1
|
Kumari S, Gupta S, Jamil A, Tabatabaei D, Karakashev S. Exploring Metabolic Approaches for Epithelial Ovarian Cancer Therapy. J Cell Physiol 2024:e31495. [PMID: 39676338 DOI: 10.1002/jcp.31495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Epithelial ovarian cancer (EOC) has the highest mortality rate among malignant tumors of the female reproductive system and the lowest survival rate. This poor prognosis is due to the aggressive nature of EOC, its late-stage diagnosis, and the tumor's ability to adapt to stressors through metabolic reprogramming. EOC cells sustain their rapid proliferation by altering the uptake, utilization, and regulation of carbohydrates, lipids, and amino acids. These metabolic changes support tumor growth and contribute to metastasis, chemotherapy resistance, and immune evasion. Targeting these metabolic vulnerabilities has shown promise in preclinical studies, with some therapies advancing to clinical trials. However, challenges remain due to tumor heterogeneity, adaptive resistance mechanisms, and the influence of the tumor microenvironment. This review provides a comprehensive summary of metabolic targets for EOC treatment and offers an overview of the current landscape of clinical trials focusing on ovarian cancer metabolism. Future efforts should prioritize combination therapies that integrate metabolic inhibitors with immunotherapies or chemotherapy. Advances in precision medicine and multi-omics approaches will be crucial for identifying patient-specific metabolic dependencies and improving outcomes. By addressing these challenges, metabolism-based therapies can significantly transform the treatment of this devastating disease.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Shraddha Gupta
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Aisha Jamil
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Deyana Tabatabaei
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Sergey Karakashev
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Naeimzadeh Y, Tajbakhsh A, Nemati M, Fallahi J. Exploring the anti-cancer potential of SGLT2 inhibitors in breast cancer treatment in pre-clinical and clinical studies. Eur J Pharmacol 2024; 978:176803. [PMID: 38950839 DOI: 10.1016/j.ejphar.2024.176803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
The link between type 2 diabetes mellitus (T2DM) and an increased risk of breast cancer (BC) has prompted the exploration of novel therapeutic strategies targeting shared metabolic pathways. This review focuses on the emerging evidence surrounding the potential anti-cancer effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors in the context of BC. Preclinical studies have demonstrated that various SGLT2 inhibitors, such as canagliflozin, dapagliflozin, ipragliflozin, and empagliflozin, can inhibit the proliferation of BC cells, induce apoptosis, and modulate key cellular signaling pathways. These mechanisms include the activation of AMP-activated protein kinase (AMPK), suppression of mammalian target of rapamycin (mTOR) signaling, and regulation of lipid metabolism and inflammatory mediators. The combination of SGLT2 inhibitors with conventional treatments, including chemotherapy and radiotherapy, as well as targeted therapies like phosphoinositide 3-kinases (PI3K) inhibitors, has shown promising results in enhancing the anti-cancer efficacy and potentially reducing treatment-related toxicities. The identification of specific biomarkers or genetic signatures that predict responsiveness to SGLT2 inhibitor therapy could enable more personalized treatment selection and optimization, particularly for challenging BC subtypes [e, g., triple negative BC (TNBC)]. Ongoing and future clinical trials investigating the use of SGLT2 inhibitors, both as monotherapy and in combination with other agents, will be crucial in elucidating their translational potential and guiding their integration into comprehensive BC care. Overall, SGLT2 inhibitors represent a novel and promising therapeutic approach with the potential to improve clinical outcomes for patients with various subtypes of BC, including the aggressive and chemo-resistant TNBC.
