1
|
Allahyari M, Motavalizadeh-Kakhky AR, Mehrzad J, Zhiani R, Chamani J. Cellulose nanocrystals derived from chicory plant: an un-competitive inhibitor of aromatase in breast cancer cells via PI3K/AKT/mTOP signalling pathway. J Biomol Struct Dyn 2024; 42:5575-5589. [PMID: 37340682 DOI: 10.1080/07391102.2023.2226751] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
A significant contributing factor in the development of breast cancer is the estrogens. The synthesis of estrogens is primarily facilitated by aromatase (CYP19), a cytochrome P450 enzyme. Notably, aromatase is expressed at a higher level in human breast cancer tissue compared with the normal breast tissue. Therefore, inhibiting aromatase activity is a potential strategy in hormone receptor-positive breast cancer treatment. In this study, Cellulose Nanocrystals (CNCs) were obtained from Chicory plant waste through a sulfuric acid hydrolysis method with the objective of investigating that whether the obtained CNCs could act as an inhibitor of aromatase enzyme, and prevent the conversion of androgens to estrogens. Structural analysis of CNCs was carried out using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), while morphological results were obtained using AFM, TEM, and FE-SEM. Furthermore, the nano-particles were found to be spherical in shape with a diameter range of 35-37 nm and displayed a reasonable negative surface charge. Stable transfection of MCF-7 cells with CYP19 has demonstrated the ability of CNCs to inhibit aromatase activities and prevent cell growth by interfering with the enzyme activities. Spectroscopic results revealed the binding constant of CYP19-CNCs and (CYP19-Androstenedione)-CNCs complexes to be 2.07 × 103 L/gr and 2.06 × 104 L/gr, respectively. Conductometry and CD data reported different interaction behaviors among CYP19 and CYP19-Androstenedione complexes at the presence of CNCs in the system. Moreover, the addition of CNCs to the solution in a successive manner resulted in the enhancement of the secondary structure of the CYP19-androstenedione complex. Additionally, CNCs showed a marked reduction in the viability of cancer cells compared to normal cells by enhancing the expression of Bax and p53 at protein and mRNA levels, and by decreasing mRNA levels of PI3K, AKT, and mTOP, as well as protein levels of PI3Kg-P110 and P-mTOP, in MCF-7 cells after incubation with CNCs at IC50 concentration. These findings confirm the decrease in proliferation of breast cancer cells associated with induction of apoptosis through down-regulation of the PI3K/AKT/mTOP signaling pathway. According to the provided data, the obtained CNCs are capable of inhibiting aromatase enzyme activity, which has significant implications for the treatment of cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manizheh Allahyari
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Ali Reza Motavalizadeh-Kakhky
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- New Material Technology and Processing Research Center, Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Rahele Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Advance Research Center of Chemistry Biochemistry& Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
2
|
Eden JA. Why does hormonal contraception and menopausal hormonal treatment have such a small effect on breast cancer risk? Aust N Z J Obstet Gynaecol 2024. [PMID: 38686660 DOI: 10.1111/ajo.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Oestrogen is considered by many to be a major cause of breast cancer, and yet hormonal contraception and menopausal hormonal therapy have a paradoxically small effect on breast cancer risk. Also, in the oestrogen-only arm of the Women's Health Initiative, subjects given oestrogen had a reduced risk of breast cancer compared to controls. Initiation of breast cancer likely begins early in life, in the long-lived ER-PR- breast stem cell. The main mitogen of ER+PR+ breast cancers is oestrogen derived from local breast fat and the tumour itself, rather than circulating oestrogens. Progesterone is relatively breast neutral, but progestins in the laboratory have been shown to expand malignant breast stem cell number.
Collapse
Affiliation(s)
- John A Eden
- Royal Hospital for Women, University of NSW, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Sharif Swallah M, Bondzie-Quaye P, Wang H, Shao CS, Hua P, Alrasheed Bashir M, Benjamin Holman J, Sossah FL, Huang Q. Potentialities of Ganoderma lucidum extracts as functional ingredients in food formulation. Food Res Int 2023; 172:113161. [PMID: 37689913 DOI: 10.1016/j.foodres.2023.113161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Owing to the recognized therapeutic characteristics of G. lucidum, it is one of the most extensively researched mushrooms as a chemopreventive agent and as a functional food. It is a known wood-degrading basidiomycete possessing numerous pharmacological functions and is termed a natural pharmacy store due to its rich number of active compounds which have proved to portray numerous therapeutic properties. This current review highlights studies on the potentialities of G. lucidum extracts as functional ingredients on organoleptic and nutritional properties of food products (e.g., dairy, wine, beverage, bakery, meat, and other products). In addition, the study delved into various aspects of encapsulated G. lucidum extracts, their morphological and rheological characteristics, prebiotic and immunomodulatory importance, the effects on apoptosis, autophagy, cancer therapy, inflammatory responses, oxidative stress, antioxidant activities, and safety concerns. These findings have significant implications for the development of new products in the food and pharmaceutical industries. On the other hand, the various active compounds extracted from G. lucidum exhibited no toxic or adverse effects, and the appeal for it as a dietary food, natural remedy, and health-fortifying food is drastically increasing as well as attracting the interest of both the industrial and scientific communities. Furthermore, the formation of functional foods based on G. lucidum appears to have actual promise and exciting prospects in nutrition, food, and pharmaceutical sciences.
Collapse
Affiliation(s)
- Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Han Wang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Sheng Shao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pei Hua
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mona Alrasheed Bashir
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Frederick Leo Sossah
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, P.O. Box 245, Sekondi, Ghana
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
4
|
Biernacki K, Ciupak O, Daśko M, Rachon J, Kozak W, Rak J, Kubiński K, Masłyk M, Martyna A, Śliwka-Kaszyńska M, Wietrzyk J, Świtalska M, Nocentini A, Supuran CT, Demkowicz S. Development of Sulfamoylated 4-(1-Phenyl-1 H-1,2,3-triazol-4-yl)phenol Derivatives as Potent Steroid Sulfatase Inhibitors for Efficient Treatment of Breast Cancer. J Med Chem 2022; 65:5044-5056. [PMID: 35235747 PMCID: PMC8958511 DOI: 10.1021/acs.jmedchem.1c02220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present here the advances achieved in the development of new sulfamoylated 4-(1-phenyl-1H-1,2,3-triazol-4-yl)phenol derivatives as potent steroid sulfatase (STS) inhibitors for the treatment of breast cancer. Prompted by promising biological results and in silico analysis, the initial series of similar compounds were extended, appending a variety of m-substituents at the outer phenyl ring. The inhibition profiles of the newly synthesized compounds were evaluated using a radioisotope enzymatic assay and, together with the preceding reported derivatives, using a radioisotope assay in MCF-7 cells. The most active compound, 5l, demonstrated an extraordinary STS inhibitory potency in MCF-7 cells with an IC50 value improved 5-fold compared to that of the reference Irosustat (0.21 vs 1.06 nM). The five most potent compounds were assessed in vivo in a 67NR mouse mammary gland cancer model, with 4b measured to induce up to 51% tumor growth inhibition at 50 mg/kg with no evidence of side effects and toxicity.
Collapse
Affiliation(s)
- Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Witold Kozak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Janusz Rak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland
| | - Aleksandra Martyna
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland
| | - Magdalena Śliwka-Kaszyńska
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Marta Świtalska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Alessio Nocentini
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
5
|
Maccallini C, Gallorini M, Sisto F, Akdemir A, Ammazzalorso A, De Filippis B, Fantacuzzi M, Giampietro L, Carradori S, Cataldi A, Amoroso R. New azolyl-derivatives as multitargeting agents against breast cancer and fungal infections: synthesis, biological evaluation and docking study. J Enzyme Inhib Med Chem 2021; 36:1632-1645. [PMID: 34289751 PMCID: PMC8300937 DOI: 10.1080/14756366.2021.1954918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/06/2023] Open
Abstract
Nonsteroidal aromatase inhibitors (NSAIs) are well-established drugs for the therapy of breast cancer. However, they display some serious side effects, and their efficacy can be compromised by the development of chemoresistance. Previously, we have reported different indazole-based carbamates and piperidine-sulphonamides as potent aromatase inhibitors. Starting from the most promising compounds, here we have synthesised new indazole and triazole derivatives and evaluated their biological activity as potential dual agents, targeting both the aromatase and the inducible nitric oxide synthase, being this last dysregulated in breast cancer. Furthermore, selected compounds were evaluated as antiproliferative and cytotoxic agents in the MCF-7 cell line. Moreover, considering the therapeutic diversity of azole-based compounds, all the synthesized compounds were also evaluated as antifungals on different Candida strains. A docking study, as well as molecular dynamics simulation, were carried out to shed light on the binding mode of the most interesting compound into the different target enzymes catalytic sites.
Collapse
Affiliation(s)
- Cristina Maccallini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti -Pescara, Chieti, Italy
| | - Marialucia Gallorini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti -Pescara, Chieti, Italy
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atilla Akdemir
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Computer-aided drug discovery laboratory, Istanbul, Turkey
| | | | - Barbara De Filippis
- Department of Pharmacy, University “G. d’Annunzio” of Chieti -Pescara, Chieti, Italy
| | | | - Letizia Giampietro
- Department of Pharmacy, University “G. d’Annunzio” of Chieti -Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, University “G. d’Annunzio” of Chieti -Pescara, Chieti, Italy
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Computer-aided drug discovery laboratory, Istanbul, Turkey
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti -Pescara, Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University “G. d’Annunzio” of Chieti -Pescara, Chieti, Italy
| |
Collapse
|
6
|
Syed Z, Sogani M, Dongre A, Kumar A, Sonu K, Sharma G, Gupta AB. Bioelectrochemical systems for environmental remediation of estrogens: A review and way forward. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146544. [PMID: 33770608 DOI: 10.1016/j.scitotenv.2021.146544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Globally estrogenic pollutants are a cause of concern in wastewaters and water bodies because of their high endocrine disrupting activity leading to extremely negative impacts on humans and other organisms even at very low environmental concentrations. Bioremediation of estrogens has been studied extensively and one technology that has emerged with its promising capabilities is Bioelectrochemical Systems (BESs). Several studies in the past have investigated BESs applications for treatment of wastewaters containing toxic recalcitrant pollutants with a primary focus on improvement of performance of these systems for their deployment in real field applications. But the information is scattered and further the improvements are difficult to achieve for standalone BESs. This review critically examines the various existing treatment technologies for the effective estrogen degradation. The major focus of this paper is on the technological advancements for scaling up of these BESs for the real field applications along with their integration with the existing and conventional wastewater treatment systems. A detailed discussion on few selected microbial species having the unusual properties of heterotrophic nitrification and extraordinary stress response ability to toxic compounds and their degradation has been highlighted. Based on the in-depth study and analysis of BESs, microbes and possible benefits of various treatment methods for estrogen removal, we have proposed a sustainable Hybrid BES-centered treatment system for this purpose as a choice for wastewater treatment. We have also identified three pipeline tasks that reflect the vital parts of the life cycle of drugs and integrated treatment unit, as a way forward to foster bioeconomy along with an approach for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Zainab Syed
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Monika Sogani
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| | - Aman Dongre
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), L&W, Waite Campus, Urrbrae, SA, 5064, Australia.
| | - Kumar Sonu
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Gopesh Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| |
Collapse
|
7
|
Javadi MHS, Iraji A, Safavi M, Montazeri H, Tarighi P, Eftekhari S, Navidpour L, Mirfazli SS. Design, synthesis and apoptosis inducing activity of nonsteroidal flavone-methanesulfonate derivatives on MCF-7 cell line as potential sulfatase inhibitor. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02767-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Ciupak O, Daśko M, Biernacki K, Rachon J, Masłyk M, Kubiński K, Martyna A, Demkowicz S. New potent steroid sulphatase inhibitors based on 6-(1-phenyl-1 H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate derivatives. J Enzyme Inhib Med Chem 2021; 36:238-247. [PMID: 33322953 PMCID: PMC7744152 DOI: 10.1080/14756366.2020.1858820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the present work, we report a new class of potent steroid sulphatase (STS) inhibitors based on 6-(1-phenyl-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate derivatives. Within the set of new STS inhibitors, 6-(1-(1,2,3-trifluorophenyl)-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate 3L demonstrated the highest activity in the enzymatic assay inhibiting the STS activity to 7.98% at 0.5 µM concentration. Furthermore, to verify whether the obtained STS inhibitors are able to pass through the cellular membrane effectively, cell line experiments have been carried out. We found that the lowest STS activities were measured in the presence of compound 3L (remaining STS activity of 5.22%, 27.48% and 99.0% at 100, 10 and 1 nM concentrations, respectively). The measured STS activities for Irosustat (used as a reference) were 5.72%, 12.93% and 16.83% in the same concentration range. Moreover, a determined IC50 value of 15.97 nM for 3L showed that this compound is a very promising candidate for further preclinical investigations.
