1
|
Yang L, Zhang H, Wang J, Ge J, Hao R, Yu J, Zheng B. Study on the effects and mechanism of RRM2 on three gynecological malignancies. Cell Signal 2025; 129:111674. [PMID: 39965737 DOI: 10.1016/j.cellsig.2025.111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Cervical cancer, endometrial cancer, and ovarian cancer are the three most common gynecological malignancies. Their occurrence seriously affects women's health and life. Despite aggressive treatments, some patients still find it difficult to benefit from available therapies. Ribonucleic acid reductase subunit M2 (RRM2) is a limiting RNR enzyme involved in DNA synthesis and damage repair and plays a crucial role in many key cellular processes such as cell proliferation, migration, invasion, and senescence. Many studies have also shown that RRM2 also has a significant impact on tumor progression. However, the role of RRM2 in gynecological tumors has not been systematically studied. Our bioinformatics analysis of datasets related to cervical, endometrial, and ovarian cancers revealed that RRM2 is a significantly differentially expressed gene common to these cancers. We found that RRM2 was significantly overexpressed in cervical, endometrial, and ovarian cancer tissues and cells, exhibiting overall pro-oncogenic effects. RRM2 promoted cell proliferation, migration invasion, angiogenesis, and cell cycle in gynecological tumors while inhibiting apoptosis. The potential oncogenic effects of RRM2 in gynecologic tumor cell lines were further demonstrated using the RRM2 inhibitor Triapine (3-AP). These pro-tumorigenic effects may then be mediated through the involvement of RRM2 in the p53 and Akt/mTOR signaling pathways, altering the expression of p53 and Akt/mTOR. Thus, RRM2 is potentially a candidate gene for the unified diagnosis of cervical, endometrial, and ovarian cancers.
Collapse
Affiliation(s)
- Luhan Yang
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China
| | - Hongping Zhang
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Junfeng Wang
- The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Jing Ge
- The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Rushan Hao
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China
| | - Junxu Yu
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China
| | - Bingrong Zheng
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China.
| |
Collapse
|
2
|
Karami Fath M, Najafiyan B, Morovatshoar R, Khorsandi M, Dashtizadeh A, Kiani A, Farzam F, Kazemi KS, Nabi Afjadi M. Potential promising of synthetic lethality in cancer research and treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1403-1431. [PMID: 39305329 DOI: 10.1007/s00210-024-03444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 02/14/2025]
Abstract
Cancer is a complex disease driven by multiple genetic changes, including mutations in oncogenes, tumor suppressor genes, DNA repair genes, and genes involved in cancer metabolism. Synthetic lethality (SL) is a promising approach in cancer research and treatment, where the simultaneous dysfunction of specific genes or pathways causes cell death. By targeting vulnerabilities created by these dysfunctions, SL therapies selectively kill cancer cells while sparing normal cells. SL therapies, such as PARP inhibitors, WEE1 inhibitors, ATR and ATM inhibitors, and DNA-PK inhibitors, offer a distinct approach to cancer treatment compared to conventional targeted therapies. Instead of directly inhibiting specific molecules or pathways, SL therapies exploit genetic or molecular vulnerabilities in cancer cells to induce selective cell death, offering benefits such as targeted therapy, enhanced treatment efficacy, and minimized harm to healthy tissues. SL therapies can be personalized based on each patient's unique genetic profile and combined with other treatment modalities to potentially achieve synergistic effects. They also broaden the effectiveness of treatment across different cancer types, potentially overcoming drug resistance and improving patient outcomes. This review offers an overview of the current understanding of SL mechanisms, advancements, and challenges, as well as the preclinical and clinical development of SL. It also discusses new directions and opportunities for utilizing SL in targeted therapy for anticancer treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Behnam Najafiyan
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdieh Khorsandi
- Department of Biotechnology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Arash Kiani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Shahzad A, Liu W, Sun Y, Liu X, Xia J, Cui K, Sai B, Zhu Y, Yang Z, Zhang Q. Flavonoids as modulators of metabolic reprogramming in renal cell carcinoma (Review). Oncol Rep 2024; 52:167. [PMID: 39422066 PMCID: PMC11526433 DOI: 10.3892/or.2024.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Renal cell carcinoma (RCC) is distinguished by its varied metabolic reprogramming driven by tumor suppressor gene dysregulation and oncogene activation. Tumors can adapt nutrient uptake and metabolism pathways to meet the altered biosynthetic, bioenergetic and redox demands of cancer cells, whereas conventional chemotherapeutics and molecular inhibitors predominantly target individual metabolic pathways without addressing this adaptability. Flavonoids, which are well‑known for their antioxidant and anti‑inflammatory properties, offer a unique approach by influencing multiple metabolic targets. The present comprehensive review reveals the intricate processes of RCC metabolic reprogramming, encompassing glycolysis, mitochondrial oxidative phosphorylation and fatty acid biosynthesis. The insights derived from the present review may contribute to the understanding of the specific anticancer mechanisms of flavonoids, potentially paving the way for the development of natural antitumor drugs focused on the metabolic reprogramming of RCC.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
4
|
Calabrese C, Miserocchi G, De Vita A, Spadazzi C, Cocchi C, Vanni S, Gabellone S, Martinelli G, Ranallo N, Bongiovanni A, Liverani C. Lipids and adipocytes involvement in tumor progression with a focus on obesity and diet. Obes Rev 2024; 25:e13833. [PMID: 39289899 DOI: 10.1111/obr.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The adipose tissue is a complex organ that can play endocrine, metabolic, and immune regulatory roles in cancer. In particular, adipocytes provide metabolic substrates for cancer cell proliferation and produce signaling molecules that can stimulate cell adhesion, migration, invasion, angiogenesis, and inflammation. Cancer cells, in turn, can reprogram adipocytes towards a more inflammatory state, resulting in a vicious cycle that fuels tumor growth and evolution. These mechanisms are enhanced in obesity, which is associated with the risk of developing certain tumors. Diet, an exogenous source of lipids with pro- or anti-inflammatory functions, has also been connected to cancer risk. This review analyzes how adipocytes and lipids are involved in tumor development and progression, focusing on the relationship between obesity and cancer. In addition, we discuss how diets with varying lipid intakes can affect the disease outcomes. Finally, we introduce novel metabolism-targeted treatments and adipocyte-based therapies in oncology.
Collapse
Affiliation(s)
- Chiara Calabrese
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Claudia Cocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Silvia Vanni
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sofia Gabellone
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Nicoletta Ranallo
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alberto Bongiovanni
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Liverani
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
5
|
Heydarzadeh S, Moshtaghie AA, Daneshpour M, Hedayati M. A novel approach to regulate glucose uptake in an anaplastic thyroid cancer cell line. Endocr Connect 2024; 14:EC-24-0336. [PMID: 39555605 PMCID: PMC11728915 DOI: 10.1530/ec-24-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/19/2024]
Abstract
AIMS AND BACKGROUND Curcumin's function in affecting cancer metabolic reprogramming remains poorly understood. Herein, we aimed to elucidate a novel link between Curcumin and the glucose uptake metabolism and glucose transporters (GLUTs) status in SW1736 cell line derived from anaplastic thyroid cancer. MATERIALS AND METHODS TheMTT test and flow cytometry was employed to test cell viability and cell death. For glucose uptake detection, ''GOD-PAP'' enzymatic colorimetric assay was applied to measure the direct glucose levels inside of the cells. Determination of GLUT1 and GLUT3 mRNA and protein expression in SW1736 cells was performed by qRT-PCR and western blotting. Also, the scratch wound healing assay was conducted for cell migration. RESULTS The data indicated that Curcumin-induced cell death is independent of apoptosis in this type of thyroid cancer cell line. Furthermore, significantly reduced GLUT1 and GLUT3 expression was observed after treatment with Curcumin, resulting in the inhibition of glucose uptake (p < 0.05). Scratch assay indicated the inhibition of cell migration in SW1736 cells treated by Curcumin (p < 0.05). CONCLUSION It can be concluded that GLUTs as metabolic targets can be blocked specifically by Curcumin for thyroid cancer prevention. Curcumin, as a promising anti-cancer agent, inhibits the growth of SW1736 anaplastic thyroid cancer cell line by regulating glucose uptake pathway and cell death. Altogether, these results suggest that the glucose pathway may be an important target for therapeutic intervention to sensitize tumor cells to cell death process by inhibition of glucose transporters.
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Moshtaghie
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kelson CO, Tessmann JW, Geisen ME, He D, Wang C, Gao T, Evers BM, Zaytseva YY. Upregulation of Fatty Acid Synthase Increases Activity of β-Catenin and Expression of NOTUM to Enhance Stem-like Properties of Colorectal Cancer Cells. Cells 2024; 13:1663. [PMID: 39404424 PMCID: PMC11475157 DOI: 10.3390/cells13191663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Dysregulated fatty acid metabolism is an attractive therapeutic target for colorectal cancer (CRC). We previously reported that fatty acid synthase (FASN), a key enzyme of de novo synthesis, promotes the initiation and progression of CRC. However, the mechanisms of how upregulation of FASN promotes the initiation and progression of CRC are not completely understood. Here, using Apc/VillinCre and ApcMin mouse models, we show that upregulation of FASN is associated with an increase in activity of β-catenin and expression of multiple stem cell markers, including Notum. Genetic and pharmacological downregulation of FASN in mouse adenoma organoids decreases the activation of β-catenin and expression of Notum and significantly inhibits organoid formation and growth. Consistently, we demonstrate that NOTUM is highly expressed in human CRC and its expression positively correlates with the expression of FASN in tumor tissues. Utilizing overexpression and shRNA-mediated knockdown of FASN, we demonstrate that upregulation of FASN increases β-catenin transcriptional activity, NOTUM expression and secretion, and enhances stem-like properties of human CRC cells. Pharmacological inhibition of NOTUM decreases adenoma organoids growth and proliferation of cancer cells. In summary, upregulation of FASN enhances β-catenin signaling, increases NOTUM expression and stem-like properties of CRC cells, thus suggesting that targeting FASN upstream of the β-catenin/NOTUM axis may be an effective preventative therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Courtney O. Kelson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| | - Josiane Weber Tessmann
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| | - Mariah E. Geisen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| | - Daheng He
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (D.H.); (C.W.)
| | - Chi Wang
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (D.H.); (C.W.)
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.G.); (B.M.E.)
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.G.); (B.M.E.)
