1
|
Shan Y, Teng Y, Guan C, Mao Z, Lu C, Ding W, Zhang J. Combined ultrasound endoscopy-guided fine-needle aspiration with DNA methylation of SHOX2 and RASSF1A genes to enhance the auxiliary diagnostic precision of pancreatic cancer. Heliyon 2024; 10:e34028. [PMID: 39071574 PMCID: PMC11282983 DOI: 10.1016/j.heliyon.2024.e34028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
The purpose of this study was to assess the influence and the clinical effectiveness of the short stature homeobox 2 (SHOX2) and ras association domain family 1A (RASSF1A) genes by tissue sampling through ultrasound endoscopy-guided fine-needle aspiration (EUS-FNA) as auxiliary diagnostic tools for pancreatic cancer (PC). Methylation markers were detected in 96 patients using real-time fluorescence quantitative PCR (qPCR), and the performance of this diagnostic assay was compared with CA19-9, CEA, and puncture fluid-based exfoliative cytology using receiver operating characteristic curve (ROC) analysis. The PC group exhibited higher methylation rates for SHOX2, RASSF1A, and the combined assay of both genes compared to the control group (95.7 % vs. 54.0 %, 78.3 % vs. 36.0 %, and 73.9 % vs. 16.0 %, P < 0.05). The areas under the ROC curve (AUC) for CA19-9, CEA, liquid-based exfoliative cytology, SHOX2, RASSF1A, the combination of SHOX2 and RASSF1A, the combination assay with CEA, CA19-9, and liquid-based exfoliative cytology were 0.827, 0.692, 0.767, 0.770, 0.732, 0.870, 0.870, 0.933, and 0.900, respectively. Therefore, the methylation assay based on the combined SHOX2 and RASSF1A genes in EUS-FNA puncture fluid is more effective than using a single gene, liquid-based exfoliative cytology, or intravenous tumor markers for diagnosing PC. Combining the conventional marker CA19-9 enhances the diagnostic value, making it a promising approach to complement histology and cytology.
Collapse
Affiliation(s)
- Yangyang Shan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
- Department of General Practice, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226006, PR China
| | - Ying Teng
- Department of General Practice Medicine, and Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Chengqi Guan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Zhenbiao Mao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Weifeng Ding
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
| |
Collapse
|
2
|
Smith MJ. Defining bone fide effectors of RAS GTPases. Bioessays 2023; 45:e2300088. [PMID: 37401638 DOI: 10.1002/bies.202300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
RAS GTPases play essential roles in normal development and are direct drivers of human cancers. Three decades of study have failed to wholly characterize pathways stimulated by activated RAS, driven by engagement with 'effector' proteins that have RAS binding domains (RBDs). Bone fide effectors must bind directly to RAS GTPases in a nucleotide-dependent manner, and this interaction must impart a clear change in effector activity. Despite this, for most proteins currently deemed effectors there is little mechanistic understanding of how binding to the GTPase alters protein function. There has also been limited effort to comprehensively resolve the specificity of effector binding to the full array of RAS superfamily GTPase proteins. This review will summarize what is known about RAS-driven activation for an array of potential effector proteins, focusing on structural and mechanistic effects and highlighting how little is still known regarding this key paradigm of cellular signal transduction.
Collapse
Affiliation(s)
- Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Tian S, Sun W, Sun X, Yue Y, Jia M, Huang S, Zhou Z, Li L, Diao J, Yan S, Zhu W. Intergenerational reproductive toxicity of parental exposure to prothioconazole and its metabolite on offspring and epigenetic regulation associated with DNA methylation in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 173:107830. [PMID: 36805811 DOI: 10.1016/j.envint.2023.107830] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/22/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Prothioconazole (PTC) is a widely used agricultural fungicide, and its parent and metabolite prothioconazole-desthio (dPTC) have been detected in diverse environmental media. This study was aimed at investigating the gender-dependent effects on adult zebrafish reproduction and intergenerational effects on offspring development following parental exposure to PTC and dPTC. The results showed that after the adult zebrafish (F0) was exposed to 0.5 and 10 μg/L PTC and dPTC for 21 days, the fertility and gametogenesis of female zebrafish were decreased more significantly than that of male zebrafish. After that, three fecundity tests were conducted in the exposure period to explore the development endpoints of F1 embryos/larvae without further treatment with PTC and dPTC exposure. However, PTC and dPTC exposure did lead to abnormal development of F1 embryos, including delayed hatching, shortened body length, abnormal development and significant changes in locomotor behavior. These changes were related to the abnormal expression of sex hormones and the regulation of DNA methylation in F0 fish. In a word, the results of this study showed that parental PTC and dPTC interference have sex-dependent reproductive toxicity on F0 zebrafish, which may be passed on to the next generation through epigenetic modification involving DNA methylation, resulting in alternations in growth phenotype of offspring.
Collapse
Affiliation(s)
- Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoxuan Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yifan Yue
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Zhu P, Zheng P, Kong X, Wang S, Cao M, Zhao C. Rassf7a promotes spinal cord regeneration and controls spindle orientation in neural progenitor cells. EMBO Rep 2023; 24:e54984. [PMID: 36408859 PMCID: PMC9827555 DOI: 10.15252/embr.202254984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) can cause long-lasting disability in mammals due to the lack of axonal regrowth together with the inability to reinitiate spinal neurogenesis at the injury site. Deciphering the mechanisms that regulate the proliferation and differentiation of neural progenitor cells is critical for understanding spinal neurogenesis after injury. Compared with mammals, zebrafish show a remarkable capability of spinal cord regeneration. Here, we show that Rassf7a, a member of the Ras-association domain family, promotes spinal cord regeneration after injury. Zebrafish larvae harboring a rassf7a mutation show spinal cord regeneration and spinal neurogenesis defects. Live imaging shows abnormal asymmetric neurogenic divisions and spindle orientation defects in mutant neural progenitor cells. In line with this, the expression of rassf7a is enriched in neural progenitor cells. Subcellular analysis shows that Rassf7a localizes to the centrosome and is essential for cell cycle progression. Our data indicate a role for Rassf7a in modulating spindle orientation and the proliferation of neural progenitor cells after spinal cord injury.
Collapse
Affiliation(s)
- Panpan Zhu
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Sars‐Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Pengfei Zheng
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Xinlong Kong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of PathophysiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuo Wang
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of PathophysiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chengtian Zhao
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Sars‐Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| |
Collapse
|
5
|
Wang C, Wu J, Huang H, Xu Q, Ju H. Electrochemiluminescence of Polymer Dots Featuring Thermally Activated Delayed Fluorescence for Sensitive DNA Methylation Detection. Anal Chem 2022; 94:15695-15702. [DOI: 10.1021/acs.analchem.2c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Hao Huang
- Research & Development Center, Canon Medical Systems (China) Co., Ltd.Beijing, 100015, China
| | - Qiqi Xu
- Research & Development Center, Canon Medical Systems (China) Co., Ltd.Beijing, 100015, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
6
|
Romano D, García-Gutiérrez L, Aboud N, Duffy DJ, Flaherty KT, Frederick DT, Kolch W, Matallanas D. Proteasomal down-regulation of the proapoptotic MST2 pathway contributes to BRAF inhibitor resistance in melanoma. Life Sci Alliance 2022; 5:5/10/e202201445. [PMID: 36038253 PMCID: PMC9434705 DOI: 10.26508/lsa.202201445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
The loss of MST2 pathway protein expression in BRAF inhibitor resistant melanoma cells is due to ubiquitination and subsequent proteasomal degradation and prevents MST2-mediated apoptosis. The RAS-RAF-MEK-ERK pathway is hyperactivated in most malignant melanomas, and mutations in BRAF or NRAS account for most of these cases. BRAF inhibitors (BRAFi) are highly efficient for treating patients with BRAFV600E mutations, but tumours frequently acquire resistance within a few months. Multiple resistance mechanisms have been identified, due to mutations or network adaptations that revive ERK signalling. We have previously shown that RAF proteins inhibit the MST2 proapoptotic pathway in a kinase-independent fashion. Here, we have investigated the role of the MST2 pathway in mediating resistance to BRAFi. We show that the BRAFV600E mutant protein, but not the wild-type BRAF protein, binds to MST2 inhibiting its proapoptotic signalling. Down-regulation of MST2 reduces BRAFi-induced apoptosis. In BRAFi-resistant cell lines, MST2 pathway proteins are down-regulated by ubiquitination and subsequent proteasomal degradation rendering cells refractory to MST2 pathway–induced apoptosis. Restoration of apoptosis can be achieved by increasing MST2 pathway protein expression using proteasome inhibitors. In summary, we show that the MST2 pathway plays a role in the acquisition of BRAFi resistance in melanoma.
Collapse
Affiliation(s)
- David Romano
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Nourhan Aboud
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - David J Duffy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Department of Biology/Whitney Laboratory for Marine Bioscience, University of Florida, Gainesville, FL, USA
| | | | | | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland .,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
LFA1 Activation: Insights from a Single-Molecule Approach. Cells 2022; 11:cells11111751. [PMID: 35681446 PMCID: PMC9179313 DOI: 10.3390/cells11111751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Integrin LFA1 is a cell adhesion receptor expressed exclusively in leukocytes, and plays crucial roles in lymphocyte trafficking, antigen recognition, and effector functions. Since the discovery that the adhesiveness of LFA1 can be dynamically changed upon stimulation, one challenge has been understanding how integrins are regulated by inside-out signaling coupled with macromolecular conformational changes, as well as ligand bindings that transduce signals from the extracellular domain to the cytoplasm in outside-in signaling. The small GTPase Rap1 and integrin adaptor proteins talin1 and kindlin-3 have been recognized as critical molecules for integrin activation. However, their cooperative regulation of integrin adhesiveness in lymphocytes requires further research. Recent advances in single-molecule imaging techniques have revealed dynamic molecular processes in real-time and provided insight into integrin activation in cellular environments. This review summarizes integrin regulation and discusses new findings regarding the bidirectionality of LFA1 activation and signaling processes in lymphocytes.