Collapse
Affiliation(s)
- Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Aleksandra Martyna
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
9
|
Estradiol-17β Regulates Expression of Luteal DNA Methyltransferases and Genes Involved in the Porcine Corpus Luteum Function In Vivo. Int J Mol Sci 2021; 22:ijms22073655. [PMID: 33915762 PMCID: PMC8037867 DOI: 10.3390/ijms22073655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The corpus luteum (CL) is a temporary endocrine gland vital for pregnancy establishment and maintenance. Estradiol-17β (E2) is the major embryonic signal in pigs supporting the CL's function. The mechanisms of the luteoprotective action of E2 are still unclear. The present study aimed to determine the effect of E2 on luteal expression of factors involved in CL function. An in vivo model of intrauterine E2 infusions was applied. Gilts on day 12 of pregnancy and the estrous cycle were used as referential groups. Concentrations of E2 and progesterone were elevated in CLs of gilts receiving E2 infusions, compared to placebo-treated gilts. Estradiol-17β stimulated luteal expression of DNA-methyltransferase 1 (DNMT1), but decreased expression of DNMT3B gene and protein, as well as DNMT3A protein. Similar results for DNMT3A and 3B were observed in CLs on day 12 of pregnancy compared to day 12 of the estrous cycle. Intrauterine infusions of E2 altered luteal expression of the genes involved in CL function: PTGFR, PTGES, STAR, HSD17B1, CYP19A1, and PGRMC1. Our findings indicate a role for E2 in expression regulation of factors related to CL function and a novel potential for E2 to regulate DNA methylation as putative physiological mechanisms controlling luteal gene expression.
Collapse
|
10
|
Daśko M, Demkowicz S, Biernacki K, Ciupak O, Kozak W, Masłyk M, Rachon J. Recent progress in the development of steroid sulphatase inhibitors - examples of the novel and most promising compounds from the last decade. J Enzyme Inhib Med Chem 2020; 35:1163-1184. [PMID: 32363947 PMCID: PMC7241464 DOI: 10.1080/14756366.2020.1758692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review article is to provide an overview of recent achievements in the synthesis of novel steroid sulphatase (STS) inhibitors. STS is a crucial enzyme in the biosynthesis of active hormones (including oestrogens and androgens) and, therefore, represents an extremely attractive molecular target for the development of hormone-dependent cancer therapies. The inhibition of STS may effectively reduce the availability of active hormones for cancer cells, causing a positive therapeutic effect. Herein, we report examples of novel STS inhibitors based on steroidal and nonsteroidal cores that contain various functional groups (e.g. sulphamate and phosphorus moieties) and halogen atoms, which may potentially be used in therapies for hormone-dependent cancers. The presented work also includes examples of multitargeting agents with STS inhibitory activities. Furthermore, the fundamental discoveries in the development of the most promising drug candidates exhibiting STS inhibitory activities are highlighted.
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Witold Kozak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
11
|
Aromatase inhibitors: Role in postmenopausal breast cancer. Arch Pharm (Weinheim) 2020; 353:e2000081. [DOI: 10.1002/ardp.202000081] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022]
|
12
|
Song XQ, Liu RP, Wang SQ, Li Z, Ma ZY, Zhang R, Xie CZ, Qiao X, Xu JY. Anticancer Melatplatin Prodrugs: High Effect and Low Toxicity, MT1-ER-Target and Immune Response In Vivo. J Med Chem 2020; 63:6096-6106. [PMID: 32401032 DOI: 10.1021/acs.jmedchem.0c00343] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multitargeted therapy could rectify various oncogenic pathways to block tumorigenesis and progression. The combination of endocrine-, immune-, and chemotherapy might exert a highly synergistic effect against certain tumors. Herein, a series of smart Pt(IV) prodrugs 3-6, named Melatplatin, were rationally designed not only to multitarget DNA, MT1, and estrogen receptor (ER) but also to activate immune response. Melatplatin, conjugating first-line chemotherapeutic Pt drugs with human endogenous melatonin (MT), significantly enhanced drug efficacy especially in ER high-expression (ER+) cells, among which 3 presented the most potent cytotoxicity toward ER+ MCF-7 with nanomolar IC50 values 100-fold lower than cisplatin. Melatplatin could bind well to melatonin receptor (MT1) according to molecular docking. Besides, 3 evidently increased intracellular accumulation and DNA damage, upregulated γH2AX and P53, and silenced NF-κB to induce massive apoptosis. Most strikingly, 3 effectively inhibited tumor growth and attenuated systemic toxicity compared to cisplatin in vivo, promoting lymphocyte proliferation in spleen to achieve immune modulation.
Collapse
Affiliation(s)
- Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Rui-Ping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhong-Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ran Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
13
|
Loss of Estrogen Receptors is Associated with Increased Tumor Aggression in Laryngeal Squamous Cell Carcinoma. Sci Rep 2020; 10:4227. [PMID: 32144339 PMCID: PMC7060328 DOI: 10.1038/s41598-020-60675-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/20/2020] [Indexed: 01/27/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) responds to 17β-estradiol via estrogen-receptor (ER, transcribed from ESR1) dependent mechanisms, but is not recognized as a hormonally responsive cancer. 17β-estradiol production by LSCC cell lines UM-SCC-11A and UM-SCC-12 was examined. Wild type (WT) and ESR1-silenced LSCC cultures and xenografts were examined for 17β-estradiol responsiveness in vivo. 14 LSCC and surrounding epithelial samples at various pathological stages were obtained from patients; ERα and ERβ expression were verified using data from the total cancer genome atlas. UM-SCC-11A and UM-SCC-12 both produce 17β-estradiol, but only UM-SCC-12, not UM-SCC-11A, xenograft tumors grow larger in vivo in response to systemic 17β-estradiol treatments. ERα66 and ERα36 expression inversely correlated with clinical cancer stage and tumor burden. LSCC ERα66 expression was higher compared to surrounding epithelia in indolent samples but lower in aggressive LSCC. ERβ expression was highly variable. High ESR1 expression correlated with improved survival in LSCC. Loss of ERα66 expression inversely correlated with prognosis in LSCC. ERα66 may be a histopathological marker of aggression in LSCC.
Collapse
|
14
|
Estradiol/GPER affects the integrity of mammary duct-like structures in vitro. Sci Rep 2020; 10:1386. [PMID: 31992771 PMCID: PMC6987193 DOI: 10.1038/s41598-020-57819-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/06/2020] [Indexed: 01/19/2023] Open
Abstract
High estrogen concentration leads to an inflammatory reaction in the mammary gland tissue in vivo; however, the detailed mechanism underlying its specific effects on the breast duct has not been fully clarified. We used 3D-cultured MCF-10A acini as a breast duct model and demonstrated various deleterious effects of 17-β estradiol (E2), including the destruction of the basement membrane surrounding the acini, abnormal adhesion between cells, and cell death via apoptosis and pyroptosis. Moreover, we clarified the mechanism underlying these phenomena: E2 binds to GPER in MCF-10A cells and stimulates matrix metalloproteinase 3 (MMP-3) and interleukin-1β (IL-1β) secretion via JNK and p38 MAPK signaling pathways. IL-1β activates the IL-1R1 signaling pathway and induces continuous MMP-3 and IL-1β secretion. Collectively, our novel findings reveal an important molecular mechanism underlying the effects of E2 on the integrity of duct-like structures in vitro. Thus, E2 may act as a trigger for ductal carcinoma transition in situ.
Collapse
|
15
|
Verma A, Schwartz N, Cohen DJ, Boyan BD, Schwartz Z. Estrogen signaling and estrogen receptors as prognostic indicators in laryngeal cancer. Steroids 2019; 152:108498. [PMID: 31539535 DOI: 10.1016/j.steroids.2019.108498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022]
Abstract
Laryngeal squamous cell carcinoma (LSCC) has been shown to respond to 17β-estradiol. However, the presence and characterization of estrogen receptors (ER) and other sex hormone receptors in LSCC are still being determined. Sex hormone receptors and the way sex hormones impact LSCC tumors are important for understanding which patients would benefit from hormone therapies, such as anti-estrogen therapies. This information also has prognostic value, as there may be a correlation between ER profiles and LSCC aggression. Recent work by our team and others has shown that the canonical ER, estrogen receptor α (ERα), and its splice variant ERα36, are important modulators of estrogen signaling in LSCC. This review describes some common 17β-estradiol signaling pathways, and explains how these signaling pathways might control LSCC tumor growth. We also show that loss of ERα, but not ERα36, imbues LSCC with enhanced aggression, a pattern which has previously only been observed in breast cancer. We make a case for using ERα as a tumorigenic modulator and pathogenic marker in LSCC on par with the use of ERα as a prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Anjali Verma
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Nofrat Schwartz
- Department of Otolaryngology, Meir Hospital, Kfar Saba, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Otolaryngology - Head and Neck Surgery and Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
16
|
Sang X, Han H, Poirier D, Lin SX. Steroid sulfatase inhibition success and limitation in breast cancer clinical assays: An underlying mechanism. J Steroid Biochem Mol Biol 2018; 183:80-93. [PMID: 29803725 DOI: 10.1016/j.jsbmb.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 12/23/2022]
Abstract
Steroid sulfatase is detectable in most hormone-dependent breast cancers. STX64, an STS inhibitor, induced tumor reduction in animal assay. Despite success in phase І clinical trial, the results of phase II trial were not that significant. Breast Cancer epithelial cells (MCF-7 and T47D) were treated with two STS inhibitors (STX64 and EM1913). Cell proliferation, cell cycle, and the concentrations of estradiol and 5α-dihydrotestosterone were measured to determine the endocrinological mechanism of sulfatase inhibition. Comparisons were made with inhibitions of reductive 17β-hydroxysteroid dehydrogenases (17β-HSDs). Proliferation studies showed that DNA synthesis in cancer cells was modestly decreased (approximately 20%), accompanied by an up to 6.5% in cells in the G0/G1 phase and cyclin D1 expression reduction. The concentrations of estradiol and 5α-dihydrotestosterone were decreased by 26% and 3% respectively. However, supplementation of 5α-dihydrotestosterone produced a significant increase (approximately 35.6%) in the anti-proliferative effect of sulfatase inhibition. This study has clarified sex-hormone control by sulfatase in BC, suggesting that the different roles of estradiol and 5α-dihydrotestosterone can lead to a reduction in the effect of sulfatase inhibition when compared with 17β-HSD7 inhibition. This suggests that combined treatment of sulfatase inhibitors with 17β-HSD inhibitors such as the type7 inhibitor could hold promise for hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Xiaoye Sang
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada
| | - Hui Han
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada; Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Donald Poirier
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada.