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| |
Collapse
|
7
|
Gardner GL, Stuart JA. Tumor microenvironment-like conditions alter pancreatic cancer cell metabolism and behavior. Am J Physiol Cell Physiol 2024; 327:C959-C978. [PMID: 39183564 DOI: 10.1152/ajpcell.00452.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The tumor microenvironment is complex and dynamic, characterized by poor vascularization, limited nutrient availability, hypoxia, and an acidic pH. This environment plays a critical role in driving cancer progression. However, standard cell culture conditions used to study cancer cell biology in vitro fail to replicate the in vivo environment of tumors. Recently, "physiological" cell culture media that closely resemble human plasma have been developed (e.g., Plasmax, HPLM), along with more frequent adoption of physiological oxygen conditions (1%-8% O2). Nonetheless, further refinement of tumor-specific culture conditions may be needed. In this study, we describe the development of a tumor microenvironment medium (TMEM) based on murine pancreatic ductal adenocarcinoma (PDAC) tumor interstitial fluid. Using RNA-sequencing, we show that murine PDAC cells (KPCY) cultured in tumor-like conditions (TMEM, pH 7.0, 1.5% O2) exhibit profound differences in gene expression compared with plasma-like conditions (mouse plasma medium, pH 7.4, 5% O2). Specifically, the expression of genes and pathways associated with cell migration, biosynthesis, angiogenesis, and epithelial-to-mesenchymal transition were altered, suggesting tumor-like conditions promote metastatic phenotypes and metabolic remodeling. Using functional assays to validate RNA-seq data, we confirmed increased motility at 1.5% O2/TMEM, despite reduced cell proliferation. Moreover, a hallmark shift to glycolytic metabolism was identified via measurement of glucose uptake/lactate production and mitochondrial respiration. Taken together, these findings demonstrate that growth in 1.5% O2/TMEM alters several biological responses in ways relevant to cancer biology, and more closely models hallmark cancerous phenotypes in culture. This highlights the importance of establishing tumor microenvironment-like conditions in standard cancer research. NEW & NOTEWORTHY Standard cell culture conditions do not replicate the complex tumor microenvironment experienced by cells in vivo. Although currently available plasma-like media are superior to traditional supraphysiological media, they fail to model tumor-like conditions. Using RNA-seq analysis and functional metabolic and migratory assays, we show that tumor microenvironment medium (TMEM), used with representative tumor hypoxia, better models cancerous phenotypes in culture. This emphasizes the critical importance of accurately modeling the tumor microenvironment in cancer research.
Collapse
Affiliation(s)
| | - Jeffrey Alan Stuart
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
8
|
Cao X, Wu B, Hou Y, Chen J. Lipid metabolism-related gene signatures for predicting the prognosis of lung adenocarcinoma. Transl Cancer Res 2023; 12:2099-2114. [PMID: 37701116 PMCID: PMC10493788 DOI: 10.21037/tcr-23-375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023]
Abstract
Background Lung cancer is one of the most common epithelial malignancies worldwide, accounting for the highest number of new cases and deaths. Metabolism is the sum of chemical reactions that produce energy to keep an organism alive. Several studies have shown that glucose and lipid metabolic disorders are common phenomena related to cancer cell genesis and progression. Methods We screened the differentially expressed genes (DEGs) of lung adenocarcinoma (LUAD) samples of The Cancer Genome Atlas (TCGA) database, the Gene Set Enrichment Analysis (GSEA), and Gene Card database metabolism-related data, the metabolism-related DEGs of LUAD, as well as the univariate Cox regression analysis genes, for identifying significant outcome-related genes. The least absolute shrinkage and gene selection operator (LASSO) analysis was performed to establish the best risk model. Results Our study aimed to establish a lipid metabolism-related model for predicting LUAD prognosis. Furthermore, our model's prognosis prediction power was evaluated by survival analysis. This study finally identified 11 DEGs related to lipid metabolism that were significantly associated with the prognosis of lung adenocarcinoma. It provided a new idea for the treatment of high-risk lung adenocarcinoma patients. Conclusions The constructed clinical prognosis model of lung adenocarcinoma related to lipid metabolism provides a new idea for clinical treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Xueting Cao
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Boya Wu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Yingzheng Hou
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Jing Chen
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
9
|
Liu G, Yang Y, Kang X, Xu H, Ai J, Cao M, Liu G. A pan-cancer analysis of lipid metabolic alterations in primary and metastatic cancers. Sci Rep 2023; 13:13810. [PMID: 37612422 PMCID: PMC10447541 DOI: 10.1038/s41598-023-41107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancers, but pan-cancer level roles of lipid metabolism in cancer development are remains poorly understood. We investigated the possible roles of lipid metabolic genes (LMGs) in 14 cancer types. The results indicate that: (1) there is strong evidence for increased lipid metabolism in THCA and KICH. (2) Although the overall levels of lipid metabolic processes are down-regulated in some cancer types, fatty acid synthase activity and fatty acid elongation are moderately up-regulated in more than half of the cancer types. Cholesterol synthesis is up-regulated in five cancers including KICH, BLCA, COAD, BRCA, UCEC, and THCA. (3) The catabolism of cholesterols, triglycerides and fatty acids is repressed in most cancers, but a specific form of lipid degradation, lipophagy, is activated in THCA and KICH. (4) Lipid storage is enhanced in in kidney cancers and thyroid cancer. (5) Similarly to primary tumors, metastatic tumors tend to up-regulate biosynthetic processes of diverse lipids, but down-regulate lipid catabolic processes, except lipophagy. (6) The frequently mutated lipid metabolic genes are not key LMGs. (7) We established a LMG-based model for predicting cancer prognosis. Our results are helpful in expanding our understanding of the role of lipid metabolism in cancer.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.
- Inner Mongolia Key Laboratory of Functional Genomics and Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China.
| | - Yan Yang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xuejia Kang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hao Xu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jing Ai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Min Cao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Guojun Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.
- Inner Mongolia Key Laboratory of Functional Genomics and Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China.
| |
Collapse
|
10
|
Wang C, Yu C, Chang H, Song J, Zhang S, Zhao J, Wang J, Wang T, Qi Q, Shan C. Glucose-6-phosphate dehydrogenase: a therapeutic target for ovarian cancer. Expert Opin Ther Targets 2023; 27:733-743. [PMID: 37571851 DOI: 10.1080/14728222.2023.2247558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Ovarian cancer (OC) is a gynecological tumor disease, which is usually diagnosed at an advanced stage and has a poor prognosis. It has been established that the glucose metabolism rate of cancer cells is significantly higher than that of normal cells, and the pentose phosphate pathway (PPP) is an important branch pathway for glucose metabolism. Glucose-6-phosphate dehydrogenase (G6PD) is the key rate-limiting enzyme in the PPP, which plays an important role in the initiation and development of cancer (such as OC), and has been considered as a promisinganti-cancer target. AREAS COVERED In this review, based on the structure and biological function of G6PD, recent research on the roles of G6PD in the progression, metastasis, and chemoresistance of OC are summarized and accompanied by proposed molecular mechanisms, which may provide a systematic understanding of targeting G6PD for the treatment of patients with OC. EXPERT OPINION Accumulating evidence demonstrates that G6PD is a promising target of cancer. The development of G6PD inhibitors for cancer treatment merits broad application prospects.
Collapse
Affiliation(s)
- Chenxi Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Chenxi Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Hongkai Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jiaqi Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianguo Zhao
- Tianjin Key Laboratory of human development and reproductive regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Tao Wang
- Tianjin Key Laboratory of human development and reproductive regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Bedia C, Dalmau N, Nielsen LK, Tauler R, Marín de Mas I. A Multi-Level Systems Biology Analysis of Aldrin's Metabolic Effects on Prostate Cancer Cells. Proteomes 2023; 11:proteomes11020011. [PMID: 37092452 PMCID: PMC10123692 DOI: 10.3390/proteomes11020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Although numerous studies support a dose-effect relationship between Endocrine disruptors (EDs) and the progression and malignancy of tumors, the impact of a chronic exposure to non-lethal concentrations of EDs in cancer remains unknown. More specifically, a number of studies have reported the impact of Aldrin on a variety of cancer types, including prostate cancer. In previous studies, we demonstrated the induction of the malignant phenotype in DU145 prostate cancer (PCa) cells after a chronic exposure to Aldrin (an ED). Proteins are pivotal in the regulation and control of a variety of cellular processes. However, the mechanisms responsible for the impact of ED on PCa and the role of proteins in this process are not yet well understood. Here, two complementary computational approaches have been employed to investigate the molecular processes underlying the acquisition of malignancy in prostate cancer. First, the metabolic reprogramming associated with the chronic exposure to Aldrin in DU145 cells was studied by integrating transcriptomics and metabolomics via constraint-based metabolic modeling. Second, gene set enrichment analysis was applied to determine (i) altered regulatory pathways and (ii) the correlation between changes in the transcriptomic profile of Aldrin-exposed cells and tumor progression in various types of cancer. Experimental validation confirmed predictions revealing a disruption in metabolic and regulatory pathways. This alteration results in the modification of protein levels crucial in regulating triacylglyceride/cholesterol, linked to the malignant phenotype observed in Aldrin-exposed cells.
Collapse
Affiliation(s)
- Carmen Bedia
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Nuria Dalmau
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Lars K Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Igor Marín de Mas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- CAG Center for Endotheliomics, Copenhagen University Hospital, 2100 Rigshospitalet, Denmark
| |
Collapse
|
12
|
Wang N, Li T, Liu W, Lin J, Zhang K, Li Z, Huang Y, Shi Y, Xu M, Liu X. USP7- and PRMT5-dependent G3BP2 stabilization drives de novo lipogenesis and tumorigenesis of HNSC. Cell Death Dis 2023; 14:182. [PMID: 36878903 PMCID: PMC9988876 DOI: 10.1038/s41419-023-05706-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
GTPase-activating protein-binding protein 2 (G3BP2) is a key stress granule-associated RNA-binding protein responsible for the formation of stress granules (SGs). Hyperactivation of G3BP2 is associated with various pathological conditions, especially cancers. Emerging evidence indicates that post-translational modifications (PTMs) play critical roles in gene transcription, integrate metabolism and immune surveillance. However, how PTMs directly regulate G3BP2 activity is lacking. Here, our analyses identify a novel mechanism that PRMT5-mediated G3BP2-R468me2 enhances the binding to deubiquitinase USP7, which ensures the deubiquitination and stabilization of G3BP2. Mechanistically, USP7- and PRMT5-dependent G3BP2 stabilization consequently guarantee robust ACLY activation, which thereby stimulating de novo lipogenesis and tumorigenesis. More importantly, USP7-induced G3BP2 deubiquitination is attenuated by PRMT5 depletion or inhibition. PRMT5-activity dependent methylation of G3BP2 is required for its deubiquitination and stabilization by USP7. Consistently, G3BP2, PRMT5 and G3BP2 R468me2 protein levels were found positively correlated in clinical patients and associated with poor prognosis. Altogether, these data suggest that PRMT5-USP7-G3BP2 regulatory axis serves as a lipid metabolism reprogramming mechanism in tumorigenesis, and unveil a promising therapeutic target in the metabolic treatment of head and neck squamous carcinoma.
Collapse
Affiliation(s)
- Nan Wang
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China.
| | - Tianzi Li
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Wanyu Liu
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Jinhua Lin
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Ke Zhang
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Zhenhao Li
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Yanfei Huang
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Yufei Shi
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Meilan Xu
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Xuekui Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
13
|
Sun XB, Liu WW, Wang B, Yang ZP, Tang HZ, Lu S, Wang YY, Qu JX, Rao BQ. Correlations between serum lipid and Ki-67 levels in different breast cancer molecular subcategories. Oncol Lett 2022; 25:53. [PMID: 36644143 PMCID: PMC9827470 DOI: 10.3892/ol.2022.13639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has the highest incidence rate among all cancer types worldwide, seriously threatening women's health. The present retrospective study explored differences in serum lipid contents in different breast cancer (BC) subcategories and their correlation with Ki-67 expression levels in patients with invasive BC with the aim of identifying novel diagnostic and prognostic indicators for personalized BC treatment. The study included 170 patients diagnosed with BC who were diagnosed with invasive BC by postoperative pathological examination. Data on patient age, body mass index and menopausal status were collected, in addition to estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (HER2) and antigen Ki-67 expression levels and pathological tumor type. Preoperative circulating lipid levels, specifically the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG) and apolipoproteins A1 (ApoA1) and B (ApoB) were also obtained. Molecular subcategories of BC were grouped based on their immunohistochemistry. Differences in serum lipid levels between the groups were assessed, and correlations between serum lipid and Ki-67 expression levels were explored. While TC, LDL-C, HDL-C and ApoA1 levels differed significantly among molecular subcategories. TG and ApoB levels did not. Circulating TC and LDL-C levels were considerably higher in patients with triple-negative BC (TNBC) and HER2-positive [hormone receptor (HR)-negative] BC than in those with luminal A and B (HER2-negative) BC. Serum HDL-C levels were significantly diminished in the TNBC and HER2-positive (HR-negative) groups compared with the luminal A and B (HER2-negative) groups. ApoA1 levels were significantly reduced in cases of TNBC and HER2-positive (HR-negative) BC compared with luminal A and B BC. Ki-67 expression levels were positively correlated with circulating TC and LDL-C levels and inversely correlated with circulating HDL-C and ApoA1 levels but exhibited no correlation with serum ApoB and TG levels. The results indicate that elevated TC and LDL-C levels and diminished HDL-C and ApoA1 levels were high-risk factors in patients with TNBC and HER2-positive (HR-negative) BC, but not patients with luminal subcategories of BC. Abnormal serum lipid levels were correlated with Ki-67 expression levels, with elevated circulating TC and LDL-C levels and reduced circulating HDL-C and ApoA1 levels indicating a poor prognosis in patients with BC.
