Taking attrition of sdAbs with major manufacturability concerns (aggregation; low expression) and sdAbs that do not recognize native cell-surface antigens as independent probabilities, we calculate the overall likelihood of obtaining ≥1 antigen-binding human sdAb from a single library-target screen as ~24%. Successful library-target screens should be expected to yield ~1.3 human sdAbs on average, each with average binding affinity of ~2 μM.
Collapse
Affiliation(s)
- Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada; School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
17
|
Henry KA, Kim DY, Kandalaft H, Lowden MJ, Yang Q, Schrag JD, Hussack G, MacKenzie CR, Tanha J. Stability-Diversity Tradeoffs Impose Fundamental Constraints on Selection of Synthetic Human V H/V L Single-Domain Antibodies from In Vitro Display Libraries. Front Immunol 2017; 8:1759. [PMID: 29375542 PMCID: PMC5763143 DOI: 10.3389/fimmu.2017.01759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Human autonomous VH/VL single-domain antibodies (sdAbs) are attractive therapeutic molecules, but often suffer from suboptimal stability, solubility and affinity for cognate antigens. Most commonly, human sdAbs have been isolated from in vitro display libraries constructed via synthetic randomization of rearranged VH/VL domains. Here, we describe the design and characterization of three novel human VH/VL sdAb libraries through a process of: (i) exhaustive biophysical characterization of 20 potential VH/VL sdAb library scaffolds, including assessment of expression yield, aggregation resistance, thermostability and tolerance to complementarity-determining region (CDR) substitutions; (ii) in vitro randomization of the CDRs of three VH/VL sdAb scaffolds, with tailored amino acid representation designed to promote solubility and expressibility; and (iii) systematic benchmarking of the three VH/VL libraries by panning against five model antigens. We isolated ≥1 antigen-specific human sdAb against four of five targets (13 VHs and 7 VLs in total); these were predominantly monomeric, had antigen-binding affinities ranging from 5 nM to 12 µM (average: 2–3 µM), but had highly variable expression yields (range: 0.1–19 mg/L). Despite our efforts to identify the most stable VH/VL scaffolds, selection of antigen-specific binders from these libraries was unpredictable (overall success rate for all library-target screens: ~53%) with a high attrition rate of sdAbs exhibiting false positive binding by ELISA. By analyzing VH/VL sdAb library sequence composition following selection for monomeric antibody expression (binding to protein A/L followed by amplification in bacterial cells), we found that some VH/VL sdAbs had marked growth advantages over others, and that the amino acid composition of the CDRs of this set of sdAbs was dramatically restricted (bias toward Asp and His and away from aromatic and hydrophobic residues). Thus, CDR sequence clearly dramatically impacts the stability of human autonomous VH/VL immunoglobulin domain folds, and sequence-stability tradeoffs must be taken into account during the design of such libraries.
Collapse
Affiliation(s)
- Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Dae Young Kim
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Hiba Kandalaft
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Michael J Lowden
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Qingling Yang
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Joseph D Schrag
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - C Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.,School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.,School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Xiong Y, Ford NR, Hecht KA, Roesijadi G, Squier TC. Hydrogel Tethering Enhances Interdomain Stabilization of Single-Chain Antibodies. Bioconjug Chem 2017; 28:2804-2814. [DOI: 10.1021/acs.bioconjchem.7b00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yijia Xiong
- Department
of Basic Medical Sciences, Western University of Health Sciences, Lebanon, Oregon 97355, United States
| | - Nicole R. Ford
- Marine
Biotechnology, Pacific Northwest National Laboratory, Sequim, Washington 98382, United States
| | - Karen A. Hecht
- Marine
Biotechnology, Pacific Northwest National Laboratory, Sequim, Washington 98382, United States
| | - Guritno Roesijadi
- Marine
Biotechnology, Pacific Northwest National Laboratory, Sequim, Washington 98382, United States
- Department
of Microbiology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Thomas C. Squier
- Department
of Basic Medical Sciences, Western University of Health Sciences, Lebanon, Oregon 97355, United States
| |
Collapse
|
19
|
Henry KA, Kandalaft H, Lowden MJ, Rossotti MA, van Faassen H, Hussack G, Durocher Y, Kim DY, Tanha J. A disulfide-stabilized human V L single-domain antibody library is a source of soluble and highly thermostable binders. Mol Immunol 2017; 90:190-196. [PMID: 28820969 DOI: 10.1016/j.molimm.2017.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022]
Abstract
We have previously shown that incorporation of a second intradomain disulfide linkage into camelid VHH and human VH/VL single-domain antibodies confers increased thermostability. Here, we explored the effects of introducing an additional disulfide linkage, formed between Cys48 and Cys64 (Kabat numbering), into a phage-displayed synthetic human VL library. In comparison to an identical library bearing only the highly conserved Cys23-Cys88 disulfide linkage, the disulfide-stabilized VL library tolerated a similar degree of randomization but retained a higher level of functional diversity after selection with protein L. Both libraries yielded soluble, antigen-specific VLs that recognized a model antigen (maltose-binding protein) with similar affinities, in the micromolar range; however, the disulfide-stabilized antigen-specific VLs were much more thermostable (average ΔTm ∼10°C) than non-disulfide-stabilized VLs. This work provides proof-of-concept for building synthetic antibody libraries using disulfide-constrained immunoglobulin domains, thus avoiding pitfalls of post-hoc disulfide linkage engineering such as impaired antigen binding and reduced expression yield.