| |
Collapse
|
17
|
Karakus E, Zahner D, Grosser G, Leidolf R, Gundogdu C, Sánchez-Guijo A, Wudy SA, Geyer J. Estrone-3-Sulfate Stimulates the Proliferation of T47D Breast Cancer Cells Stably Transfected With the Sodium-Dependent Organic Anion Transporter SOAT (SLC10A6). Front Pharmacol 2018; 9:941. [PMID: 30186172 PMCID: PMC6111516 DOI: 10.3389/fphar.2018.00941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/02/2018] [Indexed: 02/01/2023] Open
Abstract
Estrogens play a pivotal role in the development and proliferation of hormone-dependent breast cancer. Apart from free estrogens, which can directly activate the estrogen receptor (ER) of tumor cells, sulfo-conjugated steroids, which maintain high plasma concentrations even after menopause, first have to be imported into tumor cells by carrier-mediated uptake and then can be cleaved by the steroid sulfatase to finally activate ERs and cell proliferation. In the present study, expression of the sodium-dependent organic anion transporter SOAT was analyzed in breast cancer and its role for hormone-dependent proliferation of T47D breast cancer cells was elucidated. The SOAT protein was localized to the ductal epithelium of the mammary gland by immunohistochemistry. SOAT showed high expression in different pathologies of the breast with a clear ductal localization, including ductal hyperplasia, intraductal papilloma, and intraductal carcinoma. In a larger breast cancer cDNA array, SOAT mRNA expression was high in almost all adenocarcinoma specimen, but expression did not correlate with either the ER, progesterone receptor, or human epidermal growth factor receptor 2 status. Furthermore, SOAT expression did not correlate with tumor stage or grade, indicating widespread SOAT expression in breast cancer. To analyze the role of SOAT for breast cancer cell proliferation, T47D cells were stably transfected with SOAT and incubated under increasing concentrations of estrone-3-sulfate (E1S) and estradiol at physiologically relevant concentrations. Cell proliferation was significantly increased by 10-9 M estradiol as well as by E1S with EC50 of 2.2 nM. In contrast, T47D control cells showed 10-fold lower sensitivity to E1S stimulation with EC50 of 21.7 nM. The E1S-stimulated proliferation of SOAT-T47D cells was blocked by the SOAT inhibitor 4-sulfooxymethylpyrene. In conclusion: The present study clearly demonstrates expression of SOAT in breast cancer tissue with ductal localization. SOAT inhibition can block the E1S-stimulated proliferation of T47D breast cancer cells, demonstrating that SOAT is an interesting novel drug target from the group of E1S uptake carriers for anti-proliferative breast cancer therapy.
Collapse
Affiliation(s)
- Emre Karakus
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Daniel Zahner
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Gary Grosser
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Regina Leidolf
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Cemal Gundogdu
- Department of Pathology, Private Practitioner of Medicine, Erzurum, Turkey
| | - Alberto Sánchez-Guijo
- Steroid Research and Mass Spectrometry Unit, Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research and Mass Spectrometry Unit, Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
18
|
Hilborn E, Stål O, Jansson A. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer. Oncotarget 2018; 8:30552-30562. [PMID: 28430630 PMCID: PMC5444764 DOI: 10.18632/oncotarget.15547] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Sex steroid hormones such as estrogens and androgens are involved in the development and differentiation of the breast tissue. The activity and concentration of sex steroids is determined by the availability from the circulation, and on local conversion. This conversion is primarily mediated by aromatase, steroid sulfatase, and 17β-hydroxysteroid dehydrogenases. In postmenopausal women, this is the primary source of estrogens in the breast. Up to 70-80% of all breast cancers express the estrogen receptor-α, responsible for promoting the growth of the tissue. Further, 60-80% express the androgen receptor, which has been shown to have tissue protective effects in estrogen receptor positive breast cancer, and a more ambiguous response in estrogen receptor negative breast cancers. In this review, we summarize the function and clinical relevance in cancer for 17β-hydroxysteroid dehydrogenases 1, which facilitates the reduction of estrone to estradiol, dehydroepiandrosterone to androstendiol and dihydrotestosterone to 3α- and 3β-diol as well as 17β-hydroxysteroid dehydrogenases 2 which mediates the oxidation of estradiol to estrone, testosterone to androstenedione and androstendiol to dehydroepiandrosterone. The expression of 17β-hydroxysteroid dehydrogenases 1 and 2 alone and in combination has been shown to predict patient outcome, and inhibition of 17β-hydroxysteroid dehydrogenases 1 has been proposed to be a prime candidate for inhibition in patients who develop aromatase inhibitor resistance or in combination with aromatase inhibitors as a first line treatment. Here we review the status of inhibitors against 17β-hydroxysteroid dehydrogenases 1. In addition, we review the involvement of 17β-hydroxysteroid dehydrogenases 4, 5, 7, and 14 in breast cancer.
Collapse
Affiliation(s)
- Erik Hilborn
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Agneta Jansson
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Katz TA, Wu AH, Stanczyk FZ, Wang R, Koh WP, Yuan JM, Oesterreich S, Butler LM. Determinants of prolactin in postmenopausal Chinese women in Singapore. Cancer Causes Control 2018; 29:51-62. [PMID: 29124543 PMCID: PMC5962355 DOI: 10.1007/s10552-017-0978-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE Mechanistic and observational data together support a role for prolactin in breast cancer development. Determinants of prolactin in Asian populations have not been meaningfully explored, despite the lower risk of breast cancer in Asian populations. METHODS Determinants of plasma prolactin were evaluated in 442 postmenopausal women enrolled in the Singapore Chinese Health Study, a population-based prospective cohort study. At baseline all cohort members completed an in-person interview that elicited information on diet, menstrual and reproductive history, and lifestyle factors. One year after cohort initiation we began collecting blood samples. Quantified were plasma concentrations of prolactin, estrone, estradiol, testosterone, androstenedione, and sex hormone-binding globulin (SHBG). Analysis of covariance method was used for statistical analyses with age at blood draw, time since last meal, and time at blood draw as covariates. RESULTS Mean prolactin levels were 25.1% lower with older age at menarche (p value = 0.001), and 27.6% higher with greater years between menarche and menopause (p value = 0.009). Prolactin levels were also positively associated with increased sleep duration (p value = 0.005). The independent determinants of prolactin were years from menarche to menopause, hours of sleep, and the plasma hormones estrone and SHBG (all p values < 0.01). CONCLUSION The role of prolactin in breast cancer development may involve reproductive and lifestyle factors, such as a longer duration of menstrual cycling and sleep patterns.
Collapse
Affiliation(s)
- Tiffany A Katz
- Department of Pharmacology and Chemical Biology, Women's Cancer Research Center, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Molecular and Cellular Biology, The Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Anna H Wu
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Frank Z Stanczyk
- Department of Urology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Renwei Wang
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Woon-Puay Koh
- Duke-NUS Medical School, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jian-Min Yuan
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, Women's Cancer Research Center, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Lesley M Butler
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Oberguggenberger A, Meraner V, Sztankay M, Beer B, Weigel G, Oberacher H, Kemmler G, Czech T, Holzner B, Wildt L, Sperner-Unterweger B, Daniaux M, Hubalek M. Can we use gonadotropin plasma concentration as surrogate marker for BMI-related incomplete estrogen suppression in breast cancer patients receiving anastrozole? BMC Cancer 2017; 17:226. [PMID: 28351392 PMCID: PMC5371265 DOI: 10.1186/s12885-017-3208-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND BMI has been suggested to impact on estrogenic activity in patients receiving anastrozole resulting in a reduced treatment efficacy in obese women. Current evidence in this regard is controversially discussed. Since estradiol is inversely correlated with gonadotropins it can be assumed that an impact of BMI is also reflected by gonadotropin plasma concentrations. We aim at investigating the impact of BMI on the hormonal state of breast cancer (BC) patients receiving anastrozole indicated by LH, FSH and SHBG as well as estradiol. METHODS We determined gonadotropin-, estradiol- and anastrozole- serum concentrations from postmenopausal, early stage breast cancer patients receiving upfront anastrozole within routine after care. Gonadotropin plasma concentrations were derived from the routine laboratory examination report. A liquid chromatography tandem mass spectrometry method was used for the measurement of anastrozole serum concentrations. BMI was assessed within the routine after-care check-up. RESULTS The overall sample comprised 135 BC patients with a mean age of 65.3 years. BMI was significantly correlated with LH, FSH and SHBG. This association was neither influenced by age nor by anastrozole serum concentrations according to the regression model. Despite aromatase inhibition 12% of patients had detectable estrogen levels in routine quantification. CONCLUSION Obese women have an altered hormonal situation compared to normally weight women under the same dose of anastrozole. Our study findings are a further indicator for the relevance of BMI in regard of anastrozole metabolism and possible estrogenic activity indicated by gonadotropin plasma level.
Collapse
Affiliation(s)
- A Oberguggenberger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - V Meraner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - M Sztankay
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - B Beer
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical University, Muellerstrasse 44, 6020, Innsbruck, Austria
| | - G Weigel
- Central Institute for Medical and Chemical Laboratory Diagnostics, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - H Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical University, Muellerstrasse 44, 6020, Innsbruck, Austria
| | - G Kemmler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - T Czech
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Anichstraße 35, 6020, Innsbruck, Austria
| | - B Holzner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - L Wildt
- Department of Gynecological Endocrinology and Reproductive Medicine, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - B Sperner-Unterweger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - M Daniaux
- Department of Radiology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - M Hubalek
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Anichstraße 35, 6020, Innsbruck, Austria.
| |
Collapse
|
21
|
Current knowledge of the multifunctional 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1). Gene 2016; 588:54-61. [PMID: 27102893 DOI: 10.1016/j.gene.2016.04.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 02/10/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
Abstract
At the late 1940s, 17β-HSD1 was discovered as the first member of the 17β-HSD family with its gene cloned. The three-dimensional structure of human 17β-HSD1 is the first example of any human steroid converting enzyme. The human enzyme's structure and biological function have thus been studied extensively in the last two decades. In humans, the enzyme is expressed in placenta, ovary, endometrium and breast. The high activity of estrogen activation provides the basis of 17β-HSD1's implication in estrogen-dependent diseases, such as breast cancer, endometriosis and non-small cell lung carcinomas. Its dual function in estrogen activation and androgen inactivation has been revealed in molecular and breast cancer cell levels, significantly stimulating the proliferation of such cells. The enzyme's overexpression in breast cancer was demonstrated by clinical samples. Inhibition of human 17β-HSD1 led to xenograft tumor shrinkage. Unfortunately, through decades of studies, there is still no drug using the enzyme's inhibitors available. This is due to the difficulty to get rid of the estrogenic activity of its inhibitors, which are mostly estrogen analogues. New non-steroid inhibitors for the enzyme provide new hope for non-estrogenic inhibitors of the enzyme.