Collapse
Affiliation(s)
- Xi-Bo Sun
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000, P.R. China
| | - Wen-Wen Liu
- The Second Department of General Surgery, Shanxian Central Hospital, He'ze, Shandong 274300, P.R. China
| | - Bing Wang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Zhen-Peng Yang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Hua-Zhen Tang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Shuai Lu
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Yu-Ying Wang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Jin-Xiu Qu
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Ben-Qiang Rao
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China,Correspondence to: Professor Ben-Qiang Rao, Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, 115 Yangfangdian, Haidian, Beijing 100038, P.R. China, E-mail:
| |
Collapse
|
14
|
Jamialahmadi O, Salehabadi E, Hashemi-Najafabadi S, Motamedian E, Bagheri F, Mancina RM, Romeo S. Cellular Genome-Scale Metabolic Modeling Identifies New Potential Drug Targets Against Hepatocellular Carcinoma. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:671-682. [PMID: 36508280 DOI: 10.1089/omi.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome-scale metabolic modeling (GEM) is one of the key approaches to unpack cancer metabolism and for discovery of new drug targets. In this study, we report the Transcriptional Regulated Flux Balance Analysis-CORE (TRFBA-), an algorithm for GEM using key growth-correlated reactions using hepatocellular carcinoma (HCC), an important global health burden, as a case study. We generated a HepG2 cell-specific GEM by integrating this cell line transcriptomic data with a generic human metabolic model to forecast potential drug targets for HCC. A total of 108 essential genes for growth were predicted by the TRFBA-CORE. These genes were enriched for metabolic pathways involved in cholesterol, sterol, and steroid biosynthesis. Furthermore, we silenced a predicted essential gene, 11-beta dehydrogenase hydroxysteroid type 2 (HSD11B2), in HepG2 cells resulting in a reduction in cell viability. To further identify novel potential drug targets in HCC, we examined the effect of nine drugs targeting the essential genes, and observed that most drugs inhibited the growth of HepG2 cells. Some of these drugs in this model performed better than Sorafenib, the first-line therapeutic against HCC. A HepG2 cell-specific GEM highlights sterol metabolism to be essential for cell growth. HSD11B2 downregulation results in lower cell growth. Most of the compounds, selected by drug repurposing approach, show a significant inhibitory effect on cell growth in a wide range of concentrations. These findings offer new molecular leads for drug discovery for hepatic cancer while also illustrating the importance of GEM and drug repurposing in cancer therapeutics innovation.
Collapse
Affiliation(s)
- Oveis Jamialahmadi
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Salehabadi
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Rosellina Margherita Mancina
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.,Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
15
|
Xia J, Zhang S, Zhang R, Wang A, Zhu Y, Dong M, Ma S, Hong C, Liu S, Wang D, Wang J. Targeting therapy and tumor microenvironment remodeling of triple-negative breast cancer by ginsenoside Rg3 based liposomes. J Nanobiotechnology 2022; 20:414. [PMID: 36109762 PMCID: PMC9479350 DOI: 10.1186/s12951-022-01623-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
The chemotherapy effect of docetaxel (DTX) against triple-negative breast cancer (TNBC) remains mediocre and limited when encapsulated in conventional cholesterol liposomes, mainly ascribed to poor penetration and immunosuppressive tumor microenvironment (TME) caused by tumor stroma cells, especially cancer-associated fibroblasts (CAFs). Many studies have attempted to address these problems but trapped into the common dilemma of excessively complicated formulation strategies at the expense of druggability as well as clinical translational feasibility. To better address the discrepancy, ginsenoside Rg3 was utilized to substitute cholesterol to develop a multifunctional DTX-loaded Rg3 liposome (Rg3-Lp/DTX). The obtained Rg3-Lp/DTX was proved to be preferentially uptake by 4T1 cells and accumulate more at tumor site via the interaction between the glycosyl moiety of Rg3 exposed on liposome surface and glucose transporter1 (Glut1) overexpressed on tumor cells. After reaching tumor site, Rg3 was shown to reverse the activated CAFs to the resting stage and attenuate the dense stroma barrier by suppressing secretion of TGF-β from tumor cells and regulating TGF-β/Smad signaling. Therefore, reduced levels of CAFs and collagens were found in TME after incorporation of Rg3, inducing enhanced penetration of Rg3-Lp/DTX in the tumor and reversed immune system which can detect and neutralize tumor cells. Compared with wooden cholesterol liposomes, the smart and versatile Rg3-Lp/DTX could significantly improve the anti-tumor effect of DTX, providing a promising approach for TNBC therapy with excellent therapeutic efficacy and simple preparation process.
Collapse
|
16
|
Curcumenol Targeting YWHAG Inhibits the Pentose Phosphate Pathway and Enhances Antitumor Effects of Cisplatin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3988916. [PMID: 35795276 PMCID: PMC9251105 DOI: 10.1155/2022/3988916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/26/2022]
Abstract
Objective Cervical cancer is a common cancer in women. The drug resistance of chemotherapeutic agents has always been an urgent problem to be solved in clinics. The purpose of this study was to determine the role of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma polypeptide (YWHAG) in cervical cancer and explore the effect of Curcuma on cervical cancer and its possible mechanism. Methods YWHAG expression in cervical cancer was confirmed using The Cancer Genome Atlas (TCGA) database. Then, the effects of YWHAG on the proliferation and invasion of HeLa and C33A cervical cancer cells were detected by the cell counting kit-8 (CCK-8) and transwell assay. The relationship between YWHAG and the pentose phosphorylation pathway was further studied. CCK-8, Edu, and quantitative real-time polymerase chain reaction were used to confirm that Curcuma inhibited the sensitivity of YWHAG to cisplatin chemotherapy and to detect the expression of apoptosis-related proteins. Results YWHAG was highly expressed in cervical cancer and was associated with poor prognosis. The proliferation and invasion abilities of HeLa and C33A cells decreased after YWHAG knockout. The TCGA database of cervical cancer showed a positive correlation between YWHAG and hypoxia-inducible factor-1 subunit alpha (HIF-1α) expression. YWHAG expression increased with HIF-1α overexpression. YWHAG knockdown reduced the protein expression in the pentose phosphorylation pathway. Curcumenol inhibited YWHAG expression. Compared with cisplatin alone, curcumenol combined with cisplatin can reduce cell proliferation and invasion and reduce matrix metalloproteinase (MMP) 2 and MMP9 expression. It can also increase apoptosis, decrease B cell lymphoma 2 (Bcl-2) expression, and increase the expression of Bcl-2 antagonist X, caspase-3, and polyadenosine diphosphate-ribose polymerase. Conclusion YWHAG can interact with HIF-1α to affect the proliferation and invasion of cervical cancer cells. YWHAG knockout can reduce the expression of pentose phosphorylation pathway-related proteins. Curcumenol can enhance cisplatin to inhibit cancer cell proliferation, migration, and invasion and promote tumor cell apoptosis. The combination of drugs may promote the apoptosis of cervical cancer cells through the YWHAG pathway.
Collapse
|
17
|
Chen Z, Jiang W, Li Z, Zong Y, Deng G. Immune-and Metabolism-Associated Molecular Classification of Ovarian Cancer. Front Oncol 2022; 12:877369. [PMID: 35646692 PMCID: PMC9133421 DOI: 10.3389/fonc.2022.877369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023] Open
Abstract
Ovarian cancer (OV) is a complex gynecological disease, and its molecular characteristics are not clear. In this study, the molecular characteristics of OV subtypes based on metabolic genes were explored through the comprehensive analysis of genomic data. A set of transcriptome data of 2752 known metabolic genes was used as a seed for performing non negative matrix factorization (NMF) clustering. Three subtypes of OV (C1, C2 and C3) were found in analysis. The proportion of various immune cells in C1 was higher than that in C2 and C3 subtypes. The expression level of immune checkpoint genes TNFRSF9 in C1 was higher than that of other subtypes. The activation scores of cell cycle, RTK-RAS, Wnt and angiogenesis pathway and ESTIMATE immune scores in C1 group were higher than those in C2 and C3 groups. In the validation set, grade was significantly correlated with OV subtype C1. Functional analysis showed that the extracellular matrix related items in C1 subtype were significantly different from other subtypes. Drug sensitivity analysis showed that C2 subtype was more sensitive to immunotherapy. Survival analysis of differential genes showed that the expression of PXDN and CXCL11 was significantly correlated with survival. The results of tissue microarray immunohistochemistry showed that the expression of PXDN was significantly correlated with tumor size and pathological grade. Based on the genomics of metabolic genes, a new OV typing method was developed, which improved our understanding of the molecular characteristics of human OV.
Collapse
Affiliation(s)
- Zhenyue Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiyi Jiang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Zong
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaopi Deng
- Department Obstetrics and Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
18
|
Lv Y, Lv X, Zhang J, Cao G, Xu C, Zhang B, Lin W. BRD4 Targets the KEAP1-Nrf2-G6PD Axis and Suppresses Redox Metabolism in Small Cell Lung Cancer. Antioxidants (Basel) 2022; 11:antiox11040661. [PMID: 35453346 PMCID: PMC9029261 DOI: 10.3390/antiox11040661] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
Accumulating evidence has witnessed the Kelch-like ECH-associated protein 1(KEAP1)- nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis is the main regulatory factor of cell resistance to endogenous and exogenous oxidative assaults. However, there are few studies addressing the upstream regulatory factors of KEAP1. Herein, bioinformatic analysis suggests bromodomain-containing protein 4 (BRD4) as a potential top transcriptional regulator of KEAP1 in lung cancer. Using molecular and pharmacological approaches, we then discovered that BRD4 can directly bind to the promoter of KEAP1 to activate its transcription and down-regulate the stability of Nrf2 which in turn transcriptionally suppresses glucose-6-phosphate dehydrogenase (G6PD) in small cell lung cancer (SCLC), a highly proliferative and aggressive disease with limited treatment options. In addition, BRD4 could associate with the Nrf2 protein in a non-KEAP1-dependent manner to inhibit Nrf2 activity. Furthermore, simultaneous application of JQ1 and ATRA or RRx-001 yielded synergistic inhibition both in vitro and in vivo. These data suggest metabolic reprogramming by JQ1 treatment improves cell resistance to oxidative stress and might be a resistance mechanism to bromodomain and extra-terminal domain (BET) inhibition therapy. Altogether, our findings provide novel insight into the transcriptional regulatory network of BRD4 and KEAP1 and transcriptional regulation of the pentose phosphate pathway in SCLC.