Collapse
Affiliation(s)
- Kevin A Henry
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Hiba Kandalaft
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Michael J Lowden
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Henk van Faassen
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Greg Hussack
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Yves Durocher
- Human Health Therapeutics Portfolio, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada
| | - Dae Young Kim
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Portfolio, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada; School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
20
|
Goldman ER, Liu JL, Zabetakis D, Anderson GP. Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview. Front Immunol 2017; 8:865. [PMID: 28791022 PMCID: PMC5524736 DOI: 10.3389/fimmu.2017.00865] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/07/2017] [Indexed: 11/13/2022] Open
Abstract
Single domain antibodies (sdAbs) are gaining a reputation as superior recognition elements as they combine the advantages of the specificity and affinity found in conventional antibodies with high stability and solubility. Melting temperatures (Tms) of sdAbs cover a wide range from below 50 to over 80°C. Many sdAbs have been engineered to increase their Tm, making them stable until exposed to extreme temperatures. SdAbs derived from the variable heavy chains of camelid and shark heavy chain-only antibodies are termed VHH and VNAR, respectively, and generally exhibit some ability to refold and bind antigen after heat denaturation. This ability to refold varies from 0 to 100% and is a property dependent on both intrinsic factors of the sdAb and extrinsic conditions such as the sample buffer ionic strength, pH, and sdAb concentration. SdAbs have also been engineered to increase their solubility and refolding ability, which enable them to function even after exposure to temperatures that exceed their melting point. In addition, efforts to improve their stability at extreme pH and in the presence of chemical denaturants or proteases have been undertaken. Multiple routes have been employed to engineer sdAbs with these enhanced stabilities. The methods utilized to achieve these goals include grafting complementarity-determining regions onto stable frameworks, introduction of non-canonical disulfide bonds, random mutagenesis combined with stringent selection, point mutations such as inclusion of negative charges, and genetic fusions. Increases of up to 20°C have been realized, pushing the Tm of some sdAbs to over 90°C. Herein, we present an overview of the work done to stabilize sdAbs derived from camelids and sharks. Utilizing these various strategies sdAbs have been stabilized without significantly compromising their affinity, thereby providing superior reagents for detection, diagnostic, and therapeutic applications.
Collapse
Affiliation(s)
- Ellen R Goldman
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Jinny L Liu
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Dan Zabetakis
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - George P Anderson
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
21
|
Krah S, Schröter C, Eller C, Rhiel L, Rasche N, Beck J, Sellmann C, Günther R, Toleikis L, Hock B, Kolmar H, Becker S. Generation of human bispecific common light chain antibodies by combining animal immunization and yeast display. Protein Eng Des Sel 2017; 30:291-301. [PMID: 28062646 DOI: 10.1093/protein/gzw077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/14/2016] [Indexed: 01/12/2023] Open
Abstract
Bispecific antibodies (bsAbs) pave the way for novel therapeutic modes of action along with potential benefits in several clinical applications. However, their generation remains challenging due to the necessity of correct pairings of two different heavy and light chains and related manufacturability issues. We describe a generic approach for the generation of fully human IgG-like bsAbs. For this, heavy chain repertoires from immunized transgenic rats were combined with either a randomly chosen common light chain or a light chain of an existing therapeutic antibody and screened for binders against tumor-related targets CEACAM5 and CEACAM6 by yeast surface display. bsAbs with subnanomolar affinities were identified, wherein each separate binding arm mediated specific binding to the respective antigen. Altogether, the described strategy represents a combination of in vivo immunization with an in vitro selection method, which allows for the integration of existing therapeutic antibodies into a bispecific format.
