1
|
A Truncated Form of the p27 Cyclin-Dependent Kinase Inhibitor Translated from Pre-mRNA Causes G 2-Phase Arrest. Mol Cell Biol 2022; 42:e0021722. [PMID: 36317925 PMCID: PMC9671031 DOI: 10.1128/mcb.00217-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pre-mRNA splicing is an indispensable mechanism for eukaryotic gene expression. Splicing inhibition causes cell cycle arrest at the G1 and G2/M phases, and this is thought to be one of the reasons for the potent antitumor activity of splicing inhibitors. However, the molecular mechanisms underlying the cell cycle arrest have many unknown aspects. In particular, the mechanism of G2/M-phase arrest caused by splicing inhibition is completely unknown. Here, we found that lower and higher concentrations of pladienolide B caused M-phase and G2-phase arrest, respectively. We analyzed protein levels of cell cycle regulators and found that a truncated form of the p27 cyclin-dependent kinase inhibitor, named p27*, accumulated in G2-arrested cells. Overexpression of p27* caused partial G2-phase arrest. Conversely, knockdown of p27* accelerated exit from G2/M phase after washout of splicing inhibitor. These results suggest that p27* contributes to G2/M-phase arrest caused by splicing inhibition. We also found that p27* bound to and inhibited M-phase cyclins, although it is well known that p27 regulates the G1/S transition. Intriguingly, p27*, but not full-length p27, was resistant to proteasomal degradation and remained in G2/M phase. These results suggest that p27*, which is a very stable truncated protein in G2/M phase, contributes to G2-phase arrest caused by splicing inhibition.
Collapse
|
2
|
Yam CQX, Lim HH, Surana U. DNA damage checkpoint execution and the rules of its disengagement. Front Cell Dev Biol 2022; 10:1020643. [PMID: 36274841 PMCID: PMC9582513 DOI: 10.3389/fcell.2022.1020643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chromosomes are susceptible to damage during their duplication and segregation or when exposed to genotoxic stresses. Left uncorrected, these lesions can result in genomic instability, leading to cells' diminished fitness, unbridled proliferation or death. To prevent such fates, checkpoint controls transiently halt cell cycle progression to allow time for the implementation of corrective measures. Prominent among these is the DNA damage checkpoint which operates at G2/M transition to ensure that cells with damaged chromosomes do not enter the mitotic phase. The execution and maintenance of cell cycle arrest are essential aspects of G2/M checkpoint and have been studied in detail. Equally critical is cells' ability to switch-off the checkpoint controls after a successful completion of corrective actions and to recommence cell cycle progression. Interestingly, when corrective measures fail, cells can mount an unusual cellular response, termed adaptation, where they escape checkpoint arrest and resume cell cycle progression with damaged chromosomes at the cost of genome instability or even death. Here, we discuss the DNA damage checkpoint, the mitotic networks it inhibits to prevent segregation of damaged chromosomes and the strategies cells employ to quench the checkpoint controls to override the G2/M arrest.
Collapse
Affiliation(s)
| | - Hong Hwa Lim
- A*STAR Singapore Immunology Network, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
de Oliveira PN, da Silva LFC, Eloy NB. The role of APC/C in cell cycle dynamics, growth and development in cereal crops. FRONTIERS IN PLANT SCIENCE 2022; 13:987919. [PMID: 36247602 PMCID: PMC9558237 DOI: 10.3389/fpls.2022.987919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Cereal crops can be considered the basis of human civilization. Thus, it is not surprising that these crops are grown in larger quantities worldwide than any other food supply and provide more energy to humankind than any other provision. Additionally, attempts to harness biomass consumption continue to increase to meet human energy needs. The high pressures for energy will determine the demand for crop plants as resources for biofuel, heat, and electricity. Thus, the search for plant traits associated with genetic increases in yield is mandatory. In multicellular organisms, including plants, growth and development are driven by cell division. These processes require a sequence of intricated events that are carried out by various protein complexes and molecules that act punctually throughout the cycle. Temporal controlled degradation of key cell division proteins ensures a correct onset of the different cell cycle phases and exit from the cell division program. Considering the cell cycle, the Anaphase-Promoting Complex/Cyclosome (APC/C) is an important conserved multi-subunit ubiquitin ligase, marking targets for degradation by the 26S proteasome. Studies on plant APC/C subunits and activators, mainly in the model plant Arabidopsis, revealed that they play a pivotal role in several developmental processes during growth. However, little is known about the role of APC/C in cereal crops. Here, we discuss the current understanding of the APC/C controlling cereal crop development.
Collapse
|
4
|
Yamada C, Morooka A, Miyazaki S, Nagai M, Mase S, Iemura K, Tasnin MN, Takuma T, Nakamura S, Morshed S, Koike N, Mostofa MG, Rahman MA, Sharmin T, Katsuta H, Ohara K, Tanaka K, Ushimaru T. TORC1 inactivation promotes APC/C-dependent mitotic slippage in yeast and human cells. iScience 2022; 25:103675. [PMID: 35141499 PMCID: PMC8814761 DOI: 10.1016/j.isci.2021.103675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Unsatisfied kinetochore-microtubule attachment activates the spindle assembly checkpoint to inhibit the metaphase-anaphase transition. However, some cells eventually override mitotic arrest by mitotic slippage. Here, we show that inactivation of TORC1 kinase elicits mitotic slippage in budding yeast and human cells. Yeast mitotic slippage was accompanied with aberrant aspects, such as degradation of the nucleolar protein Net1, release of phosphatase Cdc14, and anaphase-promoting complex/cyclosome (APC/C)-Cdh1-dependent degradation of securin and cyclin B in metaphase. This mitotic slippage caused chromosome instability. In human cells, mammalian TORC1 (mTORC1) inactivation also invoked mitotic slippage, indicating that TORC1 inactivation-induced mitotic slippage is conserved from yeast to mammalian cells. However, the invoked mitotic slippage in human cells was not dependent on APC/C-Cdh1. This study revealed an unexpected involvement of TORC1 in mitosis and provides information on undesirable side effects of the use of TORC1 inhibitors as immunosuppressants and anti-tumor drugs. Yeast TORC1 inhibition promotes Net1 degradation and Cdc14 release Yeast TORC1 inhibition invokes mitotic slippage in an APC/C-Cdh1-dependent manner Human mTORC1 inhibition also elicits mitotic slippage
Collapse
Affiliation(s)
- Chihiro Yamada
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Aya Morooka
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Seira Miyazaki
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Masayoshi Nagai
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan.,Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Satoru Mase
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Most Naoshia Tasnin
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Tsuneyuki Takuma
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Shotaro Nakamura
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Shamsul Morshed
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Naoki Koike
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Md Golam Mostofa
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Muhammad Arifur Rahman
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Tasnuva Sharmin
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Haruko Katsuta
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Kotaro Ohara
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takashi Ushimaru
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan.,Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| |
Collapse
|
5
|
Zhao JS, Shi S, Qu HY, Keckesova Z, Cao ZJ, Yang LX, Yu X, Feng L, Shi Z, Krakowiak J, Mao RY, Shen YT, Fan YM, Fu TM, Ye C, Xu D, Gao X, You J, Li W, Liang T, Lu Z, Feng YX. Glutamine synthetase licenses APC/C-mediated mitotic progression to drive cell growth. Nat Metab 2022; 4:239-253. [PMID: 35145325 DOI: 10.1038/s42255-021-00524-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/22/2021] [Indexed: 11/09/2022]
Abstract
Tumors can reprogram the functions of metabolic enzymes to fuel malignant growth; however, beyond their conventional functions, key metabolic enzymes have not been found to directly govern cell mitosis. Here, we report that glutamine synthetase (GS) promotes cell proliferation by licensing mitotic progression independently of its metabolic function. GS depletion, but not impairment of its enzymatic activity, results in mitotic arrest and multinucleation across multiple lung and liver cancer cell lines, patient-derived organoids and xenografted tumors. Mechanistically, GS directly interacts with the nuclear pore protein NUP88 to prevent its binding to CDC20. Such interaction licenses activation of the CDC20-mediated anaphase-promoting complex or cyclosome to ensure proper metaphase-to-anaphase transition. In addition, GS is overexpressed in human non-small cell lung cancer and its depletion reduces tumor growth in mice and increases the efficacy of microtubule-targeted chemotherapy. Our findings highlight a moonlighting function of GS in governing mitosis and illustrate how an essential metabolic enzyme promotes cell proliferation and tumor development, beyond its main metabolic function.
Collapse
Affiliation(s)
- Jiang-Sha Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Shuo Shi
- Shanghai Advanced Institute of Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Hai-Yan Qu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuzana Keckesova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zi-Jian Cao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Xian Yang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofu Yu
- Department of Thoracic Radiotherapy, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Limin Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhong Shi
- Department of Medical Oncology, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Joanna Krakowiak
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center Houston, Houston, TX, USA
| | - Ruo-Ying Mao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Tong Shen
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Meng Fan
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Ohio, OH, USA
| | - Cunqi Ye
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaofei Gao
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center Houston, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Yu-Xiong Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Saleme MDLS, Andrade IR, Eloy NB. The Role of Anaphase-Promoting Complex/Cyclosome (APC/C) in Plant Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:642934. [PMID: 33719322 PMCID: PMC7943633 DOI: 10.3389/fpls.2021.642934] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/03/2021] [Indexed: 05/06/2023]
Abstract
Most eukaryotic species propagate through sexual reproduction that requires male and female gametes. In flowering plants, it starts through a single round of DNA replication (S phase) and two consecutive chromosome segregation (meiosis I and II). Subsequently, haploid mitotic divisions occur, which results in a male gametophyte (pollen grain) and a female gametophyte (embryo sac) formation. In order to obtain viable gametophytes, accurate chromosome segregation is crucial to ensure ploidy stability. A precise gametogenesis progression is tightly regulated in plants and is controlled by multiple mechanisms to guarantee a correct evolution through meiotic cell division and sexual differentiation. In the past years, research in the field has shown an important role of the conserved E3-ubiquitin ligase complex, Anaphase-Promoting Complex/Cyclosome (APC/C), in this process. The APC/C is a multi-subunit complex that targets proteins for degradation via proteasome 26S. The functional characterization of APC/C subunits in Arabidopsis, which is one of the main E3 ubiquitin ligase that controls cell cycle, has revealed that all subunits investigated so far are essential for gametophytic development and/or embryogenesis.