Collapse
|
22
|
Piccinato CA, Neme RM, Torres N, Sanches LR, Derogis PBMC, Brudniewski HF, Rosa E Silva JC, Ferriani RA. Effects of steroid hormone on estrogen sulfotransferase and on steroid sulfatase expression in endometriosis tissue and stromal cells. J Steroid Biochem Mol Biol 2016; 158:117-126. [PMID: 26723541 DOI: 10.1016/j.jsbmb.2015.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022]
Abstract
Endometriosis is an estrogen-dependent disease that afflicts about 10% of women in their reproductive age, causing severe pain and infertility. The potential roles of female steroid hormones in modulating key estrogen-metabolizing enzymes, steroid sulfatase (STS) and estrogen sulfotransferase (SULT1E1), were investigated. The expression of STS and SULT1E1 mRNA in biopsy samples (n=78) of superficial and deep endometriotic lesions, eutopic endometrium of women with endometriosis and endometrium from control patients were compared according to the menstrual cycle phase. Increased STS gene expression was detected in superficial and deep-infiltrating lesions and a reduced SULT1E1 expression was also observed in the eutopic endometrium relative to the superficial lesions. Additionally, a significantly positive correlation was detected between STS and SULT1E1 mRNA expression levels in biopsy specimens collected from the endometriosis patients, and not in control individuals. The actions of female steroid hormones on SULT1E1 and STS expression were evidenced in endometriosis, revealed by increased expression levels in the luteal phase of the cycle. There was an increased STS expression in primary eutopic and ectopic endometrial stromal cells treated with estradiol and progesterone (representative of the luteal phase, n=3). Although an increased STS mRNA expression was observed in hormone-induced endometrial stromal cells in vitro, no difference could be detected between the hormone treatment groups in estradiol formation from estradiol sulfate measured by LC-MS-MS. Interestingly, a greater expression of STS was observed in stromal cells from eutopic endometrium with an agreement in estradiol formation originated from estradiol sulfate. The differential regulation of STS and SULT1E1 could provide insights for novel studies of the therapeutic use of STS inhibitors.
Collapse
Affiliation(s)
- Carla A Piccinato
- Hospital Israelita Albert Einstein, São Paulo, SP 05652-900, Brazil; Department of Gynaecology and Obstetrics, School of Medicine of Ribeirão Preto, Universidade de São Paulo, Brazil.
| | - Rosa M Neme
- Hospital Israelita Albert Einstein, São Paulo, SP 05652-900, Brazil; Centro de Endometriose São Paulo, Av. República do Líbano, 460 São Paulo, SP 04502-000, Brazil.
| | - Natália Torres
- Hospital Israelita Albert Einstein, São Paulo, SP 05652-900, Brazil.
| | - Lívia Renta Sanches
- Department of Clinical Pathology, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | | | - Heloísa F Brudniewski
- Hospital Israelita Albert Einstein, São Paulo, SP 05652-900, Brazil; Centro de Endometriose São Paulo, Av. República do Líbano, 460 São Paulo, SP 04502-000, Brazil.
| | - Júlio C Rosa E Silva
- Department of Gynaecology and Obstetrics, School of Medicine of Ribeirão Preto, Universidade de São Paulo, Brazil.
| | - Rui A Ferriani
- Department of Gynaecology and Obstetrics, School of Medicine of Ribeirão Preto, Universidade de São Paulo, Brazil.
| |
Collapse
|
23
|
van Vuuren RJ, Visagie MH, Theron AE, Joubert AM. Antimitotic drugs in the treatment of cancer. Cancer Chemother Pharmacol 2015; 76:1101-12. [PMID: 26563258 PMCID: PMC4648954 DOI: 10.1007/s00280-015-2903-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/03/2015] [Indexed: 01/05/2023]
Abstract
Cancer is a complex disease since it is adaptive in such a way that it can promote proliferation and invasion by means of an overactive cell cycle and in turn cellular division which is targeted by antimitotic drugs that are highly validated chemotherapy agents. However, antimitotic drug cytotoxicity to non-tumorigenic cells and multiple cancer resistance developed in response to drugs such as taxanes and vinca alkaloids are obstacles faced in both the clinical and basic research field to date. In this review, the classes of antimitotic compounds, their mechanisms of action and cancer cell resistance to chemotherapy and other limitations of current antimitotic compounds are highlighted, as well as the potential of novel 17-β estradiol analogs as cancer treatment.
Collapse
Affiliation(s)
| | - Michelle H Visagie
- Department of Physiology, University of Pretoria, Private Bag x 323, Arcadia, 0007, South Africa.
| | - Anne E Theron
- Department of Physiology, University of Pretoria, Private Bag x 323, Arcadia, 0007, South Africa
| | - Annie M Joubert
- Department of Physiology, University of Pretoria, Private Bag x 323, Arcadia, 0007, South Africa
| |
Collapse
|
24
|
Thomas MP, Potter BVL. Discovery and Development of the Aryl O-Sulfamate Pharmacophore for Oncology and Women's Health. J Med Chem 2015; 58:7634-58. [PMID: 25992880 PMCID: PMC5159624 DOI: 10.1021/acs.jmedchem.5b00386] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1994, following work from this laboratory, it was reported that estrone-3-O-sulfamate irreversibly inhibits a new potential hormone-dependent cancer target steroid sulfatase (STS). Subsequent drug discovery projects were initiated to develop the core aryl O-sulfamate pharmacophore that, over some 20 years, have led to steroidal and nonsteroidal drugs in numerous preclinical and clinical trials, with promising results in oncology and women's health, including endometriosis. Drugs have been designed to inhibit STS, e.g., Irosustat, as innovative dual-targeting aromatase-steroid sulfatase inhibitors (DASIs) and as multitargeting agents for hormone-independent tumors, such as the steroidal STX140 and nonsteroidal counterparts, acting inter alia through microtubule disruption. The aryl sulfamate pharmacophore is highly versatile, operating via three distinct mechanisms of action, and imbues attractive pharmaceutical properties. This Perspective gives a personal view of the work leading both to the therapeutic concepts and these drugs, their current status, and how they might develop in the future.
Collapse
Affiliation(s)
- Mark P. Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Barry V. L. Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
25
|
Ji XW, Chen GP, Song Y, Hua M, Wang LJ, Li L, Yuan Y, Wang SY, Zhou TY, Lu W. Intratumoral estrogen sulfotransferase induction contributes to the anti-breast cancer effects of the dithiocarbamate derivative TM208. Acta Pharmacol Sin 2015; 36:1246-55. [PMID: 25937633 PMCID: PMC4814201 DOI: 10.1038/aps.2015.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
AIM Sulfotransferase-catalyzed sulfation is the most important pathway for inactivating estrogens. Thus, activation of estrogen sulfotransferase (EST) may be an alternative approach for the treatment of estrogen-dependent breast cancer. In this study we investigated the involvement of EST in anti-breast cancer effects of the dithiocarbamate derivative TM208 in vitro and in vivo. METHODS The viability of human breast cancer MCF-7 cells was determined using a SBB assay. Nude mice bearing MCF-7 cells were orally administered TM208 (50 and 150 mg·kg(-1)·d(-1)) for 18 days. The xenograft tumors and uteri were collected. The mRNA expression of EST was examined with real-time PCR. EST protein was detected with Western blot, ELISA or immunohistochemical staining assays. A radioactive assay was used to measure the EST activity. Uterotropic bioassay was used to examine the uterine estrogen responses. RESULTS Treatment with TM208 (10, 15 and 20 μmol/L) concentration-dependently increased EST expression in MCF-7 cells in vitro. Co-treatment with triclosan, an inhibitor of sulfonation, abolished TM208-induced cytotoxicity in MCF-7 cells. TM208 exhibited an apparent anti-estrogenic property: it exerted more potent cytotoxicity in E2-treated MCF-7 cells. In the nude mice bearing MCF-7 cells, TM208 administration time-dependently increased the expression and activity of EST, and blocked the gradual increase of E2 concentration in the xenograft tumors. Furthermore, TM208 administration blocked the estrogens-stimulated uterine enlargement. Tamoxifen, a positive control drug, produced similar effects on the expression and activity of EST in vitro and in vivo. CONCLUSION The induction of EST and reduction of estrogen concentration contribute to the anti-breast cancer action of TM208 and tamoxifen. TM208 may be developed as anticancer drug for the treatment of estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Xi-wei Ji
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| | - Guang-ping Chen
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan Song
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ming Hua
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Li-jie Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liang Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yin Yuan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Si-yuan Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tian-yan Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Wei Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
26
|
Wang X, Gérard C, Thériault JF, Poirier D, Doillon CJ, Lin SX. Synergistic control of sex hormones by 17β-HSD type 7: a novel target for estrogen-dependent breast cancer. J Mol Cell Biol 2015; 7:568-79. [PMID: 25966904 DOI: 10.1093/jmcb/mjv028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022] Open
Abstract
17β-hydroxysteroid dehydrogenase (17β-HSD) type 1 is known as a critical target to block the final step of estrogen production in estrogen-dependent breast cancer. Recent confirmation of the role of dyhydroxytestosterone (DHT) in counteracting estrogen-induced cell growth prompted us to study the reductive 17β-HSD type 7 (17β-HSD7), which activates estrone while markedly inactivating DHT. The role of DHT in breast cancer cell proliferation is demonstrated by its independent suppression of cell growth in the presence of a physiological concentration of estradiol (E2). Moreover, an integral analysis of a large number of clinical samples in Oncomine datasets demonstrated the overexpression of 17β-HSD7 in breast carcinoma. Inhibition of 17β-HSD7 in breast cancer cells resulted in a lower level of E2 and a higher level of DHT, successively induced regulation of cyclinD1, p21, Bcl-2, and Bik, consequently arrested cell cycle in the G(0)/G(1) phase, and triggered apoptosis and auto-downregulation feedback of the enzyme. Such inhibition led to significant shrinkage of xenograft tumors with decreased cancer cell density and reduced 17β-HSD7 expression. Decreased plasma E2 and elevated plasma DHT levels were also found. Thus, the dual functional 17β-HSD7 is proposed as a novel target for estrogen-dependent breast cancer by regulating the balance of E2 and DHT. This demonstrates a conceptual advance on the general belief that the major role of this enzyme is in cholesterol metabolism.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada
| | - Catherine Gérard
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada
| | - Jean-François Thériault
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada
| | - Donald Poirier
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada
| | - Charles J Doillon
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada
| |
Collapse
|
27
|
Farooq A. Structural insights into the functional versatility of WW domain-containing oxidoreductase tumor suppressor. Exp Biol Med (Maywood) 2015; 240:361-74. [PMID: 25662954 DOI: 10.1177/1535370214561586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent work on WW domain-containing oxidoreductase (WWOX) tumor suppressor is beginning to shed new light on both the molecular mechanism of action of its WW domains as well as the contiguous catalytic domain. Herein, the structural basis underlying the ability of WW1 domain to bind to various physiological ligands and how the orphan WW2 tandem partner synergizes its ligand binding in the context of WW1-WW2 tandem module of WWOX is discussed. Notably, the WW domains within the WW1-WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. In this manner, the association of WW2 domain with WW1 hinders ligand binding to the latter. Consequently, ligand binding to WW1 domain not only results in the displacement of WW2 lid but also disrupts the fixed orientation of WW domains in the liganded conformation. Equally importantly, structure-guided functional approach suggests that the catalytic domain of WWOX likely serves as a retinal oxidoreductase that catalyzes the reversible oxidation and reduction of all-trans-retinal. Collectively, this review provides structural insights into the functional versatility of a key signaling protein with important implications on its biology.