Collapse
Affiliation(s)
- Simon Krah
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Christian Schröter
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Carla Eller
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Laura Rhiel
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Nicolas Rasche
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Jan Beck
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Carolin Sellmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Ralf Günther
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Björn Hock
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany
| |
Collapse
|
22
|
CD44v6-Targeted Imaging of Head and Neck Squamous Cell Carcinoma: Antibody-Based Approaches. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:2709547. [PMID: 29097914 PMCID: PMC5612744 DOI: 10.1155/2017/2709547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/23/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common and severe cancer with low survival rate in advanced stages. Noninvasive imaging of prognostic and therapeutic biomarkers could provide valuable information for planning and monitoring of the different therapy options. Thus, there is a major interest in development of new tracers towards cancer-specific molecular targets to improve diagnostic imaging and treatment. CD44v6, an oncogenic variant of the cell surface molecule CD44, is a promising molecular target since it exhibits a unique expression pattern in HNSCC and is associated with drug- and radio-resistance. In this review we summarize results from preclinical and clinical investigations of radiolabeled anti-CD44v6 antibody-based tracers: full-length antibodies, Fab, F(ab′)2 fragments, and scFvs with particular focus on the engineering of various antibody formats and choice of radiolabel for the use as molecular imaging agents in HNSCC. We conclude that the current evidence points to CD44v6 imaging being a promising approach for providing more specific and sensitive diagnostic tools, leading to customized treatment decisions and functional diagnosis. Improved imaging tools hold promise to enable more effective treatment for head and neck cancer patients.
Collapse
|
23
|
Péchiné S, Janoir C, Collignon A. Emerging monoclonal antibodies against Clostridium difficile infection. Expert Opin Biol Ther 2017; 17:415-427. [PMID: 28274145 DOI: 10.1080/14712598.2017.1300655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Clostridium difficile infections are characterized by a high recurrence rate despite antibiotic treatments and there is an urgent need to develop new treatments such as fecal transplantation and immonotherapy. Besides active immunotherapy with vaccines, passive immunotherapy has shown promise, especially with monoclonal antibodies. Areas covered: Herein, the authors review the different assays performed with monoclonal antibodies against C. difficile toxins and surface proteins to treat or prevent primary or recurrent episodes of C. difficile infection in animal models and in clinical trials as well. Notably, the authors lay emphasis on the phase III clinical trial (MODIFY II), which allowed bezlotoxumab to be approved by the Food and Drug Administration and the European Medicines Agency. They also review new strategies for producing single domain antibodies and nanobodies against C. difficile and new approaches to deliver them in the digestive tract. Expert opinion: Only two human Mabs against TcdA and TcdB have been tested alone or in combination in clinical trials. However, many animal model studies have provided rationale for the use of Mabs and nanobodies in C. difficile infection and pave the way for further clinical investigation.
Collapse
Affiliation(s)
- Séverine Péchiné
- a EA4043 Faculté de Pharmacie , Univ Paris-Sud, Université Paris-Saclay , Chatenay-Malabry , France
| | - Claire Janoir
- a EA4043 Faculté de Pharmacie , Univ Paris-Sud, Université Paris-Saclay , Chatenay-Malabry , France
| | - Anne Collignon
- a EA4043 Faculté de Pharmacie , Univ Paris-Sud, Université Paris-Saclay , Chatenay-Malabry , France
| |
Collapse
|
24
|
Molecular dynamics simulations and docking enable to explore the biophysical factors controlling the yields of engineered nanobodies. Sci Rep 2016; 6:34869. [PMID: 27721441 PMCID: PMC5056509 DOI: 10.1038/srep34869] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/20/2016] [Indexed: 02/08/2023] Open
Abstract
Nanobodies (VHHs) have proved to be valuable substitutes of conventional antibodies for molecular recognition. Their small size represents a precious advantage for rational mutagenesis based on modelling. Here we address the problem of predicting how Camelidae nanobody sequences can tolerate mutations by developing a simulation protocol based on all-atom molecular dynamics and whole-molecule docking. The method was tested on two sets of nanobodies characterized experimentally for their biophysical features. One set contained point mutations introduced to humanize a wild type sequence, in the second the CDRs were swapped between single-domain frameworks with Camelidae and human hallmarks. The method resulted in accurate scoring approaches to predict experimental yields and enabled to identify the structural modifications induced by mutations. This work is a promising tool for the in silico development of single-domain antibodies and opens the opportunity to customize single functional domains of larger macromolecules.