Collapse
|
7
|
Ghafouri-Fard S, Shoorei H, Anamag FT, Taheri M. The Role of Non-Coding RNAs in Controlling Cell Cycle Related Proteins in Cancer Cells. Front Oncol 2020; 10:608975. [PMID: 33330110 PMCID: PMC7734207 DOI: 10.3389/fonc.2020.608975] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle is regulated by a number of proteins namely cyclin-dependent kinases (CDKs) and their associated cyclins which bind with and activate CDKs in a phase specific manner. Additionally, several transcription factors (TFs) such as E2F and p53 and numerous signaling pathways regulate cell cycle progression. Recent studies have accentuated the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the regulation of cell cycle. Both lncRNAs and miRNAs interact with TFs participating in the regulation of cell cycle transition. Dysregulation of cell cycle regulatory miRNAs and lncRNAs results in human disorders particularly cancers. Understanding the role of lncRNAs, miRNAs, and TFs in the regulation of cell cycle would pave the way for design of anticancer therapies which intervene with the cell cycle progression. In the current review, we describe the role of lncRNAs and miRNAs in the regulation of cell cycle and their association with human malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
A tumor-specific modulation of heterogeneous ribonucleoprotein A0 promotes excessive mitosis and growth in colorectal cancer cells. Cell Death Dis 2020; 11:245. [PMID: 32303675 PMCID: PMC7165183 DOI: 10.1038/s41419-020-2439-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 11/11/2022]
Abstract
RNA regulation mediating RNA-binding proteins (RBPs) have been shown to be related to the maintenance of homeostasis as well as cancer progression. However, the tumor-associated functions as well as the detailed mechanisms underlying the anti-tumor effects of most RBPs have yet to be explored. We herein report that the phosphorylated heterogeneous ribonucleoprotein (hnRNP) A0 promotes mitosis through the RAS-associated protein 3 GTPase-activating protein catalytic subunit 1 (RAB3GAP1)-Zeste white 10 interactor (ZWINT1) cascade. The downregulation assay of 20 representative hnRNPs, a major family of RNA-binding proteins, in colorectal cancer cells revealed that hnRNPA0 is a strong regulator of cancer cell growth. The tumor promotive function of hnRNPA0 was confirmed in gastrointestinal cancer cells, including pancreatic, esophageal, and gastric cancer cells, but not in non-cancerous cells. Flow cytometry and Western blotting analyses revealed that hnRNPA0 inhibited the apoptosis through the maintenance of G2/M phase promotion in colorectal cancer cells. A comprehensive analysis of mRNAs regulated by hnRNP A0 and immunostaining revealed that mitotic events were regulated by the hnRNPA0-RAB3GAP1 mRNA-mediated ZWINT-1 stabilization in colorectal cancer cells, but not in non-tumorous cells. The interaction of hnRNP A0 with mRNAs was dramatically changed by the deactivation of its phosphorylation site in cancer cells, but not in non-tumorous cells. Therefore, the tumor-specific biological functions characterized by the abnormal phosphorylation of RBPs are considered to be an attractive target for tumor treatment.
Collapse
|
9
|
Moreno-Moreno O, Torras-Llort M, Azorin F. The E3-ligases SCFPpa and APC/CCdh1 co-operate to regulate CENP-ACID expression across the cell cycle. Nucleic Acids Res 2019; 47:3395-3406. [PMID: 30753559 PMCID: PMC6468245 DOI: 10.1093/nar/gkz060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/22/2022] Open
Abstract
Centromere identity is determined by the specific deposition of CENP-A, a histone H3 variant localizing exclusively at centromeres. Increased CENP-A expression, which is a frequent event in cancer, causes mislocalization, ectopic kinetochore assembly and genomic instability. Proteolysis regulates CENP-A expression and prevents its misincorporation across chromatin. How proteolysis restricts CENP-A localization to centromeres is not well understood. Here we report that, in Drosophila, CENP-ACID expression levels are regulated throughout the cell cycle by the combined action of SCFPpa and APC/CCdh1. We show that SCFPpa regulates CENP-ACID expression in G1 and, importantly, in S-phase preventing its promiscuous incorporation across chromatin during replication. In G1, CENP-ACID expression is also regulated by APC/CCdh1. We also show that Cal1, the specific chaperone that deposits CENP-ACID at centromeres, protects CENP-ACID from SCFPpa-mediated degradation but not from APC/CCdh1-mediated degradation. These results suggest that, whereas SCFPpa targets the fraction of CENP-ACID that is not in complex with Cal1, APC/CCdh1 mediates also degradation of the Cal1-CENP-ACID complex and, thus, likely contributes to the regulation of centromeric CENP-ACID deposition.
Collapse
Affiliation(s)
- Olga Moreno-Moreno
- Institute of Molecular Biology of Barcelona, IBMB, CSIC. Baldiri Reixac 4. 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute for Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Mònica Torras-Llort
- Institute of Molecular Biology of Barcelona, IBMB, CSIC. Baldiri Reixac 4. 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute for Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Fernando Azorin
- Institute of Molecular Biology of Barcelona, IBMB, CSIC. Baldiri Reixac 4. 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute for Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Khumukcham SS, Samanthapudi VSK, Penugurti V, Kumari A, Kesavan PS, Velatooru LR, Kotla SR, Mazumder A, Manavathi B. Hematopoietic PBX-interacting protein is a substrate and an inhibitor of the APC/C-Cdc20 complex and regulates mitosis by stabilizing cyclin B1. J Biol Chem 2019; 294:10236-10252. [PMID: 31101654 DOI: 10.1074/jbc.ra118.006733] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/27/2019] [Indexed: 02/04/2023] Open
Abstract
Proper cell division relies on the coordinated regulation between a structural component, the mitotic spindle, and a regulatory component, anaphase-promoting complex/cyclosome (APC/C). Hematopoietic PBX-interacting protein (HPIP) is a microtubule-associated protein that plays a pivotal role in cell proliferation, cell migration, and tumor metastasis. Here, using HEK293T and HeLa cells, along with immunoprecipitation and immunoblotting, live-cell imaging, and protein-stability assays, we report that HPIP expression oscillates throughout the cell cycle and that its depletion delays cell division. We noted that by utilizing its D box and IR domain, HPIP plays a dual role both as a substrate and inhibitor, respectively, of the APC/C complex. We observed that HPIP enhances the G2/M transition of the cell cycle by transiently stabilizing cyclin B1 by preventing APC/C-Cdc20-mediated degradation, thereby ensuring timely mitotic entry. We also uncovered that HPIP associates with the mitotic spindle and that its depletion leads to the formation of multiple mitotic spindles and chromosomal abnormalities, results in defects in cytokinesis, and delays mitotic exit. Our findings uncover HPIP as both a substrate and an inhibitor of APC/C-Cdc20 that maintains the temporal stability of cyclin B1 during the G2/M transition and thereby controls mitosis and cell division.
Collapse
Affiliation(s)
| | | | - Vasudevarao Penugurti
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| | - Anita Kumari
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| | - P S Kesavan
- the Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Hyderabad 500107, Telangana, India
| | - Loka Reddy Velatooru
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| | - Siva Reddy Kotla
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| | - Aprotim Mazumder
- the Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Hyderabad 500107, Telangana, India
| | - Bramanandam Manavathi
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| |
Collapse
|
11
|
Abstract
The WD40 domain is one of the most abundant and interacting domains in the eukaryotic genome. In proteins the WD domain folds into a β-propeller structure, providing a platform for the interaction and assembly of several proteins into a signalosome. WD40 repeats containing proteins, in lower eukaryotes, are mainly involved in growth, cell cycle, development and virulence, while in higher organisms, they play an important role in diverse cellular functions like signal transduction, cell cycle control, intracellular transport, chromatin remodelling, cytoskeletal organization, apoptosis, development, transcriptional regulation, immune responses. To play the regulatory role in various processes, they act as a scaffold for protein-protein or protein-DNA interaction. So far, no WD40 domain has been identified with intrinsic enzymatic activity. Several WD40 domain-containing proteins have been recently characterized in prokaryotes as well. The review summarizes the vast array of functions performed by different WD40 domain containing proteins, their domain organization and functional conservation during the course of evolution.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Shweta Pandey
- APSGMNS Govt P G College, Kawardha, Chhattisgarh, 491995, India
| |
Collapse
|
12
|
The Temporal Regulation of S Phase Proteins During G 1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:335-369. [PMID: 29357066 DOI: 10.1007/978-981-10-6955-0_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Successful DNA replication requires intimate coordination with cell-cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell-cycle entry and cell-cycle progression.
Collapse
|
13
|
Regulation of Mammalian DNA Replication via the Ubiquitin-Proteasome System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:421-454. [PMID: 29357069 DOI: 10.1007/978-981-10-6955-0_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proper regulation of DNA replication ensures the faithful transmission of genetic material essential for optimal cellular and organismal physiology. Central to this regulation is the activity of a set of enzymes that induce or reverse posttranslational modifications of various proteins critical for the initiation, progression, and termination of DNA replication. This is particularly important when DNA replication proceeds in cancer cells with elevated rates of genomic instability and increased proliferative capacities. Here, we describe how DNA replication in mammalian cells is regulated via the activity of the ubiquitin-proteasome system as well as the consequence of derailed ubiquitylation signaling involved in this important cellular activity.
Collapse
|
14
|
Cui H, Loftus KM, Noell CR, Solmaz SR. Identification of Cyclin-dependent Kinase 1 Specific Phosphorylation Sites by an In Vitro Kinase Assay. J Vis Exp 2018. [PMID: 29782014 DOI: 10.3791/57674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.
Collapse
Affiliation(s)
- Heying Cui
- Department of Chemistry, State University of New York at Binghamton
| | - Kyle M Loftus
- Department of Chemistry, State University of New York at Binghamton
| | - Crystal R Noell
- Department of Chemistry, State University of New York at Binghamton
| | - Sozanne R Solmaz
- Department of Chemistry, State University of New York at Binghamton;
| |
Collapse
|
15
|
Klauck PJ, Bagby SM, Capasso A, Bradshaw-Pierce EL, Selby HM, Spreafico A, Tentler JJ, Tan AC, Kim J, Arcaroli JJ, Purkey A, Messersmith WA, Kuida K, Gail Eckhardt S, Pitts TM. Antitumor activity of the polo-like kinase inhibitor, TAK-960, against preclinical models of colorectal cancer. BMC Cancer 2018; 18:136. [PMID: 29402316 PMCID: PMC5800287 DOI: 10.1186/s12885-018-4036-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 01/23/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Polo-like kinase 1 (Plk1) is a serine/threonine kinase that is a key regulator of multiple stages of mitotic progression. Plk1 is upregulated in many tumor types including colorectal cancer (CRC) and portends a poor prognosis. TAK-960 is an ATP-competitive Plk1 inhibitor that has demonstrated efficacy across a broad range of cancer cell lines, including CRC. In this study, we investigated the activity of TAK-960 against a large collection of CRC models including 55 cell lines and 18 patient-derived xenografts. METHODS Fifty-five CRC cell lines and 18 PDX models were exposed to TAK-960 and evaluated for proliferation (IC50) and Tumor Growth Inhibition Index, respectively. Additionally, 2 KRAS wild type and 2 KRAS mutant PDX models were treated with TAK-960 as single agent or in combination with cetuximab or irinotecan. TAK-960 mechanism of action was elucidated through immunoblotting and cell cycle analysis. RESULTS CRC cell lines demonstrated a variable anti-proliferative response to TAK-960 with IC50 values ranging from 0.001 to > 0.75 μmol/L. Anti-proliferative effects were sustained after removal of drug. Following TAK-960 treatment a highly variable accumulation of mitotic (indicating cell cycle arrest) and apoptotic markers was observed. Cell cycle analysis demonstrated that TAK-960 treatment induced G2/M arrest and polyploidy. Six out of the eighteen PDX models responded to single agent TAK-960 therapy (TGII< 20). The addition of TAK-960 to standard of care chemotherapy resulted in largely additive antitumor effects. CONCLUSION TAK-960 is an active anti-proliferative agent against CRC cell lines and PDX models. Collectively, these data suggest that TAK-960 may be of therapeutic benefit alone or in combination with other agents, although future work should focus on the development of predictive biomarkers and hypothesis-driven rational combinations.