Collapse
Affiliation(s)
- Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| |
Collapse
|
3
|
Alifano E, Prieto M, Alifano M. Glucose metabolism transcriptome clustering identifies subsets of resectable lung adenocarcinoma with different prognoses. JTCVS OPEN 2024; 20:194-201. [PMID: 39296466 PMCID: PMC11405996 DOI: 10.1016/j.xjon.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 09/21/2024]
Abstract
Objectives Reprogramming of energy metabolism is a well-established hallmark of cancer, with aerobic glycolysis classically considered a prominent feature. We investigate the heterogeneity in glucose metabolism pathways within resectable primary lung adenocarcinoma and its clinical significance. Methods Using The Cancer Genome Atlas data, RNA expressions were extracted from 489 primary lung adenocarcinoma samples. Prognostic influence of glycolytic, aerobic, and mitochondrial markers (monocarboxylate transporter [MCT]4, MCT1, and translocase of outer mitochondrial membrane 20, respectively) was assessed using Kaplan-Meier analysis. Clustering of 35 genes involved in glucose metabolism was performed using the k-means method. The clusters were then analyzed for associations with demographic, clinical, and pathologic variables. Overall survival was assessed using the Kaplan-Meier estimator. Multivariate analysis was performed to assess the independent prognostic value of cluster membership. Results Classical statistical approach showed that higher expression of MCT4 was associated with a significantly worse prognosis. Increased expression of translocase of outer mitochondrial membrane 20 was associated with a nonsignificant trend toward better prognosis, and increased expression of MCT1 was associated with a better outcome. Clustering identified 3 major metabolic phenotypes, dominantly hypometabolic, dominantly oxidative, and dominantly mixed oxidative/glycolytic with significantly different pathologic stage distribution and prognosis; mixed oxidative/glycolytic was associated with worse survival. Cluster membership was independently associated with survival. Conclusions This study demonstrates the existence of distinct glucose metabolism clusters in resectable lung adenocarcinoma, providing valuable prognostic information. The findings highlight the potential relevance of considering metabolic profiles when designing strategies for reprogramming energy metabolism. Further studies are warranted to validate these findings in different cancer types and populations.
Collapse
Affiliation(s)
- Enzo Alifano
- Thoracic Surgery Department, Cochin Hospital, Centre Université de Paris, Paris University, Paris, France
| | - Mathilde Prieto
- Thoracic Surgery Department, Cochin Hospital, Centre Université de Paris, Paris University, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, Centre Université de Paris, Paris University, Paris, France
| |
Collapse
|
4
|
Qiao Q, Hu S, Wang X. The regulatory roles and clinical significance of glycolysis in tumor. Cancer Commun (Lond) 2024; 44:761-786. [PMID: 38851859 PMCID: PMC11260772 DOI: 10.1002/cac2.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 06/10/2024] Open
Abstract
Metabolic reprogramming has been demonstrated to have a significant impact on the biological behaviors of tumor cells, among which glycolysis is an important form. Recent research has revealed that the heightened glycolysis levels, the abnormal expression of glycolytic enzymes, and the accumulation of glycolytic products could regulate the growth, proliferation, invasion, and metastasis of tumor cells and provide a favorable microenvironment for tumor development and progression. Based on the distinctive glycolytic characteristics of tumor cells, novel imaging tests have been developed to evaluate tumor proliferation and metastasis. In addition, glycolytic enzymes have been found to serve as promising biomarkers in tumor, which could provide assistance in the early diagnosis and prognostic assessment of tumor patients. Numerous glycolytic enzymes have been identified as potential therapeutic targets for tumor treatment, and various small molecule inhibitors targeting glycolytic enzymes have been developed to inhibit tumor development and some of them are already applied in the clinic. In this review, we systematically summarized recent advances of the regulatory roles of glycolysis in tumor progression and highlighted the potential clinical significance of glycolytic enzymes and products as novel biomarkers and therapeutic targets in tumor treatment.