Collapse
Affiliation(s)
- Yang Lv
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Y.L.); (X.L.); (J.Z.); (G.C.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiaotong Lv
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Y.L.); (X.L.); (J.Z.); (G.C.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jiahui Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Y.L.); (X.L.); (J.Z.); (G.C.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Guozhen Cao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Y.L.); (X.L.); (J.Z.); (G.C.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changzhi Xu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (C.X.); (B.Z.)
| | - Buchang Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (C.X.); (B.Z.)
| | - Wenchu Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Y.L.); (X.L.); (J.Z.); (G.C.)
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Correspondence: ; Tel.: +86-551-6559-3499
| |
Collapse
|
19
|
Della Noce B, Martins da Silva R, de Carvalho Uhl MV, Konnai S, Ohashi K, Calixto C, Arcanjo A, de Abreu LA, de Carvalho SS, da Silva Vaz I, Logullo C. REDOX IMBALANCE INDUCES REMODELING OF GLUCOSE METABOLISM IN RHIPICEPHALUS MICROPLUS EMBRYONIC CELL LINE. J Biol Chem 2022; 298:101599. [PMID: 35063504 PMCID: PMC8857477 DOI: 10.1016/j.jbc.2022.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
Carbohydrate metabolism not only functions in supplying cellular energy but also has an important role in maintaining physiological homeostasis and in preventing oxidative damage caused by reactive oxygen species. Previously, we showed that arthropod embryonic cell lines have high tolerance to H2O2 exposure. Here, we describe that Rhipicephalus microplus tick embryonic cell line (BME26) employs an adaptive glucose metabolism mechanism that confers tolerance to hydrogen peroxide at concentrations too high for other organisms. This adaptive mechanism sustained by glucose metabolism remodeling promotes cell survival and redox balance in BME26 cell line after millimolar H2O2 exposure. The present work shows that this tick cell line could tolerate high H2O2 concentrations by initiating a carbohydrate-related adaptive response. We demonstrate that gluconeogenesis was induced as a compensation strategy that involved, among other molecules, the metabolic enzymes NADP-ICDH, G6PDH, and PEPCK. We also found that this phenomenon was coupled to glycogen accumulation and glucose uptake, supporting the pentose phosphate pathway to sustain NADPH production and leading to cell survival and proliferation. Our findings suggest that the described response is not atypical, being also observed in cancer cells, which highlights the importance of this model to all proliferative cells. We propose that these results will be useful in generating basic biological information to support the development of new strategies for disease treatment and parasite control.
Collapse
|
20
|
Rhode P, Mehdorn M, Lyros O, Kahlert C, Kurth T, Venus T, Schierle K, Estrela-Lopis I, Jansen-Winkeln B, Lordick F, Gockel I, Thieme R. Characterization of Total RNA, CD44, FASN, and PTEN mRNAs from Extracellular Vesicles as Biomarkers in Gastric Cancer Patients. Cancers (Basel) 2021; 13:cancers13235975. [PMID: 34885085 PMCID: PMC8656496 DOI: 10.3390/cancers13235975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Liquid biopsy is an easily accessible and non-invasive method to gain information about tumor diseases. The purpose of our study was to determine the value of extracellular vesicle-derived mRNAs as biomarkers for the diagnosis of gastric cancer and the response to its treatment. In a cohort of 87 gastric cancer patients and a control group of 14 individuals, we analyzed the absolute RNA concentration from extracellular vesicles (EV) and the relative levels of FASN, PTEN, and CD44 mRNA, and their correlation with clinico-pathological features. These correlated with treatment, tumor grading, and the pathological subtype according to Laurén’s classification. This might reflect their potential as both diagnostic and therapeutic predictors. Abstract In-depth characterization has introduced new molecular subtypes of gastric cancer (GC). To identify these, new approaches and techniques are required. Liquid biopsies are trendsetting and provide an easy and feasible method to identify and to monitor GC patients. In a prospective cohort of 87 GC patients, extracellular vesicles (EVs) were isolated from 250 µL of plasma. The total RNA was isolated with TRIZOL. The total RNA amount and the relative mRNA levels of CD44, PTEN, and FASN were measured by qRT-PCR. The isolation of EVs and their contained mRNA was possible in all 87 samples investigated. The relative mRNA levels of PTEN were higher in patients already treated by chemotherapy than in chemo-naïve patients. In patients who had undergone neoadjuvant chemotherapy followed by gastrectomy, a decrease in the total RNA amount was observed after neoadjuvant chemotherapy and gastrectomy, while FASN and CD44 mRNA levels decreased only after gastrectomy. The amount of RNA and the relative mRNA levels of FASN and CD44 in EVs were affected more significantly by chemotherapy and gastrectomy than by chemotherapy alone. Therefore, they are a potential biomarker for monitoring treatment response. Future analyses are needed to identify GC-specific key RNAs in EVs, which could be used for the diagnosis of gastric cancer patients in order to determine their molecular subtype and to accompany the therapeutic response.
Collapse
Affiliation(s)
- Philipp Rhode
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - Matthias Mehdorn
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - Orestis Lyros
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - Christoph Kahlert
- Department for Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, D-01307 Dresden, Germany;
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Technische Universität Dresden, D-01307 Dresden, Germany;
| | - Tom Venus
- Institute of Medical Physics and Biophysics, University of Leipzig, D-0407 Leipzig, Germany; (T.V.); (I.E.-L.)
| | - Katrin Schierle
- Institute of Pathology, University Hospital Leipzig, D-04103 Leipzig, Germany;
| | - Irina Estrela-Lopis
- Institute of Medical Physics and Biophysics, University of Leipzig, D-0407 Leipzig, Germany; (T.V.); (I.E.-L.)
| | - Boris Jansen-Winkeln
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - Florian Lordick
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology and Infectious Diseases, University Hospital Leipzig, D-04103 Leipzig, Germany;
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
- Correspondence:
| |
Collapse
|
21
|
The High Expression of RRM2 Can Predict the Malignant Transformation of Endometriosis. Adv Ther 2021; 38:5178-5190. [PMID: 34424503 DOI: 10.1007/s12325-021-01888-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION A large number of epidemiological studies have revealed that women with endometriosis (EMS) have a higher risk of developing endometriosis-associated ovarian cancer (EAOC). At present, there are few studies on predicting the malignant transformation of ovarian endometriosis (OE). The purpose of this study is to identify and verify the molecules that may be able to predict the malignant transformation of OE. METHODS The gene expression profiles of ovarian cancer and OE were downloaded from Gene Expression Omnibus (GEO), and a common hub gene ribonucleotide reductase M2 (RRM2) was identified. A total of 44 patients with EAOC and 44 with OE were enrolled in this study. Immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to detect the expression of RRM2, while the relationship between RRM2 and Ki-67 was analyzed by IHC co-localization. RESULTS Bioinformatics analysis showed that the expression of RRM2 was low in EMS and high in ovarian cancer. RRM2 was obviously positively expressed in eutopic endometrium (EU), ectopic endometrium (EC), and cancer tissues of EAOC patients. The IHC signal and mRNA levels of RRM2 were higher in the EC of EAOC patients compared with OE patients (P < 0.01). In addition, there was a correlation between the expression of RRM2 and Ki-67 in EC of EAOC patients (P < 0.01). CONCLUSION The upregulated expression of RRM2 in the EC of OE patients may indicate malignant transformation. High expression of RRM2 promotes abnormal proliferation of histiocytes. RRM2 can be used as a potential marker of malignant transformation of OE.
Collapse
|
22
|
Multi-Omic Approaches to Breast Cancer Metabolic Phenotyping: Applications in Diagnosis, Prognosis, and the Development of Novel Treatments. Cancers (Basel) 2021; 13:cancers13184544. [PMID: 34572770 PMCID: PMC8470181 DOI: 10.3390/cancers13184544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is characterized by high disease heterogeneity and represents the most frequently diagnosed cancer among women worldwide. Complex and subtype-specific gene expression alterations participate in disease development and progression, with BC cells known to rewire their cellular metabolism to survive, proliferate, and invade. Hence, as an emerging cancer hallmark, metabolic reprogramming holds great promise for cancer diagnosis, prognosis, and treatment. Multi-omics approaches (the combined analysis of various types of omics data) offer opportunities to advance our understanding of the molecular changes underlying metabolic rewiring in complex diseases such as BC. Recent studies focusing on the combined analysis of genomics, epigenomics, transcriptomics, proteomics, and/or metabolomics in different BC subtypes have provided novel insights into the specificities of metabolic rewiring and the vulnerabilities that may guide therapeutic development and improve patient outcomes. This review summarizes the findings of multi-omics studies focused on the characterization of the specific metabolic phenotypes of BC and discusses how they may improve clinical BC diagnosis, subtyping, and treatment.
Collapse
|
23
|
Shin E, Koo JS. Glucose Metabolism and Glucose Transporters in Breast Cancer. Front Cell Dev Biol 2021; 9:728759. [PMID: 34552932 PMCID: PMC8450384 DOI: 10.3389/fcell.2021.728759] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide and is associated with high mortality rates despite the continuously advancing treatment strategies. Glucose is essential for cancer cell metabolism owing to the Warburg effect. During the process of glucose metabolism, various glycolytic metabolites, such as serine and glycine metabolites, are produced and other metabolic pathways, such as the pentose phosphate pathway (PPP), are associated with the process. Glucose is transported into the cell by glucose transporters, such as GLUT. Breast cancer shows high expressions of glucose metabolism-related enzymes and GLUT, which are also related to breast cancer prognosis. Triple negative breast cancer (TNBC), which is a high-grade breast cancer, is especially dependent on glucose metabolism. Breast cancer also harbors various stromal cells such as cancer-associated fibroblasts and immune cells as tumor microenvironment, and there exists a metabolic interaction between these stromal cells and breast cancer cells as explained by the reverse Warburg effect. Breast cancer is heterogeneous, and, consequently, its metabolic status is also diverse, which is especially affected by the molecular subtype, progression stage, and metastatic site. In this review, we will focus on glucose metabolism and glucose transporters in breast cancer, and we will additionally discuss their potential applications as cancer imaging tracers and treatment targets.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Myllymäki H, Astorga Johansson J, Grados Porro E, Elliot A, Moses T, Feng Y. Metabolic Alterations in Preneoplastic Development Revealed by Untargeted Metabolomic Analysis. Front Cell Dev Biol 2021; 9:684036. [PMID: 34414180 PMCID: PMC8369915 DOI: 10.3389/fcell.2021.684036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic rewiring is a critical hallmark of tumorigenesis and is essential for the development of cancer. Although many key features of metabolic alteration that are crucial for tumor cell survival, proliferation and progression have been identified, these are obtained from studies with established tumors and cancer cell lines. However, information on the essential metabolic changes that occur during pre-neoplastic cell (PNC) development that enables its progression to full blown tumor is still lacking. Here, we present an untargeted metabolomics analysis of human oncogene HRASG12V induced PNC development, using a transgenic inducible zebrafish larval skin development model. By comparison with normal sibling controls, we identified six metabolic pathways that are significantly altered during PNC development in the skin. Amongst these altered pathways are pyrimidine, purine and amino acid metabolism that are common to the cancer metabolic changes that support rapid cell proliferation and growth. Our data also suggest alterations in post transcriptional modification of RNAs that might play a role in PNC development. Our study provides a proof of principle work flow for identifying metabolic alterations during PNC development driven by an oncogenic mutation. In the future, this approach could be combined with transcriptomic or proteomic approaches to establish the detailed interaction between signaling networks and cellular metabolic pathways that occur at the onset of tumor progression.