Collapse
|
25
|
Abstract
Clostridium difficile continues to be one of the most prevalent hospital-acquired bacterial infections in the developed world, despite the recent introduction of a novel and effective antibiotic agent (fidaxomicin). Alternative approaches under investigation to combat the anaerobic Gram-positive bacteria include fecal transplantation therapy, vaccines, and antibody-based immunotherapies. In this review, we catalog the recent advances in antibody-based approaches under development and in the clinic for the treatment of C. difficile infection. By and large, inhibitory antibodies that recognize the primary C. difficile virulence factors, toxin A and toxin B, are the most popular passive immunotherapies under investigation. We provide a detailed summary of the toxin epitopes recognized by various antitoxin antibodies and discuss general trends on toxin inhibition efficacy. In addition, antibodies to other C. difficile targets, such as surface-layer proteins, binary toxin, motility factors, and adherence and colonization factors, are introduced in this review.
Collapse
Affiliation(s)
- Greg Hussack
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa
| | - Jamshid Tanha
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa; School of Environmental Sciences, University of Guelph, Guelph; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
26
|
Aβ-Immunotherapeutic strategies: a wide range of approaches for Alzheimer's disease treatment. Expert Rev Mol Med 2016; 18:e13. [PMID: 27357999 DOI: 10.1017/erm.2016.11] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current therapies to treat Alzheimer's disease (AD) are focused on ameliorating symptoms instead of treating the underlying causes of AD. The accumulation of amyloid β (Aβ) oligomers, whether by an increase in production or by a decrease in clearance, has been described as the seed that initiates the pathological cascade in AD. Developing therapies to target these species is a vital step in improving AD treatment. Aβ-immunotherapy, especially passive immunotherapy, is a promising approach to reduce the Aβ burden. Up to now, several monoclonal antibodies (mAbs) have been tested in clinical trials on humans, but none of them have passed Phase III. In all likelihood, these trials failed mainly because patients with mild-to-moderate AD were recruited, and thus treatment may have been too late to be effective. Therefore, many ongoing clinical trials are being conducted in patients at the prodromal stage. New structures based on antibody fragments have been engineered intending to improve efficacy and safety. This review presents the properties of this variety of developing treatments and provides a perspective on state-of-the-art of passive Aβ-immunotherapy in AD.
Collapse
|
27
|
Xiong Y, Ford NR, Hecht KA, Roesijadi G, Squier TC. Dynamic Stabilization of Expressed Proteins in Engineered Diatom Biosilica Matrices. Bioconjug Chem 2016; 27:1205-9. [PMID: 27139003 DOI: 10.1021/acs.bioconjchem.6b00165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Self-assembly of recombinant proteins within the biosilica of living diatoms represents a means to construct functional materials in a reproducible and scalable manner that will enable applications that harness the inherent specificities of proteins to sense and respond to environmental cues. Here we describe the use of a silaffin-derived lysine-rich 39-amino-acid targeting sequence (Sil3T8) that directs a single chain fragment variable (scFv) antibody or an enhanced green fluorescent protein (EGFP) to assemble within the biosilica frustule, resulting in abundance of >200 000 proteins per frustule. Using either a fluorescent ligand bound to the scFv or the intrinsic fluorescence of EGFP, we monitored protein conformational dynamics, accessibility to external quenchers, binding affinity, and conformational stability. Like proteins in solution, proteins within isolated frustules undergo isotropic rotational motion, but with 2-fold increases in rotational correlation times that are indicative of weak macromolecular associations within the biosilica. Solvent accessibilities and high-affinity (pM) binding are comparable to those in solution. In contrast to solution conditions, scFv antibodies within the biosilica matrix retain their binding affinity in the presence of chaotropic agents (i.e., 8 M urea). Together, these results argue that dramatic increases in protein conformational stability within the biosilica matrices arise through molecular crowding, acting to retain native protein folds and associated functionality with the potential to allow the utility of engineered proteins under a range of harsh environmental conditions associated with environmental sensing and industrial catalytic transformations.