Collapse
Affiliation(s)
- Qiqi Qiao
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
5
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
6
|
van Noorden CJ, Yetkin-Arik B, Serrano Martinez P, Bakker N, van Breest Smallenburg ME, Schlingemann RO, Klaassen I, Majc B, Habic A, Bogataj U, Galun SK, Vittori M, Erdani Kreft M, Novak M, Breznik B, Hira VV. New Insights in ATP Synthesis as Therapeutic Target in Cancer and Angiogenic Ocular Diseases. J Histochem Cytochem 2024; 72:329-352. [PMID: 38733294 PMCID: PMC11107438 DOI: 10.1369/00221554241249515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/01/2024] [Indexed: 05/13/2024] Open
Abstract
Lactate and ATP formation by aerobic glycolysis, the Warburg effect, is considered a hallmark of cancer. During angiogenesis in non-cancerous tissue, proliferating stalk endothelial cells (ECs) also produce lactate and ATP by aerobic glycolysis. In fact, all proliferating cells, both non-cancer and cancer cells, need lactate for the biosynthesis of building blocks for cell growth and tissue expansion. Moreover, both non-proliferating cancer stem cells in tumors and leader tip ECs during angiogenesis rely on glycolysis for pyruvate production, which is used for ATP synthesis in mitochondria through oxidative phosphorylation (OXPHOS). Therefore, aerobic glycolysis is not a specific hallmark of cancer but rather a hallmark of proliferating cells and limits its utility in cancer therapy. However, local treatment of angiogenic eye conditions with inhibitors of glycolysis may be a safe therapeutic option that warrants experimental investigation. Most types of cells in the eye such as photoreceptors and pericytes use OXPHOS for ATP production, whereas proliferating angiogenic stalk ECs rely on glycolysis for lactate and ATP production. (J Histochem Cytochem XX.XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bahar Yetkin-Arik
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paola Serrano Martinez
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Noëlle Bakker
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | | | - Reinier O. Schlingemann
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anamarija Habic
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Jozef Stefan Postgraduate School, Ljubljana, Slovenia
| | - Urban Bogataj
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - S. Katrin Galun
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Milos Vittori
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
7
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Zhang Z, Liang X, Yang X, Liu Y, Zhou X, Li C. Advances in Nanodelivery Systems Based on Metabolism Reprogramming Strategies for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6689-6708. [PMID: 38302434 DOI: 10.1021/acsami.3c15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Tumor development and metastasis are closely related to the complexity of the metabolism network. Recently, metabolism reprogramming strategies have attracted much attention in tumor metabolism therapy. Although there is preliminary success of metabolism therapy agents, their therapeutic effects have been restricted by the effective reaching of the tumor sites of drugs. Nanodelivery systems with unique physical properties and elaborate designs can specifically deliver to the tumors. In this review, we first summarize the research progress of nanodelivery systems based on tumor metabolism reprogramming strategies to enhance therapies by depleting glucose, inhibiting glycolysis, depleting lactic acid, inhibiting lipid metabolism, depleting glutamine and glutathione, and disrupting metal metabolisms combined with other therapies, including chemotherapy, radiotherapy, photodynamic therapy, etc. We further discuss in detail the advantages of nanodelivery systems based on tumor metabolism reprogramming strategies for tumor therapy. As well as the opportunities and challenges for integrating nanodelivery systems into tumor metabolism therapy, we analyze the outlook for these emerging areas. This review is expected to improve our understanding of modulating tumor metabolisms for enhanced therapy.
Collapse
Affiliation(s)
- Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
9
|
Helal DS, Sabry N, Ali DA, AboElnasr SM, Abdel Ghafar MT, Sarhan ME, Sabry M, El-Guindy DM. MicroRNA Let-7a association with glycolysis-induced autophagy in locally advanced gastric cancer: Their role in prognosis and FLOT chemotherapy resistance. Pathol Res Pract 2024; 253:154968. [PMID: 38008003 DOI: 10.1016/j.prp.2023.154968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Locally advanced gastric cancer (LAGC) still poses a clinical challenge despite multimodality treatment due to multidrug resistance (MDR). Recently, research suggested that autophagy and metabolic regulation may be potential anticancer targets due to their crucial roles in MDR. Let-7a participates in glycolytic and autophagic regulations which are both essential for tumor progression and resistance to therapy. This study used IHC stains; GLUT4 and LC3B to evaluate glycolysis and autophagy respectively. Moreover, mRNA Let-7a was detected by quantitative reverse transcription PCR (q-PCR) in 53 cases of LAGC. Elevated glycolysis and autophagy in LAGC tissue specimens as indicated by high GLUT4 and LC3B expression were significantly associated with adverse prognostic factors such as high pathological grade, positive nodal metastasis, and advanced T stage. Lower Let-7a levels were significantly associated with high tumor grade and advanced T stage. A significant positive correlation between GLUT4 and LC3B expression was detected. Significant inverse correlations between let7a level and IHC expression of both GLUT4 and LC3B were found. Elevated glycolysis and autophagy were significantly associated with poor overall survival (OS). Furthermore, low levels of let-7a were significantly associated with poor OS compared to high levels. Glycolysis and autophagy in LAGC were significantly associated with poor FLOT chemotherapy response. Let7a mRNA relative expression was significantly decreased in cases showing post therapy partial response and sustained disease. Multivariate analysis showed that histologic tumor type, high GLUT4 and high LC3B expression were independent factors associated with poor OS. Poor survival and post FLOT chemotherapy resistance in LAGC cases were significantly related to elevated glycolysis, elevated autophagy, and reduced Let-7a expression. Accordingly, combined therapeutic targeting of these pathways could enhance chemosensitivity in LAGC.