Collapse
Affiliation(s)
- Henna Myllymäki
- Centre for Inflammation Research, Queen’s Medical Research Institute, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jeanette Astorga Johansson
- Centre for Inflammation Research, Queen’s Medical Research Institute, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Estefania Grados Porro
- Centre for Inflammation Research, Queen’s Medical Research Institute, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Abigail Elliot
- Centre for Inflammation Research, Queen’s Medical Research Institute, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tessa Moses
- EdinOmics, SynthSys - Centre for Synthetic and Systems Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Yi Feng
- Centre for Inflammation Research, Queen’s Medical Research Institute, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Maestri E, Duszka K, Kuznetsov VA. Immunity Depletion, Telomere Imbalance, and Cancer-Associated Metabolism Pathway Aberrations in Intestinal Mucosa upon Short-Term Caloric Restriction. Cancers (Basel) 2021; 13:cancers13133180. [PMID: 34202278 PMCID: PMC8267928 DOI: 10.3390/cancers13133180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Systems cancer biology analysis of calorie restriction (CR) mechanisms and pathways has not been carried out, leaving therapeutic benefits unclear. Using metadata analysis, we studied gene expression changes in normal mouse duodenum mucosa (DM) response to short-term (2-weeks) 25% CR as a biological model. Our results indicate cancer-associated genes consist of 26% of 467 CR responding differential expressed genes (DEGs). The DEGs were enriched with over-expressed cell cycle, oncogenes, and metabolic reprogramming pathways that determine tissue-specific tumorigenesis, cancer, and stem cell activation; tumor suppressors and apoptosis genes were under-expressed. DEG enrichments suggest telomeric maintenance misbalance and metabolic pathway activation playing dual (anti-cancer and pro-oncogenic) roles. The aberrant DEG profile of DM epithelial cells is found within CR-induced overexpression of Paneth cells and is coordinated significantly across GI tract tissues mucosa. Immune system genes (ISGs) consist of 37% of the total DEGs; the majority of ISGs are suppressed, including cell-autonomous immunity and tumor-immune surveillance. CR induces metabolic reprogramming, suppressing immune mechanics and activating oncogenic pathways. We introduce and argue for our network pro-oncogenic model of the mucosa multicellular tissue response to CR leading to aberrant transcription and pre-malignant states. These findings change the paradigm regarding CR's anti-cancer role, initiating specific treatment target development. This will aid future work to define critical oncogenic pathways preceding intestinal lesion development and biomarkers for earlier adenoma and colorectal cancer detection.
Collapse
Affiliation(s)
- Evan Maestri
- Department of Biochemistry and Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
- Department of Biology, SUNY University at Buffalo, Buffalo, NY 14260, USA
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria;
| | - Vladimir A. Kuznetsov
- Department of Biochemistry and Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
- Bioinformatics Institute, Biomedical Sciences Institutes A*STAR, Singapore 13867, Singapore
- Correspondence:
| |
Collapse
|
26
|
Lei C, Chen W, Wang Y, Zhao B, Liu P, Kong Z, Liu D, Dai C, Wang Y, Wang Y, Ma W. Prognostic Prediction Model for Glioblastoma: A Metabolic Gene Signature and Independent External Validation. J Cancer 2021; 12:3796-3808. [PMID: 34093788 PMCID: PMC8176239 DOI: 10.7150/jca.53827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Glioblastoma (GBM) is the most common primary malignant intracranial tumor and closely related to metabolic alteration. However, few accepted prognostic models are currently available, especially models based on metabolic genes. Methods: The transcriptome data were obtained for all of the patients diagnosed with GBM from the Gene Expression Omnibus (GEO) (training cohort, n=369) and The Cancer Genome Atlas (TCGA) (validation cohort, n=152) with the following variables: age at diagnosis, sex, follow-up and overall survival (OS). Metabolic genes according to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were contracted, and a Lasso regression model was constructed. Survival was assessed by univariate or multivariate Cox proportional hazards regression and Kaplan-Meier analysis, and an independent external validation was also conducted to examine the model. Results: There were 341 metabolic genes showed significant differences between normal brain and GBM tissues in both the training and validation cohorts, among which 56 genes were dramatically correlated to the OS of patients. Lasso regression revealed that the metabolic prognostic model was composed of 18 genes, including COX10, COMT, and GPX2 with protective effects, as well as OCRL and RRM2 with unfavorable effects. Patients classified as high-risk by the risk score from this model had markedly shorter OS than low-risk patients (P<0.0001), and this significant result was also observed in independent external validation (P<0.001). Conclusions: The prognosis of GBM was dramatically related to metabolic pathways, and our metabolic prognostic model had high accuracy and application value in predicting the OS of GBM patients.
Collapse
Affiliation(s)
- Chuxiang Lei
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Wenlin Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Binghao Zhao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Penghao Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Delin Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Congxin Dai
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| |
Collapse
|
27
|
Zhu P, Gu S, Huang H, Zhong C, Liu Z, Zhang X, Wang W, Xie S, Wu K, Lu T, Zhou Y. Upregulation of glucosamine-phosphate N-acetyltransferase 1 is a promising diagnostic and predictive indicator for poor survival in patients with lung adenocarcinoma. Oncol Lett 2021; 21:488. [PMID: 33968204 PMCID: PMC8100941 DOI: 10.3892/ol.2021.12750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Lung adenocarcinoma, a type of non-small cell lung cancer, is the leading cause of cancer death worldwide. Great efforts have been made to identify the underlying mechanism of adenocarcinoma, especially in relation to oncogenes. The present study by integrating computational analysis with western blotting, aimed to understand the role of the upregulation of glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1) in carcinogenesis. In the present study, publicly available gene expression profiles and clinical data were downloaded from The Cancer Genome Atlas to determine the role of GNPNAT1 in lung adenocarcinoma (LUAD). In addition, the association between LUAD susceptibility and GNPNAT1 upregulation were analyzed using Wilcoxon signed-rank test and logistic regression analysis. In LUAD, GNPNAT1 upregulation was significantly associated with disease stage [odds ratio (OR)=2.92, stage III vs. stage I], vital status (dead vs. alive, OR=1.89), cancer status (tumor status vs. tumor-free status, OR=1.85) and N classification (yes vs. no, OR=1.75). Cox regression analysis and the Kaplan-Meier method were utilized to evaluate the association between GNPNAT1 expression and overall survival (OS) time in patients with LUAD. The results demonstrated that patients with increased GNPNAT1 expression levels exhibited a reduced survival rate compared with those with decreased expression levels (P=8.9×10−5). In addition, Cox regression analysis revealed that GNPNAT1 upregulation was significantly associated with poor OS time [hazard ratio (HR): 1.07; 95% confidence interval (CI): 1.04–1.10; P<0.001]. The gene set enrichment analysis revealed that ‘cell cycle’, ‘oocyte meiosis’, ‘pyrimidine mediated metabolism’, ‘ubiquitin mediated proteolysis’, ‘one carbon pool by folate’, ‘mismatch repair progesterone-mediated oocyte maturation’ and ‘basal transcription factors purine metabolism’ were differentially enriched in the GNPNAT1 high-expression samples compared with GNPNAT1 low-expression samples. The aforementioned pathways are involved in the pathogenesis of LUAD. The findings of the present study suggested that GNPNAT1 upregulation may be considered as a promising diagnostic and prognostic biomarker in patients with LUAD. In addition, the aforementioned pathways may be pivotal pathways perturbed by the abnormal expression of GNPNAT1 in LUAD. The findings of the present study demonstrated the therapeutic value of the regulation of GNPNAT1 in lung adenocarcinoma.
Collapse
Affiliation(s)
- Pengyuan Zhu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Shaorui Gu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Haitao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhenchuan Liu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Xin Zhang
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Wenli Wang
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Shiliang Xie
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Kaiqin Wu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Tiancheng Lu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yongxin Zhou
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
28
|
Millet-Boureima C, He S, Le TBU, Gamberi C. Modeling Neoplastic Growth in Renal Cell Carcinoma and Polycystic Kidney Disease. Int J Mol Sci 2021; 22:3918. [PMID: 33920158 PMCID: PMC8070407 DOI: 10.3390/ijms22083918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) and autosomal dominant polycystic kidney disease (ADPKD) share several characteristics, including neoplastic cell growth, kidney cysts, and limited therapeutics. As well, both exhibit impaired vasculature and compensatory VEGF activation of angiogenesis. The PI3K/AKT/mTOR and Ras/Raf/ERK pathways play important roles in regulating cystic and tumor cell proliferation and growth. Both RCC and ADPKD result in hypoxia, where HIF-α signaling is activated in response to oxygen deprivation. Primary cilia and altered cell metabolism may play a role in disease progression. Non-coding RNAs may regulate RCC carcinogenesis and ADPKD through their varied effects. Drosophila exhibits remarkable conservation of the pathways involved in RCC and ADPKD. Here, we review the progress towards understanding disease mechanisms, partially overlapping cellular and molecular dysfunctions in RCC and ADPKD and reflect on the potential for the agile Drosophila genetic model to accelerate discovery science, address unresolved mechanistic aspects of these diseases, and perform rapid pharmacological screens.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Thi Bich Uyen Le
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
- Haematology-Oncology Research Group, National University Cancer Institute, Singapore 119228, Singapore
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29528-6054, USA
| |
Collapse
|
29
|
Curcio C, Brugiapaglia S, Bulfamante S, Follia L, Cappello P, Novelli F. The Glycolytic Pathway as a Target for Novel Onco-Immunology Therapies in Pancreatic Cancer. Molecules 2021; 26:1642. [PMID: 33804240 PMCID: PMC7998946 DOI: 10.3390/molecules26061642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal forms of human cancer, characterized by unrestrained progression, invasiveness and treatment resistance. To date, there are limited curative options, with surgical resection as the only effective strategy, hence the urgent need to discover novel therapies. A platform of onco-immunology targets is represented by molecules that play a role in the reprogrammed cellular metabolism as one hallmark of cancer. Due to the hypoxic tumor microenvironment (TME), PDA cells display an altered glucose metabolism-resulting in its increased uptake-and a higher glycolytic rate, which leads to lactate accumulation and them acting as fuel for cancer cells. The consequent acidification of the TME results in immunosuppression, which impairs the antitumor immunity. This review analyzes the genetic background and the emerging glycolytic enzymes that are involved in tumor progression, development and metastasis, and how this represents feasible therapeutic targets to counteract PDA. In particular, as the overexpressed or mutated glycolytic enzymes stimulate both humoral and cellular immune responses, we will discuss their possible exploitation as immunological targets in anti-PDA therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Sara Bulfamante
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Laura Follia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Computer Science Department, University of Turin, 10126 Turin, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
30
|
Nagy Á, Munkácsy G, Győrffy B. Pancancer survival analysis of cancer hallmark genes. Sci Rep 2021; 11:6047. [PMID: 33723286 PMCID: PMC7961001 DOI: 10.1038/s41598-021-84787-5] [Citation(s) in RCA: 646] [Impact Index Per Article: 161.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer hallmark genes are responsible for the most essential phenotypic characteristics of malignant transformation and progression. In this study, our aim was to estimate the prognostic effect of the established cancer hallmark genes in multiple distinct cancer types. RNA-seq HTSeq counts and survival data from 26 different tumor types were acquired from the TCGA repository. DESeq was used for normalization. Correlations between gene expression and survival were computed using the Cox proportional hazards regression and by plotting Kaplan–Meier survival plots. The false discovery rate was calculated to correct for multiple hypothesis testing. Signatures based on genes involved in genome instability and invasion reached significance in most individual cancer types. Thyroid and glioblastoma were independent of hallmark genes (61 and 54 genes significant, respectively), while renal clear cell cancer and low grade gliomas harbored the most prognostic changes (403 and 419 genes significant, respectively). The eight genes with the highest significance included BRCA1 (genome instability, HR 4.26, p < 1E−16), RUNX1 (sustaining proliferative signaling, HR 2.96, p = 3.1E−10) and SERPINE1 (inducing angiogenesis, HR 3.36, p = 1.5E−12) in low grade glioma, CDK1 (cell death resistance, HR = 5.67, p = 2.1E−10) in kidney papillary carcinoma, E2F1 (tumor suppressor, HR 0.38, p = 2.4E−05) and EREG (enabling replicative immortality, HR 3.23, p = 2.1E−07) in cervical cancer, FBP1 (deregulation of cellular energetics, HR 0.45, p = 2.8E−07) in kidney renal clear cell carcinoma and MYC (invasion and metastasis, HR 1.81, p = 5.8E−05) in bladder cancer. We observed unexpected heterogeneity and tissue specificity when correlating cancer hallmark genes and survival. These results will help to prioritize future targeted therapy development in different types of solid tumors.