Collapse
Affiliation(s)
- Amjad Farooq
- Department of Biochemistry & Molecular Biology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
28
|
Development of constrained tamoxifen mimics and their antiproliferative properties against breast cancer cells. Bioorg Med Chem Lett 2015; 25:680-4. [DOI: 10.1016/j.bmcl.2014.11.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/11/2014] [Accepted: 11/28/2014] [Indexed: 12/14/2022]
|
29
|
Mohagheghian A, Nabizadeh R, Mesdghinia A, Rastkari N, Mahvi AH, Alimohammadi M, Yunesian M, Ahmadkhaniha R, Nazmara S. Distribution of estrogenic steroids in municipal wastewater treatment plants in Tehran, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING 2014; 12:97. [PMID: 25013724 PMCID: PMC4091687 DOI: 10.1186/2052-336x-12-97] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/28/2014] [Indexed: 12/07/2022]
Abstract
Background Estrogenic steroids such as estrone (E1), 17β–estradiol (E2), estriol (E3), and 17α–ethinylestradiol (EE2) are among the most potent endocrine disrupting compounds (EDCs). Compared with North America, Europe and Japan there is no reliable information on the concentration of steroid hormones in wastewater treatment plants (WWTPs) influents and effluents in Iran. The aim of the present study was to determine the amounts of E1, E2, E3, and EE2 influents and effluents of 7 municipal WWTPs across Tehran, the capital city of Iran, in two seasons, summer and autumn, through solid-phase extraction (SPE) gas chromatography–mass spectrometry (GC–MS). Results The results showed that the concentrations of E1, E2, and EE2 in influents ranged from 6.54–18.76 ng/L, 1.02–8 ng/L and 4.18–11.76 ng/L, respectively. Also, the concentrations of E1, E2, and EE2 in effluents ranged from 1.04–4.99 ng/L, 0.5–2.20 ng/L and 0.5–2.58 ng/L, respectively. The levels of E3 were below the detection limit (0.5 ng/L). The percentage removal rate of E1, E2 and EE2 ranged between 61.76–87.25%, 50.98–82.63%, and 66.3–90.25%, respectively. Results indicated no significant correlation between hormone concentrations and seasons. Conclusions The study showed that WWTP number 7 had significant differences in influent hormone concentrations compared with others. Results only showed a significant relationship between hormones and TSS removal rate, but there was no significant relationship between hormones and COD removal rate. The removal rate of hormone in WWTP number 4 and 7 were significantly different from the others. There was no significant correlation between hormone concentrations and seasons.
Collapse
Affiliation(s)
- Azita Mohagheghian
- Department of Environmental Health Engineering, School of Public Health, University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, University of Medical Sciences, Tehran, Iran ; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdghinia
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran ; Department of Environmental Health Engineering, School of Public Health, University of Medical Sciences, Tehran, Iran
| | - Noushin Rastkari
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Center for Solid Waste Research (CSWR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran ; Department of Environmental Health Engineering, School of Public Health, University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, University of Medical Sciences, Tehran, Iran
| | - Masoud Yunesian
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran ; Department of Environmental Health Engineering, School of Public Health, University of Medical Sciences, Tehran, Iran
| | - Reza Ahmadkhaniha
- Department of Human Ecology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Public Health, University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Bismuth nitrate-induced novel nitration of estradiol: an entry to new anticancer agents. Eur J Med Chem 2014; 82:574-83. [PMID: 24946145 DOI: 10.1016/j.ejmech.2014.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/01/2014] [Accepted: 06/07/2014] [Indexed: 01/16/2023]
Abstract
Direct nitration of estradiol was carried out using metal nitrates on solid surfaces under mild condition, and a combination of bismuth nitrate pentahydrate impregnated KSF clay was found to be the best reagent to synthesize 2- and 4-nitroestradiol effectively. Furthermore, various basic side chains were introduced, through O-linker at C-3, to these nitroestradiols. The ability of these derivatives to cause cytotoxicity in Estrogen Receptor (ER)-positive and ER-negative breast cancer cell lines, as well as cancer cell lines of other origins, was examined. Qualitative structure activity relationship (SAR) has also been studied. We found that a basic side chain containing either a piperidine or morpholine ring, when conjugated to 2-nitroestradiol, was particularly effective at causing cytotoxicity in each of the cancer cell lines examined. Surprisingly, this effective cytotoxicity was even seen in ER-negative breast cancer cells.
Collapse
|
31
|
Cos S, Alvarez-García V, González A, Alonso-González C, Martínez-Campa C. Melatonin modulation of crosstalk among malignant epithelial, endothelial and adipose cells in breast cancer (Review). Oncol Lett 2014; 8:487-492. [PMID: 25009641 PMCID: PMC4081418 DOI: 10.3892/ol.2014.2203] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 05/13/2014] [Indexed: 11/29/2022] Open
Abstract
Melatonin, the main secretory product of the pineal gland, is an oncostatic agent that reduces the growth and development of various types of tumors, particularly mammary tumors whose growth is dependent on estrogens. Previous in vivo and in vitro studies point to the hypothesis that melatonin interplays with estrogen signaling pathways at three different levels: i) an indirect mechanism, by interfering with the hypothalamic-pituitary-reproductive axis in such way that the level of plasma estrogens synthesized by the gonadal glands are downregulated; ii) a direct mechanism of the pineal gland at the cell cancer level, disrupting the activation of estradiol receptors, therefore behaving as a selective estrogen receptor modulator; and iii) by regulating the enzymes involved in the biosynthesis of estrogens in other tissues, thus behaving as a selective estrogen enzyme modulator. The intratumoral metabolism and synthesis of estrogens, as a result of the interactions of various enzymes, is more important than blood uptake to maintain mammary gland estrogen levels in menopausal females. Additionally, estrogens are considered to play an important role in the pathogenesis and development of hormone-dependent breast carcinoma. Paracrine interactions among malignant epithelial cells and proximal adipose and endothelial cells, through cytokines and growth factors produced by breast tumor cells, modulate estrogen production at the mammary tumor level and, as a consequence, the genesis and development of mammary tumors. The aim of the present review is to summarize the recent findings describing the mechanisms by which melatonin is able to modulate the crosstalk among malignant epithelial, endothelial and adipose cells in breast cancer.
Collapse
Affiliation(s)
- Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute, Santander 39011, Spain
| | - Virginia Alvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute, Santander 39011, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute, Santander 39011, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute, Santander 39011, Spain
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute, Santander 39011, Spain
| |
Collapse
|
32
|
Monroe KR, Stanczyk FZ, Besinque KH, Pike MC. The effect of grapefruit intake on endogenous serum estrogen levels in postmenopausal women. Nutr Cancer 2014; 65:644-52. [PMID: 23859031 DOI: 10.1080/01635581.2013.795982] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although grapefruit intake leads to elevated serum estrogen levels when hormones are taken orally, there are no published data on the effect on endogenous levels. We conducted a pilot dietary intervention study among healthy postmenopausal volunteers to test whole grapefruit, 2 juices, and 1 grapefruit soda. Fifty-nine participants were recruited through the Love/Avon Army of Women. The study consisted of a 3-wk run-in, 2 wk of grapefruit intake, and a 1-wk wash-out. Eight fasting blood samples were collected. An additional 5 samples drawn at 1, 2, 4, 8, and 10 hr after grapefruit intake were collected during an acute-phase study for 10 women. Serum assays for estrone (E1), estradiol (E2), estrone-3-sulfate (E1S), dehydroepiandrosterone sulfate, and sex hormone-binding globulin were conducted. Whole grapefruit intake had significant effects on endogenous E1S. Peak effects were seen at 8 hr, increasing by 26% from baseline. No changes in mean E1 or E2 with whole fruit intake were observed. In contrast, fresh juice, bottled juice, and soda intake all had significant lowering effects on E2. The findings suggest an important interaction between grapefruit intake and endogenous estrogen levels. Because endogenous estrogen levels are associated with breast cancer risk, further research is warranted.
Collapse
Affiliation(s)
- Kristine R Monroe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California 90033, USA.
| | | | | | | |
Collapse
|
33
|
Thomas MP, Potter BVL. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol 2013; 137:27-49. [PMID: 23291110 PMCID: PMC3866684 DOI: 10.1016/j.jsbmb.2012.12.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023]
Abstract
Many enzymes catalyse reactions that have an oestrogen as a substrate and/or a product. The reactions catalysed include aromatisation, oxidation, reduction, sulfonation, desulfonation, hydroxylation and methoxylation. The enzymes that catalyse these reactions must all recognise and bind oestrogen but, despite this, they have diverse structures. This review looks at each of these enzymes in turn, describing the structure and discussing the mechanism of the catalysed reaction. Since oestrogen has a role in many disease states inhibition of the enzymes of oestrogen metabolism may have an impact on the state or progression of the disease and inhibitors of these enzymes are briefly discussed. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Key Words
- 17β-HSD
- 17β-Hydroxysteroid dehydrogenase
- 17β-hydroxysteroid dehydrogenase
- 3,5-dinitrocatechol
- 3-(((8R,9S,13S,14S,16R,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-16-yl)methyl)benzamide
- 3′-phosphoadenosine-5′-phosphate
- 3′-phosphoadenosine-5′-phosphosulfate
- Aromatase
- COMT
- DHEA(S)
- DHETNA
- DNC
- E1(S)
- E2(S)
- E2B
- E3
- E4
- ER
- FAD/FMN
- FG
- HFG(S)
- NADP(+)
- NADPH
- O5′-[9-(3,17β-dihydroxy-1,3,5(10)-estratrien-16β-yl)-nonanoyl]adenosine
- Oestrogen
- PAP
- PAPS
- Protein structure
- Reaction mechanism
- S-adenosyl methionine
- SAM
- SDR
- Sulfatase
- Sulfotransferase
- catechol-O-methyl transferase
- dehydroepiandrosterone (sulfate)
- estetrol
- estradiol (sulfate)
- estriol
- estrogen receptor
- estrone (sulfate)
- flavin adenine dinucleotide/flavin mononucleotide
- formylglycine
- hydroxyformylglycine (sulfate)
- mb-COMT
- membrane-bound COMT
- nicotinamide adenine dinucleotide phosphate (oxidised)
- nicotinamide adenine dinucleotide phosphate (reduced)
- s-COMT
- short-chain dehydrogenase/reductase
- soluble COMT
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | |
Collapse
|
34
|
Torres-Santiago L, Mericq V, Taboada M, Unanue N, Klein KO, Singh R, Hossain J, Santen RJ, Ross JL, Mauras N. Metabolic effects of oral versus transdermal 17β-estradiol (E₂): a randomized clinical trial in girls with Turner syndrome. J Clin Endocrinol Metab 2013; 98:2716-24. [PMID: 23678038 PMCID: PMC5393461 DOI: 10.1210/jc.2012-4243] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CONTEXT The long-term effects of pure 17β-estradiol (E₂) depending on route of administration have not been well characterized. OBJECTIVE Our objective was to assess metabolic effects of oral vs transdermal (TD) 17β-E₂ replacement using estrogen concentration-based dosing in girls with Turner syndrome (TS). PATIENTS Forty girls with TS, mean age 16.7 ± 1.7 years, were recruited. DESIGN Subjects were randomized to 17β-E₂ orally or TD. Doses were titrated using mean E₂ concentrations of normally menstruating girls as therapeutic target. E₂, estrone (E₁), and E₁ sulfate (E₁S) were measured by liquid chromatography tandem mass spectrometry and a recombinant cell bioassay; metabolites were measured, and dual-energy x-ray absorptiometry scan and indirect calorimetry were performed. MAIN OUTCOME Changes in body composition and lipid oxidation were evaluated. RESULTS E₂ concentrations were titrated to normal range in both groups; mean oral dose was 2 mg, and TD dose was 0.1 mg. After 6 and 12 months, fat-free mass and percent fat mass, bone mineral density accrual, lipid oxidation, and resting energy expenditure rates were similar between groups. IGF-1 concentrations were lower on oral 17β-E₂, but suppression of gonadotropins was comparable with no significant changes in lipids, glucose, osteocalcin, or highly sensitive C-reactive protein between groups. However, E₁, E₁S, SHBG, and bioestrogen concentrations were significantly higher in the oral group. CONCLUSIONS When E₂ concentrations are titrated to the normal range, the route of delivery of 17β-E₂ does not affect differentially body composition, lipid oxidation, and lipid concentrations in hypogonadal girls with TS. However, total estrogen exposure (E₁, E₁S, and total bioestrogen) is significantly higher after oral 17β-E₂. TD 17β-E₂ results in a more physiological estrogen milieu than oral 17β-E₂ administration in girls with TS.