Collapse
|
8
|
DNA damage triggers the nuclear accumulation of RASSF6 tumor suppressor protein via CDK9 and BAF53 to regulate p53-target gene transcription. Mol Cell Biol 2021; 42:e0031021. [PMID: 34898277 DOI: 10.1128/mcb.00310-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RASSF6, a member of the tumor suppressor Ras-association domain family (RASSF) proteins, regulates cell cycle arrest and apoptosis via p53 and plays a tumor suppressor role. We previously reported that RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. In this study, we demonstrated that RASSF6 has nuclear-localization and nuclear-export signals and that DNA damage triggers the nuclear accumulation of RASSF6. We found that RASSF6 directly binds to BAF53, the component of SWI/SNF complex. DNA damage induces CDK9-mediated phosphorylation of BAF53, which enhances the interaction with RASSF6 and increases the amount of RASSF6 in the nucleus. Subsequently, RASSF6 augments the interaction between BAF53 and BAF60a, another component of SWI/SNF complex, and further promotes the interaction of BAF53 and BAF60a with p53. BAF53 silencing or BAF60a silencing attenuates RASSF6-mediated p53-target gene transcription and apoptosis. Thus, RASSF6 is involved in the regulation of DNA damage-induced complex formation including CDK9, BAF53, BAF60a, and p53.
Collapse
|
9
|
Morishita M, Arimoto-Matsuzaki K, Kitamura M, Niimura K, Iwasa H, Maruyama J, Hiraoka Y, Yamamoto K, Kitagawa M, Miyamura N, Nishina H, Hata Y. Characterization of mouse embryonic fibroblasts derived from Rassf6 knockout mice shows the implication of Rassf6 in the regulation of NF-κB signaling. Genes Cells 2021; 26:999-1013. [PMID: 34652874 DOI: 10.1111/gtc.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. We have reported using human cancer cell lines that RASSF6 induces apoptosis and cell cycle arrest via p53 and plays tumor suppressive roles. In this study, we generated Rassf6 knockout mice by CRISPR/Cas technology. Contrary to our expectation, Rassf6 knockout mice were apparently healthy. However, Rassf6-null mouse embryonic fibroblasts (MEF) were resistant against ultraviolet (UV)-induced apoptosis/cell cycle arrest and senescence. UV-induced p53-target gene expression was compromised, and DNA repair was delayed in Rassf6-null MEF. More importantly, KRAS active mutant promoted the colony formation of Rassf6-null MEF but not the wild-type MEF. RNA sequencing analysis showed that NF-κB signaling was enhanced in Rassf6-null MEF. Consistently, 7,12-dimethylbenz(a)anthracene (DMBA) induced skin inflammation in Rassf6 knockout mice more remarkably than in the wild-type mice. Hence, Rassf6 deficiency not only compromises p53 function but also enhances NF-κB signaling to lead to oncogenesis.
Collapse
Affiliation(s)
- Mayu Morishita
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Arimoto-Matsuzaki
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masami Kitamura
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyohei Niimura
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Iwasa
- Department of Molecular Biology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Junichi Maruyama
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuichi Hiraoka
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Norio Miyamura
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
Liu A, Zhou K, Martínez MA, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I. A "Janus" face of the RASSF4 signal in cell fate. J Cell Physiol 2021; 237:466-479. [PMID: 34553373 DOI: 10.1002/jcp.30592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022]
Abstract
RASSF4 (Ras-association domain family 4) is a protein-coding gene, regarded as a tumor suppressor regulated by DNA methylation. However, RASSF4 acts as a "Janus" in cell fate: death and survival. This review article focuses on the regulatory mechanisms of RASSF4 on cell death and cell survival and puts forward a comprehensive analysis of the relevant signaling pathways. The participation of RASSF4 in the regulation of intracellular store-operated Ca2+ entry also affects cell survival. Moreover, the mechanism of inducing abnormal expression of RASSF4 was summarized. We highlight recent advances in our knowledge of RASSF4 function in the development of cancer and other clinical diseases, which may provide insight into the controversial functions of RASSF4 and its potential application in disease therapy.
Collapse
Affiliation(s)
- Aimei Liu
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Kaixiang Zhou
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - María Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Xu Wang
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| |
Collapse
|
11
|
RAS GTPase signalling to alternative effector pathways. Biochem Soc Trans 2021; 48:2241-2252. [PMID: 33125484 DOI: 10.1042/bst20200506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
RAS GTPases are fundamental regulators of development and drivers of an extraordinary number of human cancers. RAS oncoproteins constitutively signal through downstream effector proteins, triggering cancer initiation, progression and metastasis. In the absence of targeted therapeutics to mutant RAS itself, inhibitors of downstream pathways controlled by the effector kinases RAF and PI3K have become tools in the treatment of RAS-driven tumours. Unfortunately, the efficacy of this approach has been greatly minimized by the prevalence of acquired drug resistance. Decades of research have established that RAS signalling is highly complex, and in addition to RAF and PI3K these small GTPase proteins can interact with an array of alternative effectors that feature RAS binding domains. The consequence of RAS binding to these effectors remains relatively unexplored, but these pathways may provide targets for combinatorial therapeutics. We discuss here three candidate alternative effectors: RALGEFs, RASSF5 and AFDN, detailing their interaction with RAS GTPases and their biological significance. The metastatic nature of RAS-driven cancers suggests more attention should be granted to these alternate pathways, as they are highly implicated in the regulation of cell adhesion, polarity, cell size and cytoskeletal architecture.
Collapse
|
12
|
Yuan J, Ju Q, Zhu J, Jiang Y, Yang X, Liu X, Ma J, Sun C, Shi J. RASSF9 promotes NSCLC cell proliferation by activating the MEK/ERK axis. Cell Death Discov 2021; 7:199. [PMID: 34341331 PMCID: PMC8329231 DOI: 10.1038/s41420-021-00583-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
The RAS-associated domain family 9 (RASSF9), a RAS-associated domain family gene, is expressed in a variety of tissues. However, its roles in tumorigenesis, particularly in non-small cell lung cancer (NSCLC), are still not understood well. In the present study, we aimed to examine the potential roles of RASSF9 in NSCLC and the underlying mechanisms. Our data showed that RASSF9 expression was upregulated in NSCLC tissues and cell lines. Increased expression of RASSF9 promotes NSCLC cell proliferation. On the contrary, knockdown of RASSF9 represses cell proliferation. Moreover, the effects of RASSF9 on NSCLC cell proliferation were further confirmed in vivo by using a subcutaneous tumor model. Mechanistically, pharmacological intervention studies revealed that the MEK/ERK axis is targeted by RASSF9 for transducing its regulatory roles on NSCLC cell proliferation. Collectively, our data indicate that RASSF9 plays a key role in tumorigenesis of NSCLC by stimulating tumor cell proliferation, which relies on activation of the MEK/ERK axis. Thus, RASSF9 might be a druggable target for developing novel agents for treating NSCLC.
Collapse
Affiliation(s)
- Jun Yuan
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Qianqian Ju
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jun Zhu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Yun Jiang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Xuechao Yang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoyu Liu
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jinyu Ma
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Cheng Sun
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China. .,Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China. .,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China.
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
13
|
Shi H, Ju Q, Mao Y, Wang Y, Ding J, Liu X, Tang X, Sun C. TAK1 Phosphorylates RASSF9 and Inhibits Esophageal Squamous Tumor Cell Proliferation by Targeting the RAS/MEK/ERK Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001575. [PMID: 33717835 PMCID: PMC7927628 DOI: 10.1002/advs.202001575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/20/2020] [Indexed: 05/11/2023]
Abstract
TGF-β-activated kinase 1 (TAK1), a serine/threonine kinase, is a key intermediate in several signaling pathways. However, its role in tumorigenesis is still not understood well. In this study, it is found that TAK1 expression decreases in esophageal tumor tissues and cell lines. In vitro experiments demonstrate that proliferation of esophageal tumor cells is enhanced by knockdown of TAK1 expression and attenuated by elevated expression of TAK1. Using a subcutaneous tumor model, these observations are confirmed in vivo. Based on the results from co-immunoprecipitation coupled with mass spectrometry, Ras association domain family 9 (RASSF9) is identified as a downstream target of TAK1. TAK1 phosphorylates RASSF9 at S284, which leads to reduced RAS dimerization, thereby blocking RAF/MEK/ERK signal transduction. Clinical survey reveals that TAK1 expression is inversely correlated with survival in esophageal cancer patients. Taken together, the data reveal that TAK1-mediated phosphorylation of RASSF9 at Ser284 negatively regulates esophageal tumor cell proliferation via inhibition of the RAS/MEK/ERK axis.
Collapse
Affiliation(s)
- Hui Shi
- Department of Cardiothoracic SurgeryNantong Key Laboratory of Translational Medicine in Cardiothoracic DiseasesNantong Clinical Medical Research Center of Cardiothoracic DiseaseInstitution of Translational Medicine in Cardiothoracic DiseasesAffiliated Hospital of Nantong University20 Xisi RoadNantong226001China
| | - Qianqian Ju
- Department of Cardiothoracic SurgeryNantong Key Laboratory of Translational Medicine in Cardiothoracic DiseasesNantong Clinical Medical Research Center of Cardiothoracic DiseaseInstitution of Translational Medicine in Cardiothoracic DiseasesAffiliated Hospital of Nantong University20 Xisi RoadNantong226001China
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of EducationNantong University19 Qixiu RoadNantong226001China
| | - Yinting Mao
- Department of Cardiothoracic SurgeryNantong Key Laboratory of Translational Medicine in Cardiothoracic DiseasesNantong Clinical Medical Research Center of Cardiothoracic DiseaseInstitution of Translational Medicine in Cardiothoracic DiseasesAffiliated Hospital of Nantong University20 Xisi RoadNantong226001China
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of EducationNantong University19 Qixiu RoadNantong226001China
| | - Yuejun Wang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of EducationNantong University19 Qixiu RoadNantong226001China
| | - Jie Ding
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of EducationNantong University19 Qixiu RoadNantong226001China
| | - Xiaoyu Liu
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of EducationNantong University19 Qixiu RoadNantong226001China
| | - Xin Tang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of EducationNantong University19 Qixiu RoadNantong226001China
| | - Cheng Sun
- Department of Cardiothoracic SurgeryNantong Key Laboratory of Translational Medicine in Cardiothoracic DiseasesNantong Clinical Medical Research Center of Cardiothoracic DiseaseInstitution of Translational Medicine in Cardiothoracic DiseasesAffiliated Hospital of Nantong University20 Xisi RoadNantong226001China
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of EducationNantong University19 Qixiu RoadNantong226001China
| |
Collapse
|
14
|
Hsu CH, Tomiyasu H, Lee JJ, Tung CW, Liao CH, Chuang CH, Huang LY, Liao KW, Chou CH, Liao ATC, Lin CS. Genome-wide DNA methylation analysis using MethylCap-seq in canine high-grade B-cell lymphoma. J Leukoc Biol 2020; 109:1089-1103. [PMID: 33031589 DOI: 10.1002/jlb.2a0820-673r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 08/11/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is a comprehensively studied epigenetic modification and plays crucial roles in cancer development. In the present study, MethylCap-seq was used to characterize the genome-wide DNA methylation patterns in canine high-grade B-cell lymphoma (cHGBL). Canine methylated DNA fragments were captured and the MEDIUM-HIGH and LOW fraction of methylated DNA was obtained based on variation in CpG methylation density. In the MEDIUM-HIGH and LOW fraction, 2144 and 1987 cHGBL-specific hypermethylated genes, respectively, were identified. Functional analysis highlighted pathways strongly related to oncogenesis. The relevant signaling pathways associated with neuronal system were also revealed, echoing recent novel findings that neurogenesis plays key roles in tumor establishment. In addition, 14 genes were hypermethylated in all the cHGBL cases but not in the healthy dogs. These genes might be potential signatures for tracing cHGBL, and some of them have been reported to play roles in various types of cancers. Further, the distinct methylation pattern of cHGBL showed a concordance with the clinical outcome, suggesting that aberrant epigenetic changes may influence tumor behavior. In summary, our study characterized genome-wide DNA methylation patterns using MethylCap-seq in cHGBL; the findings suggest that specific DNA hypermethylation holds promise for dissecting tumorigenesis and uncovering biomarkers for monitoring the progression of cHGBL.