Collapse
Affiliation(s)
- Yijia Xiong
- Department of Basic Medical Sciences, Western University of Health Sciences , Lebanon, Oregon 97355, United States
| | - Nicole R Ford
- Marine Biotechnology Group, Pacific Northwest National Laboratory , Sequim, Washington 98382, United States
| | - Karen A Hecht
- Marine Biotechnology Group, Pacific Northwest National Laboratory , Sequim, Washington 98382, United States
| | - Guritno Roesijadi
- Marine Biotechnology Group, Pacific Northwest National Laboratory , Sequim, Washington 98382, United States.,Department of Microbiology, Oregon State University , Corvallis, Oregon 97331, United States
| | - Thomas C Squier
- Department of Basic Medical Sciences, Western University of Health Sciences , Lebanon, Oregon 97355, United States
| |
Collapse
|
28
|
Siegemund M, Seifert O, Zarani M, Džinić T, De Leo V, Göttsch D, Münkel S, Hutt M, Pfizenmaier K, Kontermann RE. An optimized antibody-single-chain TRAIL fusion protein for cancer therapy. MAbs 2016; 8:879-91. [PMID: 27064440 DOI: 10.1080/19420862.2016.1172163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Fusion proteins combining oligomeric assemblies of a genetically obtained single-chain (sc) variant of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with antibodies directed against tumor-associated antigens represent a promising strategy to overcome the limited therapeutic activity of conventional soluble TRAIL. To further improve the scTRAIL module in order to obtain a robust, thermostable molecule of high activity, we performed a comprehensive analysis of the minimal TNF homology domain (THD) and optimized linkers between the 3 TRAIL subunits constituting a scTRAIL. Through a stepwise mutagenesis of the N- and C-terminal region and the joining linker sequences, we generated bioactive scTRAIL molecules comprising a covalent linkage of the C-terminal Val280 and the N-terminal position 122 by only 2 amino acid residues in combination with conservative exchanges at positions 122 and 279. The increased thermal stability and solubility of such optimized scTRAIL molecules translated into increased bioactivity in the diabody-scTRAIL (Db-scTRAIL) format, exemplified here for an epidermal growth factor receptor-specific Db-scTRAIL. Additional modifications within the diabody linkers resulted in a fusion protein exerting high, target-dependent apoptosis induction in tumor cell lines in vitro and potent antitumor activity in vivo. Our results illustrate that protein engineering of scTRAIL and associated peptide linkers provides a promising strategy to develop antibody-scTRAIL fusion proteins as effective antitumor therapeutics.
Collapse
Affiliation(s)
- Martin Siegemund
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Oliver Seifert
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | | | | | | | - Doris Göttsch
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Sabine Münkel
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Meike Hutt
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Klaus Pfizenmaier
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Roland E Kontermann
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
29
|
Nilvebrant J, Tessier PM, Sidhu SS. Engineered Autonomous Human Variable Domains. Curr Pharm Des 2016; 22:6527-6537. [PMID: 27655414 PMCID: PMC5326600 DOI: 10.2174/1381612822666160921143011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND The complex multi-chain architecture of antibodies has spurred interest in smaller derivatives that retain specificity but can be more easily produced in bacteria. Domain antibodies consisting of single variable domains are the smallest antibody fragments and have been shown to possess enhanced ability to target epitopes that are difficult to access using multidomain antibodies. However, in contrast to natural camelid antibody domains, human variable domains typically suffer from low stability and high propensity to aggregate. METHODS This review summarizes strategies to improve the biophysical properties of heavy chain variable domains from human antibodies with an emphasis on aggregation resistance. Several protein engineering approaches have targeted antibody frameworks and complementarity determining regions to stabilize the native state and prevent aggregation of the denatured state. CONCLUSION Recent findings enable the construction of highly diverse libraries enriched in aggregation-resistant variants that are expected to provide binders to diverse antigens. Engineered domain antibodies possess unique advantages in expression, epitope preference and flexibility of formatting over conventional immunoreagents and are a promising class of antibody fragments for biomedical development.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Division of Protein Technology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | - Peter M. Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Krah S, Schröter C, Zielonka S, Empting M, Valldorf B, Kolmar H. Single-domain antibodies for biomedical applications. Immunopharmacol Immunotoxicol 2015; 38:21-8. [DOI: 10.3109/08923973.2015.1102934] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Wu J, Schultz JS, Weldon CL, Sule SV, Chai Q, Geng SB, Dickinson CD, Tessier PM. Discovery of highly soluble antibodies prior to purification using affinity-capture self-interaction nanoparticle spectroscopy. Protein Eng Des Sel 2015; 28:403-14. [DOI: 10.1093/protein/gzv045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/12/2015] [Indexed: 11/14/2022] Open
|
32
|
Ho LJ, Luo SF, Lai JH. Biological effects of interleukin-6: Clinical applications in autoimmune diseases and cancers. Biochem Pharmacol 2015; 97:16-26. [DOI: 10.1016/j.bcp.2015.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/09/2015] [Indexed: 01/13/2023]
|
33
|
Marschall ALJ, Dübel S, Böldicke T. Specific in vivo knockdown of protein function by intrabodies. MAbs 2015; 7:1010-35. [PMID: 26252565 PMCID: PMC4966517 DOI: 10.1080/19420862.2015.1076601] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/02/2023] Open
Abstract
Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed.