Collapse
Affiliation(s)
- Peter J. Klauck
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Stacey M. Bagby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Anna Capasso
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Erica L. Bradshaw-Pierce
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- Takeda California, San Diego, CA USA
| | - Heather M. Selby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Anna Spreafico
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - John J. Tentler
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Aik Choon Tan
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Jihye Kim
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - John J. Arcaroli
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Alicia Purkey
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Wells A. Messersmith
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Keisuke Kuida
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA USA
| | - S. Gail Eckhardt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| | - Todd M. Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
- University of Colorado Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
16
|
Fu H, Xu J, Chen J, Li G, Zhao X, Chen P. Microarray analysis reveals Tmub1 as a cell cycle-associated protein in rat hepatocytes. Mol Med Rep 2018; 17:4337-4344. [PMID: 29344642 PMCID: PMC5802207 DOI: 10.3892/mmr.2018.8451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/11/2018] [Indexed: 12/18/2022] Open
Abstract
Transmembrane and ubiquitin-like domain containing protein 1 (Tmub1), formerly known as hepatocyte odd protein shuttling (HOPS) has been recognized as a ubiquitously expressed shuttling protein that moves between the nucleus and cytoplasm in hepatocytes. Tmub1 is involved in liver regeneration and functions as a bridging protein in tumor cell proliferation. To investigate the transcriptional profile and potential biological processes affected by Tmub1 expression in normal rat hepatocytes, microarray and bioinformatics experiments were used to identify 127 mRNAs differentially expressed between Tmub1-overexpression, Tmub1-knockdown and normal BRL-3A cells (fold-change ≥2.5). The expression levels of 17 key node genes associated with the cell cycle were confirmed by reverse transcription-quantitative polymerase chain reaction analysis. Flow cytometry, 5-Ethynyl-20-deoxyuridine, Cell Counting Kit-8 and western blotting experiments revealed the effects on the cell cycle and the inhibition of proliferation in BRL-3A cells overexpressing Tmub1. Further co-immunoprecipitation assays demonstrated that Tmub1 interacts with cyclin A2 during the cell cycle and that the overexpression of Tmub1 may postpone cyclin A2 and cyclin B1 degradation in the M phase. The results of the present study indicated that Tmub1 functions as a cell proliferation inhibitor and cell cycle-associated protein.
Collapse
Affiliation(s)
- Hangwei Fu
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jianhua Xu
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jian Chen
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Guangyao Li
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiaobiao Zhao
- Department of Hepatobiliary Surgery, 187 Military Hospital, Haikou, Hainan 571159, P.R. China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
17
|
Liu X, Zong W, Li T, Wang Y, Xu X, Zhou ZW, Wang ZQ. The E3 ubiquitin ligase APC/C Cdh1 degrades MCPH1 after MCPH1-βTrCP2-Cdc25A-mediated mitotic entry to ensure neurogenesis. EMBO J 2017; 36:3666-3681. [PMID: 29150431 DOI: 10.15252/embj.201694443] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022] Open
Abstract
Mutations of microcephalin (MCPH1) can cause the neurodevelopmental disorder primary microcephaly type 1. We previously showed that MCPH1 deletion in neural stem cells results in early mitotic entry that distracts cell division mode, leading to exhaustion of the progenitor pool. Here, we show that MCPH1 interacts with and promotes the E3 ligase βTrCP2 to degrade Cdc25A independent of DNA damage. Overexpression of βTrCP2 or the knockdown of Cdc25A remedies the high mitotic index and rescues the premature differentiation of Mcph1-deficient neuroprogenitors in vivo MCPH1 itself is degraded by APC/CCdh1, but not APC/CCdc20, in late mitosis and G1 phase. Forced MCPH1 expression causes cell death, underlining the importance of MCPH1 turnover after mitosis. Ectopic expression of Cdh1 leads to premature differentiation of neuroprogenitors, mimicking differentiation defects of Mcph1-knockout neuroprogenitors. The homeostasis of MCPH1 in association with the ubiquitin-proteasome system ensures mitotic entry independent of cell cycle checkpoint. This study provides a mechanistic understanding of how MCPH1 controls neural stem cell fate and brain development.
Collapse
Affiliation(s)
- Xiaoqian Liu
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Wen Zong
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Tangliang Li
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yujun Wang
- Division of Biology, City of Hope National Medical Center/Beckman Research Institute, Duarte, CA, USA
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing, China.,Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Zhong-Wei Zhou
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany .,Faculty of Biology and Pharmacy, Friedrich-Schiller University of Jena, Jena, Germany
| |
Collapse
|
18
|
Wang J, Yin MZ, Zhao KW, Ke F, Jin WJ, Guo XL, Liu TH, Liu XY, Gu H, Yu XM, Li Z, Mu LL, Hong DL, Chen J, Chen GQ. APC/C is essential for hematopoiesis and impaired in aplastic anemia. Oncotarget 2017; 8:63360-63369. [PMID: 28968996 PMCID: PMC5609928 DOI: 10.18632/oncotarget.18808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/02/2017] [Indexed: 11/30/2022] Open
Abstract
Anaphase promoting complex/cyclosome (APC/C) is essential for cell cycle progression. Recently, its non-mitotic functions were also reported but less studied in several tissues including hematopoietic cells. Here, we developed an inducible Anapc2 (a core subunit of APC/C) knockout mice. The animals displayed a fatal bone marrow failure within 7 days after knockout induction. Their hematopoietic stem and progenitor cells (HSPCs) demonstrated a sharp decline and could form little colony. Further, the results of BrdU label-retaining cell assay showed that the dormant HPSCs lost rapidly. Analysis of cell cycle regulators, Skp2, P27, Cdk2, and Cyclin E1, suggested that these quiescent stem cells underwent a shift from quiescence to mitosis followed by apoptosis. We next detected Anapc2-expression in the CD34+ HSPCs of patients with aplastic anemia. CD34+ cells were markedly decreased in the bone marrow and Anapc2-expression in the residual CD34+ cells was undetectable, suggesting that APC/C was deficient and might have a relationship with the pathogenesis of aplastic anemia.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Min-Zhi Yin
- Department of Pathology, Shanghai Children's Medical Center, SJTU-SM, Shanghai, 200025, China
| | - Ke-Wen Zhao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Fang Ke
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Wen-Jie Jin
- Department of Orthopaedics, Shanghai Ninth People's Hospital, SJTU-SM, Shanghai, 200025, China
| | - Xiao-Lin Guo
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Tian-Hui Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xiao-Ye Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Hao Gu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xiao-Min Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Zhen Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Li-Li Mu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Deng-Li Hong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, SJTU-SM, Shanghai, 200127, China
| | - Guo-Qiang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| |
Collapse
|
19
|
Petrone A, Adamo ME, Cheng C, Kettenbach AN. Identification of Candidate Cyclin-dependent kinase 1 (Cdk1) Substrates in Mitosis by Quantitative Phosphoproteomics. Mol Cell Proteomics 2016; 15:2448-61. [PMID: 27134283 DOI: 10.1074/mcp.m116.059394] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is an essential regulator of many mitotic processes including the reorganization of the cytoskeleton, chromosome segregation, and formation and separation of daughter cells. Deregulation of Cdk1 activity results in severe defects in these processes. Although the role of Cdk1 in mitosis is well established, only a limited number of Cdk1 substrates have been identified in mammalian cells. To increase our understanding of Cdk1-dependent phosphorylation pathways in mitosis, we conducted a quantitative phosphoproteomics analysis in mitotic HeLa cells using two small molecule inhibitors of Cdk1, Flavopiridol and RO-3306. In these analyses, we identified a total of 24,840 phosphopeptides on 4,273 proteins, of which 1,215 phosphopeptides on 551 proteins were significantly reduced by 2.5-fold or more upon Cdk1 inhibitor addition. Comparison of phosphopeptide quantification upon either inhibitor treatment revealed a high degree of correlation (R(2) value of 0.87) between the different datasets. Motif enrichment analysis of significantly regulated phosphopeptides revealed enrichment of canonical Cdk1 kinase motifs. Interestingly, the majority of proteins identified in this analysis contained two or more Cdk1 inhibitor-sensitive phosphorylation sites, were highly connected with other candidate Cdk1 substrates, were enriched at specific subcellular structures, or were part of protein complexes as identified by the CORUM database. Furthermore, candidate Cdk1 substrates were enriched in G2 and M phase-specific genes. Finally, we validated a subset of candidate Cdk1 substrates by in vitro kinase assays. Our findings provide a valuable resource for the cell signaling and mitosis research communities and greatly increase our knowledge of Cdk1 substrates and Cdk1-dependent signaling pathways.
Collapse
Affiliation(s)
- Adam Petrone
- From the ‡Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Mark E Adamo
- §Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756
| | - Chao Cheng
- ¶Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Arminja N Kettenbach
- From the ‡Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755; §Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756;
| |
Collapse
|
20
|
Boekhout M, Yuan R, Wondergem AP, Segeren HA, van Liere EA, Awol N, Jansen I, Wolthuis RMF, de Bruin A, Westendorp B. Feedback regulation between atypical E2Fs and APC/CCdh1 coordinates cell cycle progression. EMBO Rep 2016; 17:414-27. [PMID: 26882548 DOI: 10.15252/embr.201540984] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/07/2016] [Indexed: 01/20/2023] Open
Abstract
E2F transcription factors control the oscillating expression pattern of multiple target genes during the cell cycle. Activator E2Fs, E2F1-3, induce an upswing of E2F targets, which is essential for the G1-to-S phase transition, whereas atypical E2Fs, E2F7 and E2F8, mediate a downswing of the same targets during late S, G2, and M phases. Expression of atypical E2Fs is induced by E2F1-3, but it is unknown how atypical E2Fs are inactivated in a timely manner. Here, we demonstrate that E2F7 and E2F8 are substrates of the anaphase-promoting complex/cyclosome (APC/C). Removal of CDH1, or mutating the CDH1-interacting KEN boxes, stabilized E2F7/8 from anaphase onwards and during G1. Expressing KEN mutant E2F7 during G1 impairs S phase entry and eventually results in cell death. Furthermore, we show that E2F8, but not E2F7, interacts also with APC/C(C) (dc20). Importantly, atypical E2Fs can activate APC/C(C) (dh1) by repressing its inhibitors cyclin A, cyclin E, and Emi1. In conclusion, we discovered a feedback loop between atypical E2Fs and APC/C(C) (dh1), which ensures balanced expression of cell cycle genes and normal cell cycle progression.