Collapse
Affiliation(s)
- Duaa S Helal
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Nesreen Sabry
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Dina A Ali
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Sahbaa M AboElnasr
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | | | | - Mohab Sabry
- Cardiothoracic surgery Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Dina M El-Guindy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
10
|
Elmetwalli A, Kamosh NH, El Safty R, Youssef AI, Salama MM, Abd El-Razek KM, El-Sewedy T. Novel phloretin-based combinations targeting glucose metabolism in hepatocellular carcinoma through GLUT2/PEPCK axis of action: in silico molecular modelling and in vivo studies. Med Oncol 2023; 41:12. [PMID: 38078989 DOI: 10.1007/s12032-023-02236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is commonly associated with disturbances in glucose metabolism and enhanced glycolysis. However, a controversial role for gluconeogenesis was reported to be tumor-promoting and tumor-suppressive. We investigated novel anti-HCC treatments through either the simultaneous inhibition of glycolysis and gluconeogenesis by "phloretin" and "sodium meta-arsenite", respectively (Combination 1); or the concurrent inhibition of glycolysis and induction of gluconeogenesis by phloretin and dexamethasone, respectively, (combination 2). A total of 110 Swiss albino mice were divided into eleven groups, HCC was induced by N, N-dimethyl-4-aminoazobenzene. We have measured the expression of the glucose transporter 2 (GLUT2), Phosphoenolpyruvate carboxykinases (PEPCK), Caspase-3, Beclin 1, Cyclin D1, and cytokeratin 18 genes; blood glucose and ATP levels; alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Furthermore, in silico molecular docking was performed to investigate the potential drug-receptor interactions. Histologically, the phloretin-based combinations resulted in a significant regression of malignant tissue compared to various treatments. GLUT2 and PEPCK mRNA analysis indicated successful off/on modulation of glycolysis and gluconeogenesis. Docking confirmed the potent binding between phloretin, sodium meta-arsenite, and dexamethasone with GLUT2, PEPCK, and Retinoid X Receptor Alpha, respectively. Molecularly, Combination 2 resulted in the highest reduction in cyclin D1, cytokeratin 18, and Beclin 1 expression contemporaneously with the upregulation in Caspase-3 levels. Biochemically, both combinations caused a significant reduction in ATP levels, ALT, and AST activity compared to the other groups. In conclusion, we propose two novel phloretin-based combinations that can be used in treating HCC through the regulation of glucose metabolism and ATP production.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | | | | | - Amany I Youssef
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohammed M Salama
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Khaled M Abd El-Razek
- Experimental Animal Unit, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Gou R, Zhang X. Glycolysis: A fork in the path of normal and pathological pregnancy. FASEB J 2023; 37:e23263. [PMID: 37889786 DOI: 10.1096/fj.202301230r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Glucose metabolism is vital to the survival of living organisms. Since the discovery of the Warburg effect in the 1920s, glycolysis has become a major research area in the field of metabolism. Glycolysis has been extensively studied in the field of cancer and is considered as a promising therapeutic target. However, research on the role of glycolysis in pregnancy is limited. Recent evidence suggests that blastocysts, trophoblasts, decidua, and tumors all acquire metabolic energy at specific stages in a highly similar manner. Glycolysis, carefully controlled throughout pregnancy, maintains a dynamic and coordinated state, so as to maintain the homeostasis of the maternal-fetal interface and ensure normal gestation. In the present review, we investigate metabolic remodeling and the selective propensity of the embryo and placenta for glycolysis. We then address dysregulated glycolysis that occurs in the cellular interactive network at the maternal-fetal interface in miscarriage, preeclampsia, fetal growth restriction, and gestational diabetes mellitus. We provide new insights into the field of maternal-fetal medicine from a metabolic perspective, thus revealing the mystery of human pregnancy.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| | - Xiaohong Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| |