Collapse
Affiliation(s)
- Ádám Nagy
- Department of Bioinformatics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary.,TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary
| | - Gyöngyi Munkácsy
- Department of Bioinformatics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary. .,TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary.
| |
Collapse
|
31
|
Szabo C. Hydrogen Sulfide, an Endogenous Stimulator of Mitochondrial Function in Cancer Cells. Cells 2021; 10:cells10020220. [PMID: 33499368 PMCID: PMC7911547 DOI: 10.3390/cells10020220] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) has a long history as toxic gas and environmental hazard; inhibition of cytochrome c oxidase (mitochondrial Complex IV) is viewed as a primary mode of its cytotoxic action. However, studies conducted over the last two decades unveiled multiple biological regulatory roles of H2S as an endogenously produced mammalian gaseous transmitter. Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST) are currently viewed as the principal mammalian H2S-generating enzymes. In contrast to its inhibitory (toxicological) mitochondrial effects, at lower (physiological) concentrations, H2S serves as a stimulator of electron transport in mammalian mitochondria, by acting as an electron donor—with sulfide:quinone oxidoreductase (SQR) being the immediate electron acceptor. The mitochondrial roles of H2S are significant in various cancer cells, many of which exhibit high expression and partial mitochondrial localization of various H2S producing enzymes. In addition to the stimulation of mitochondrial ATP production, the roles of endogenous H2S in cancer cells include the maintenance of mitochondrial organization (protection against mitochondrial fission) and the maintenance of mitochondrial DNA repair (via the stimulation of the assembly of mitochondrial DNA repair complexes). The current article overviews the state-of-the-art knowledge regarding the mitochondrial functions of endogenously produced H2S in cancer cells.
Collapse
Affiliation(s)
- Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
32
|
Gan L, Gan Z, Dan Y, Li Y, Zhang P, Chen S, Ye Z, Pan T, Wan C, Hu X, Yu Y. Tetrazanbigen Derivatives as Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Partial Agonists: Design, Synthesis, Structure-Activity Relationship, and Anticancer Activities. J Med Chem 2021; 64:1018-1036. [PMID: 33423463 DOI: 10.1021/acs.jmedchem.0c01512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tetrazanbigen (TNBG) is a novel sterol isoquinoline derivative with poor water solubility and moderate inhibitory effects on human cancer cell lines via lipoapoptosis induction. Herein, we developed a series of novel TNBG analogues with improved water solubility and antiproliferative activities. The CCK-8 assay enabled us to identify a novel compound, 14g, which strongly inhibited HepG2 and A549 cell growth with IC50 values of 0.54 and 0.47 μM, respectively. The anticancer effects might be explained by the partial activation and upregulation of PPARγ expression, as indicated by the transactivation assay and western blotting evaluation. Furthermore, the in vitro antiproliferative activity was verified in an in vivo xenograft model in which 14g strongly reduced tumor growth at a dose of 10 mg/kg. In line with these positive observations, 14g exhibited an excellent water solubility of 31.4 mg/mL, which was more than 1000-fold higher than that of TNBG (4 μg/mL). Together, these results suggest that 14g is a promising anticancer therapeutic that deserves further investigation.
Collapse
Affiliation(s)
- Linling Gan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zongjie Gan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yanrong Dan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yaowei Li
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peiming Zhang
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shanwen Chen
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zaijun Ye
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Pan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chunmei Wan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xuelian Hu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu Yu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
33
|
Coenzyme Q Depletion Reshapes MCF-7 Cells Metabolism. Int J Mol Sci 2020; 22:ijms22010198. [PMID: 33379147 PMCID: PMC7795339 DOI: 10.3390/ijms22010198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction plays a significant role in the metabolic flexibility of cancer cells. This study aimed to investigate the metabolic alterations due to Coenzyme Q depletion in MCF-7 cells. Method: The Coenzyme Q depletion was induced by competitively inhibiting with 4-nitrobenzoate the coq2 enzyme, which catalyzes one of the final reactions in the biosynthetic pathway of CoQ. The bioenergetic and metabolic characteristics of control and coenzyme Q depleted cells were investigated using polarographic and spectroscopic assays. The effect of CoQ depletion on cell growth was analyzed in different metabolic conditions. Results: we showed that cancer cells could cope from energetic and oxidative stress due to mitochondrial dysfunction by reshaping their metabolism. In CoQ depleted cells, the glycolysis was upregulated together with increased glucose consumption, overexpression of GLUT1 and GLUT3, as well as activation of pyruvate kinase (PK). Moreover, the lactate secretion rate was reduced, suggesting that the pyruvate flux was redirected, toward anabolic pathways. Finally, we found a different expression pattern in enzymes involved in glutamine metabolism, and TCA cycle in CoQ depleted cells in comparison to controls. Conclusion: This work elucidated the metabolic alterations in CoQ-depleted cells and provided an insightful understanding of cancer metabolism targeting.
Collapse
|
34
|
Yang Y, Lin J, Guo S, Xue X, Wang Y, Qiu S, Cui J, Ma L, Zhang X, Wang J. RRM2 protects against ferroptosis and is a tumor biomarker for liver cancer. Cancer Cell Int 2020; 20:587. [PMID: 33372599 PMCID: PMC7720568 DOI: 10.1186/s12935-020-01689-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Ferroptosis is the process of cell death triggered by lipid peroxides, and inhibition of glutathione (GSH) synthesis leads to ferroptosis. Liver cancer progression is closely linked to ferroptosis suppression. However, the mechanism by which inhibition of GSH synthesis suppresses potential ferroptosis of liver cancer cells and whether ferroptosis-related liver cancer biomarkers have a promising diagnostic value remain unknown. Methods Ribonucleotide reductase regulatory subunit M2 (RRM2) levels were measured using an enzyme linked immunosorbent assay (ELISA), quantitative RT-PCR (qPCR), immunoblotting (IB) and immunochemistry (IHC). Cell viability and cell death were measured by a CellTiter-Glo luminescent cell viability assay and staining with SYTOX Green followed by flow cytometry, respectively. Metabolites were measured using the indicated kits. The Interaction between glutathione synthetase (GSS) and RRM2 was measured using immunofluorescence (IF), co-immunoprecipitation (co-IP) and the proximal ligation assay (PLA). The diagnostic value was analyzed using the area under the receiver operating characteristic curve (AUC-ROC). Bioinformatics analysis was performed using the indicated database. Results RRM2 showed specifically elevated levels in liver cancer and inhibited ferroptosis by stimulating GSH synthesis via GSS. Mechanistically, phosphorylation of RRM2 at the Threonine 33 residue (T33) was maintained at normal levels to block the RRM2–GSS interaction and therefore protected RRM2 and GSS from further proteasome degradation. However, under ferroptotic stress, RRM2 was dephosphorylated at T33, thus the RRM2–GSS interaction was promoted. This resulted in the translocation of RRM2 and GSS to the proteasome for simultaneous degradation. Clinically, serum RRM2 was significantly associated with serum alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamyl transpeptidase (γ-GT), albumin (ALB) and total bilirubin. The AUC-ROC for the combination of RRM2 with AFP was 0.947, with a sensitivity of 88.7% and a specificity of 97.0%, which indicates better diagnostic performance compared to either RRM2 or AFP alone. Conclusion RRM2 exerts an anti-ferroptotic role in liver cancer cells by sustaining GSH synthesis. Serum RRM2 will be useful as a biomarker to evaluate the degree to which ferroptosis is suppressed and improve diagnostic efficiency for liver cancer.
Collapse
Affiliation(s)
- Yueyue Yang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Jiafei Lin
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Susu Guo
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Xiangfei Xue
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yikun Wang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiangtao Cui
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lifang Ma
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Thoracic Surgery, Shanghai Institute of Thoracic Tumors, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 Huaihai West Road, Shanghai, 200030, China.
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China. .,Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Thoracic Surgery, Shanghai Institute of Thoracic Tumors, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 Huaihai West Road, Shanghai, 200030, China.
| |
Collapse
|
35
|
Tao J, Zhang Y, Wang T. Potential Role of Glucose Transporter-1 Expression in Gastric Cancer: A Meta-Analysis and Systematic Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:2044-2053. [PMID: 33708725 PMCID: PMC7917512 DOI: 10.18502/ijph.v49i11.4719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background: Glucose transporter-1 (GLUT-1) has been differentially expressed in various malignancies including gastric cancer (GC). Several previous meta-analyses of GLUT-1 have some significant limitations, such as researching the association between GLUT-1 and various cancer types with no specificity, not studying clinicopathological parameters with GLUT-1, existing conspicuous heterogeneity and so forth. Therefore, we performed a meta-analysis to evaluate the association between GLUT-1 expression and survival of gastric cancer patients, as well as clinicopathological characteristics. Methods: We systematically searched PubMed, Embase, Web of Science and China National Knowledge Infrastructure for relevant studies in accordance with the applicable criteria up to Aug 2017. Hazard ratios (HRs) and odds ratios (ORs) with their 95% confidence intervals (CIs) were used as the effective measures. Results: A total of 13 studies involving 1972 patients were included in this meta-analysis. The results demonstrated that there was a significant association between GLUT-1 expression and overall survival (OS) (HR=1.45, 95% CI=1.13–1.87) or disease-free survival (DFS) (HR=2.18, 95% CI=1.46–3.25). Moreover, GLUT-1 expression was significantly correlated with worse tumor nodes metastases (TNM) stage (OR=0.34, 95% CI=0.28–0.43), presence of lymph node metastasis (OR=2.88, 95% CI=1.34–6.19), intestinal type of Lauren classification (OR=3.84, 95% CI=2.57–5.74) and invasion of serosa (OR=0.25, 95% CI=0.18–0.35). Conclusion: Our meta-analysis showed that GLUT-1 was significantly correlated with poor OS and DFS in gastric cancer. Additionally, GLUT-1 was also a potential prognostic indicator of aggressive clinicopathological parameters in gastric cancer.