Collapse
Affiliation(s)
- Michiel Boekhout
- Division of Cell Biology I (B5), The Netherlands Cancer Institute (NKI-AvL), Amsterdam, The Netherlands
| | - Ruixue Yuan
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Annelotte P Wondergem
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hendrika A Segeren
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Elsbeth A van Liere
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nesibu Awol
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Imke Jansen
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rob M F Wolthuis
- Division of Cell Biology I (B5), The Netherlands Cancer Institute (NKI-AvL), Amsterdam, The Netherlands
| | - Alain de Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands Department of Pediatrics, Division of Molecular Genetics, University Medical Center Groningen University of Groningen, Groningen, The Netherlands
| | - Bart Westendorp
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Teplyuk NM, Uhlmann EJ, Wong AHK, Karmali P, Basu M, Gabriely G, Jain A, Wang Y, Chiocca EA, Stephens R, Marcusson E, Yi M, Krichevsky AM. MicroRNA-10b inhibition reduces E2F1-mediated transcription and miR-15/16 activity in glioblastoma. Oncotarget 2016; 6:3770-83. [PMID: 25738367 PMCID: PMC4414152 DOI: 10.18632/oncotarget.3009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/21/2014] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-10b (miR-10b) is commonly elevated in glioblastoma (GBM), while not expressed in normal brain tissues. Targeted inhibition of miR-10b has pleiotropic effects on GBM derived cell lines, it reduces GBM growth in animal models, but does not affect normal neurons and astrocytes. This data raises the possibility of developing miR-10b-targeting GBM therapy. However, the mechanisms contributing to miR-10b-mediated glioma cell survival and proliferation are unexplored. We found that inhibition of miR-10b has distinct effects on specific glioma cell lines. In cells expressing high levels of tumor suppressor p21WAF1/Cip1, it represses E2F1-mediated transcription, leading to down-regulation of multiple E2F1 target genes encoding for S-phase specific proteins, epigenetic modulators, and miRNAs (e.g. miR-15/16), and thereby stalling progression through the S-phase of cell cycle. Subsequently, miR-15/16 activities are reduced and many of their direct targets are de-repressed, including ubiquitin ligase FBXW7 that destabilizes Cyclin E. Conversely, GBM cells expressing low p21 level, or after p21 knock-down, exhibit weaker or no E2F1 response to miR-10b inhibition. Comparative analysis of The Cancer Genome Atlas revealed a strong correlation between miR-10b and multiple E2F target genes in GBM and low-grade glioma. Taken together, these findings indicate that miR-10b regulates E2F1-mediated transcription in GBM, in a p21-dependent fashion.
Collapse
Affiliation(s)
- Nadiya M Teplyuk
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Erik J Uhlmann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andus Hon-Kit Wong
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Meenakshi Basu
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Galina Gabriely
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anant Jain
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang Wang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Stephens
- Cancer Research and Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | | | - Ming Yi
- Cancer Research and Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Yamamori T, Ike S, Bo T, Sasagawa T, Sakai Y, Suzuki M, Yamamoto K, Nagane M, Yasui H, Inanami O. Inhibition of the mitochondrial fission protein dynamin-related protein 1 (Drp1) impairs mitochondrial fission and mitotic catastrophe after x-irradiation. Mol Biol Cell 2015; 26:4607-17. [PMID: 26466676 PMCID: PMC4678018 DOI: 10.1091/mbc.e15-03-0181] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/07/2015] [Indexed: 01/07/2023] Open
Abstract
The role of mitochondrial dynamics in cellular responses to ionizing radiation (IR) is still largely unknown. This study demonstrates that IR triggers Drp1-dependent mitochondrial fission and that Drp1 inhibition attenuates radiation-induced mitotic catastrophe, suggesting that Drp1 is involved in determining the fate of cells after irradiation. Accumulating evidence suggests that mitochondrial dynamics is crucial for the maintenance of cellular quality control and function in response to various stresses. However, the role of mitochondrial dynamics in cellular responses to ionizing radiation (IR) is still largely unknown. In this study, we provide evidence that IR triggers mitochondrial fission mediated by the mitochondrial fission protein dynamin-related protein 1 (Drp1). We also show IR-induced mitotic catastrophe (MC), which is a type of cell death associated with defective mitosis, and aberrant centrosome amplification in mouse embryonic fibroblasts (MEFs). These are attenuated by genetic or pharmacological inhibition of Drp1. Whereas radiation-induced aberrant centrosome amplification and MC are suppressed by the inhibition of Plk1 and CDK2 in wild-type MEFs, the inhibition of these kinases is ineffective in Drp1-deficient MEFs. Furthermore, the cyclin B1 level after irradiation is significantly higher throughout the time course in Drp1-deficient MEFs than in wild-type MEFs, implying that Drp1 is involved in the regulation of cyclin B1 level. These findings strongly suggest that Drp1 plays an important role in determining the fate of cells after irradiation via the regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Tohru Yamamori
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Satoshi Ike
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tomoki Bo
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tomoya Sasagawa
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuri Sakai
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Motofumi Suzuki
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kumiko Yamamoto
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masaki Nagane
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
23
|
Lim JM, Lee KS, Woo HA, Kang D, Rhee SG. Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression. J Cell Biol 2015; 210:23-33. [PMID: 26150388 PMCID: PMC4493999 DOI: 10.1083/jcb.201412068] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Reversible oxidative inactivation of centrosome-bound protein phosphatases such as Cdc14B by H2O2 is likely responsible for the inhibition of Cdk1-opposing phosphatases during early mitosis, which prevents premature degradation of mitotic activators. Proteins associated with the centrosome play key roles in mitotic progression in mammalian cells. The activity of Cdk1-opposing phosphatases at the centrosome must be inhibited during early mitosis to prevent premature dephosphorylation of Cdh1—an activator of the ubiquitin ligase anaphase-promoting complex/cyclosome—and the consequent premature degradation of mitotic activators. In this paper, we show that reversible oxidative inactivation of centrosome-bound protein phosphatases such as Cdc14B by H2O2 is likely responsible for this inhibition. The intracellular concentration of H2O2 increases as the cell cycle progresses. Whereas the centrosome is shielded from H2O2 through its association with the H2O2-eliminating enzyme peroxiredoxin I (PrxI) during interphase, the centrosome-associated PrxI is selectively inactivated through phosphorylation by Cdk1 during early mitosis, thereby exposing the centrosome to H2O2 and facilitating inactivation of centrosome-bound phosphatases. Dephosphorylation of PrxI by okadaic acid–sensitive phosphatases during late mitosis again shields the centrosome from H2O2 and thereby allows the reactivation of Cdk1-opposing phosphatases at the organelle.
Collapse
Affiliation(s)
- Jung Mi Lim
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892
| | - Hyun Ae Woo
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Dongmin Kang
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University, Seoul 120-749, South Korea
| |
Collapse
|
24
|
Maeda M, Hasegawa H, Sugiyama M, Hyodo T, Ito S, Chen D, Asano E, Masuda A, Hasegawa Y, Hamaguchi M, Senga T. Arginine methylation of ubiquitin-associated protein 2-like is required for the accurate distribution of chromosomes. FASEB J 2015; 30:312-23. [PMID: 26381755 DOI: 10.1096/fj.14-268987] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/08/2015] [Indexed: 01/01/2023]
Abstract
Proper bioriented attachment of microtubules and kinetochores is essential for the precise distribution of duplicated chromosomes to each daughter cell. An aberrant kinetochore-microtubule attachment results in chromosome instability, which leads to cellular transformation or apoptosis. In this article, we show that ubiquitin-associated protein 2-like (UBAP2L) is necessary for correct kinetochore-microtubule attachment. Depletion of UBAP2L inhibited chromosome alignment in metaphase and delayed progression to anaphase by activating spindle assembly checkpoint signaling. In addition, UBAP2L knockdown increased side-on attachment of kinetochores along the microtubules and suppressed stable kinetochore fiber formation. A proteomics analysis identified protein arginine methyltransferase (PRMT)1 as a direct interaction partner of UBAP2L. UBAP2L has an arginine- and glycine-rich motif called the RGG/RG or GAR motif in the N terminus. Biochemical analysis confirmed that arginine residues in the RGG/RG motif of UBAP2L were directly methylated by PRMT1. Finally, we demonstrated that the RGG/RG motif of UBAP2L is essential for the proper alignment of chromosomes in metaphase for the accurate distribution of chromosomes. Our results show a possible role for arginine methylation in UBAP2L for the progression of mitosis.
Collapse
Affiliation(s)
- Masao Maeda
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoki Hasegawa
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mai Sugiyama
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshinori Hyodo
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Ito
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dan Chen
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eri Asano
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michinari Hamaguchi
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Senga
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
25
|
Shang ZF, Tan W, Liu XD, Yu L, Li B, Li M, Song M, Wang Y, Xiao BB, Zhong CG, Guan H, Zhou PK. DNA-PKcs Negatively Regulates Cyclin B1 Protein Stability through Facilitating Its Ubiquitination Mediated by Cdh1-APC/C Pathway. Int J Biol Sci 2015. [PMID: 26221070 PMCID: PMC4515814 DOI: 10.7150/ijbs.12443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair. DNA-PKcs has also been shown recently functioning in mitotic regulation. Here, we report that DNA-PKcs negatively regulates the stability of Cyclin B1 protein through facilitating its ubiquitination mediated by Cdh1 / E 3 ubiquitin ligase APC/C pathway. Loss of DNA-PKcs causes abnormal accumulation of Cyclin B1 protein. Cyclin B1 degradation is delayed in DNA-PKcs-deficient cells as result of attenuated ubiquitination. The impact of DNA-PKcs on Cyclin B1 stability relies on its kinase activity. Our study further reveals that DNA-PKcs interacts with APC/C core component APC2 and its co-activator Cdh1. The destruction of Cdh1 is accelerated in the absence of DNA-PKcs. Moreover, overexpression of exogenous Cdh1 can reverse the increase of Cyclin B1 protein in DNA-PKcs-deficient cells. Thus, DNA-PKcs, in addition to its direct role in DNA damage repair, functions in mitotic progression at least partially through regulating the stability of Cyclin B1 protein.
Collapse
Affiliation(s)
- Zeng-Fu Shang
- 1. School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P. R. China ; 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Wei Tan
- 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China ; 3. School of Public Heath, Central South University, Changsha, Hunan Province, Changsha, Hunan 410078, P. R. China
| | - Xiao-Dan Liu
- 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Lan Yu
- 4. Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Bing Li
- 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Ming Li
- 1. School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P. R. China
| | - Man Song
- 1. School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P. R. China ; 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Yu Wang
- 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Bei-Bei Xiao
- 1. School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P. R. China
| | - Cai-Gao Zhong
- 3. School of Public Heath, Central South University, Changsha, Hunan Province, Changsha, Hunan 410078, P. R. China
| | - Hua Guan
- 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Ping-Kun Zhou
- 1. School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P. R. China ; 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| |
Collapse
|
26
|
Bochis OV, Fetica B, Vlad C, Achimas-Cadariu P, Irimie A. The Importance of Ubiquitin E3 Ligases, SCF and APC/C, in Human Cancers. ACTA ACUST UNITED AC 2015; 88:9-14. [PMID: 26528041 PMCID: PMC4508606 DOI: 10.15386/cjmed-377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/16/2015] [Indexed: 12/14/2022]
Abstract
A normal evolution of the cell-cycle phases consists of multiple consecutive events, which makes it a highly complex process. Its preservation is regulated by Cyclin-Cdks (cyclin-dependent kinases) interactions and protein degradation, which is often controlled by the ubiquitin-mediated proteolysis. The goal of this review is to emphasize the most important features of the regulation of the cell-cycle involved in cancerogenesis, by presenting the involvement of E3 ubiquitin ligases SCF (Skp1-Cul1-F-box protein) and APC/C (Anaphase-promoting complex/cyclosome) in human malignancies. Also, we discuss the importance of the ubiquitin proteasome pathway blockade in cancer treatment. We know that a better understanding of the regulatory biology of the cell cycle can lead to the development of new target therapies for cancer.