Collapse
Affiliation(s)
- Chia-Hsin Hsu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jih-Jong Lee
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Wei Tung
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hsun Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Hsun Chuang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Ling-Ya Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Albert T C Liao
- Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Tricistronic expression of MOAP-1, Bax and RASSF1A in cancer cells enhances chemo-sensitization that requires BH3L domain of MOAP-1. J Cancer Res Clin Oncol 2020; 146:1751-1764. [DOI: 10.1007/s00432-020-03231-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 04/21/2020] [Indexed: 01/15/2023]
|
16
|
Li N, Zeng Y, Huang J. Signaling pathways and clinical application of RASSF1A and SHOX2 in lung cancer. J Cancer Res Clin Oncol 2020; 146:1379-1393. [PMID: 32266538 DOI: 10.1007/s00432-020-03188-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND An increasing number of studies have focused on the early diagnostic value of the methylation of RASSF1A and SHOX2 in lung cancer. However, the intricate cellular events related to RASSF1A and SHOX2 in lung cancer are still a mystery. For researchers and clinicians aiming to more profoundly understand the diagnostic value of methylated RASSF1A and SHOX2 in lung cancer, this review will provide deeper insights into the molecular events of RASSF1A and SHOX2 in lung cancer. METHODOLOGY We searched for relevant publications in the PubMed and Google Scholar databases using the keywords "RASSF1A", "SHOX2" and "lung cancer" etc. First, we reviewed the RASSF1A and SHOX2 genes, from their family structures to the functions of their basic structural domains. Then we mainly focused on the roles of RASSF1A and SHOX2 in lung cancer, especially on their molecular events in recent decades. Finally, we compared the value of measuring RASSF1A and SHOX2 gene methylation with that of the common methods for the diagnosis of lung cancer patients. RESULTS The RASSF1A and SHOX2 genes were confirmed to be regulators or effectors of multiple cancer signaling pathways, driving tumorigenesis and lung cancer progression. The detection of RASSF1A and SHOX2 gene methylation has higher sensitivity and specificity than other commonly used methods for diagnosing lung cancer, especially in the early stage. CONCLUSIONS The RASSF1A and SHOX2 genes are critical for the processes of tumorigenesis, development, metastasis, drug resistance, and recurrence in lung cancer. The combined detection of RASSF1A and SHOX2 gene methylation was identified as an excellent method for the screening and surveillance of lung cancer that exhibits high sensitivity and specificity.
Collapse
Affiliation(s)
- Nanhong Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, China
| | - Jian Huang
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China.
- Pathological Diagnosis and Research Center, Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
17
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 DOI: 10.3389/fcell.2020.00161/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 05/26/2023] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
18
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 PMCID: PMC7096357 DOI: 10.3389/fcell.2020.00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
| | - Laurel A. Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
19
|
Richter AM, Woods ML, Küster MM, Walesch SK, Braun T, Boettger T, Dammann RH. RASSF10 is frequently epigenetically inactivated in kidney cancer and its knockout promotes neoplasia in cancer prone mice. Oncogene 2020; 39:3114-3127. [PMID: 32047266 PMCID: PMC7142015 DOI: 10.1038/s41388-020-1195-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
Abstract
Kidney cancer incidences are rising globally, thereby fueling the demand for targeted therapies and precision medicine. In our previous work, we have identified and characterized the Ras-Association Domain Family encoding ten members that are often aberrantly expressed in human cancers. In this study, we created and analyzed the Rassf10 knockout mice. Here we show that Rassf10 haploinsufficiency promotes neoplasia formation in two established mouse cancer models (Rassf1A-/- and p53-/-). Haploinsufficient Rassf10 knockout mice were significantly prone to various diseases including lymphoma (Rassf1A-/- background) and thymoma (p53-/- background). Especially Rassf10-/- and p53-deficient mice exhibited threefold increased rates of kidney cysts compared with p53-/- controls. Moreover, we observed that in human kidney cancer, RASSF10 is frequently epigenetically inactivated by its CpG island promoter hypermethylation. Primary tumors of renal clear cell and papillary cell carcinoma confirmed that RASSF10 methylation is associated with decreased expression in comparison to normal kidney tissue. In independent data sets, we could validate that RASSF10 inactivation clinically correlated with decreased survival and with progressed disease state of kidney cancer patients and polycystic kidney size. Functionally, we revealed that the loss of Rassf10 was significantly associated with upregulation of KRAS signaling and MYC expression. In summary, we could show that Rassf10 functions as a haploinsufficient tumor suppressor. In combination with other markers, RASSF10 silencing can serve as diagnostic and prognostic cancer biomarker in kidney diseases.
Collapse
Affiliation(s)
- Antje M Richter
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany. .,Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Michelle L Woods
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany
| | - Miriam M Küster
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany
| | - Sara K Walesch
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Thomas Boettger
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Reinhard H Dammann
- Institute for Genetics, University of Giessen, 35392, Giessen, Germany. .,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany.
| |
Collapse
|
20
|
RASSF10 Is a TGFβ-Target That Regulates ASPP2 and E-Cadherin Expression and Acts as Tumor Suppressor That Is Epigenetically Downregulated in Advanced Cancer. Cancers (Basel) 2019; 11:cancers11121976. [PMID: 31817988 PMCID: PMC6966473 DOI: 10.3390/cancers11121976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
The Ras Association Domain Family (RASSF) encodes members of tumor suppressor genes which are frequently inactivated in human cancers. Here, the function and the regulation of RASSF10, that contains a RA (Ras-association) and two coiled domains, was investigated. We utilized mass spectrometry and immuno-precipitation to identify interaction partners of RASSF10. Additionally, we analyzed the up- and downstream pathways of RASSF10 that are involved in its tumor suppressive function. We report that RASSF10 binds ASPP1 (Apoptosis-stimulating protein of p53) and ASPP2 through its coiled-coils. Induction of RASSF10 leads to increased protein levels of ASPP2 and acts negatively on cell cycle progression. Interestingly, we found that RASSF10 is a target of the EMT (epithelial mesenchymal transition) driver TGFβ (Transforming growth factor beta) and that negatively associated genes of RASSF10 are significantly over-represented in an EMT gene set collection. We observed a positive correlation of RASSF10 expression and E-cadherin that prevents EMT. Depletion of RASSF10 by CRISPR/Cas9 technology induces the ability of lung cancer cells to proliferate and to invade an extracellular matrix after TGFβ treatment. Additionally, knockdown of RASSF10 or ASPP2 induced constitutive phosphorylation of SMAD2 (Smad family member 2). Moreover, we found that epigenetic reduction of RASSF10 levels correlates with tumor progression and poor survival in human cancers. Our study indicates that RASSF10 acts a TGFβ target gene and negatively regulates cell growth and invasion through ASPP2. This data suggests that epigenetic loss of RASSF10 contributes to tumorigenesis by promoting EMT induced by TGFβ.