Collapse
|
35
|
Banerjee N, Fonge H, Mikhail A, Reilly RM, Bendayan R, Allen C. Estrone-3-sulphate, a potential novel ligand for targeting breast cancers. PLoS One 2013; 8:e64069. [PMID: 23717534 PMCID: PMC3661587 DOI: 10.1371/journal.pone.0064069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
The current study investigates the potential of estrone-3-sulphate (E3S) as a ligand for targeting Organic Anion Transporting Polypeptides (OATP), a family of membrane associated uptake transporters, for detection and diagnosis of hormone dependent breast cancers. E3S, an OATP substrate, is a predominant source of tumour estradiol in post-menopausal patients. To assess the potential of E3S as a ligand, distribution of exogenous E3S was determined at the whole body, tumour and cellular levels in murine models of hormone-dependent (MCF-7) and independent (MDA-MB-231) breast cancers. The highest levels of tumour uptake were observed at 6 h post injection (p.i) with significant difference (p = 0.04) between the level in MCF-7 (13.9±3.1%ID/g) and MDA-MB-231 (10.4±1.1%ID/g) (%ID/g: percentage of the total injected dose per gram tissue). The highest tumour-to-blood ratios (MCF-7∶7.4±1.2; MDA-MB-231∶9.1±2.1) were observed at 48 p.i., and highest tumour-to-muscle ratios (MCF-7∶10.7±1.5; MDA-MB-231∶3.8±0.7) were observed at 6 h p.i. Analogous to total tumour uptake, ex vivo tumour cell uptake at 2 h p.i. was 6 fold higher in MCF-7 in comparison to MDA-MB-231 tumour cells. Blocking studies, conducted by pre-administration of 100-fold excess E3S, resulted in significantly lower (MCF-7: p = 0.01; MDA-MB-231: p = 0.02) tumour uptake in both xenograft models, suggesting the involvement of an active carrier-mediated process. The expression of OATP1A2 was detected in tumour sections from both xenografts, with significantly higher expression (p = 0.002) in the MCF-7 xenografts. Overall, the higher tumour uptake and tumour-to-muscle ratio, alongside the higher expression of OATP1A2, in the MCF-7 xenograft model suggests the potential of E3S to serve as a novel ligand for targeting hormone dependent breast cancers.
Collapse
Affiliation(s)
- Nilasha Banerjee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Humphrey Fonge
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Mikhail
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Raymond M. Reilly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Christine Allen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
36
|
Secky L, Svoboda M, Klameth L, Bajna E, Hamilton G, Zeillinger R, Jäger W, Thalhammer T. The sulfatase pathway for estrogen formation: targets for the treatment and diagnosis of hormone-associated tumors. JOURNAL OF DRUG DELIVERY 2013; 2013:957605. [PMID: 23476785 PMCID: PMC3586502 DOI: 10.1155/2013/957605] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 12/15/2022]
Abstract
The extragonadal synthesis of biological active steroid hormones from their inactive precursors in target tissues is named "intracrinology." Of particular importance for the progression of estrogen-dependent cancers is the in situ formation of the biological most active estrogen, 17beta-estradiol (E2). In cancer cells, conversion of inactive steroid hormone precursors to E2 is accomplished from inactive, sulfated estrogens in the "sulfatase pathway" and from androgens in the "aromatase pathway." Here, we provide an overview about expression and function of enzymes of the "sulfatase pathway," particularly steroid sulfatase (STS) that activates estrogens and estrogen sulfotransferase (SULT1E1) that converts active estrone (E1) and other estrogens to their inactive sulfates. High expression of STS and low expression of SULT1E1 will increase levels of active estrogens in malignant tumor cells leading to the stimulation of cell proliferation and cancer progression. Therefore, blocking the "sulfatase pathway" by STS inhibitors may offer an attractive strategy to reduce levels of active estrogens. STS inhibitors either applied in combination with aromatase inhibitors or as novel, dual aromatase-steroid sulfatase inhibiting drugs are currently under investigation. Furthermore, STS inhibitors are also suitable as enzyme-based cancer imaging agents applied in the biomedical imaging technique positron emission tomography (PET) for cancer diagnosis.
Collapse
Affiliation(s)
- Lena Secky
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Martin Svoboda
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Lukas Klameth
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Cluster Translational Oncology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Erika Bajna
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerhard Hamilton
- Ludwig Boltzmann Cluster Translational Oncology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Robert Zeillinger
- Ludwig Boltzmann Cluster Translational Oncology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, 1090 Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
37
|
Aka JA, Zerradi M, Houle F, Huot J, Lin SX. 17beta-hydroxysteroid dehydrogenase type 1 modulates breast cancer protein profile and impacts cell migration. Breast Cancer Res 2012; 14:R92. [PMID: 22691413 PMCID: PMC3446355 DOI: 10.1186/bcr3207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 05/10/2012] [Accepted: 06/12/2012] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Human 17beta-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a steroid-converting enzyme that has long been known to play critical roles in estradiol synthesis and more recently in dihydrotestosterone (DHT) inactivation, showing a dual function that promotes breast cancer cell proliferation. Previously, we reported the first observation of the influence of the enzyme on endogenous estrogen-responsive gene expression. Here, we demonstrate the impact of 17β-HSD1 expression on the breast cancer cell proteome and investigate its role in cell migration. METHODS 17β-HSD1 was stably transfected in MCF7 cells and the proteome of the generated cells overexpressing 17β-HSD1 (MCF7-17βHSD1 cells) was compared to that of the wild type MCF7 cells. Proteomics study was performed using two-dimensional gel electrophoresis followed by mass spectrometry analysis of differentially expressed protein spots. Reverse transcription quantitative real-time PCR (RT-qPCR) was used to investigate the transcription of individual gene. The effect of 17β-HSD1 on MCF7 cell migration was verified by a wound-healing assay. RESULTS Proteomic data demonstrate that the expression of more than 59 proteins is modulated following 17β-HSD1 overexpression. 17β-HSD1 regulates the expression of important genes and proteins that are relevant to cell growth control, such as BRCA2 and CDKN1A interacting protein (BCCIP) and proliferating cell nuclear antigen (PCNA) which are down- and upregulated in MCF7-17βHSD1 cells, respectively. RT-qPCR data reveal that 17β-HSD1 increases the mRNA levels of estrogen receptors (ER) alpha and beta by 171 and 120%, respectively, while decreasing that of the androgen receptor by 64%. Interestingly, 17β-HSD1 increases the mRNA transcript (by 3.6 times) and the protein expression of the metastasis suppressor gene nm23-H1 and the expression of the two enzymes are closely correlated. We have further shown that 17β-HSD1 expression is associated with an increase of MCF7 cell migration. CONCLUSIONS In addition to the regulation of important genes, we have demonstrated for the first time that 17β-HSD1 increases breast cancer cell migration, in spite of its positive regulation of the antimetastatic gene NM23. This is also correlated to its stimulation of breast cancer cell growth, further confirming its targeting in ER positive breast cancer. The novel findings in this study suggest several directions for future research on the contribution of 17β-HSD1 to breast cancer progression and related treatment.
Collapse
Affiliation(s)
- Juliette A Aka
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUQ - CHUL) and Department of Molecular Medicine, Laval University, 2705 boulevard Laurier, Québec G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
38
|
NAHA, a novel hydroxamic acid-derivative, inhibits growth and angiogenesis of breast cancer in vitro and in vivo. PLoS One 2012; 7:e34283. [PMID: 22479587 PMCID: PMC3315582 DOI: 10.1371/journal.pone.0034283] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/27/2012] [Indexed: 11/29/2022] Open
Abstract
Background We have recently synthesized novel N-alkylated amino acid-derived hydroxamate, 2-[Benzyl-(2-nitro-benzenesulfonyl)-amino]-N-hydroxy-3-methyl-N-propyl-butyramide (NAHA). Here, we evaluate the anticancer activity of NAHA against highly invasive human breast cancer cells MDA-MB-231 in vitro and in vivo. Methodology/Principal Findings Cell growth was evaluated by MTT and soft agar assays. Protein expression was determined by DNA microarray and Western blot analysis. Metastatic potential was evaluated by cell adhesion, migration, invasion, capillary morphogenesis, and ELISA assays. The anticancer activity in vivo was evaluated in mouse xenograft model. NAHA inhibited proliferation and colony formation of MDA-MB-231 cells together with the down-regulation of expression of Cdk2 and CDC20 proteins. NAHA inhibited cell adhesion, migration, and invasion through the suppression of secretion of uPA. NAHA suppressed secretion of VEGF from MDA-MB-231 cells and inhibited capillary morphogenesis of human aortic endothelial cells (HAECs). Finally, NAHA at 50 mg/kg was not toxic and decreased tumor volume and tumor weight in vivo. This suppression of tumor growth was associated with the inhibition of mitotic figures and induction of apoptosis, and the reduction of CD31 and VEGF positive cells in tumors. Conclusion NAHA could be a novel promising compound for the development of new drugs for the therapy of invasive breast cancers.