Collapse
Affiliation(s)
- Ovidiu Vasile Bochis
- Department of Medical Oncology, "Prof. Dr. Ion Chiricuta" Institute of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bogdan Fetica
- Department of Pathology, "Prof. Dr. Ion Chiricuta" Institute of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Catalin Vlad
- Department of Surgery, "Prof. Dr. Ion Chiricuta" Institute of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patriciu Achimas-Cadariu
- Department of Surgery, "Prof. Dr. Ion Chiricuta" Institute of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Surgery, "Prof. Dr. Ion Chiricuta" Institute of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
27
|
Chen X, Zhang FH, Chen QE, Wang YY, Wang YL, He JC, Zhou J. The clinical significance of CDK1 expression in oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 2015; 20:e7-12. [PMID: 25129248 PMCID: PMC4320424 DOI: 10.4317/medoral.19841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/26/2014] [Indexed: 11/06/2022] Open
Abstract
Objectives: To evaluate the clinical significance of cyclin-dependent kinase 1 (CDK1) in 77 oral squamous cell carcinomas (OSCC) using immunohistochemical methods.
Study Design: Immunohistochemical expression of CDK1 was compared with various clinicopathological features in 77 OSCC and 60 controlled epithelia adjacent to the tumours. In addition, correlation of CDK1 expression and prognostic and the 5-year accumulative survival rate of OSCC were investigated.
Results: The CDK1 protein was expressed in 52 cases of 77 tumor tissues (67.5%), compared with 21 cases of 60 controlled (35.0%). The expression of CDK1 was significantly correlated with the histological grade of OSCC (P<0.05). The CDK1 protein was over-expressed in recurrent tumors or in those with lymph node metastasis. Statistical analysis showed a significant reduction in the 5-year accumulative survival rate in CDK1 positive cases compared with CDK1 negative cases (P<0.05). Namely, the CDK1 positive patients had poor prognosis.
Conclusions: The expression of CDK1 might serve as malignant degree and prognostic markers for the survival of OSCC.
Key words:Cyclin-dependent kinase 1 (CDK1), oral squamous cell carcinoma (OSCC), immunohistochemistry, cell proliferation.
Collapse
Affiliation(s)
- Xin Chen
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Shandong University, China,
| | | | | | | | | | | | | |
Collapse
|
28
|
Role of peptide processing predictions in T cell epitope identification: contribution of different prediction programs. Immunogenetics 2014; 67:85-93. [PMID: 25475908 PMCID: PMC4297296 DOI: 10.1007/s00251-014-0815-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/10/2014] [Indexed: 10/27/2022]
Abstract
Proteolysis is the general term to describe the process of protein degradation into peptides. Proteasomes are the main actors in cellular proteolysis, and their activity can be measured in in vitro digestion experiments. However, in vivo proteolysis can be different than what is measured in these experiments if other proteases participate or if proteasomal activity is different in vivo. The in vivo proteolysis can be measured only indirectly, by the analysis of peptides presented on MHC-I molecules. MHC-I presented peptides are protected from further degradation, thus enabling an indirect view on the underlying in vivo proteolysis. The ligands presented on different MHC-I molecules enable different views on this process; in combination, they might give a complete picture. Based on in vitro proteasome-only digestions and MHC-I ligand data, different proteolysis predictors have been developed. With new in vitro digestion and MHC-I ligand data sets, we benchmarked how well these predictors capture in vitro proteasome-only activity and in vivo whole-cell proteolysis, respectively. Even though the in vitro proteasome digestion patterns were best captured by methods trained on such data (ProteaSMM and NetChop 20S), the in vivo whole-cell proteolysis was best predicted by a method trained on MHC-I ligand data (NetChop Cterm). Follow-up analysis showed that the likely source of this difference is the activity from proteases other than the proteasome, such as TPPII. This non-proteasomal in vivo activity is captured by NetChop Cterm and should be taken into account in MHC-I ligand predictions.
Collapse
|
29
|
PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry. PLoS Pathog 2014; 10:e1004514. [PMID: 25393019 PMCID: PMC4231158 DOI: 10.1371/journal.ppat.1004514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/11/2014] [Indexed: 12/02/2022] Open
Abstract
Entry into mitosis is accompanied by dramatic changes in cellular architecture, metabolism and gene expression. Many viruses have evolved cell cycle arrest strategies to prevent mitotic entry, presumably to ensure sustained, uninterrupted viral replication. Here we show for human cytomegalovirus (HCMV) what happens if the viral cell cycle arrest mechanism is disabled and cells engaged in viral replication enter into unscheduled mitosis. We made use of an HCMV mutant that, due to a defective Cyclin A2 binding motif in its UL21a gene product (pUL21a), has lost its ability to down-regulate Cyclin A2 and, therefore, to arrest cells at the G1/S transition. Cyclin A2 up-regulation in infected cells not only triggered the onset of cellular DNA synthesis, but also promoted the accumulation and nuclear translocation of Cyclin B1-CDK1, premature chromatin condensation and mitotic entry. The infected cells were able to enter metaphase as shown by nuclear lamina disassembly and, often irregular, metaphase spindle formation. However, anaphase onset was blocked by the still intact anaphase promoting complex/cyclosome (APC/C) inhibitory function of pUL21a. Remarkably, the essential viral IE2, but not the related chromosome-associated IE1 protein, disappeared upon mitotic entry, suggesting an inherent instability of IE2 under mitotic conditions. Viral DNA synthesis was impaired in mitosis, as demonstrated by the abnormal morphology and strongly reduced BrdU incorporation rates of viral replication compartments. The prolonged metaphase arrest in infected cells coincided with precocious sister chromatid separation and progressive fragmentation of the chromosomal material. We conclude that the Cyclin A2-binding function of pUL21a contributes to the maintenance of a cell cycle state conducive for the completion of the HCMV replication cycle. Unscheduled mitotic entry during the course of the HCMV replication has fatal consequences, leading to abortive infection and cell death. Cyclin A2 is a key regulator of the cell division cycle. Interactors of Cyclin A2 typically contain short sequence elements (RXL/Cy motifs) that bind with high affinity to a hydrophobic patch in the Cyclin A2 protein. Two types of RXL/Cy-containing factors are known: i) cyclin-dependent kinase (CDK) substrates, which are processed by the CDK subunit that complexes to Cyclin A2, and ii) CDK inhibitors, which stably associate to Cyclin A2-CDK due to the lack of CDK phosphorylation sites. Human cytomegalovirus (HCMV) has evolved a novel type of RXL/Cy-containing protein. Its UL21a gene product, a small and highly unstable protein, binds to Cyclin A2 via an RXL/Cy motif in its N-terminus, leading to efficient degradation of Cyclin A2 by the proteasome. Here, we show that this mechanism is not only essential for viral inhibition of cellular DNA synthesis, but also to prevent entry of infected cells into mitosis. Unscheduled mitotic entry is followed by aberrant spindle formation, metaphase arrest, precocious separation of sister chromatids, chromosomal fragmentation and cell death. Viral DNA replication and expression of the essential viral IE2 protein are abrogated in mitosis. Thus, pUL21a-Cyclin A2 interaction protects HCMV from a collapse of viral and cellular functions in mitosis.
Collapse
|
30
|
Herault F, Vincent A, Dameron O, Le Roy P, Cherel P, Damon M. The Longissimus and Semimembranosus muscles display marked differences in their gene expression profiles in pig. PLoS One 2014; 9:e96491. [PMID: 24809746 PMCID: PMC4014511 DOI: 10.1371/journal.pone.0096491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/09/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Meat quality depends on skeletal muscle structure and metabolic properties. While most studies carried on pigs focus on the Longissimus muscle (LM) for fresh meat consumption, Semimembranosus (SM) is also of interest because of its importance for cooked ham production. Even if both muscles are classified as glycolytic muscles, they exhibit dissimilar myofiber composition and metabolic characteristics. The comparison of LM and SM transcriptome profiles undertaken in this study may thus clarify the biological events underlying their phenotypic differences which might influence several meat quality traits. METHODOLOGY/PRINCIPAL FINDINGS Muscular transcriptome analyses were performed using a custom pig muscle microarray: the 15 K Genmascqchip. A total of 3823 genes were differentially expressed between the two muscles (Benjamini-Hochberg adjusted P value ≤0.05), out of which 1690 and 2133 were overrepresented in LM and SM respectively. The microarray data were validated using the expression level of seven differentially expressed genes quantified by real-time RT-PCR. A set of 1047 differentially expressed genes with a muscle fold change ratio above 1.5 was used for functional characterization. Functional annotation emphasized five main clusters associated to transcriptome muscle differences. These five clusters were related to energy metabolism, cell cycle, gene expression, anatomical structure development and signal transduction/immune response. CONCLUSIONS/SIGNIFICANCE This study revealed strong transcriptome differences between LM and SM. These results suggest that skeletal muscle discrepancies might arise essentially from different post-natal myogenic activities.
Collapse
Affiliation(s)
- Frederic Herault
- INRA, UMR1348, PEGASE, F-35590 Saint-Gilles, France
- Agrocampus Ouest, UMR1348, PEGASE, F-35000 Rennes, France
| | - Annie Vincent
- INRA, UMR1348, PEGASE, F-35590 Saint-Gilles, France
- Agrocampus Ouest, UMR1348, PEGASE, F-35000 Rennes, France
| | - Olivier Dameron
- Université de Rennes1, F-35000 Rennes, France
- IRISA team Dyliss, F-35000 Rennes, France
| | - Pascale Le Roy
- INRA, UMR1348, PEGASE, F-35590 Saint-Gilles, France
- Agrocampus Ouest, UMR1348, PEGASE, F-35000 Rennes, France
| | - Pierre Cherel
- iBV-institut de Biologie Valrose, Université Nice-Sophia Antipolis UMR CNRS 7277 Inserm U1091, Parc Valrose, F-06108 Nice, France
| | - Marie Damon
- INRA, UMR1348, PEGASE, F-35590 Saint-Gilles, France
- Agrocampus Ouest, UMR1348, PEGASE, F-35000 Rennes, France
| |
Collapse
|
31
|
STK31 is a cell-cycle regulated protein that contributes to the tumorigenicity of epithelial cancer cells. PLoS One 2014; 9:e93303. [PMID: 24667656 PMCID: PMC3965560 DOI: 10.1371/journal.pone.0093303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/03/2014] [Indexed: 01/08/2023] Open
Abstract
Serine/threonine kinase 31 (STK31) is one of the novel cancer/testis antigens for which its biological functions remain largely unclear. Here, we demonstrate that STK31 is overexpressed in many human colorectal cancer cell lines and tissues. STK31 co-localizes with pericentrin in the centrosomal region throughout all phases of the cell cycle. Interestingly, when cells undergo mitosis, STK31 also localizes to the centromeres, central spindle, and midbody. This localization behavior is similar to that of chromosomal passenger proteins, which are known to be the important players of the spindle assembly checkpoint. The expression of STK31 is cell cycle-dependent through the regulation of a putative D-box near its C-terminal region. Ectopically-expressed STK31-GFP increases cell migration and invasive ability without altering the proliferation rate of cancer cells, whereas the knockdown expression of endogenous STK31 by lentivirus-derived shRNA results in microtubule assembly defects that prolong the duration of mitosis and lead to apoptosis. Taken together, our results suggest that the aberrant expression of STK31 contributes to tumorigenicity in somatic cancer cells. STK31 might therefore act as a potential therapeutic target in human somatic cancers.