Collapse
Affiliation(s)
- Andrea LJ Marschall
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics; Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics; Braunschweig, Germany
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, Recombinant Protein Expression/Intrabody Unit, Helmholtz Centre for Infection Research; Braunschweig, Germany
| |
Collapse
|
34
|
Targeting surface-layer proteins with single-domain antibodies: a potential therapeutic approach against Clostridium difficile-associated disease. Appl Microbiol Biotechnol 2015; 99:8549-62. [PMID: 25936376 PMCID: PMC4768215 DOI: 10.1007/s00253-015-6594-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 02/07/2023]
Abstract
Clostridium difficile is a leading cause of death from gastrointestinal infections in North America. Antibiotic therapy is effective, but the high incidence of relapse and the rise in hypervirulent strains warrant the search for novel treatments. Surface layer proteins (SLPs) cover the entire C. difficile bacterial surface, are composed of high-molecular-weight (HMW) and low-molecular-weight (LMW) subunits, and mediate adherence to host cells. Passive and active immunization against SLPs has enhanced hamster survival, suggesting that antibody-mediated neutralization may be an effective therapeutic strategy. Here, we isolated a panel of SLP-specific single-domain antibodies (VHHs) using an immune llama phage display library and SLPs isolated from C. difficile hypervirulent strain QCD-32g58 (027 ribotype) as a target antigen. Binding studies revealed a number of VHHs that bound QCD-32g58 SLPs with high affinity (KD = 3–6 nM) and targeted epitopes located on the LMW subunit of the SLP. The VHHs demonstrated melting temperatures as high as 75 °C, and a few were resistant to the gastrointestinal protease pepsin at physiologically relevant concentrations. In addition, we demonstrated the binding specificity of the VHHs to the major C. difficile ribotypes by whole cell ELISA, where all VHHs were found to bind 001 and 027 ribotypes, and a subset of antibodies were found to be broadly cross-reactive in binding cells representative of 012, 017, 023, and 078 ribotypes. Finally, we showed that several of the VHHs inhibited C. difficile QCD-32g58 motility in vitro. Targeting SLPs with VHHs may be a viable therapeutic approach against C. difficile-associated disease.
Collapse
|
35
|
Li X, Geng SB, Chiu ML, Saro D, Tessier PM. High-throughput assay for measuring monoclonal antibody self-association and aggregation in serum. Bioconjug Chem 2015; 26:520-8. [PMID: 25714504 DOI: 10.1021/acs.bioconjchem.5b00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subcutaneous delivery is one of the preferred administration routes for therapeutic monoclonal antibodies (mAbs). High antibody dosing requirements and small injection volumes necessitate formulation and delivery of highly concentrated mAb solutions. Such elevated antibody concentrations can lead to undesirable solution behaviors such as mAb self-association and aggregation, which are relatively straightforward to detect using various biophysical methods because of the high purity and concentration of antibody formulations. However, the biophysical properties of mAbs in serum can also impact antibody activity, but these properties are less well understood because of the difficulty characterizing mAbs in such a complex environment. Here we report a high-throughput assay for directly evaluating mAb self-association and aggregation in serum. Our approach involves immobilizing polyclonal antibodies specific for human mAbs on gold nanoparticles, and then using these conjugates to capture human antibodies at a range of subsaturating to saturating mAb concentrations in serum. Antibody aggregation is detected at subsaturating mAb concentrations via blue-shifted plasmon wavelengths due to the reduced efficiency of capturing mAb aggregates relative to monomers, which reduces affinity cross-capture of mAbs by multiple conjugates. In contrast, antibody self-association is detected at saturating mAb concentrations via red-shifted plasmon wavelengths due to attractive interparticle interactions between immobilized mAbs. The high-throughput nature of this assay along with its compatibility with unusually dilute mAb solutions (0.1-10 μg per mL) should make it useful for identifying antibody candidates with high serum stability during early antibody discovery.
Collapse
|