Collapse
|
21
|
Dubois F, Bergot E, Zalcman G, Levallet G. RASSF1A, puppeteer of cellular homeostasis, fights tumorigenesis, and metastasis-an updated review. Cell Death Dis 2019; 10:928. [PMID: 31804463 PMCID: PMC6895193 DOI: 10.1038/s41419-019-2169-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
The Ras association domain family protein1 isoform A (RASSF1A) is a well-known tumor-suppressor protein frequently inactivated in various human cancers. Consistent with its function as a molecular scaffold protein, referred to in many studies, RASSF1A prevents initiation of tumorigenesis, growth, and dissemination through different biological functions, including cell cycle arrest, migration/metastasis inhibition, microtubular stabilization, and apoptosis promotion. As a regulator of key cancer pathways, namely Ras/Rho GTPases and Hippo signaling without ignoring strong interaction with microtubules, RASSF1A is indeed one of the guardians of cell homeostasis. To date, as we approach the two decade anniversary of RASSF1A's discovery, this review will summarize our current knowledge on the RASSF1A key interactions as a tumor suppressor and discuss their impact on cell fate during carcinogenesis. This could facilitate a deeper understanding of tumor development and provide us with new strategies in cancer treatment by targeting the RASSF1A pathway.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
- Department of Pulmonology & Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- U830 INSERM "Genetics and biology of cancers, A.R.T group", Curie Institute, Paris, France
- Department of Thoracic Oncology & CIC1425, Hôpital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
| |
Collapse
|
22
|
Dubois F, Keller M, Hoflack J, Maille E, Antoine M, Westeel V, Bergot E, Quoix E, Lavolé A, Bigay-Game L, Pujol JL, Langlais A, Morin F, Zalcman G, Levallet G. Role of the YAP-1 Transcriptional Target cIAP2 in the Differential Susceptibility to Chemotherapy of Non-Small-Cell Lung Cancer (NSCLC) Patients with Tumor RASSF1A Gene Methylation from the Phase 3 IFCT-0002 Trial. Cancers (Basel) 2019; 11:cancers11121835. [PMID: 31766357 PMCID: PMC6966477 DOI: 10.3390/cancers11121835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
RASSF1 gene methylation predicts longer disease-free survival (DFS) and overall survival (OS) in patients with early-stage non-small-cell lung cancer treated using paclitaxel-based neo-adjuvant chemotherapy compared to patients receiving a gemcitabine-based regimen, according to the randomized Phase 3 IFCT (Intergroupe Francophone de Cancérologie Thoracique)-0002 trial. To better understand these results, this study used four human bronchial epithelial cell (HBEC) models (HBEC-3, HBEC-3-RasV12, A549, and H1299) and modulated the expression of RASSF1A or YAP-1. Wound-healing, invasion, proliferation and apoptosis assays were then carried out and the expression of YAP-1 transcriptional targets was quantified using a quantitative polymerase chain reaction. This study reports herein that gemcitabine synergizes with RASSF1A, silencing to increase the IAP-2 expression, which in turn not only interferes with cell proliferation but also promotes cell migration. This contributes to the aggressive behavior of RASSF1A-depleted cells, as confirmed by a combined knockdown of IAP-2 and RASSF1A. Conversely, paclitaxel does not increase the IAP-2 expression but limits the invasiveness of RASSF1A-depleted cells, presumably by rescuing microtubule stabilization. Overall, these data provide a functional insight that supports the prognostic value of RASSF1 gene methylation on survival of early-stage lung cancer patients receiving perioperative paclitaxel-based treatment compared to gemcitabine-based treatment, identifying IAP-2 as a novel biomarker indicative of YAP-1-mediated modulation of chemo-sensitivity in lung cancer.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Department of Pathology, CHU de Caen, 14033 Caen, France
| | - Maureen Keller
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Normandie Université, UNICAEN, UPRES-EA2608, 14032 Caen, France
| | - Julien Hoflack
- Normandie Université, UNICAEN, UPRES-EA2608, 14032 Caen, France
| | - Elodie Maille
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Normandie Université, UNICAEN, INSERM UMR 1086 ANTICIPE, 14032 Caen, France
| | - Martine Antoine
- Department of Pathology, Hôpital Tenon, AP-HP, 75020 Paris, France;
| | - Virginie Westeel
- Department of Pneumology, University Hospital of Besançon, University Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Emmanuel Bergot
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Department of Pulmonology & Thoracic Oncology, CHU de Caen, 14033 Caen, France
| | - Elisabeth Quoix
- Department of Pneumology, University Hospital, 67000 Strasbourg, France;
| | - Armelle Lavolé
- Sorbonne Université, GRC n 04, Theranoscan, AP-HP, Service de Pneumologie, Hôpital Tenon, 75020 Paris, France;
| | - Laurence Bigay-Game
- Pneumology Department, Toulouse-Purpan, University Hospital Toulouse, 31300 Toulouse, France;
| | - Jean-Louis Pujol
- Département d’Oncologie Thoracique, CHU Montpellier, Univ. Montpellier, 34595 Montpellier, France;
| | - Alexandra Langlais
- Intergroupe Francophone de Cancérologie Thoracique (IFCT), 75009 Paris, France; (A.L.); (F.M.)
| | - Franck Morin
- Intergroupe Francophone de Cancérologie Thoracique (IFCT), 75009 Paris, France; (A.L.); (F.M.)
| | - Gérard Zalcman
- U830 INSERM “Genetics and Biology of Cancers, A.R.T Group”, Curie Institute, 75005 Paris, France
- Department of Thoracic Oncology & CIC1425, Hôpital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, 75018 Paris, France
- Correspondence: (G.Z.); (G.L.); Tel.: +33-(0)140-257-502 (G.Z.); +33-(0)231-063-134 (G.L.)
| | - Guénaëlle Levallet
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, 14074 Caen, France; (F.D.); (M.K.); (E.M.); (E.B.)
- Department of Pathology, CHU de Caen, 14033 Caen, France
- Correspondence: (G.Z.); (G.L.); Tel.: +33-(0)140-257-502 (G.Z.); +33-(0)231-063-134 (G.L.)
| |
Collapse
|
23
|
Khandelwal M, Anand V, Appunni S, Seth A, Singh P, Mathur S, Sharma A. RASSF1A-Hippo pathway link in patients with urothelial carcinoma of bladder: plausible therapeutic target. Mol Cell Biochem 2019; 464:51-63. [PMID: 31754973 DOI: 10.1007/s11010-019-03648-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/03/2019] [Indexed: 12/24/2022]
Abstract
RASSF1A is a tumor suppressor gene, and its hypermethylation has been observed in cancers. RASSF1A acts as an upstream regulator of Hippo pathway and modulates its function. The aim of this study was to analyze expression of RASSF1A, Hippo pathway molecules (YAP, MST) and downstream targets (CTGF, Cyr61 and AREG) in bladder cancer patients. Later, the link between RASSF1A and Hippo pathway and a potential therapeutic scope of this link in UBC were also studied. MSPCR was performed to study methylation of RASSF1A promoter. Expression of molecules was studied using qPCR, Western blot and IHC. The link between RASSF1A and Hippo pathway was studied using Spearman's correlation in patients and validated by overexpressing RASSF1A in HT1376 cells and its effect on Hippo pathway was observed using qPCR and Western blot. Further therapeutic potential of this link was studied using MTT and PI assays. The expression of RASSF1A was lower, whereas the expression of YAP, CTGF and CYR61 was higher. The expression of RASSF1A protein gradually decreased, while the expression of YAP, CTGF and CYR61 increased with severity of disease. Based on Spearman's correlation, RASSF1A showed a negative correlation with YAP, CTGF and CYR61. YAP showed a positive correlation with CTGF and CYR61. To validate this link, RASSF1A was overexpressed in HT1376 cells. Overexpressed RASSF1A activated Hippo pathway, followed by a decrease in CTGF and CYR61 at mRNA, and enhanced cytotoxicity to chemotherapeutic drugs. This study finds a previously unrecognized role of RASSF1A in the regulation of CTGF and CYR61 through mediation of Hippo pathway in UBC and supports the significance of this link as a potential therapeutic target for UBC.
Collapse
Affiliation(s)
| | - Vivek Anand
- Department of Biochemistry, AIIMS, New Delhi, India
| | | | - Amlesh Seth
- Department of Urology, AIIMS, New Delhi, India
| | | | | | - Alpana Sharma
- Department of Biochemistry, AIIMS, New Delhi, India.
| |
Collapse
|
24
|
Nussinov R, Tsai CJ, Jang H. Does Ras Activate Raf and PI3K Allosterically? Front Oncol 2019; 9:1231. [PMID: 31799192 PMCID: PMC6874141 DOI: 10.3389/fonc.2019.01231] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
The mechanism through which oncogenic Ras activates its effectors is vastly important to resolve. If allostery is at play, then targeting allosteric pathways could help in quelling activation of MAPK (Raf/MEK/ERK) and PI3K (PI3K/Akt/mTOR) cell proliferation pathways. On the face of it, allosteric activation is reasonable: Ras binding perturbs the conformational ensembles of its effectors. Here, however, we suggest that at least for Raf, PI3K, and NORE1A (RASSF5), that is unlikely. Raf's long disordered linker dampens effective allosteric activation. Instead, we suggest that the high-affinity Ras–Raf binding relieves Raf's autoinhibition, shifting Raf's ensemble from the inactive to the nanocluster-mediated dimerized active state, as Ras also does for NORE1A. PI3K is recruited and allosterically activated by RTK (e.g., EGFR) at the membrane. Ras restrains PI3K's distribution and active site orientation. It stabilizes and facilitates PIP2 binding at the active site and increases the PI3K residence time at the membrane. Thus, RTKs allosterically activate PI3Kα; however, merging their action with Ras accomplishes full activation. Here we review their activation mechanisms in this light and draw attention to implications for their pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
25
|
Tan S, Bian X, Wu B, Chen X. RASSF6 Is Downregulated In Human Bladder Cancers And Regulates Doxorubicin Sensitivity And Mitochondrial Membrane Potential Via The Hippo Signaling Pathway. Onco Targets Ther 2019; 12:9189-9200. [PMID: 31807003 PMCID: PMC6842287 DOI: 10.2147/ott.s217041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
Background The present study aimed to investigate the clinicopathological significance and biological roles of RASSF6 in human bladder cancers. Materials and methods Immunohistochemistry and Western blots were used to examine the protein expression of RASSF6 in bladder cancer tissues. Biological roles of RASSF6 were examined using MTT, colony formation assay, Matrigel invasion assay, cell cycle analysis, AnnexinV/PI staining and JC-1 staining. Western blot analysis was used to examine the potential mechanism. Results We found that RASSF6 was downregulated in 73 of 138 bladder cancer specimens, which correlated with advanced stages. RASSF6 overexpression decreased the cell growth rate and inhibited invasion ability in T24 cell line. Downregulation of RASSF6 using siRNA increased the cell proliferation rate and promoted invasion in 5637 cell line. Cell cycle studies showed that RASSF6 overexpression suppressed the process of cell cycle progression. RASSF6 overexpression also increased the cellular response to doxorubicin (DOX) treatment. AnnexinV/PI staining showed that RASSF6 overexpression promoted DOX-induced apoptosis with increased cytochrome c and cleavage of caspase-3 and caspase-9. We also showed that RASSF6 overexpression downregulated the mitochondrial membrane potential, while RASSF6 depletion showed the opposite effect. Western blot analysis demonstrated that RASSF6 overexpression repressed p-Rb and Bcl-xL while upregulating p21 expression. In addition, we found that RASSF6 overexpression affected the Hippo signaling pathway by downregulating YAP. Depletion of YAP downregulated Bcl-xL expression and abolished the effect of RASSF6 on Bcl-xL. Depletion of YAP also upregulated the level of apoptosis and downregulated mitochondrial membrane potential. YAP siRNA abolished the effects of RASSF6 on DOX-induced apoptosis and loss of mitochondrial membrane potential. Conclusion Taken together, our results showed that RASSF6 was downregulated in bladder cancers. RASSF6 inhibited cell proliferation and invasion, as well as the progression of cancer, by regulating DOX sensitivity and mitochondrial membrane potential, possibly via the Hippo signaling pathway.
Collapse
Affiliation(s)
- Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiaobo Bian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
26
|
MUC1-C represses the RASSF1A tumor suppressor in human carcinoma cells. Oncogene 2019; 38:7266-7277. [PMID: 31435022 PMCID: PMC6872931 DOI: 10.1038/s41388-019-0940-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023]
Abstract
RASSF1A encodes a tumor suppressor that inhibits the RAS→RAF→MEK→ERK pathway and is one of the most frequently inactivated genes in human cancers. MUC1-C is an oncogenic effector of the cancer cell epigenome that is overexpressed in diverse carcinomas. We show here that MUC1-C represses RASSF1A expression in KRAS wild-type and mutant cancer cells. Mechanistically, MUC1-C occupies the RASSF1A promoter in a complex with the ZEB1 transcriptional repressor. In turn, MUC1-C/ZEB1 complexes recruit DNA methyltransferase 3b (DNMT3b) to the CpG island in the RASSF1A promoter. Targeting MUC1-C, ZEB1 and DNMT3b thereby decreases methylation of the CpG island and derepresses RASSF1A transcription. We also show that targeting MUC1-C regulates KRAS signaling, as evidenced by RNA-seq analysis, and decreases MEK/ERK activation, which is of importance for RAS-mediated tumorigenicity. These findings define a previously unrecognized role for MUC1-C in suppression of RASSF1A and support targeting MUC1-C as an approach for inhibiting MEK→ERK signaling.