Collapse
|
32
|
Bessat M. Knockdown of APC/C-associated genes and its effect on viability and cell cycle of protozoan parasite of Trypanosoma brucei. Parasitol Res 2014; 113:1555-62. [PMID: 24532012 DOI: 10.1007/s00436-014-3800-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/28/2014] [Indexed: 12/20/2022]
Abstract
In the eukaryotic pathogen of Trypanosoma brucei, the anaphase promoting complex or cyclosome (APC/C) is composed of ten subunit proteins which are conserved in kinetoplastid protozoan parasites. During the course of APC/C characterization by PTP tagging and mass spectrometry, some other proteins were found to be associated in substoichiometric ratio to APC/C. These proteins could not be assigned as APC/C core components as they are below the threshold imposed by mass spectrometry identification and therefore they are termed non-core APC/C-associated proteins. Here in this study, functional roles of these proteins were investigated through reverse genetics approach. mRNAs of protein-encoding genes were individually knocked down by RNA interference and the resulting phenotypes were assayed through functional assays such as growth curve, cell cycle progression by flow cytometry, and DNA profiles by DAPI staining and microscopy examination. Based on the presented data, these proteins are playing essential functions in the cell biology of T. brucei; and more specifically, in regulating its cell cycle progression. Thus, the non-core APC/C-associated proteins appear to play important roles in complementing APC/C specialized function in the cell cycle of T. brucei.
Collapse
Affiliation(s)
- Mohamed Bessat
- Department of Parasitology, Faculty of Veterinary Medicine, Alexandria University, P.O. Box 22758, Edfina-Rasheed Line, Behaira, Egypt,
| |
Collapse
|
33
|
Casimiro MC, Velasco-Velázquez M, Aguirre-Alvarado C, Pestell RG. Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present. Expert Opin Investig Drugs 2014; 23:295-304. [PMID: 24387133 DOI: 10.1517/13543784.2014.867017] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Intensive efforts, over the last decade, have been made to inhibit the kinase activity of cyclins that act as mediators during cell-cycle progression. Activation of the cyclin D1 oncogene, often by amplification or rearrangement, is a major driver of multiple types of human tumors including breast and squamous cell cancers, B-cell lymphoma, myeloma and parathyroid adenoma. AREAS COVERED In this review, the authors summarize the activity of cyclins and cyclin-dependent kinases in cell-cycle progression and transcription. They focus on cyclin D1/CDK4/CDK6, a central mediator in the transition from G1 to S phase. Furthermore, the authors discuss the first generation of pan-cyclin-dependent kinase inhibitors that failed to meet expectation and discuss, in detail, the second generation of highly specific cyclin D1/CDK4/CDK6 inhibitors that are proving to be more efficacious. EXPERT OPINION The mechanism by which cyclin D1 drives tumorigenesis may be dependent on kinase and kinase-independent functions. Further evidence is necessary to delineate the roles of cyclin D1 in early pre-neoplastic lesions where its overexpression may promote genomic instability in a kinase-independent manner.
Collapse
Affiliation(s)
- Mathew C Casimiro
- Thomas Jefferson University & Hospital, Department of Cancer Biology , 233 South 10th Street, Philadelphia, PA 19107 , USA
| | | | | | | |
Collapse
|
34
|
Yamada M, Watanabe K, Mistrik M, Vesela E, Protivankova I, Mailand N, Lee M, Masai H, Lukas J, Bartek J. ATR-Chk1-APC/CCdh1-dependent stabilization of Cdc7-ASK (Dbf4) kinase is required for DNA lesion bypass under replication stress. Genes Dev 2014; 27:2459-72. [PMID: 24240236 PMCID: PMC3841735 DOI: 10.1101/gad.224568.113] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cdc7 kinase regulates DNA replication. However, its role in DNA repair and recombination is poorly understood. Here we describe a pathway that stabilizes the human Cdc7-ASK (activator of S-phase kinase; also called Dbf4), its regulation, and its function in cellular responses to compromised DNA replication. Stalled DNA replication evoked stabilization of the Cdc7-ASK (Dbf4) complex in a manner dependent on ATR-Chk1-mediated checkpoint signaling and its interplay with the anaphase-promoting complex/cyclosome(Cdh1) (APC/C(Cdh1)) ubiquitin ligase. Mechanistically, Chk1 kinase inactivates APC/C(Cdh1) through degradation of Cdh1 upon replication block, thereby stabilizing APC/C(Cdh1) substrates, including Cdc7-ASK (Dbf4). Furthermore, motif C of ASK (Dbf4) interacts with the N-terminal region of RAD18 ubiquitin ligase, and this interaction is required for chromatin binding of RAD18. Impaired interaction of ASK (Dbf4) with RAD18 disables foci formation by RAD18 and hinders chromatin loading of translesion DNA polymerase η. These findings define a novel mechanism that orchestrates replication checkpoint signaling and ubiquitin-proteasome machinery with the DNA damage bypass pathway to guard against replication collapse under conditions of replication stress.
Collapse
Affiliation(s)
- Masayuki Yamada
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-775 15 Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang CH, Kuo WT, Chuang YT, Chen CY, Lin CC. Cyclin B1 destruction box-mediated protein instability: the enhanced sensitivity of fluorescent-protein-based reporter gene system. BIOMED RESEARCH INTERNATIONAL 2013; 2013:732307. [PMID: 24416725 PMCID: PMC3876668 DOI: 10.1155/2013/732307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/19/2013] [Indexed: 12/26/2022]
Abstract
The periodic expression and destruction of several cyclins are the most important steps for the exact regulation of cell cycle. Cyclins are degraded by the ubiquitin-proteasome system during cell cycle. Besides, a short sequence near the N-terminal of cyclin B called the destruction box (D-box; CDB) is also required. Fluorescent-protein-based reporter gene system is insensitive to analysis because of the overly stable fluorescent proteins. Therefore, in this study, we use human CDB fused with both enhanced green fluorescent protein (EGFP) at C-terminus and red fluorescent protein (RFP, DsRed) at N-terminus in the transfected human melanoma cells to examine the effects of CDB on different fluorescent proteins. Our results indicated that CDB-fused fluorescent protein can be used to examine the slight gene regulations in the reporter gene system and have the potential to be the system for screening of functional compounds in the future.
Collapse
Affiliation(s)
- Chao-Hsun Yang
- Department of Cosmetic Science, Providence University, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan
| | - Wan-Ting Kuo
- Department of Cosmetic Science, Providence University, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan
| | - Yun-Ting Chuang
- Department of Cosmetic Science, Providence University, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan
| | - Cheng-Yu Chen
- Department of Cosmetic Science, Providence University, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan
| |
Collapse
|
36
|
Kikuchi R, Ohata H, Ohoka N, Kawabata A, Naito M. APOLLON protein promotes early mitotic CYCLIN A degradation independent of the spindle assembly checkpoint. J Biol Chem 2013; 289:3457-67. [PMID: 24302728 DOI: 10.1074/jbc.m113.514430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the mammalian cell cycle, both CYCLIN A and CYCLIN B are required for entry into mitosis, and their elimination is also essential to complete the process. During mitosis, CYCLIN A and CYCLIN B are ubiquitylated by the anaphase-promoting complex/cyclosome (APC/C) and then subjected to proteasomal degradation. However, CYCLIN A, but not CYCLIN B, begins to be degraded in the prometaphase when APC/C is inactivated by the spindle assembly checkpoint (SAC). Here, we show that APOLLON (also known as BRUCE or BIRC6) plays a role in SAC-independent degradation of CYCLIN A in early mitosis. APPOLON interacts with CYCLIN A that is not associated with cyclin-dependent kinases. APPOLON also interacts with APC/C, and it facilitates CYCLIN A ubiquitylation. In APPOLON-deficient cells, mitotic degradation of CYCLIN A is delayed, and the total, but not the cyclin-dependent kinase-bound, CYCLIN A level was increased. We propose APPOLON to be a novel regulator of mitotic CYCLIN A degradation independent of SAC.
Collapse
Affiliation(s)
- Ryo Kikuchi
- From the Institute of Molecular and Cellular Biosciences
| | | | | | | | | |
Collapse
|
37
|
Zhao Y, Sun Y. Cullin-RING Ligases as attractive anti-cancer targets. Curr Pharm Des 2013; 19:3215-25. [PMID: 23151137 DOI: 10.2174/13816128113199990300] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) promotes the timely degradation of short-lived proteins with key regulatory roles in a vast array of biological processes, such as cell cycle progression, oncogenesis and genome integrity. Thus, abnormal regulation of UPS disrupts the protein homeostasis and causes many human diseases, particularly cancer. Indeed, the FDA approval of bortezomib, the first class of general proteasome inhibitor, for the treatment of multiple myeloma, demonstrated that the UPS can be an attractive anti-cancer target. However, normal cell toxicity associated with bortezomib, resulting from global inhibition of protein degradation, promotes the focus of drug discovery efforts on targeting enzymes upstream of the proteasome for better specificity. E3 ubiquitin ligases, particularly those known to be activated in human cancer, become an attractive choice. Cullin-RING Ligases (CRLs) with multiple components are the largest family of E3 ubiquitin ligases and are responsible for ubiquitination of ~20% of cellular proteins degraded through UPS. Activity of CRLs is dynamically regulated and requires the RING component and cullin neddylation. In this review, we will introduce the UPS and CRL E3s and discuss the biological processes regulated by each of eight CRLs through substrate degradation. We will further discuss how cullin neddylation controls CRL activity, and how CRLs are being validated as the attractive cancer targets by abrogating the RING component through genetic means and by inhibiting cullin neddylation via MLN4924, a small molecule indirect inhibitor of CRLs, currently in several Phase I clinical trials. Finally, we will discuss current efforts and future perspectives on the development of additional inhibitors of CRLs by targeting E2 and/or E3 of cullin neddylation and CRL-mediated ubiquitination as potential anti-cancer agents.