Collapse
|
39
|
Hong Y, Chen S. Aromatase, estrone sulfatase, and 17β-hydroxysteroid dehydrogenase: structure-function studies and inhibitor development. Mol Cell Endocrinol 2011; 340:120-6. [PMID: 20888390 PMCID: PMC3035767 DOI: 10.1016/j.mce.2010.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/15/2010] [Accepted: 09/18/2010] [Indexed: 11/23/2022]
Abstract
Aromatase, estrone sulfatase, and 17β-hydroxysteroid dehydrogenase type 1 are involved in the key steps of 17β-estradiol biosynthesis. Structure-function studies of aromatase, estrone sulfatase and 17β-hydroxysteroid dehydrogenase type 1 are important to evaluate the molecular basis of the interaction between these enzymes and their inhibitors. Selective and potent inhibitors of the three enzymes have been developed as antiproliferative agents in hormone-dependent breast carcinoma. New treatment strategies for hormone-dependent breast cancer are discussed.
Collapse
Affiliation(s)
- Yanyan Hong
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, United States
| | | |
Collapse
|
40
|
Gerschpacher M, Getoff N, Hartmann J, Schittl H, Danielova I, Ying S, Huber JC, Quint RM. Electron emission and product analysis of estrone: progesterone interactions studied by experiments in vitro. Gynecol Endocrinol 2011; 27:496-503. [PMID: 20586552 PMCID: PMC3132449 DOI: 10.3109/09513590.2010.495435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies showed that hormones like progesterone, testosterone, etc. can eject [Formula: see text] (solvated electrons). By means of electron transfer processes via the brain, the hormones communicate with other biological systems in the organism. The present study proves that also estrone is able to emit electrons. Their yield strongly depends on the concentration of the hormone, temperature and on the absorbed energy. The metabolites resulting from this process are likewise able to generate electrons, however with much smaller yields. The formation of the estrone metabolites is studied by HPLC-analyses. In vitro experiments with MCF-7 cells demonstrate the distinct effect of progesterone on the carcinogenity of estrone metabolites. Probable reaction mechanisms for explanation of the observed effects are postulated.
Collapse
Affiliation(s)
- Marion Gerschpacher
- Department of Gynecologic Endocrinology and Reproductive Medicine, University Hospital of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Thomas JL, Bucholtz KM, Kacsoh B. Selective inhibition of human 3β-hydroxysteroid dehydrogenase type 1 as a potential treatment for breast cancer. J Steroid Biochem Mol Biol 2011; 125:57-65. [PMID: 20736065 PMCID: PMC2999670 DOI: 10.1016/j.jsbmb.2010.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/02/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
Human 3β-hydroxysteroid dehydrogenase/isomerase type 1 (3β-HSD1) is a critical enzyme in the conversion of DHEA to estradiol in breast tumors and may be a target enzyme for inhibition in the treatment of breast cancer in postmenopausal women. Human 3β-HSD2 participates in the production of cortisol and aldosterone in the human adrenal gland in this population. In our recombinant human breast tumor MCF-7 Tet-off cells that express either 3β-HSD1 or 3β-HSD2, trilostane and epostane inhibit the DHEA-induced proliferation of MCF-7 3β-HSD1 cells with 12-16-fold lower IC(50) values compared to the MCF-7 3β-HSD2 cells. Trilostane and epostane also competitively inhibit purified human 3β-HSD1 with 12-16-fold lower K(i) values compared to the noncompetitive K(i) values measured for human 3β-HSD2. Using our structural model of 3β-HSD1, trilostane was docked in the active site of 3β-HSD1, and Arg195 in 3β-HSD1 or Pro195 in 3β-HSD2 was identified as a potentially critical residue. The R195P-1 mutant of 3β-HSD1 and the P195R-2 mutant of 3β-HSD2 were created, expressed and purified. Kinetic analyses of enzyme inhibition suggest that the high-affinity, competitive inhibition of 3β-HSD1 by trilostane may be related to the presence of Arg195 in 3β-HSD1 versus Pro195 in 3β-HSD2. In addition, His156 in 3β-HSD1 may play a role in the higher affinity of 3β-HSD1 for substrates and inhibitors compared to 3β-HSD2 containing Try156. Structural modeling of the 3β-HSD1 dimer identified a possible interaction between His156 on one subunit and Gln105 on the other. Kinetic analyses of the H156Y-1, Q105M-1 and Q105M-2 support subunit interactions that contribute to the higher affinity of 3β-HSD1 for the inhibitor, epostane, compared to 3β-HSD2. Article from the Special issue on Targeted Inhibitors.
Collapse
Affiliation(s)
- James L Thomas
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College St, Macon, GA 31207, USA. Thomas
| | | | | |
Collapse
|
42
|
Jiang Y, Zhou L, Yan T, Shen Z, Shao Z, Lu J. Association of sulfotransferase SULT1A1 with breast cancer risk: a meta-analysis of case-control studies with subgroups of ethnic and menopausal statue. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:101. [PMID: 20663177 PMCID: PMC2914670 DOI: 10.1186/1756-9966-29-101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/21/2010] [Indexed: 01/21/2023]
Abstract
BACKGROUND Sulfotransferase (SULT) plays an important role in the formation of estrogen which is usually conferred as a risk factor for breast cancer. Polymorphism of the SULT1A1 may be closely associated with breast cancer. However, studies on the association between polymorphism and breast cancer have yielded inconsistent results. We performed a meta-analysis including ethnic subgroup and menopausal statue subgroup to investigate the association of SULT1A1 Arg213His polymorphism with breast cancer. METHODS PubMed, EBSCO and Web of Science databases were searched for the correlative articles up to January 2010 (10362 breast cancer patients and 14250 controls). The risk (odds ratio, OR) was used to estimate the association between SULT1A1 polymorphism and breast cancer risk. All of the data from each study use either fixed-effects or random-effects. RESULTS We found that SULT1A1 Arg213His had no exact effect to increase the risk of breast cancer (OR = 1.07, 95% CI: 0.97-1.17, P = 0.164), but it did increase the risk of breast cancer among postmenopausal women in the dominant model (OR = 1.28, 95%CI: 1.04-1.58, P = 0.019). No similar effect was found among premenopausal breast cancer women (OR = 1.06, 95%CI: 0.88-1.27, P = 0.537). There was a significant increase in breast cancer risk among Asian women (OR = 2.03, 95% CI: 1.00-4.14, P = 0.051) but not Caucasian women in recessive model. There was publication bias among postmenopausal women subgroup (P = 0.002), however by using the trim and fill method, if the publication bias was the only source of the funnel plot asymmetry, it needed two more studies to be symmetrical. The value of Log OR did not change too much after the adjustment and the fail-safe number of missing studies that would bring the P-value changed was 17. CONCLUSIONS We concluded that the polymorphism of SULT1A1 Arg213His might be one of the high risk factors for breast cancer in Asian women and in postmenopausal women for all races. We should point out that the publication bias among postmenopausal women may partly account for the result, but the conclusion might not affected deeply by the publication bias.
Collapse
Affiliation(s)
- Yiwei Jiang
- Department of Breast Surgery, Shanghai Cancer Hospital/Cancer Institute, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
43
|
Thomas JL, Mack VL, Sun J, Terrell JR, Bucholtz KM. The functions of key residues in the inhibitor, substrate and cofactor sites of human 3beta-hydroxysteroid dehydrogenase type 1 are validated by mutagenesis. J Steroid Biochem Mol Biol 2010; 120:192-9. [PMID: 20420909 PMCID: PMC2891085 DOI: 10.1016/j.jsbmb.2010.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/15/2010] [Accepted: 04/17/2010] [Indexed: 11/22/2022]
Abstract
In postmenopausal women, human 3beta-hydroxysteroid dehydrogenase type 1 (3beta-HSD1) is a critical enzyme in the conversion of DHEA to estradiol in breast tumors, while 3beta-HSD2 participates in the production of cortisol and aldosterone in the human adrenal gland. The goals of this project are to determine if Arg195 in 3beta-HSD1 vs. Pro195 in 3beta-HSD2 in the substrate/inhibitor binding site is a critical structural difference responsible for the higher affinity of 3beta-HSD1 for inhibitor and substrate steroids compared to 3beta-HSD2 and whether Asp61, Glu192 and Thr8 are fingerprint residues for cofactor and substrate binding using site-directed mutagenesis. The R195P-1 mutant of 3beta-HSD1 and the P195R-2 mutant of 3beta-HSD2 have been created, expressed, purified and characterized kinetically. Dixon analyses of the inhibition of the R195P-1 mutant, P195R-2 mutant, wild-type 3beta-HSD1 and wild-type 3beta-HSD2 by trilostane has produced kinetic profiles that show inhibition of 3beta-HSD1 by trilostane (K(i)=0.10microM, competitive) with a 16-fold lower K(i) and different mode than measured for 3beta-HSD2 (K(i)=1.60microM, noncompetitive). The R195P-1 mutation shifts the high-affinity, competitive inhibition profile of 3beta-HSD1 to a low-affinity (trilostane K(i)=2.56microM), noncompetitive inhibition profile similar to that of 3beta-HSD2 containing Pro195. The P195R-2 mutation shifts the low-affinity, noncompetitive inhibition profile of 3beta-HSD2 to a high-affinity (trilostane K(i)=0.19microM), competitive inhibition profile similar to that of 3beta-HSD1 containing Arg195. Michaelis-Menten kinetics for DHEA, 16beta-hydroxy-DHEA and 16alpha-hydroxy-DHEA substrate utilization by the R195P-1 and P195R-2 enzymes provide further validation for higher affinity binding due to Arg195 in 3beta-HSD1. Comparisons of the Michaelis-Menten values of cofactor and substrate for the targeted mutants of 3beta-HSD1 (D61N, D61V, E192A, T8A) clarify the functions of these residues as well.
Collapse
Affiliation(s)
- James L Thomas
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College St, Macon, GA 31207, United States.
| | | | | | | | | |
Collapse
|
44
|
Aka JA, Mazumdar M, Chen CQ, Poirier D, Lin SX. 17beta-hydroxysteroid dehydrogenase type 1 stimulates breast cancer by dihydrotestosterone inactivation in addition to estradiol production. Mol Endocrinol 2010; 24:832-45. [PMID: 20172961 DOI: 10.1210/me.2009-0468] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The active estrogen estradiol (E2) stimulates breast cancer cell (BCC) growth, whereas the androgen dihydrotestosterone (DHT) has shown an antiproliferative effect. The principal product synthesized by the 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is E2, although we have demonstrated that the purified enzyme also inactivates DHT. However, the direct roles of 17beta-HSD1 in sex-hormone regulation and BCC proliferation have not been completely established. Here, we show that 17beta-HSD1 inhibition suppresses DHT catabolism by 19%, whereas knockdown of the gene expression increases the concentration of DHT by 41% in the T47D BCC line. The 17beta-HSD1/DHT complex crystal structure reveals that DHT binds in both normal and reverse modes, but the latter mode leading to O3 reduction is preferred with stronger interactions. Using RNA interference and an inhibitor of 17beta-HSD1, we demonstrate that 17beta-HSD1 expression is negatively correlated to DHT levels in BCC but positively correlated to estrone reduction, E2 levels, and cell proliferation. 17beta-HSD1 inhibition reduces DHT inactivation, increasing the antiproliferative effect by DHT in T47D cells after 8 d treatment. Thus, 17beta-HSD1 up-regulates BCC growth by a dual action on estradiol synthesis and DHT inactivation. We have further demonstrated that 17beta-HSD1 can enhance the E2-induced expression of the endogenous estrogen-responsive gene pS2, providing an important information regarding the modulation of the estrogen responsiveness by 17beta-HSD1 that may also contribute to BCC growth. These results strongly support the rationale for inhibiting 17beta-HSD1 in breast cancer therapy to eliminate estrogen activation via the sulfatase pathway while avoiding the deprivation of DHT.