Collapse
|
27
|
Calanca N, Paschoal AP, Munhoz ÉP, Galindo LT, Barbosa BM, Caldeira JRF, Oliveira RA, Cavalli LR, Rogatto SR, Rainho CA. The long non-coding RNA ANRASSF1 in the regulation of alternative protein-coding transcripts RASSF1A and RASSF1C in human breast cancer cells: implications to epigenetic therapy. Epigenetics 2019; 14:741-750. [PMID: 31062660 DOI: 10.1080/15592294.2019.1615355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alternative protein-coding transcripts of the RASSF1 gene have been associated with dual functions in human cancer: while RASSF1C isoform has oncogenic properties, RASSF1A is a tumour suppressor frequently silenced by hypermethylation. Recently, the antisense long non-coding RNA RASSF1 (ANRASSF1) was implicated in a locus-specific mechanism for the RASSF1A epigenetic repression mediated by PRC2 (Polycomb Repressive Complex 2). Here, we evaluated the methylation patterns of the promoter regions of RASSF1A and RASSF1C and the expression levels of these RASSF1 transcripts in breast cancer and breast cancer cell lines. As expected, RASSF1C remained unmethylated and RASSF1A was hypermethylated at high frequencies in 75 primary breast cancers, and also in a panel of three mammary epithelial cells (MEC) and 10 breast cancer cell lines (BCC). Although RASSF1C was expressed in all cell lines, only two of them expressed the transcript RASSF1A. ANRASSF1 expression levels were increased in six BCCs. In vitro induced demethylation with 5-Aza-2'-deoxicytydine (5-Aza-dC) resulted in up-regulation of RASSF1A and an inverse correlation with ANRASSF1 relative abundance in BCCs. However, increased levels of both transcripts were observed in two MECs (184A1 and MCF10A) after treatment with 5-Aza-dC. Overall, these findings indicate that ANRASSF1 is differentially expressed in MECs and BCCs. The lncRNA ANRASSF1 provides new perspectives as a therapeutic target for locus-specific regulation of RASSF1A.
Collapse
Affiliation(s)
- Naiade Calanca
- a Department of Genetics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| | - Ana Paula Paschoal
- a Department of Genetics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| | - Érika Prando Munhoz
- a Department of Genetics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| | - Layla Testa Galindo
- a Department of Genetics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| | - Barbara Mitsuyasu Barbosa
- a Department of Genetics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| | | | - Rogério Antonio Oliveira
- c Department of Biostatistics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| | - Luciane Regina Cavalli
- d Department of Oncology , Georgetown University Medical Center , Washington , DC , USA.,e Faculdades Pequeno Préncipe e Instituto de Pesquisa Pelé Pequeno Príncipe , , Curitiba , Brazil
| | - Silvia Regina Rogatto
- f Department of Clinical Genetics , University Hospital, Institute of Regional Health Research, University of Southern Denmark Vejle , Denmark
| | - Cláudia Aparecida Rainho
- a Department of Genetics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| |
Collapse
|
28
|
Snigdha K, Gangwani KS, Lapalikar GV, Singh A, Kango-Singh M. Hippo Signaling in Cancer: Lessons From Drosophila Models. Front Cell Dev Biol 2019; 7:85. [PMID: 31231648 PMCID: PMC6558396 DOI: 10.3389/fcell.2019.00085] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Hippo pathway was initially identified through genetic screens for genes regulating organ size in fruitflies. Recent studies have highlighted the role of Hippo signaling as a key regulator of homeostasis, and in tumorigenesis. Hippo pathway is comprised of genes that act as tumor suppressor genes like hippo (hpo) and warts (wts), and oncogenes like yorkie (yki). YAP and TAZ are two related mammalian homologs of Drosophila Yki that act as effectors of the Hippo pathway. Hippo signaling deficiency can cause YAP- or TAZ-dependent oncogene addiction for cancer cells. YAP and TAZ are often activated in human malignant cancers. These transcriptional regulators may initiate tumorigenic changes in solid tumors by inducing cancer stem cells and proliferation, culminating in metastasis and chemo-resistance. Given the complex mechanisms (e.g., of the cancer microenvironment, and the extrinsic and intrinsic cues) that overpower YAP/TAZ inhibition, the molecular roles of the Hippo pathway in tumor growth and progression remain poorly defined. Here we review recent findings from studies in whole animal model organism like Drosophila on the role of Hippo signaling regarding its connection to inflammation, tumor microenvironment, and other oncogenic signaling in cancer growth and progression.
Collapse
Affiliation(s)
- Kirti Snigdha
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | | - Gauri Vijay Lapalikar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, United States.,Pre-Medical Programs, University of Dayton, Dayton, OH, United States.,Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, OH, United States.,Integrated Science and Engineering Center, University of Dayton, Dayton, OH, United States
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, United States.,Pre-Medical Programs, University of Dayton, Dayton, OH, United States.,Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, OH, United States.,Integrated Science and Engineering Center, University of Dayton, Dayton, OH, United States
| |
Collapse
|
29
|
Dabral S, Muecke C, Valasarajan C, Schmoranzer M, Wietelmann A, Semenza GL, Meister M, Muley T, Seeger-Nukpezah T, Samakovlis C, Weissmann N, Grimminger F, Seeger W, Savai R, Pullamsetti SS. A RASSF1A-HIF1α loop drives Warburg effect in cancer and pulmonary hypertension. Nat Commun 2019; 10:2130. [PMID: 31086178 PMCID: PMC6513860 DOI: 10.1038/s41467-019-10044-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Hypoxia signaling plays a major role in non-malignant and malignant hyperproliferative diseases. Pulmonary hypertension (PH), a hypoxia-driven vascular disease, is characterized by a glycolytic switch similar to the Warburg effect in cancer. Ras association domain family 1A (RASSF1A) is a scaffold protein that acts as a tumour suppressor. Here we show that hypoxia promotes stabilization of RASSF1A through NOX-1- and protein kinase C- dependent phosphorylation. In parallel, hypoxia inducible factor-1 α (HIF-1α) activates RASSF1A transcription via HIF-binding sites in the RASSF1A promoter region. Vice versa, RASSF1A binds to HIF-1α, blocks its prolyl-hydroxylation and proteasomal degradation, and thus enhances the activation of the glycolytic switch. We find that this mechanism operates in experimental hypoxia-induced PH, which is blocked in RASSF1A knockout mice, in human primary PH vascular cells, and in a subset of human lung cancer cells. We conclude that RASSF1A-HIF-1α forms a feedforward loop driving hypoxia signaling in PH and cancer.
Collapse
Affiliation(s)
- Swati Dabral
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Christian Muecke
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Chanil Valasarajan
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Mario Schmoranzer
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Astrid Wietelmann
- MRI and µCT Service Group, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Gregg L Semenza
- Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, Biological Chemistry, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205, MD, USA
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, 69126, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, 69120, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, 69126, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, 69120, Germany
| | - Tamina Seeger-Nukpezah
- Department I of Internal Medicine and Center for Integrated Oncology, University of Cologne, Cologne, 50937, Germany
| | - Christos Samakovlis
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691, Stockholm, Sweden.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), ECCPS, Member of the DZL, Justus-Liebig University, Giessen, 35392, Germany
| | - Norbert Weissmann
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), ECCPS, Member of the DZL, Justus-Liebig University, Giessen, 35392, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), ECCPS, Member of the DZL, Justus-Liebig University, Giessen, 35392, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), ECCPS, Member of the DZL, Justus-Liebig University, Giessen, 35392, Germany
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), ECCPS, Member of the DZL, Justus-Liebig University, Giessen, 35392, Germany
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany. .,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), ECCPS, Member of the DZL, Justus-Liebig University, Giessen, 35392, Germany.
| |
Collapse
|
30
|
Oceandy D, Amanda B, Ashari FY, Faizah Z, Azis MA, Stafford N. The Cross-Talk Between the TNF-α and RASSF-Hippo Signalling Pathways. Int J Mol Sci 2019; 20:ijms20092346. [PMID: 31083564 PMCID: PMC6539482 DOI: 10.3390/ijms20092346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
The regulation of cell death through apoptosis is essential to a number of physiological processes. Defective apoptosis regulation is associated with many abnormalities including anomalies in organ development, altered immune response and the development of cancer. Several signalling pathways are known to regulate apoptosis including the Tumour Necrosis Factor-α (TNF-α) and Hippo signalling pathways. In this paper we review the cross-talk between the TNF-α pathway and the Hippo signalling pathway. Several molecules that tightly regulate the Hippo pathway, such as members of the Ras-association domain family member (RASSF) family proteins, interact and modulate some key proteins within the TNF-α pathway. Meanwhile, TNF-α stimulation also affects the expression and activation of core components of the Hippo pathway. This implies the crucial role of signal integration between these two major pathways in regulating apoptosis.
Collapse
Affiliation(s)
- Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Bella Amanda
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Faisal Yusuf Ashari
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Zakiyatul Faizah
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - M Aminudin Azis
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Nicholas Stafford
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
31
|
Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons. Int J Mol Sci 2018; 19:ijms19124052. [PMID: 30558189 PMCID: PMC6321366 DOI: 10.3390/ijms19124052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson’s disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
Collapse
|
32
|
Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Biophys Rev 2018; 10:1263-1282. [PMID: 30269291 PMCID: PMC6233353 DOI: 10.1007/s12551-018-0461-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Autoinhibition is an effective mechanism that guards proteins against spurious activation. Despite its ubiquity, the distinct organizations of the autoinhibited states and their release mechanisms differ. Signaling is most responsive to the cell environment only if a small shift in the equilibrium is required to switch the system from an inactive (occluded) to an active (exposed) state. Ras signaling follows this paradigm. This underscores the challenge in pharmacological intervention to exploit and enhance autoinhibited states. Here, we review autoinhibition and release mechanisms at the membrane focusing on three representative Ras effectors, Raf protein kinase, PI3Kα lipid kinase, and NORE1A (RASSF5) tumor suppressor, and point to the ramifications to drug discovery. We further touch on Ras upstream and downstream signaling, Ras activation, and the Ras superfamily in this light, altogether providing a broad outlook of the principles and complexities of autoinhibition.