Collapse
Affiliation(s)
- Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
38
|
Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T. Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci 2013; 70:4785-94. [PMID: 23880895 PMCID: PMC3830198 DOI: 10.1007/s00018-013-1423-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/24/2013] [Accepted: 07/04/2013] [Indexed: 02/07/2023]
Abstract
The mammalian cell cycle is precisely controlled by cyclin-dependent kinases (CDKs) and related pathways such as the RB and p53 pathways. Recent research on long non-coding RNAs (lncRNAs) indicates that many lncRNAs are involved in the regulation of critical cell cycle regulators such as the cyclins, CDKs, CDK inhibitors, pRB, and p53. These lncRNAs act as epigenetic regulators, transcription factor regulators, post-transcription regulators, and protein scaffolds. These cell cycle-regulated lncRNAs mainly control cellular levels of cell cycle regulators via various mechanisms, and may provide diversity and reliability to the general cell cycle. Interestingly, several lncRNAs are induced by DNA damage and participate in cell cycle arrest or induction of apoptosis as DNA damage responses. Therefore, deregulations of these cell cycle regulatory lncRNAs may be involved in tumorigenesis, and they are novel candidate molecular targets for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3125, Japan,
| | | | | | | | | |
Collapse
|
39
|
Patil GB, Hallikeri KS, Balappanavar AY, Hongal SG, Sanjaya PR, Sagari SG. Cyclin B1 overexpression in conventional oral squamous cell carcinoma and verrucous carcinoma- A correlation with clinicopathological features. Med Oral Patol Oral Cir Bucal 2013; 18:e585-90. [PMID: 23722120 PMCID: PMC3731085 DOI: 10.4317/medoral.18220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/19/2013] [Indexed: 01/07/2023] Open
Abstract
Background: Nuclear localization of cyclin B1 is an indicator for cells undergoing mitotic division, and the overexpression has shown promising results as a good prognostic predictor for patients of squamous cell carcinoma (SCC). Cyclin B1 overexpression among histological grades of conventional oral squamous cell carcinoma (COSCC), as well as comparison with verrucous carcinoma (VC) has been less investigated.
Study Design: Immunohistochemical expression of cyclin B1 was compared with various clinicopathological features in 30 primary COSCC and 31 primary VC cases.
Result: Cyclin B1 showed significant overexpression for some clinical features for both the variants of oral squamous cell carcinoma. In histopathological variants, statistical significance was observed among grades of COSCC, as well as COSCC and its grades with VC. The concomitant increase in cyclin B1 overexpression from VC to grades COSCC was observed.
Conclusion: Our study findings draw attention to cyclin B1 overexpression is involved in early carcinogenesis, cell differentiation and tumor proliferation.
Key words:Cyclin B1, oral squamous cell carcinoma, verrucous carcinoma, head and neck cancer.
Collapse
Affiliation(s)
- Gururaj B Patil
- Department of Oral and Maxillofacial Pathology, Jodhpur national University, Jodhpur dental college and Hospital, Jodhpur, Rajasthan, India .
| | | | | | | | | | | |
Collapse
|
40
|
Clijsters L, Ogink J, Wolthuis R. The spindle checkpoint, APC/C(Cdc20), and APC/C(Cdh1) play distinct roles in connecting mitosis to S phase. ACTA ACUST UNITED AC 2013; 201:1013-26. [PMID: 23775192 PMCID: PMC3691463 DOI: 10.1083/jcb.201211019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The spindle checkpoint, APC/C-Cdc20, and APC/C-Cdh1 act successively to connect disappearance of geminin and cyclin B1 to a peak of Cdt1 and Cdc6. DNA replication depends on a preceding licensing event by Cdt1 and Cdc6. In animal cells, relicensing after S phase but before mitosis is prevented by the Cdt1 inhibitor geminin and mitotic cyclin activity. Here, we show that geminin, like cyclin B1 and securin, is a bona fide target of the spindle checkpoint and APC/CCdc20. Cyclin B1 and geminin are degraded simultaneously during metaphase, which directs Cdt1 accumulation on segregating sister chromatids. Subsequent activation of APC/CCdh1 leads to degradation of Cdc6 well before Cdt1 becomes unstable in a replication-coupled manner. In mitosis, the spindle checkpoint supports Cdt1 accumulation, which promotes S phase onset. We conclude that the spindle checkpoint, APC/CCdc20, and APC/CCdh1 act successively to ensure that the disappearance of licensing inhibitors coincides exactly with a peak of Cdt1 and Cdc6. Whereas cell cycle entry from quiescence requires Cdc6 resynthesis, our results indicate that proliferating cells use a window of time in mitosis, before Cdc6 is degraded, as an earlier opportunity to direct S phase.
Collapse
Affiliation(s)
- Linda Clijsters
- Division of Cell Biology I (B5), The Netherlands Cancer Institute (NKI-AvL), 1066 CX Amsterdam, Netherlands.
| | | | | |
Collapse
|
41
|
Bessat M, Knudsen G, Burlingame AL, Wang CC. A minimal anaphase promoting complex/cyclosome (APC/C) in Trypanosoma brucei. PLoS One 2013; 8:e59258. [PMID: 23533609 PMCID: PMC3606461 DOI: 10.1371/journal.pone.0059258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/13/2013] [Indexed: 12/16/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that initiates chromosome segregation and mitotic exit by targeting critical cell-cycle regulators for proteolytic destruction. Previously, seven APC/C subunit homologues were identified in the genome of Trypanosoma brucei. In the present study, we tested five of them in yeast complementation studies and found none of them capable of complementing the yeast mutants lacking the corresponding subunits, suggesting significant discrepancies between the two APC/C’s. Subunit homologues of mitotic checkpoint complex (MCC) have not yet been identified in T. brucei, raising the possibility that a MCC-APC/C complex equivalent may not exist in T. brucei. We performed tandem affinity purification of the protein complex containing a APC1 fusion protein expressed in the cells enriched in different phases of the cell cycle of procyclic form T. brucei, and compared their protein profiles using LC-MS/MS analyses. The seven putative APC/C subunits were identified in the protein complex throughout the cell cycle together with three additional proteins designated the associated proteins (AP) AP1, AP2 and AP3. Abundance of the 10 proteins remained relatively unchanged throughout the cell cycle, suggesting that they are the core subunits of APC/C. AP1 turned out to be a homologue of APC4. An RNAi knockdown of APC4 and AP3 showed no detectable cellular phenotype, whereas an AP2 knockdown enriched the cells in G2/M phase. The AP2-depleted cells showed stabilized mitotic cyclin B. An accumulation of poly-ubiquitinated cyclin B was indicated in the cells treated with the proteasome inhibitor MG132, demonstrating the involvement of proteasome in degrading poly-ubiquitinated cyclin B. In all, a 10-subunit APC/C machinery with a conserved function is identified in T. brucei without linking to a MCC-like complex, thus indicating a unique T. brucei APC/C.
Collapse
Affiliation(s)
- Mohamed Bessat
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Giselle Knudsen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system - implications for cell cycle control and the targeted treatment of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:150-62. [PMID: 23466868 DOI: 10.1016/j.bbamcr.2013.02.028] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/07/2013] [Accepted: 02/22/2013] [Indexed: 01/21/2023]
Abstract
Two families of E3 ubiquitin ligases are prominent in cell cycle regulation and mediate the timely and precise ubiquitin-proteasome-dependent degradation of key cell cycle proteins: the SCF (Skp1/Cul1/F-box protein) complex and the APC/C (anaphase promoting complex or cyclosome). While certain SCF ligases drive cell cycle progression throughout the cell cycle, APC/C (in complex with either of two substrate recruiting proteins: Cdc20 and Cdh1) orchestrates exit from mitosis (APC/C(Cdc20)) and establishes a stable G1 phase (APC/C(Cdh1)). Upon DNA damage or perturbation of the normal cell cycle, both ligases are involved in checkpoint activation. Mechanistic insight into these processes has significantly improved over the last ten years, largely due to a better understanding of APC/C and the functional characterization of multiple F-box proteins, the variable substrate recruiting components of SCF ligases. Here, we review the role of SCF- and APC/C-mediated ubiquitylation in the normal and perturbed cell cycle and discuss potential clinical implications of SCF and APC/C functions. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Florian Bassermann
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany.
| | | | | |
Collapse
|
43
|
Wang Y, Hou Y, Gu H, Kang D, Chen ZL, Liu J, Qu LJ. The Arabidopsis anaphase-promoting complex/cyclosome subunit 1 is critical for both female gametogenesis and embryogenesis(F). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013. [PMID: 23206231 DOI: 10.1111/jipb.12018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Anaphase-promoting complex/cyclosome (APC/C), a multisubunit E3 ligase, plays a critical role in cell cycle control, but the functional characterization of each subunit has not yet been completed. To investigate the function of APC1 in Arabidopsis, we analyzed four mutant alleles of APC1, and found that mutation in APC1 resulted in significantly reduced plant fertility, accumulation of cyclin B, and disrupted auxin distribution in embryos. The three mutant alleles apc1-1, apc1-2 and apc1-3 shared variable defects in female gametogenesis including degradation, abnormal nuclear number, and disrupted polarity of nuclei in the embryo sac as well as in embryogenesis, in which embryos were arrested at multiple stages. All of these defects are similar to those previously identified in apc4. The mutant apc1-4, in which the T-DNA was inserted after the transmembrane domain at the C-terminus, showed much more severe phenotypes; that is, most of the ovules were arrested at the one-nucleate female gametophyte stage (stage FG1). In the apc1 apc4 double mutants, the fertility was further reduced by one-third in apc1-1/+ apc4-1/+, and in some cases no ovules even survived in siliques of apc1-4/+ apc4-1/+. Our data thus suggest that APC1, an essential component of APC/C, plays a synergistic role with APC4 both in female gametogenesis and in embryogenesis.
Collapse
Affiliation(s)
- Yanbing Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Chen ZH, Zhao RJ, Li RH, Guo CP, Zhang GJ. Bioluminescence imaging of DNA synthetic phase of cell cycle in living animals. PLoS One 2013; 8:e53291. [PMID: 23301056 PMCID: PMC3536746 DOI: 10.1371/journal.pone.0053291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/29/2012] [Indexed: 02/05/2023] Open
Abstract
Bioluminescence reporter proteins have been widely used in the development of tools for monitoring biological events in living cells. Currently, some assays like flow cytometry analysis are available for studying DNA synthetic phase (S-phase) targeted anti-cancer drug activity in vitro; however, techniques for imaging of in vivo models remain limited. Cyclin A2 is known to promote S-phase entry in mammals. Its expression levels are low during G1-phase, but they increase at the onset of S-phase. Cyclin A2 is degraded during prometaphase by ubiquitin-dependent, proteasome-mediated proteolysis. In this study, we have developed a cyclin A2-luciferase (CYCA-Luc) fusion protein targeted for ubiquitin-proteasome dependent degradation, and have evaluated its utility in screening S-phase targeted anti-cancer drugs. Similar to endogenous cyclin A2, CYCA-Luc accumulates during S-phase and is degraded during G2/M-phase. Using Cdc20 siRNA we have demonstrated that Cdc20 can mediate CYCA-Luc degradation. Moreover, using noninvasive bioluminescent imaging, we demonstrated accumulation of CYCA-Luc in response to 10-hydroxycamptothecin (HCPT), an S-phase targeted anti-cancer drug, in human tumor cells in vivo and in vitro. Our results indicate that a CYCA-Luc fusion reporter system can be used to monitor S-phase of cell cycle, and evaluate pharmacological activity of anti-cancer drug HCPT in real time in vitro and in vivo, and is likely to provide an important tool for screening such drugs.