Collapse
Affiliation(s)
- Jianxin Tao
- Department of General Surgery, Wuxi People's Hospital, Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, 214023, P.R. China
| | - Ye Zhang
- Department of General Surgery, Wuxi People's Hospital, Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, 214023, P.R. China
| | - Tong Wang
- Department of General Surgery, Wuxi People's Hospital, Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, 214023, P.R. China
| |
Collapse
|
36
|
Petillo A, Abruzzese V, Koshal P, Ostuni A, Bisaccia F. Extracellular Citrate Is a Trojan Horse for Cancer Cells. Front Mol Biosci 2020; 7:593866. [PMID: 33282912 PMCID: PMC7688668 DOI: 10.3389/fmolb.2020.593866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
The first intermediate in the mitochondrial tricarboxylic acid (TCA) cycle is citrate, which is essential and acts as a metabolic regulator for glycolysis, TCA cycle, gluconeogenesis, and fatty acid synthesis. Within the cytosol, citrate is cleaved by ATP citrate lyase (ACLY) into oxaloacetate (OAA) and acetyl-CoA; OAA can be used for neoglucogenesis or in the TCA cycle, while acetyl-CoA is the precursor of some biosynthetic processes, including the synthesis of fatty acids. Accumulating evidence suggests that citrate is involved in numerous physiological and pathophysiological processes such as inflammation, insulin secretion, neurological disorders, and cancer. Considering the crucial role of citrate to supply the acetyl-CoA pool for fatty acid synthesis and histone acetylation in tumors, in this study we evaluated the effect of citrate added to the growth medium on lipid deposition and histone H4 acetylation in hepatoma cells (HepG2). At low concentration, citrate increased both histone H4 acetylation and lipid deposition; at high concentration, citrate inhibited both, thus suggesting a crucial role of acetyl-CoA availability, which prompted us to investigate the effect of citrate on ACLY. In HepG2 cells, the expression of ACLY is correlated with histone acetylation, which, in turn, depends on citrate concentration. A decrease in H4 acetylation was also observed when citrate was added at a high concentration to immortalized human hepatic cells, whereas ACLY expression was unaffected, indicating a lack of control by histone acetylation. Considering the strong demand for acetyl-CoA but not for OAA in tumor cells, the exogenous citrate would behave like a trojan horse that carries OAA inside the cells and reduces ACLY expression and cellular metabolism. In addition, this study confirmed the already reported dual role of citrate both as a promoter of cell proliferation (at lower concentrations) and as an anticancer agent (at higher concentrations), providing useful tips on the use of citrate for the treatment of tumors.
Collapse
Affiliation(s)
- Agata Petillo
- Laboratory of Cell Biochemistry, Department of Sciences, University of Basilicata, Potenza, Italy
| | - Vittorio Abruzzese
- Laboratory of Cell Biochemistry, Department of Sciences, University of Basilicata, Potenza, Italy
| | - Prashant Koshal
- Laboratory of Cell Biochemistry, Department of Sciences, University of Basilicata, Potenza, Italy
| | - Angela Ostuni
- Laboratory of Cell Biochemistry, Department of Sciences, University of Basilicata, Potenza, Italy
| | - Faustino Bisaccia
- Laboratory of Cell Biochemistry, Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
37
|
Jiang T, Zhang G, Lou Z. Role of the Sterol Regulatory Element Binding Protein Pathway in Tumorigenesis. Front Oncol 2020; 10:1788. [PMID: 33014877 PMCID: PMC7506081 DOI: 10.3389/fonc.2020.01788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolic changes are a major feature of tumors, including various metabolic forms, such as energy, lipid, and amino acid metabolism. Sterol regulatory element binding proteins (SREBPs) are important modules in regulating lipid metabolism and play an essential role in metabolic diseases. In the previous decades, the regulatory range of SREBPs has been markedly expanded. It was found that SREBPs also played a critical role in tumor development. SREBPs are involved in energy supply, lipid supply, immune environment and inflammatory environment shaping in tumor cells, and as a protective umbrella to support the malignant proliferation of tumor cells. Natural medicine and traditional Chinese medicine, as an important part of drug therapy, demonstrates the multifaceted effects of SREBPs regulation. This review summarizes the core processes in the involvement of SREBPs in tumors and provides a comprehensive understanding of the pathways through which natural drugs target the SREBP pathway and regulate tumor progression.
Collapse
Affiliation(s)
- Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaohuan Lou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
38
|
Liu P, Tian W. Identification of DNA methylation patterns and biomarkers for clear-cell renal cell carcinoma by multi-omics data analysis. PeerJ 2020; 8:e9654. [PMID: 32832275 PMCID: PMC7409785 DOI: 10.7717/peerj.9654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022] Open
Abstract
Background Tumorigenesis is highly heterogeneous, and using clinicopathological signatures only is not enough to effectively distinguish clear cell renal cell carcinoma (ccRCC) and improve risk stratification of patients. DNA methylation (DNAm) with the stability and reversibility often occurs in the early stage of tumorigenesis. Disorders of transcription and metabolism are also an important molecular mechanisms of tumorigenesis. Therefore, it is necessary to identify effective biomarkers involved in tumorigenesis through multi-omics analysis, and these biomarkers also provide new potential therapeutic targets. Method The discovery stage involved 160 pairs of ccRCC and matched normal tissues for investigation of DNAm and biomarkers as well as 318 cases of ccRCC including clinical signatures. Correlation analysis of epigenetic, transcriptomic and metabolomic data revealed the connection and discordance among multi-omics and the deregulated functional modules. Diagnostic or prognostic biomarkers were obtained by the correlation analysis, the Least Absolute Shrinkage and Selection Operator (LASSO) and the LASSO-Cox methods. Two classifiers were established based on random forest (RF) and LASSO-Cox algorithms in training datasets. Seven independent datasets were used to evaluate robustness and universality. The molecular biological function of biomarkers were investigated using DAVID and GeneMANIA. Results Based on multi-omics analysis, the epigenetic measurements uniquely identified DNAm dysregulation of cellular mechanisms resulting in transcriptomic alterations, including cell proliferation, immune response and inflammation. Combination of the gene co-expression network and metabolic network identified 134 CpG sites (CpGs) as potential biomarkers. Based on the LASSO and RF algorithms, five CpGs were obtained to build a diagnostic classifierwith better classification performance (AUC > 99%). A eight-CpG-based prognostic classifier was obtained to improve risk stratification (hazard ratio (HR) > 4; log-rank test, p-value < 0.01). Based on independent datasets and seven additional cancers, the diagnostic and prognostic classifiers also had better robustness and stability. The molecular biological function of genes with abnormal methylation were significantly associated with glycolysis/gluconeogenesis and signal transduction. Conclusion The present study provides a comprehensive analysis of ccRCC using multi-omics data. These findings indicated that multi-omics analysis could identify some novel epigenetic factors, which were the most important causes of advanced cancer and poor clinical prognosis. Diagnostic and prognostic biomarkers were identified, which provided a promising avenue to develop effective therapies for ccRCC.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Weidong Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
39
|
Plasticity in Ovarian Cancer: The Molecular Underpinnings and Phenotypic Heterogeneity. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Pharmacologic inhibition of N-linked glycan trimming with kifunensine disrupts GLUT1 trafficking and glucose uptake. Biochimie 2020; 174:18-29. [PMID: 32298759 DOI: 10.1016/j.biochi.2020.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The facilitative glucose transport GLUT1 (SLC2A1) is a constitutively expressed membrane protein involved in basal uptake of blood glucose. GLUT1 modification by N-linked glycosylation at a single asparagine residue (N45) appears to play multiple roles in the trafficking, stability and transport activity of this protein. Here we examine the role of complex N-glycosylation on GLUT1 function in renal epithelial cells by arresting this modification at the high-mannose stage with the mannosidase I inhibitor kifunensine. Consistent with prior work in which GLUT1 glycosylation was completely inhibited, we find that kifunensine treatment results in a time-dependent decrease of up to 40% in cellular glucose uptake. We further demonstrate that this effect is primarily a result of deficient GLUT1 trafficking to the cell membrane due to quality control mechanisms that instead direct GLUT1 to the ER-associated degradation (ERAD) pathway. Unlike tunicamycin, which inhibits the first step in N-glycosyl transfer and causes dramatic cell cycle arrest, kifunensine causes only a modest decrease in GLUT1 levels and cell cycle progression in both normal and transformed renal cells. The effect of kifunensine on the cell cycle appears to be independent of its effect on GLUT1, since all renal cell types in this study displayed decreased proliferation regardless of their dependence on glucose uptake for growth and survival. Together these results indicate that proper N-glycan processing plays an important role in directing GLUT1 to the cell surface and that disruption of mannosidase activity results in aberrant degradation of GLUT1 by the ERAD pathway.
Collapse
|
41
|
Kim H, Choi SY, Lim J, Lindroth AM, Park YJ. EHMT2 Inhibition Induces Cell Death in Human Non-Small Cell Lung Cancer by Altering the Cholesterol Biosynthesis Pathway. Int J Mol Sci 2020; 21:E1002. [PMID: 32028644 PMCID: PMC7037906 DOI: 10.3390/ijms21031002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a major subtype of lung cancer. Besides genetic and environmental factors, epigenetic alterations contribute to the tumorigenesis of NSCLC. Epigenetic changes are considered key drivers of cancer initiation and progression, and altered expression and activity of epigenetic modifiers reshape the epigenetic landscape in cancer cells. Euchromatic histone-lysine N-methyltransferase 2 (EHMT2) is a histone methyltransferase and catalyzes mono- and di-methylation at histone H3 lysine 9 (H3K9me1 and H3K9me2, respectively), leading to gene silencing. EHMT2 overexpression has been reported in various types of cancer, including ovarian cancer and neuroblastoma, in relation to cell proliferation and metastasis. However, its role in NSCLC is not fully understood. In this study, we showed that EHMT2 gene expression was higher in NSCLC than normal lung tissue based on publicly available data. Inhibition of EHMT2 by BIX01294 (BIX) reduced cell viability of NSCLC cell lines via induction of autophagy. Through RNA sequencing analysis, we found that EHMT2 inhibition significantly affected the cholesterol biosynthesis pathway. BIX treatment directly induced the expression of SREBF2, which is a master regulator of cholesterol biosynthesis, by lowering H3K9me1 and H3K9me2 at the promoter. Treatment of a cholesterol biosynthesis inhibitor, 25-hydroxycholesterol (25-HC), partially recovered BIX-induced cell death by attenuating autophagy. Our data demonstrated that EHMT2 inhibition effectively induced cell death in NSCLC cells through altering cholesterol metabolism-dependent autophagy.
Collapse
Affiliation(s)
- Haeun Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Seo Yoon Choi
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Jinyeong Lim
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si 10408, Korea
| | - Anders M. Lindroth
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si 10408, Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
42
|
Barbosa AM, Martel F. Targeting Glucose Transporters for Breast Cancer Therapy: The Effect of Natural and Synthetic Compounds. Cancers (Basel) 2020; 12:cancers12010154. [PMID: 31936350 PMCID: PMC7016663 DOI: 10.3390/cancers12010154] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Reprogramming of cellular energy metabolism is widely accepted to be a cancer hallmark. The deviant energetic metabolism of cancer cells-known as the Warburg effect-consists in much higher rates of glucose uptake and glycolytic oxidation coupled with the production of lactic acid, even in the presence of oxygen. Consequently, cancer cells have higher glucose needs and thus display a higher sensitivity to glucose deprivation-induced death than normal cells. So, inhibitors of glucose uptake are potential therapeutic targets in cancer. Breast cancer is the most commonly diagnosed cancer and a leading cause of cancer death in women worldwide. Overexpression of facilitative glucose transporters (GLUT), mainly GLUT1, in breast cancer cells is firmly established, and the consequences of GLUT inhibition and/or knockout are under investigation. Herein we review the compounds, both of natural and synthetic origin, found to interfere with uptake of glucose by breast cancer cells, and the consequences of interference with that mechanism on breast cancer cell biology. We will also present data where the interaction with GLUT is exploited in order to increase the efficiency or selectivity of anticancer agents, in breast cancer cells.