Collapse
|
33
|
Activation mechanisms of the Hippo kinase signaling cascade. Biosci Rep 2018; 38:BSR20171469. [PMID: 30038061 PMCID: PMC6131212 DOI: 10.1042/bsr20171469] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 11/21/2022] Open
Abstract
First discovered two decades ago through genetic screens in Drosophila, the Hippo pathway has been shown to be conserved in metazoans and controls organ size and tissue homeostasis through regulating the balance between cell proliferation and apoptosis. Dysregulation of the Hippo pathway leads to aberrant tissue growth and tumorigenesis. Extensive studies in Drosophila and mammals have identified the core components of Hippo signaling, which form a central kinase cascade to ultimately control gene expression. Here, we review recent structural, biochemical, and cellular studies that have revealed intricate phosphorylation-dependent mechanisms in regulating the formation and activation of the core kinase complex in the Hippo pathway. These studies have established the dimerization-mediated activation of the Hippo kinase (mammalian Ste20-like 1 and 2 (MST1/2) in mammals), the dynamic scaffolding and allosteric roles of adaptor proteins in downstream kinase activation, and the importance of multisite linker autophosphorylation by Hippo and MST1/2 in fine-tuning the signaling strength and robustness of the Hippo pathway. We highlight the gaps in our knowledge in this field that will require further mechanistic studies.
Collapse
|
34
|
Iwasa H, Sarkar A, Shimizu T, Sawada T, Hossain S, Xu X, Maruyama J, Arimoto-Matsuzaki K, Withanage K, Nakagawa K, Kurihara H, Kuroyanagi H, Hata Y. UNC119 is a binding partner of tumor suppressor Ras-association domain family 6 and induces apoptosis and cell cycle arrest by MDM2 and p53. Cancer Sci 2018; 109:2767-2780. [PMID: 29931788 PMCID: PMC6125449 DOI: 10.1111/cas.13706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/20/2018] [Indexed: 01/06/2023] Open
Abstract
Ras-association domain family 6 (RASSF6) is a tumor suppressor that interacts with MDM2 and stabilizes p53. Caenorhabditis elegans unc-119 encodes a protein that is required for normal development of the nervous system. Humans have 2 unc-119 homologues, UNC119 and UNC119B. We have identified UNC119 as a RASSF6-interacting protein. UNC119 promotes the interaction between RASSF6 and MDM2 and stabilizes p53. Thus, UNC119 induces apoptosis by RASSF6 and p53. UNC119 depletion impairs DNA repair after DNA damage and results in polyploid cell generation. These findings support that UNC119 is a regulator of the RASSF6-MDM2-p53 axis and functions as a tumor suppressor.
Collapse
Affiliation(s)
- Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Aradhan Sarkar
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanobu Shimizu
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeru Sawada
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shakhawoat Hossain
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Xiaoyin Xu
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,China Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junichi Maruyama
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Arimoto-Matsuzaki
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kanchanamala Withanage
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Nakagawa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidetake Kurihara
- Department of Physical Therapy, Faculty of Health Science, Aino University, Osaka, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
35
|
Pfeifer GP. Defining Driver DNA Methylation Changes in Human Cancer. Int J Mol Sci 2018; 19:ijms19041166. [PMID: 29649096 PMCID: PMC5979276 DOI: 10.3390/ijms19041166] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Human malignant tumors are characterized by pervasive changes in the patterns of DNA methylation. These changes include a globally hypomethylated tumor cell genome and the focal hypermethylation of numerous 5′-cytosine-phosphate-guanine-3′ (CpG) islands, many of them associated with gene promoters. It has been challenging to link specific DNA methylation changes with tumorigenesis in a cause-and-effect relationship. Some evidence suggests that cancer-associated DNA hypomethylation may increase genomic instability. Promoter hypermethylation events can lead to silencing of genes functioning in pathways reflecting hallmarks of cancer, including DNA repair, cell cycle regulation, promotion of apoptosis or control of key tumor-relevant signaling networks. A convincing argument for a tumor-driving role of DNA methylation can be made when the same genes are also frequently mutated in cancer. Many of the most commonly hypermethylated genes encode developmental transcription factors, the methylation of which may lead to permanent gene silencing. Inactivation of such genes will deprive the cells in which the tumor may initiate from the option of undergoing or maintaining lineage differentiation and will lock them into a perpetuated stem cell-like state thus providing an additional window for cell transformation.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA.
| |
Collapse
|
36
|
Centonze M, Saponaro C, Mangia A. NHERF1 Between Promises and Hopes: Overview on Cancer and Prospective Openings. Transl Oncol 2018; 11:374-390. [PMID: 29455084 PMCID: PMC5852411 DOI: 10.1016/j.tranon.2018.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 02/07/2023] Open
Abstract
Na+/H+ exchanger regulatory factor 1 (NHERF1) is a scaffold protein, with two tandem PDZ domains and a carboxyl-terminal ezrin-binding (EB) region. This particular sticky structure is responsible for its interaction with different molecules to form multi-complexes that have a pivotal role in a lot of diseases. In particular, its involvement during carcinogenesis and cancer progression has been deeply analyzed in different tumors. The role of NHERF1 is not unique in cancer; its activity is connected to its subcellular localization. The literature data suggest that NHERF1 could be a new prognostic/predictive biomarker from breast cancer to hematological cancers. Furthermore, the high potential of this molecule as therapeutical target in different carcinomas is a new challenge for precision medicine. These evidences are part of a future view to improving patient clinical management, which should allow different tumor phenotypes to be treated with tailored therapies. This article reviews the biology of NHERF1, its engagement in different signal pathways and its involvement in different cancers, with a specific focus on breast cancer. It also considers NHERF1 potential role during inflammation related to most human cancers, designating new perspectives in the study of this "Janus-like" protein.
Collapse
Affiliation(s)
- Matteo Centonze
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Concetta Saponaro
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Anita Mangia
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
37
|
Karthik IP, Desai P, Sukumar S, Dimitrijevic A, Rajalingam K, Mahalingam S. E4BP4/NFIL3 modulates the epigenetically repressed RAS effector RASSF8 function through histone methyltransferases. J Biol Chem 2018; 293:5624-5635. [PMID: 29467226 DOI: 10.1074/jbc.ra117.000623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/29/2018] [Indexed: 12/14/2022] Open
Abstract
RAS proteins are major human oncogenes, and most of the studies are focused on enzymatic RAS effectors. Recently, nonenzymatic RAS effectors (RASSF, RAS association domain family) have garnered special attention because of their tumor-suppressive properties in contrast to the oncogenic potential of the classical enzymatic RAS effectors. Whereas most members of RASSF family are deregulated by promoter hypermethylation, RASSF8 promoter remains unmethylated in many cancers but the mechanism(s) of its down-regulation remains unknown. Here, we unveil E4BP4 as a critical transcriptional modulator repressing RASSF8 expression through histone methyltransferases, G9a and SUV39H1. In line with these observations, we noticed a negative correlation of RASSF8 and E4BP4 expression in primary breast tumor samples. In addition, our data provide evidence that E4BP4 attenuates RASSF8-mediated anti-proliferation and apoptosis, shedding mechanistic insights into RASSF8 down-regulation in breast cancers. Collectively, our study provides a better understanding on the epigenetic regulation of RASSF8 function and implicates the development of better treatment strategies.
Collapse
Affiliation(s)
- Isai Pratha Karthik
- From the Laboratory of Molecular Virology, National Cancer Tissue Biobank, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India and
| | - Pavitra Desai
- From the Laboratory of Molecular Virology, National Cancer Tissue Biobank, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India and
| | - Sudarkodi Sukumar
- From the Laboratory of Molecular Virology, National Cancer Tissue Biobank, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India and
| | - Aleksandra Dimitrijevic
- Molecular Signaling Unit-Forschungszentrum für Immuntherapie, Institute of Immunology, University Medical Center, Johannes Gutenberg-Universität, 55131 Mainz, Germany
| | - Krishnaraj Rajalingam
- Molecular Signaling Unit-Forschungszentrum für Immuntherapie, Institute of Immunology, University Medical Center, Johannes Gutenberg-Universität, 55131 Mainz, Germany
| | - Sundarasamy Mahalingam
- From the Laboratory of Molecular Virology, National Cancer Tissue Biobank, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India and
| |
Collapse
|
38
|
Schirosi L, Mazzotta A, Opinto G, Pinto R, Graziano G, Tommasi S, Fucci L, Simone G, Mangia A. β-catenin interaction with NHERF1 and RASSF1A methylation in metastatic colorectal cancer patients. Oncotarget 2018; 7:67841-67850. [PMID: 27765918 PMCID: PMC5356523 DOI: 10.18632/oncotarget.12280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023] Open
Abstract
There is an increasing need to identify new biomarkers in colorectal cancer (CRC) to further characterize this malignancy. β-catenin plays a central role in the Wnt signaling pathway. It also binds Na+/H+ exchanger regulating factor 1 (NHERF1) and interacts with the RAS-association domain family 1, isoform A (RASSF1A), but the mechanisms of this possible crosstalk are still not fully understood. In this study, we analyzed for the first time the different subcellular expression of β-catenin, NHERF1, and RASSF1A and their relationships with RASSF1A methylation in the progression of CRC. We assessed immunohistochemical expression and RASSF1A methylation in 51 patients with stage IV colorectal cancer. Biomarker expression analysis was carried out considering the tumor-adjacent normal tissue, the primary tumor, and the paired liver metastases. Regarding the tumor compartment, it was found that cytoplasmic β-catenin expression was positively correlated to membranous (r = 0.3002, p = 0.0323) and nuclear NHERF1 (r = 0.293, p = 0.0368). In the liver metastases, instead, we found a positive correlation of cytoplasmic and nuclear β-catenin expression with RASSF1A methylation (r = 0.4019, p = 0.0068 and r = 0.3194, p = 0.0345, respectively). In conclusion, our results showed that β-catenin was the crucial protagonist in metastatic CRC through different effector proteins involved in this developing process. In tumor tissues, β-catenin was predominantly associated with NHERF1 in a dynamic context, while interestingly in liver metastases, we noted an increase of its oncogenic function through RASSF1A inactivation.