Collapse
Affiliation(s)
- Zhi-Hong Chen
- Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Heilongjiang Province Key Laboratory of Cancer Prevention and Treatment, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Rui-Jun Zhao
- Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, People’s Republic of China
| | - Rong-Hui Li
- Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, People’s Republic of China
| | - Cui-Ping Guo
- Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, People’s Republic of China
| | - Guo-Jun Zhang
- Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, People’s Republic of China
- * E-mail:
| |
Collapse
|
45
|
Pathways for genome integrity in G2 phase of the cell cycle. Biomolecules 2012; 2:579-607. [PMID: 24970150 PMCID: PMC4030857 DOI: 10.3390/biom2040579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/17/2012] [Accepted: 11/23/2012] [Indexed: 12/31/2022] Open
Abstract
The maintenance of genome integrity is important for normal cellular functions, organism development and the prevention of diseases, such as cancer. Cellular pathways respond immediately to DNA breaks leading to the initiation of a multi-facetted DNA damage response, which leads to DNA repair and cell cycle arrest. Cell cycle checkpoints provide the cell time to complete replication and repair the DNA damage before it can continue to the next cell cycle phase. The G2/M checkpoint plays an especially important role in ensuring the propagation of error-free copies of the genome to each daughter cell. Here, we review recent progress in our understanding of DNA repair and checkpoint pathways in late S and G2 phases. This review will first describe the current understanding of normal cell cycle progression through G2 phase to mitosis. It will also discuss the DNA damage response including cell cycle checkpoint control and DNA double-strand break repair. Finally, we discuss the emerging concept that DNA repair pathways play a major role in the G2/M checkpoint pathway thereby blocking cell division as long as DNA lesions are present.
Collapse
|
46
|
Robu ME, Zhang Y, Rhodes J. Rereplication in emi1-deficient zebrafish embryos occurs through a Cdh1-mediated pathway. PLoS One 2012; 7:e47658. [PMID: 23082190 PMCID: PMC3474755 DOI: 10.1371/journal.pone.0047658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/13/2012] [Indexed: 01/27/2023] Open
Abstract
Disruption of early mitotic inhibitor 1 (Emi1) interferes with normal cell cycle progression and results in early embryonic lethality in vertebrates. During S and G2 phases the ubiquitin ligase complex APC/C is inhibited by Emi1 protein, thereby enabling the accumulation of Cyclins A and B so they can regulate replication and promote the transition from G2 phase to mitosis, respectively. Depletion of Emi1 prevents mitotic entry and causes rereplication and an increase in cell size. In this study, we show that the developmental and cell cycle defects caused by inactivation of zebrafish emi1 are due to inappropriate activation of APC/C through its cofactor Cdh1. Inhibiting/slowing progression into S-phase by depleting Cdt1, an essential replication licensing factor, partially rescued emi1 deficiency-induced rereplication and the increased cell size. The cell size effect was enhanced by co-depletion of cell survival regulator p53. These data suggest that the increased size of emi1-deficient cells is either directly or indirectly caused by the rereplication defects. Moreover, enforced expression of Cyclin A partially ablated the rereplicating population in emi1-deficient zebrafish embryos, consistent with the role of Cyclin A in origin licensing. Forced expression of Cyclin B partially restored the G1 population, in agreement with the established role of Cyclin B in mitotic progression and exit. However, expression of Cyclin B also partially inhibited rereplication in emi1-deficient embryos, suggesting a role for Cyclin B in regulating replication in this cellular context. As Cyclin A and B are substrates for APC/C-Cdh1 - mediated degradation, and Cdt1 is under control of Cyclin A, these data indicate that emi1 deficiency-induced defects in vivo are due to the dysregulation of an APC/C-Cdh1 molecular axis.
Collapse
Affiliation(s)
- Mara E. Robu
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
| | - Yong Zhang
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
| | - Jennifer Rhodes
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
47
|
Edgerton-Morgan H, Oakley BR. γ-Tubulin plays a key role in inactivating APC/C(Cdh1) at the G(1)-S boundary. ACTA ACUST UNITED AC 2012; 198:785-91. [PMID: 22927465 PMCID: PMC3432763 DOI: 10.1083/jcb.201203115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Failure to inactivate APC/CCdhA at the G1–S boundary of the cell cycle as a result of a γ-tubulin mutation that disrupts the APC/CCdhA localization prevents cell cycle progression. A γ-tubulin mutation in Aspergillus nidulans, mipA-D159, causes failure of inactivation of the anaphase-promoting complex/cyclosome (APC/C) in interphase, resulting in failure of cyclin B (CB) accumulation and removal of nuclei from the cell cycle. We have investigated the role of CdhA, the A. nidulans homologue of the APC/C activator protein Cdh1, in γ-tubulin–dependent inactivation of the APC/C. CdhA was not essential, but it targeted CB for destruction in G1, and APC/CCdhA had to be inactivated for the G1–S transition. mipA-D159 altered the localization pattern of CdhA, and deletion of the gene encoding CdhA allowed CB to accumulate in all nuclei in strains carrying mipA-D159. These data indicate that mipA-D159 causes a failure of inactivation of APC/CCdhA at G1–S, perhaps by altering its localization to the spindle pole body, and, thus, that γ-tubulin plays an important role in inactivating APC/CCdhA at this point in the cell cycle.
Collapse
|
48
|
Brown HM, Knowlton AE, Grieshaber SS. Chlamydial infection induces host cytokinesis failure at abscission. Cell Microbiol 2012; 14:1554-67. [PMID: 22646503 DOI: 10.1111/j.1462-5822.2012.01820.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 01/23/2023]
Abstract
Chlamydia trachomatis is an obligate intracellular bacteria and the infectious agent responsible for the sexually transmitted disease Chlamydia. Infection with Chlamydia can lead to serious health sequelae such as pelvic inflammatory disease and reproductive tract scarring contributing to infertility and ectopic pregnancies. Additionally, chlamydial infections have been epidemiologically linked to cervical cancer in patients with a prior human papilomavirus (HPV) infection. Chlamydial infection of cultured cells causes multinucleation, a potential pathway for chromosomal instability. Two mechanisms that are known to initiate multinucleation are cell fusion and cytokinesis failure. This study demonstrates that multinucleation of the host cell by Chlamydia is entirely due to cytokinesis failure. Moreover, cytokinesis failure is due in part to the chlamydial effector CPAF acting as an anaphase promoting complex mimic causing cells to exit mitosis with unaligned and unattached chromosomes. These lagging and missegregated chromosomes inhibit cytokinesis by blocking abscission, the final stage of cytokinesis.
Collapse
Affiliation(s)
- Heather M Brown
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
49
|
Postnikoff SDL, Harkness TAA. Mechanistic insights into aging, cell-cycle progression, and stress response. Front Physiol 2012; 3:183. [PMID: 22675309 PMCID: PMC3366476 DOI: 10.3389/fphys.2012.00183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/17/2012] [Indexed: 12/22/2022] Open
Abstract
The longevity of an organism depends on the health of its cells. Throughout life cells are exposed to numerous intrinsic and extrinsic stresses, such as free radicals, generated through mitochondrial electron transport, and ultraviolet irradiation. The cell has evolved numerous mechanisms to scavenge free radicals and repair damage induced by these insults. One mechanism employed by the yeast Saccharomycescerevisiae to combat stress utilizes the Anaphase Promoting Complex (APC), an essential multi-subunit ubiquitin-protein ligase structurally and functionally conserved from yeast to humans that controls progression through mitosis and G1. We have observed that yeast cells expressing compromised APC subunits are sensitive to multiple stresses and have shorter replicative and chronological lifespans. In a pathway that runs parallel to that regulated by the APC, members of the Forkhead box (Fox) transcription factor family also regulate stress responses. The yeast Fox orthologs Fkh1 and Fkh2 appear to drive the transcription of stress response factors and slow early G1 progression, while the APC seems to regulate chromatin structure, chromosome segregation, and resetting of the transcriptome in early G1. In contrast, under non-stress conditions, the Fkhs play a complex role in cell-cycle progression, partially through activation of the APC. Direct and indirect interactions between the APC and the yeast Fkhs appear to be pivotal for lifespan determination. Here we explore the potential for these interactions to be evolutionarily conserved as a mechanism to balance cell-cycle regulation with stress responses.
Collapse
Affiliation(s)
- S D L Postnikoff
- Department of Anatomy and Cell Biology, University of Saskatchewan Saskatoon, SK, Canada
| | | |
Collapse
|
50
|
Toda K, Naito K, Mase S, Ueno M, Uritani M, Yamamoto A, Ushimaru T. APC/C-Cdh1-dependent anaphase and telophase progression during mitotic slippage. Cell Div 2012; 7:4. [PMID: 22321970 PMCID: PMC3305350 DOI: 10.1186/1747-1028-7-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/09/2012] [Indexed: 11/10/2022] Open
Abstract
Background The spindle assembly checkpoint (SAC) inhibits anaphase progression in the presence of insufficient kinetochore-microtubule attachments, but cells can eventually override mitotic arrest by a process known as mitotic slippage or adaptation. This is a problem for cancer chemotherapy using microtubule poisons. Results Here we describe mitotic slippage in yeast bub2Δ mutant cells that are defective in the repression of precocious telophase onset (mitotic exit). Precocious activation of anaphase promoting complex/cyclosome (APC/C)-Cdh1 caused mitotic slippage in the presence of nocodazole, while the SAC was still active. APC/C-Cdh1, but not APC/C-Cdc20, triggered anaphase progression (securin degradation, separase-mediated cohesin cleavage, sister-chromatid separation and chromosome missegregation), in addition to telophase onset (mitotic exit), during mitotic slippage. This demonstrates that an inhibitory system not only of APC/C-Cdc20 but also of APC/C-Cdh1 is critical for accurate chromosome segregation in the presence of insufficient kinetochore-microtubule attachments. Conclusions The sequential activation of APC/C-Cdc20 to APC/C-Cdh1 during mitosis is central to accurate mitosis. Precocious activation of APC/C-Cdh1 in metaphase (pre-anaphase) causes mitotic slippage in SAC-activated cells. For the prevention of mitotic slippage, concomitant inhibition of APC/C-Cdh1 may be effective for tumor therapy with mitotic spindle poisons in humans.
Collapse
Affiliation(s)
- Kazuhiro Toda
- Faculty of Science, Shizuoka University, Shizuoka University, Shizuoka 422-8529, Japan.
| | | | | | | | | | | | | |
Collapse
|