Collapse
Affiliation(s)
- Juliette A Aka
- Research Center of the Laval University Hospital Center (CHUQ-CHUL) and Laval University, Québec, Canada
| | | | | | | | | |
Collapse
|
45
|
Gupta A, Saha P, Descôteaux C, Leblanc V, Asselin E, Bérubé G. Design, synthesis and biological evaluation of estradiol-chlorambucil hybrids as anticancer agents. Bioorg Med Chem Lett 2010; 20:1614-8. [PMID: 20137939 DOI: 10.1016/j.bmcl.2010.01.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
A series of estradiol-chlorambucil hybrids was synthesized as anticancer drugs for site-directed chemotherapy of breast cancer. The novel compounds were synthesized in good yields through efficient modifications of estrone at position 16alpha of the steroid nucleus. The newly synthesized compounds were evaluated for their anticancer efficacy in different hormone-dependent and hormone-independent breast cancer cell lines. The novel hybrids showed significant in vitro anticancer activity when compared to chlorambucil. Structure-activity relationship (SAR) reveals the influence of the length of the spacer chain between carrier and drug molecule.
Collapse
Affiliation(s)
- Atul Gupta
- Département de Chimie-Biologie, Groupe de Recherche en Oncologie et Endocrinologie Moléculaires, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec, Canada G9A 5H7
| | | | | | | | | | | |
Collapse
|
46
|
Getoff N, Gerschpacher M, Hartmann J, Huber JC, Schittl H, Quint RM. The 4-hydroxyestrone: Electron emission, formation of secondary metabolites and mechanisms of carcinogenesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 98:20-4. [PMID: 19926488 DOI: 10.1016/j.jphotobiol.2009.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 12/21/2022]
Abstract
4-Hydroxyestrone (4-OHE(1)), a typical cancer-inducing metabolite, originating from 17beta-estradiol (17beta-E2), was chosen as a model for the studies. The aim was to get a deeper insight in the mechanisms of its ability to initiate cancer. It was found, that 4-OHE(1) can eject electrons (e(aq)(-)), when excited in the singlet state by monochromatic UV-light (lambda=254 nm) in polar media (water:ethanol=40:60 vol.%). The quantum yield Q(e(aq)(-)), determined for various 4-OHE(1) concentrations, is found to be as high as that previously observed for 17beta-E2. It decreases with increasing substrate concentration, but it is enhanced at higher temperature. The ability of 4-OHE(1) to eject as well as to consume and to transfer electrons to other biological systems, classifies it as an electron mediator, similar to 17beta-E2. The 4-OHE(1) transients resulting of the electron emission process are leading to the formation of secondary metabolites. Surprisingly, it was established that the secondary metabolites possess likewise the ability to eject as well as to consume electrons. Hence, they behave similar like 17beta-E2. However, the structure of the secondary formed metabolites, which determinates their biological properties and carcinogenity, depends on the nature of the available reaction partners involved in their formation. A probable reaction mechanism explaining the subject matter is discussed.
Collapse
Affiliation(s)
- Nikola Getoff
- The University of Vienna, Faculty of Life Science, Section Radiation Biology, A-1090 Vienna, Althanstrasse 14, UZA II, Austria.
| | | | | | | | | | | |
Collapse
|
47
|
Martínez-Campa C, González A, Mediavilla MD, Alonso-González C, Alvarez-García V, Sánchez-Barceló EJ, Cos S. Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br J Cancer 2009; 101:1613-9. [PMID: 19773750 PMCID: PMC2778514 DOI: 10.1038/sj.bjc.6605336] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background: Melatonin reduces the development of breast cancer interfering with oestrogen-signalling pathways, and also inhibits aromatase activity and expression. Our objective was to study the promoters through which melatonin modifies aromatase expression, evaluate the ability of melatonin to regulate cyclooxygenases and assess whether the effects of melatonin are related to its effects on intracellular cAMP, in MCF-7 cells. Methods: Total aromatase mRNA, aromatase mRNA promoter regions and cyclooxygenases mRNA expression were determined by real-time RT–PCR. PGE2 and cAMP were measured by kits. Results: Melatonin downregulated the gene expression of the two major specific aromatase promoter regions, pII and pI.3, and also that of the aromatase promoter region pI.4. Melatonin 1 nM was able to counteract the stimulatory effect of tetradecanoyl phorbol acetate on PGE2 production and inhibit COX-2 and COX-1 mRNA expression. Melatonin 1 nM elicited a parallel time-dependent decrease in both cyclic AMP formation and aromatase mRNA expression. Conclusions: This study shows that melatonin inhibits aromatase activity and expression by regulating the gene expression of specific aromatase promoter regions. A possible mechanism for these effects would be the regulation by melatonin of intracellular cAMP levels, mediated by an inhibition of cyclooxygenase activity and expression.
Collapse
Affiliation(s)
- C Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, 39011 Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Thomas JL, Bucholtz KM, Sun J, Mack VL, Kacsoh B. Structural basis for the selective inhibition of human 3beta-hydroxysteroid dehydrogenase 1 in human breast tumor MCF-7 cells. Mol Cell Endocrinol 2009; 301:174-82. [PMID: 18955108 PMCID: PMC2667100 DOI: 10.1016/j.mce.2008.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 11/23/2022]
Abstract
Human 3beta-hydroxysteroid dehydrogenase/isomerase type 1 (3beta-HSD1) is a critical enzyme in the conversion of DHEA to estradiol in breast tumors and may be a target enzyme for inhibition in the treatment of breast cancer in postmenopausal women. Human 3beta-HSD2 participates in the production of cortisol and aldosterone in the human adrenal gland in this population. In our recombinant human breast tumor MCF-7 Tet-off cells that express either 3beta-HSD1 or 3beta-HSD2, trilostane and epostane inhibit the DHEA-induced proliferation of MCF-7 3beta-HSD1 cells with 12- to 16-fold lower IC(50) values compared to the MCF-7 3beta-HSD2 cells. The compounds also competitively inhibit purified human 3beta-HSD1 with 12- to 16-fold lower K(i) values compared to the noncompetitive K(i) values measured for human 3beta-HSD2. Using our structural model of 3beta-HSD1, trilostane or 17beta-acetoxy-trilostane was docked in the active site of 3beta-HSD1, and Arg195 in 3beta-HSD1 or Pro195 in 3beta-HSD2 was identified as a potentially critical residue (one of 23 non-identical residues in the two isoenzymes). The P195R mutant of 3beta-HSD2 were created, expressed and purified. Kinetic analyses of enzyme inhibition suggest that the high affinity, competitive inhibition of 3beta-HSD1 by trilostane and epostane may be related to the presence of Arg195 in 3beta-HSD1 vs. Pro195 in 3beta-HSD2.
Collapse
Affiliation(s)
- James L Thomas
- Division of Basic Medical Sciences, Mercer University School of Medicine, Mercer University, 1550 College Street, Macon, GA 31207, USA.
| | | | | | | | | |
Collapse
|
49
|
Poisson Paré D, Song D, Luu-The V, Han B, Li S, Liu G, Labrie F, Pelletier G. Expression of Estrogen Sulfotransferase 1E1 and Steroid Sulfatase in Breast Cancer: A Immunohistochemical Study. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2009; 3:9-21. [PMID: 21556246 PMCID: PMC3086308 DOI: 10.4137/bcbcr.s2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is known that the steroid sulfatase (STS) and the estrogen sulfotransferase (EST1E1) are commonly expressed in human breast carcinomas. STS and EST1E1 combined action could maintain the equilibrium between sulfated (inactive) and unconjugated (active) estrogens, which might have effects on development of hormone dependent breast cancer. We studied the expression of the STS and EST1E1 in 88 breast carcinomas and 57 adjacent non-malignant tissues by immunohistochemistry. The results were correlated with the tumor expression of estrogen receptor α (ER-α) and β (ER-β), progesterone receptor A (PR-A) and B (PR-B) and the proliferation marker CDC47, the tumoral type and stage and the age at surgery. STS expression was higher in carcinoma specimens than in adjacent normal tissues, although not to a significant level (p = 0.064) and it was positively associated with CDC47 expression (p < 0.05). These observations support the hypothesis that STS is overexpressed in breast cancer and associated with a worse prognosis. EST1E1 was observed for the first time in the nuclei of epithelial and tumoral cells. Tumor expression of EST1E1 was positively correlated with ER-β (p < 0.01) and PR-B (p < 0.05), two steroid receptors already associated with an improve prognosis for breast cancer. Controlling the STS overexpression in carcinomas could be a way to inhibit cancer growth. The significance of the association between EST1E1 and ER-β or PR-B should be further studied since these two receptors are transcription activators and may regulate the expression of protective enzymes like EST1E1.
Collapse
Affiliation(s)
- D Poisson Paré
- Molecular Endocrinology and Oncology Research Center, Laval University Hospital Research Center, 2705 Laurier blvd, Quebec City, Qc, Canada, G1V 4G2
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sato R, Suzuki T, Katayose Y, Miura K, Shiiba K, Tateno H, Miki Y, Akahira J, Kamogawa Y, Nagasaki S, Yamamoto K, Ii T, Egawa S, Evans DB, Unno M, Sasano H. Steroid sulfatase and estrogen sulfotransferase in colon carcinoma: regulators of intratumoral estrogen concentrations and potent prognostic factors. Cancer Res 2009; 69:914-22. [PMID: 19141651 DOI: 10.1158/0008-5472.can-08-0906] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous epidemiologic and in vitro studies have indicated a potential involvement of estrogens in the pathogenesis of human colon carcinoma, but the precise roles of estrogens have remained largely unknown. Therefore, in this study, we first measured intratumoral concentrations of estrogens in 53 colon carcinomas using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS). Tissue concentrations of total estrogen [estrone (E(1)) + estradiol] and E(1) were significantly (2.0- and 2.4-fold, respectively) higher in colon carcinoma tissues than in nonneoplastic colonic mucosa (n = 31), and higher intratumoral concentrations of total estrogen and E(1) were significantly associated with adverse clinical outcome. Intratumoral concentration of total estrogen was significantly associated with the combined status of steroid sulfatase (STS) and estrogen sulfotransferase (EST), but not with that of aromatase. Thus, we subsequently examined the STS/EST status in 328 colon carcinomas using immunohistochemistry. Immunoreactivities for STS and EST were detected in 61% and 44% of the cases, respectively. The -/+ group of the STS/EST status was inversely associated with Dukes' stage, depth of invasion, lymph node metastasis, and distant metastasis and positively correlated with Ki-67 labeling index of the carcinomas. In addition, this -/+ group had significantly longer survival, and a multivariate analysis revealed the STS/EST status as an independent prognostic factor. Results from our present study showed that the STS/EST status of carcinoma tissue determined intratumoral estrogen levels and could be a significant prognostic factor in colon carcinoma, suggesting that estrogens are locally produced mainly through the sulfatase pathway and play important roles in the progression of the disease.
Collapse
Affiliation(s)
- Ryuichiro Sato
- Department of Surgery and Pathology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|