Collapse
Affiliation(s)
- Ana M. Barbosa
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4169-007 Porto, Portugal;
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-042-6654
| |
Collapse
|
43
|
Pirovich D, Da'dara AA, Skelly PJ. Why Do Intravascular Schistosomes Coat Themselves in Glycolytic Enzymes? Bioessays 2019; 41:e1900103. [PMID: 31661165 DOI: 10.1002/bies.201900103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/16/2019] [Indexed: 11/11/2022]
Abstract
Schistosomes are intravascular parasitic helminths (blood flukes) that infect more than 200 million people globally. Proteomic analysis of the tegument (skin) of these worms has revealed the surprising presence of glycolytic enzymes on the parasite's external surface. Immunolocalization data as well as enzyme activity displayed by live worms confirm that functional glycolytic enzymes are indeed expressed at the host-parasite interface. Since these enzymes are traditionally considered to function intracellularly to drive glycolysis, in an extracellular location they are hypothesized to engage in novel "moonlighting" functions such as immune modulation and blood clot dissolution that promote parasite survival. For instance, several glycolytic enzymes can interact with plasminogen and promote its activation to the thrombolytic plasmin; some can inhibit complement function; some induce B cell proliferation or macrophage apoptosis. Several pathogenic bacteria and protists also express glycolytic enzymes externally, suggesting that moonlighting functions of extracellular glycolytic enzymes can contribute broadly to pathogen virulence. Also see the video abstract here https://youtu.be/njtWZ2y3k_I.
Collapse
Affiliation(s)
- David Pirovich
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - Akram A Da'dara
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - Patrick J Skelly
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| |
Collapse
|
44
|
Andreadis C, Hulme L, Wensley K, Liu JL. The TOR pathway modulates cytoophidium formation in Schizosaccharomyces pombe. J Biol Chem 2019; 294:14686-14703. [PMID: 31431504 PMCID: PMC6779450 DOI: 10.1074/jbc.ra119.009913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Indexed: 12/30/2022] Open
Abstract
CTP synthase (CTPS) has been demonstrated to form evolutionarily-conserved filamentous structures termed cytoophidia whose exact cellular functions remain unclear, but they may play a role in intracellular compartmentalization. We have previously shown that the mammalian target of rapamycin complex 1 (mTORC1)-S6K1 pathway mediates cytoophidium assembly in mammalian cells. Here, using the fission yeast Schizosaccharomyces pombe as a model of a unicellular eukaryote, we demonstrate that the target of rapamycin (TOR)-signaling pathway regulates cytoophidium formation (from the S. pombe CTPS ortholog Cts1) also in S. pombe Conducting a systematic analysis of all viable single TOR subunit-knockout mutants and of several major downstream effector proteins, we found that Cts1 cytoophidia are significantly shortened and often dissociate when TOR is defective. We also found that the activities of the downstream effector kinases of the TORC1 pathway, Sck1, Sck2, and Psk1 S6, as well as of the S6K/AGC kinase Gad8, the major downstream effector kinase of the TORC2 pathway, are necessary for proper cytoophidium filament formation. Interestingly, we observed that the Crf1 transcriptional corepressor for ribosomal genes is a strong effector of Cts1 filamentation. Our findings connect TOR signaling, a major pathway required for cell growth, with the compartmentalization of the essential nucleotide synthesis enzyme CTPS, and we uncover differences in the regulation of its filamentation among higher multicellular and unicellular eukaryotic systems.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lydia Hulme
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Katherine Wensley
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ji-Long Liu
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China .,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
45
|
EZH2 cooperates with E2F1 to stimulate expression of genes involved in adrenocortical carcinoma aggressiveness. Br J Cancer 2019; 121:384-394. [PMID: 31363169 PMCID: PMC6738105 DOI: 10.1038/s41416-019-0538-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 11/08/2022] Open
Abstract
Background EZH2 is overexpressed and associated with poor prognosis in adrenocortical carcinoma (ACC) and its inhibition reduces growth and aggressiveness of ACC cells in culture. Although EZH2 was identified as the methyltransferase that deposits the repressive H3K27me3 histone mark, it can cooperate with transcription factors to stimulate gene transcription. Methods We used bioinformatics approaches on gene expression data from three cohorts of patients and a mouse model of EZH2 ablation, to identify targets and mode of action of EZH2 in ACC. This was followed by ChIP and functional assays to evaluate contribution of identified targets to ACC pathogenesis. Results We show that EZH2 mostly works as a transcriptional inducer in ACC, through cooperation with the transcription factor E2F1 and identify three positive targets involved in cell cycle regulation and mitosis i.e., RRM2, PTTG1 and ASE1/PRC1. Overexpression of these genes is associated with poor prognosis, suggesting a potential role in acquisition of aggressive ACC features. Pharmacological and siRNA-mediated inhibition of RRM2 blocks cell proliferation, induces apoptosis and inhibits cell migration, suggesting that it may be an interesting target in ACC. Conclusions Altogether, these data show an unexpected role of EZH2 and E2F1 in stimulating expression of genes associated with ACC aggressiveness.
Collapse
|
46
|
Chen X, Zhu X, Wei Z, Lv Q. Integrated mRNA‐Seq and miRNA‐Seq analysis of PLCγ2‐overexpressing hepatocarcinoma cells and identification of the associated miRNA‐mRNA network. J Cell Biochem 2019; 120:19878-19890. [DOI: 10.1002/jcb.29294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/27/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaoguang Chen
- Animal Science and Technology School Henan University of Science and Technology Luoyang China
| | - Xuemin Zhu
- Animal Science and Technology School Henan University of Science and Technology Luoyang China
| | - Zhiguo Wei
- Animal Science and Technology School Henan University of Science and Technology Luoyang China
| | - Qiongxia Lv
- Animal Science and Technology School Henan University of Science and Technology Luoyang China
| |
Collapse
|
47
|
Cai Y, Lin Y, Xiong X, Lu J, Zhou R, Jin Y, You Z, Ye H, Li F, Cheng N. Knockdown expression of MECR, a novel gene of mitochondrial FAS II inhibits growth and colony-formation, promotes apoptosis of hepatocelluar carcinoma cells. Biosci Trends 2019; 13:234-244. [PMID: 31178528 DOI: 10.5582/bst.2019.01109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mitochondrial trans-2-enoyl-CoA reductase (MECR) is a protein-coding gene, and the protein encoded by this gene is an oxidoreductase that catalyzes the last step in mitochondrial fatty acid synthesis (mtFASII). Numerous studies have shown disorder of lipid metabolism is closely related with malignance, especially in liver cancer. Through pre-experiment, we found that the expression of MECR gene was highly expressed in hepatocelluar carcinoma (HCC) cell lines in vitro. This suggests that the MECR gene may play a role of oncogene in HCC. Therefore, we conducted a preliminary experimental study on the role of MECR gene in HCC cells in vitro. Objective to explore whether the MECR gene can affect the malignant biological behavior of HCC. We selected HCC cell line BEL-7404 as experimental cell, which involves the highest expression of MECR in the pre-experiment. We constructed MECR knockdwon lentivirus vector, and then infected HCC cell lines to down-regulate MECR expression, and establish negative control group (NC). Through various experiments of cytology, our study showed that knockdown of MECR inhibited cell proliferation and colony formation, promoted apoptosis, and inhibited metastasis in HCC cell lines BEL-7404. MECR might serve as a novel gene therapeutic target for the treatment of HCC. Further study is needed to elucidate the signaling pathway through which MECR functions in HCC.
Collapse
Affiliation(s)
- Yulong Cai
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Yixin Lin
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Xianze Xiong
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Jiong Lu
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Rongxing Zhou
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Yanwen Jin
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Zhen You
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Hui Ye
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Fuyu Li
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Nansheng Cheng
- Department of Biliary Surgery, West China Hospital, Sichuan University
| |
Collapse
|
48
|
Low expression of ACLY associates with favorable prognosis in acute myeloid leukemia. J Transl Med 2019; 17:149. [PMID: 31077215 PMCID: PMC6509777 DOI: 10.1186/s12967-019-1884-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant metabolism is a hallmark of cancer cells. Recently, ATP citrate-lyase (ACLY) expression was demonstrated as an independent predictor of clinical outcome in solid tumors. However, no systematic study was conducted to explore the prognostic impact of ACLY on acute myeloid leukemia (AML). METHODS To assess the prognostic value of ACLY transcript, we conducted a study with a discovery and validation design. We measured ACLY transcript by real-time quantitative PCR in 274 AML patients, and validated the prognostic value in the two independent cohorts using published data. Meta-analysis of gene-expression profile and inhibition ACLY expression in leukemia cell lines were conducted to help us understand the biological insight of low ACLY expression. RESULTS Low ACLY expression is less common amongst AMLs with DNMT3A mutations, but coexisted in double allele CEBPA mutations. Moreover, low ACLY expression is associated with favorable overall survival in AML patients and is involved in multiple pathways. These results are also validated in two independent cohorts of AML patients. Moreover, ACLY silencing induces proliferation arrest in THP-1 and MOLM-13 leukemia cell lines. CONCLUSION We found low ACLY expression is associated with favorable overall survival in AML patients.
Collapse
|
49
|
Mavridis K, Michaelidou K. The obesity paradox in lung cancer: is there a missing biological link? J Thorac Dis 2019; 11:S363-S366. [PMID: 30997222 DOI: 10.21037/jtd.2018.12.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Kleita Michaelidou
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
50
|
Zhou J, Qu G, Zhang G, Wu Z, Liu J, Yang D, Li J, Chang M, Zeng H, Hu J, Fang T, Song Y, Bai C. Glycerol kinase 5 confers gefitinib resistance through SREBP1/SCD1 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:96. [PMID: 30791926 PMCID: PMC6385389 DOI: 10.1186/s13046-019-1057-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/27/2019] [Indexed: 01/07/2023]
Abstract
Background Drug resistance is common in cancer chemotherapy. This study investigates the role of Glycerol kinase 5 (GK5) in mediating gefitinib resistance in NSCLC. Methods The exosomal mRNA of GK5 was detected using a tethered cationic lipoplex nanoparticle (TCLN) biochip. Real-time PCR and Western blot were used to examine the expression of GK5 mRNA and protein in gefitinib-sensitive and -resistant human lung adenocarcinoma cells. The cell counting kit-8, EdU assay, flow cytometry, and JC-1 dye were used to measure cell proliferation, cell cycle, and the mitochondrial membrane potential. Results We found that the exosomal mRNA of GK5 in the plasma of patients with gefitinib-resistant adenocarcinoma was significantly higher compared with that of gefitinib-sensitive patients. The mRNA and protein levels of GK5 were significantly upregulated in gefitinib-resistant human lung adenocarcinoma PC9R and H1975 cells compared with gefitinib-sensitive PC9 cells. Silencing GK5 in PC9R cells induced mitochondrial damage, caspase activation, cell cycle arrest, and apoptosis via SREBP1/SCD1 signaling pathway. Conclusions We demonstrated that GK5 confers gefitinib resistance in lung cancer by inhibiting apoptosis and cell cycle arrest. GK5 could be a novel therapeutic target for treatment of NSCLC with resistance to EGFR tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guimei Qu
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ge Zhang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zuoren Wu
- Hangzhou Dixiang Co. Ltd., Hangzhou, China
| | - Jing Liu
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Dawei Yang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meijia Chang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Jie Hu
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Fang
- Department of Oncology, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China.
| | - Yuanlin Song
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Chunxue Bai
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|