Collapse
Affiliation(s)
- Laura Schirosi
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Annalisa Mazzotta
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Giuseppina Opinto
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Rosamaria Pinto
- Molecular Genetics Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Giusi Graziano
- Scientific Direction, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Stefania Tommasi
- Molecular Genetics Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Livia Fucci
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Giovanni Simone
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Anita Mangia
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
39
|
Pang SW, Lahiri C, Poh CL, Tan KO. PNMA family: Protein interaction network and cell signalling pathways implicated in cancer and apoptosis. Cell Signal 2018; 45:54-62. [PMID: 29378289 DOI: 10.1016/j.cellsig.2018.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
Abstract
Paraneoplastic Ma Family (PNMA) comprises a growing number of family members which share relatively conserved protein sequences encoded by the human genome and is localized to several human chromosomes, including the X-chromosome. Based on sequence analysis, PNMA family members share sequence homology to the Gag protein of LTR retrotransposon, and several family members with aberrant protein expressions have been reported to be closely associated with the human Paraneoplastic Disorder (PND). In addition, gene mutations of specific members of PNMA family are known to be associated with human mental retardation or 3-M syndrome consisting of restrictive post-natal growth or dwarfism, and development of skeletal abnormalities. Other than sequence homology, the physiological function of many members in this family remains unclear. However, several members of this family have been characterized, including cell signalling events mediated by these proteins that are associated with apoptosis, and cancer in different cell types. Furthermore, while certain PNMA family members show restricted gene expression in the human brain and testis, other PNMA family members exhibit broader gene expression or preferential and selective protein interaction profiles, suggesting functional divergence within the family. Functional analysis of some members of this family have identified protein domains that are required for subcellular localization, protein-protein interactions, and cell signalling events which are the focus of this review paper.
Collapse
Affiliation(s)
- Siew Wai Pang
- Department of Biological Sciences, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Chandrajit Lahiri
- Department of Biological Sciences, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Chit Laa Poh
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Kuan Onn Tan
- Department of Biological Sciences, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
40
|
Decreased level of RASSF6 in sporadic colorectal cancer and its anti-tumor effects both in vitro and in vivo. Oncotarget 2017; 7:19813-23. [PMID: 27009808 PMCID: PMC4991420 DOI: 10.18632/oncotarget.7852] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/11/2016] [Indexed: 12/24/2022] Open
Abstract
Ras-association domain family protein 6 (RASSF6) is a member of tumor suppressor RASSFs family with a wide range of function from RAS interaction, Hippo signaling involvement to cell cycle and apoptosis regulation. RASSF6 is reported inactivated in various types of cancer. However, whether RASSF6 is associated with colorectal cancer and the underlying mechanisms have yet to be investigated. In our previous exome sequencing study, we found a somatic loss-of-function (LoF) mutation in RASSF6 in one sporadic colorectal cancer (sCRC) patient, and two missense mutations in deep sequencing group of sCRC samples, implying the possibility that RASSF6 may be involved in the pathogenesis of sCRC. In this study, we demonstrate that RASSF6 acts as a tumor suppressor in colon cancer cells. Decreased level of RASSF6 was observed in adenocarcinoma compared to normal tissues, especially in advanced tumor cases. Further experiments showed exogenous introduction of RASSF6 into LoVo cells suppressed cell proliferation, migration, invasion, and induced apoptosis in vitro as well as tumor growth in vivo. In contrast, knockdown of RASSF6 in HT-29 cells showed the opposite effects. Taken together, our results suggest, in addition to epigenetics changes, functional somatic mutations may also contribute to the downregulation of RASSF6 and further participate in the pathogenesis of sCRC. RASSF6 may serve as a novel candidate against tumor growth for sCRC.
Collapse
|
41
|
Hierarchical clustering analysis identifies metastatic colorectal cancers patients with more aggressive phenotype. Oncotarget 2017; 8:87782-87794. [PMID: 29152120 PMCID: PMC5675672 DOI: 10.18632/oncotarget.21213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
A large percentage of metastatic colorectal cancer (mCRC) patients presents metastasis at the time of diagnosis. In the last years, great efforts have been made in the treatment of these patients with the identification of different phenotypes playing a key role in the definition of new systemic therapies. Unsupervised hierarchical clustering analysis (HCA) was performed considering the clinicopathological characteristics of 51 mCRCs. Using immunohistochemistry on tissue microarrays, we assessed the expression of β-catenin, NHERF1, RASSF1A, TWIST1, HIF-1α proteins in tumors and paired liver metastases. We also analyzed RASSF1A methylation status on the samples of the same patients. HCA distinguished Group 1 and Group 2 characterized by different clinicopathological features. Group 1 was characterized by higher number of positive lymph nodes (p=0.0139), poorly differentiated grade (p<0.0001) and high extent of tumor spread (p=0.0053) showing a more aggressive phenotype compared to Group 2. In both Groups, we found a common "basal" condition with a higher level of nuclear TWIST1 (p<0.0001 and cytoplasmic β-catenin (p<0.0001) in tumors than in paired liver metastases. Furthermore, the Group 1 was also characterized by RASSF1A hypermethylation (p<0.0001) and nuclear HIF-1α overexpression (p=0.0354) in paired liver metastases than in tumors. In conclusion, HCA identifies mCRC patients with a more aggressive phenotype. Moroever, our results support the important contribution to the progression of the disease of RASSF1A methylation and the oncogenic role of HIF-1α in these patients. These evidences, should provide relevant information concerning the biology of this tumor and, as a consequence, potential new systemic therapeutic approaches.
Collapse
|
42
|
Nejadtaghi M, Jafari H, Farrokhi E, Samani KG. Familial Colorectal Cancer Type X (FCCTX) and the correlation with various genes-A systematic review. Curr Probl Cancer 2017; 41:388-397. [PMID: 29096939 DOI: 10.1016/j.currproblcancer.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 05/10/2017] [Accepted: 10/12/2017] [Indexed: 02/09/2023]
Abstract
Familial Colorectal Cancer Type X (FCCTX) is a type of hereditary nonpolyposis colorectal cancer in accordance to Amsterdam criteria-1 for Lynch syndrome, with no related mutation in mismatch repair gene. FCCTX is microsatellite stable and is accounted for 40% of families with Amsterdam criteria-1 with a high age of onset. Thus, the carcinogenesis of FCCTX is different compared to Lynch syndrome. In addition to the microsatellite stability and the presence of less predominant tumors in proximal colon, various clinical features have also been associated with FCCTX in comparison with Lynch syndrome such as no increased risk of extra-colonic cancers, older age of diagnosis and higher adenoma/carcinoma rate. Genetic etiology of this type of cancer which is autosomal dominant is unknown. In this review, we focus on the genes and their variants identified in this type of CRC. In order to find out the correlation between FCCTX and various genes database such as PubMed and PMC, search engine such as Google scholar and portals such as Springer and Elsevier have been searched. Based on our literature search, several studies suggest that FCCTX is a heterogeneous type of disease with different genetic variants. Recent studies describe the correlation between FCCTX and genes such as BRCA2, SEMA4, NTS, RASSF9, GALNT12, KRAS, BRAF, APC, BMPR1A, and RPS20. Considering the fact that BRCA2 has the highest mutation rate (60%) and is one of the most crucial DNA repair genes, it will be considered as a big role player in this type of cancer in comparison with other genes.
Collapse
Affiliation(s)
- Mahdieh Nejadtaghi
- Cellular and Molecular Research Center, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Hamideh Jafari
- Cellular and Molecular Research Center, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Effat Farrokhi
- Cellular and Molecular Research Center, Shahrekord University of Medical Science, Shahrekord, Iran.
| | - Keihan Ghatreh Samani
- Clinical Biochemistry Research Center, Shahrekord University of Medical Science, Shahrekord, Iran
| |
Collapse
|
43
|
Impact of Natural Compounds on DNA Methylation Levels of the Tumor Suppressor Gene RASSF1A in Cancer. Int J Mol Sci 2017; 18:ijms18102160. [PMID: 29039788 PMCID: PMC5666841 DOI: 10.3390/ijms18102160] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/28/2017] [Accepted: 10/12/2017] [Indexed: 02/06/2023] Open
Abstract
Epigenetic inactivation of tumor suppressor genes (TSG) is a fundamental event in the pathogenesis of human cancer. This silencing is accomplished by aberrant chromatin modifications including DNA hypermethylation of the gene promoter. One of the most frequently hypermethylated TSG in human cancer is the Ras Association Domain Family 1A (RASSF1A) gene. Aberrant methylation of RASSF1A has been reported in melanoma, sarcoma and carcinoma of different tissues. RASSF1A hypermethylation has been correlated with tumor progression and poor prognosis. Reactivation of epigenetically silenced TSG has been suggested as a therapy in cancer treatment. In particular, natural compounds isolated from herbal extracts have been tested for their capacity to induce RASSF1A in cancer cells, through demethylation. Here, we review the treatment of cancer cells with natural supplements (e.g., methyl donors, vitamins and polyphenols) that have been utilized to revert or prevent the epigenetic silencing of RASSF1A. Moreover, we specify pathways that were involved in RASSF1A reactivation. Several of these compounds (e.g., reseveratol and curcumin) act by inhibiting the activity or expression of DNA methyltransferases and reactive RASSF1A in cancer. Thus natural compounds could serve as important agents in tumor prevention or cancer therapy. However, the exact epigenetic reactivation mechanism is still under investigation.
Collapse
|
44
|
Ma J, Zhang S, Hu Y, Li X, Yuan F, Sun D, Wang L, Zhang F, Chen G, Cui P. Decreased expression of RASSF10 correlates with poor prognosis in patients with colorectal cancer. Medicine (Baltimore) 2017; 96:e7011. [PMID: 29049167 PMCID: PMC5662333 DOI: 10.1097/md.0000000000007011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ras association domain protein 10 (RASSF10) was reported to act as a prognostic indicator in various types of cancer and it was proved to be tumor suppressor gene in colorectal cancer (CRC). The purpose of this study was to evaluate the prognostic significance of RASSF10 in CRC.Quantitative real-time polymerase chain reaction was used to detect the messenger RNA (mRNA) expression while enzyme-linked immunosorbent assay was taken to measure the protein expression of RASSF10 in tumor tissues and adjacent normal tissues from 102 patients with CRC. The relationship between RASSF10 expression level and clinical characteristics of CRC patients was analyzed by chi-squared test. In addition, the association between overall survival of CRC patients and RASSF10 expression was estimated by Kaplan-Meier analysis. Cox regression analysis was used to evaluate the prognostic value of RASSF10.The expression level of RASSF10 in tumor tissues was significantly lower than that in the normal tissues both at mRNA and protein levels. Moreover, the expression level was correlated with lymph-node-metastasis and tumor-node-metastasis stage. Kaplan-Meier analysis suggested that patients with high expression level of RASSF10 had a longer overall survival than those with low level (log-rank test, P < .001). Besides, RASSF10 might be a potential biomarker in the prognosis of CRC according to cox regression analysis.The down regulated of RASSF10 is found in CRC and it may be an ideal prognostic marker.