Collapse
|
12
|
Liu T, Ren Y, Wang Q, Wang Y, Li Z, Sun W, Fan D, Luan Y, Gao Y, Yan Z. Exploring the role of the disulfidptosis-related gene SLC7A11 in adrenocortical carcinoma: implications for prognosis, immune infiltration, and therapeutic strategies. Cancer Cell Int 2023; 23:259. [PMID: 37919768 PMCID: PMC10623781 DOI: 10.1186/s12935-023-03091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Disulfidptosis and the disulfidptosis-related gene SLC7A11 have recently attracted significant attention for their role in tumorigenesis and tumour management. However, its association with adrenocortical carcinoma (ACC) is rarely discussed. METHODS Differential analysis, Cox regression analysis, and survival analysis were used to screen for the hub gene SLC7A11 in the TCGA and GTEx databases and disulfidptosis-related gene sets. Then, we performed an association analysis between SLC7A11 and clinically relevant factors in ACC patients. Univariate and multivariate Cox regression analyses were performed to evaluate the prognostic value of SLC7A11 and clinically relevant factors. Weighted gene coexpression analysis was used to find genes associated with SLC7A11. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and the LinkedOmics database were used to analyse the functions of SLC7A11-associated genes. The CIBERSORT and Xcell algorithms were used to analyse the relationship between SLC7A11 and immune cell infiltration in ACC. The TISIDB database was applied to search for the correlation between SLC7A11 expression and immune chemokines. In addition, we performed a correlation analysis for SLC7A11 expression and tumour mutational burden and immune checkpoint-related genes and assessed drug sensitivity based on SLC7A11 expression. Immunohistochemistry and RT‒qPCR were used to validate the upregulation of SLC7A11 in the ACC. RESULTS SLC7A11 is highly expressed in multiple urological tumours, including ACC. SLC7A11 expression is strongly associated with clinically relevant factors (M-stage and MYL6 expression) in ACC. SLC7A11 and the constructed nomogram can accurately predict ACC patient outcomes. The functions of SLC7A11 and its closely related genes are tightly associated with the occurrence of disulfidptosis in ACC. SLC7A11 expression was tightly associated with various immune cell infiltration disorders in the ACC tumour microenvironment (TME). It was positively correlated with the expression of immune chemokines (CXCL8, CXCL3, and CCL20) and negatively correlated with the expression of immune chemokines (CXCL17 and CCL14). SLC7A11 expression was positively associated with the expression of immune checkpoint genes (NRP1, TNFSF4, TNFRSF9, and CD276) and tumour mutation burden. The expression level of SLC7A11 in ACC patients is closely associated withcthe drug sensitivity. CONCLUSION In ACC, high expression of SLC7A11 is associated with migration, invasion, drug sensitivity, immune infiltration disorders, and poor prognosis, and its induction of disulfidptosis is a promising target for the treatment of ACC.
Collapse
Affiliation(s)
- Tonghu Liu
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Yilin Ren
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Qixin Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Department of Surgery, Nanyang Central Hospital, 473005, Nanyang, Henan, China
| | - Yu Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Zhiyuan Li
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Weibo Sun
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Department of Radiation Oncology and Oncology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, 450003, Zhengzhou, Henan, China
| | - Dandan Fan
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Yongkun Luan
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China.