Collapse
|
45
|
Giannopoulou L, Chebouti I, Pavlakis K, Kasimir-Bauer S, Lianidou ES. RASSF1A promoter methylation in high-grade serous ovarian cancer: A direct comparison study in primary tumors, adjacent morphologically tumor cell-free tissues and paired circulating tumor DNA. Oncotarget 2017; 8:21429-21443. [PMID: 28206954 PMCID: PMC5400595 DOI: 10.18632/oncotarget.15249] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Abstract
The RASSF1A promoter is frequently methylated in high-grade serous ovarian cancer (HGSC). We examined RASSF1A promoter methylation in primary tumors, adjacent morphologically tumor cell-free tissues and corresponding circulating tumor DNA (ctDNA) samples of patients with HGSC, using a real-time methylation specific PCR (real-time MSP) and a methylation-sensitive high-resolution melting analysis (MS-HRMA) assay for the detection and semi-quantitative estimation of methylation, respectively. Two groups of primary HGSC tumor FFPE samples were recruited (Group A n=67 and Group B n=61), along with matched adjacent morphologically tumor cell-free tissues (n=58) and corresponding plasma samples (n=59) for group B. Using both assays, RASSF1A promoter was found highly methylated in primary tumors of both groups, and at lower percentages in the adjacent morphologically tumor cell-free tissues. Interestingly, RASSF1A promoter methylation was also observed in ctDNA by real-time MSP. Overall survival (OS) was significantly associated with RASSF1A promoter methylation in primary tumor samples using MS-HRMA (P=0.023). Our results clearly indicate that RASSF1A promoter is methylated in adjacent tissue surrounding the tumor in HGSC patients. We report for the first time that RASSF1A promoter methylation provides significant prognostic information in HGSC patients.
Collapse
Affiliation(s)
- Lydia Giannopoulou
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, 15771, Greece
| | - Issam Chebouti
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Essen, D-45122, Germany
| | - Kitty Pavlakis
- Pathology Department, IASO Women's Hospital, 15123, Marousi, Athens, Greece
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Essen, D-45122, Germany
| | - Evi S Lianidou
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, 15771, Greece
| |
Collapse
|
46
|
Nussinov R, Jang H, Tsai CJ, Liao TJ, Li S, Fushman D, Zhang J. Intrinsic protein disorder in oncogenic KRAS signaling. Cell Mol Life Sci 2017; 74:3245-3261. [PMID: 28597297 PMCID: PMC11107717 DOI: 10.1007/s00018-017-2564-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Abstract
How Ras, and in particular its most abundant oncogenic isoform K-Ras4B, is activated and signals in proliferating cells, poses some of the most challenging questions in cancer cell biology. In this paper, we ask how intrinsically disordered regions in K-Ras4B and its effectors help promote proliferative signaling. Conformational disorder allows spanning long distances, supports hinge motions, promotes anchoring in membranes, permits segments to fulfil multiple roles, and broadly is crucial for activation mechanisms and intensified oncogenic signaling. Here, we provide an overview illustrating some of the key mechanisms through which conformational disorder can promote oncogenesis, with K-Ras4B signaling serving as an example. We discuss (1) GTP-bound KRas4B activation through membrane attachment; (2) how farnesylation and palmitoylation can promote isoform functional specificity; (3) calmodulin binding and PI3K activation; (4) how Ras activates its RASSF5 cofactor, thereby stimulating signaling of the Hippo pathway and repressing proliferation; and (5) how intrinsically disordered segments in Raf help its attachment to the membrane and activation. Collectively, we provide the first inclusive review of the roles of intrinsic protein disorder in oncogenic Ras-driven signaling. We believe that a broad picture helps to grasp and formulate key mechanisms in Ras cancer biology and assists in therapeutic intervention.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Tsung-Jen Liao
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Shuai Li
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| |
Collapse
|
47
|
Younesian S, Shahkarami S, Ghaffari P, Alizadeh S, Mehrasa R, Ghavamzadeh A, Ghaffari SH. DNA hypermethylation of tumor suppressor genes RASSF6 and RASSF10 as independent prognostic factors in adult acute lymphoblastic leukemia. Leuk Res 2017; 61:33-38. [PMID: 28869817 DOI: 10.1016/j.leukres.2017.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND The Hypermethylation of Ras association domain family (RASSF) often plays a key role in malignant progression of solid tumors; however, their impact on the prognosis and survival of adult ALL patients remain elusive. METHODS The frequency of the promoter methylation pattern of RASSF6 and RASSF10 were analyzed in the peripheral blood (PB) samples taken at the time of diagnosis of 45 ALL patients. The methylation-specific PCR (MSP) assay was used to detect the DNA methylation patterns. RESULTS RASSF6 was frequently hypermethylated in patients diagnosed with pre-B-ALL (90.9%) and B-ALL (87.5%), followed by T-ALL (66.7%); whereas, RASSF10 methylation was more confined to T-ALL (80%) as compared to B-ALL (25%) and pre-B ALL (9.1%) patients. Moreover, hypermethylation of RASSF6 was significantly associated with a poor prognosis and shorter overall survival (OS) in patients with pre-B-ALL (log-rank test; P=0.041). CONCLUSION RASSF6 and RASSF10 were frequently hypermethylated in the samples at the time of diagnosis of adult ALL patients. Our study represents the first report of methylation of RASSF6 at a high frequency in patients with pre-B ALL. Furthermore, hypermethylation of RASSF6 was significantly associated with inferior overall survival in pre-B ALL patients. It may suggest that the frequent epigenetic inactivation of RASSF6 plays an important role in the pathogenesis and progression of pre-B-ALL.
Collapse
Affiliation(s)
- Samareh Younesian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Hematology, School of Allied Medical Sciences, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Shahkarami
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Mehrasa
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Zheng X, Dong Q, Zhang X, Han Q, Han X, Han Y, Wu J, Rong X, Wang E. The coiled-coil domain of oncogene RASSF 7 inhibits hippo signaling and promotes non-small cell lung cancer. Oncotarget 2017; 8:78734-78748. [PMID: 29108261 PMCID: PMC5667994 DOI: 10.18632/oncotarget.20223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and despite recent improvements in treatment patient prognosis remains dismal. In this study, we examined the role of N-terminal Ras-association domain family 7 (RASSF7) in human non-small cell lung cancer (NSCLC). We found that RASSF7 was overexpressed NSCLC tissues, which correlated with advanced TNM stage, positive lymph node metastasis, and poor prognosis. This RASSF7 overexpression promoted lung cancer cell proliferation, migration, and invasion. We also found that RASSF7 interacted with mammalian Ste20-like kinase 1(MST1) through its C-terminal coiled-coil domain to inhibit MST1 phosphorylation as well as the phosphorylation of large tumor suppressor kinase 1(LATS1) and yes-associated protein (YAP), while promoting the nuclear translocation of YAP. In addition, RASSF7 overexpression inhibited the Hippo signaling pathway both in vitro and vivo and promoted the expression of proteins associated with proliferation and invasion, such as connective tissue growth factor. These results suggest that targeting RASSF7 could be exploited for therapeutic benefit in the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoying Zheng
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Electron Microscopy, Basic Medical College, Chengde Medical College, Chengde, China
| | - Qianze Dong
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qiang Han
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xu Han
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yong Han
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jingjing Wu
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xuezhu Rong
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
49
|
Barnoud T, Schmidt ML, Donninger H, Clark GJ. The role of the NORE1A tumor suppressor in Oncogene-Induced Senescence. Cancer Lett 2017; 400:30-36. [PMID: 28455242 PMCID: PMC5502528 DOI: 10.1016/j.canlet.2017.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
The Ras genes are the most frequently mutated oncogenes in human cancer. However, Ras biology is quite complex. While Ras promotes tumorigenesis by regulating numerous growth promoting pathways, activated Ras can paradoxically also lead to cell cycle arrest, death, and Oncogene-Induced Senescence (OIS). OIS is thought to be a critical pathway that serves to protect cells against aberrant Ras signaling. Multiple reports have highlighted the importance of the p53 and Rb tumor suppressors in Ras mediated OIS. However, until recently, the molecular mechanisms connecting Ras to these proteins remained unknown. The RASSF family of tumor suppressors has recently been identified as direct effectors of Ras. One of these members, NORE1A (RASSF5), may be the missing link between Ras-induced senescence and the regulation of p53 and Rb. This occurs both quantitatively, by promoting protein stability, as well as qualitatively via promoting critical pro-senescent post-translational modifications. Here we review the mechanisms by which NORE1A can activate OIS as a barrier against Ras-mediated transformation, and how this could lead to improved therapeutic strategies against cancers having lost NORE1A expression.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia PA 19104, USA
| | - M Lee Schmidt
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA
| | | | - Geoffrey J Clark
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA.
| |
Collapse
|
50
|
Nguyen HT, Kugler JM, Loya AC, Cohen SM. USP21 regulates Hippo pathway activity by mediating MARK protein turnover. Oncotarget 2017; 8:64095-64105. [PMID: 28969054 PMCID: PMC5609986 DOI: 10.18632/oncotarget.19322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/10/2017] [Indexed: 02/06/2023] Open
Abstract
The Hippo pathway, which acts to repress the activity of YAP and TAZ trancriptional co-activators, serve as a barrier for oncogenic transformation. Unlike other oncoproteins, YAP and TAZ are rarely activated by mutations or amplified in cancer. However, elevated YAP/TAZ activity is frequently observed in cancer and often correlates with worse survival. The activity and stability of Hippo pathway components, including YAP/TAZ, AMOT and LATS1/2, are regulated by ubiquitin-mediated protein degradation. Aberrant expression of ubiquitin ligase complexes that regulate the turnover of Hippo components and deubiquitylating enzymes that counteract these ubiquitin ligases have been implicated in human cancer. Here we identify the USP21 deubiquitylating enzyme as a novel regulator of Hippo pathway activity. We provide evidence that USP21 regulates YAP/TAZ activity by controlling the stability of MARK kinases, which promote Hippo signaling. Low expression of USP21 in early stage renal clear cell carcinoma suggests that USP21 may be a useful biomarker.
Collapse
Affiliation(s)
- Hung Thanh Nguyen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jan-Michael Kugler
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anand C Loya
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Stephen M Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|