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China.
| | - Yukui Gao
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 241001, Wuhu, Anhui, China.
| | - Zechen Yan
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Song A, Mao Y, Wei H. GLUT5: structure, functions, diseases and potential applications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1519-1538. [PMID: 37674366 PMCID: PMC10582729 DOI: 10.3724/abbs.2023158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/19/2023] [Indexed: 09/08/2023] Open
Abstract
Glucose transporter 5 (GLUT5) is a membrane transporter that specifically transports fructose and plays a key role in dietary fructose uptake and metabolism. In recent years, a high fructose diet has occupied an important position in the daily intake of human beings, resulting in a significant increase in the incidence of obesity and metabolic diseases worldwide. Over the past few decades, GLUT5 has been well understood to play a significant role in the pathogenesis of human digestive diseases. Recently, the role of GLUT5 in human cancer has received widespread attention, and a large number of studies have focused on exploring the effects of changes in GLUT5 expression levels on cancer cell survival, metabolism and metastasis. However, due to various difficulties and shortcomings, the molecular structure and mechanism of GLUT5 have not been fully elucidated, which to some extent prevents us from revealing the relationship between GLUT5 expression and cell carcinogenesis at the protein molecular level. In this review, we summarize the current understanding of the structure and function of mammalian GLUT5 and its relationship to intestinal diseases and cancer and suggest that GLUT5 may be an important target for cancer therapy.
Collapse
Affiliation(s)
- Aqian Song
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Yuanpeng Mao
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| | - Hongshan Wei
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| |
Collapse
|
14
|
Frisardi V, Canovi S, Vaccaro S, Frazzi R. The Significance of Microenvironmental and Circulating Lactate in Breast Cancer. Int J Mol Sci 2023; 24:15369. [PMID: 37895048 PMCID: PMC10607673 DOI: 10.3390/ijms242015369] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Lactate represents the main product of pyruvate reduction catalyzed by the lactic dehydrogenase family of enzymes. Cancer cells utilize great quantities of glucose, shifting toward a glycolytic metabolism. With the contribution of tumor stromal cells and under hypoxic conditions, this leads toward the acidification of the extracellular matrix. The ability to shift between different metabolic pathways is a characteristic of breast cancer cells and is associated with an aggressive phenotype. Furthermore, the preliminary scientific evidence concerning the levels of circulating lactate in breast cancer points toward a correlation between hyperlactacidemia and poor prognosis, even though no clear linkage has been demonstrated. Overall, lactate may represent a promising metabolic target that needs to be investigated in breast cancer.
Collapse
Affiliation(s)
- Vincenza Frisardi
- Geriatric Unit, Neuromotor Department, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Simone Canovi
- Clinical Laboratory, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Salvatore Vaccaro
- Clinical Nutrition Unit and Oncological Metabolic Centre, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Raffaele Frazzi
- Scientific Directorate, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| |
Collapse
|
15
|
Jia W, Huang Z, Zhou L, Liou YC, Di Virgilio F, Ulrich H, Illes P, Zhang W, Huang C, Tang Y. Purinergic signalling in cancer therapeutic resistance: From mechanisms to targeting strategies. Drug Resist Updat 2023; 70:100988. [PMID: 37413937 DOI: 10.1016/j.drup.2023.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
Purinergic signalling, consisting of extracellular purines and purinergic receptors, modulates cell proliferation, invasion and immunological reaction during cancer progression. Here, we focus on current evidence that suggests the crucial role of purinergic signalling in mediating cancer therapeutic resistance, the major obstacle in cancer treatment. Mechanistically, purinergic signalling can modulate the tumor microenvironment (TME), epithelial-mesenchymal transition (EMT) and anti-tumor immunity, thus affecting drug sensitivity of tumor cells. Currently, some agents attempting to target purinergic signalling either in tumor cells or in tumor-associated immune cells are under preclinical or clinical investigation. Moreover, nano-based delivery technologies significantly improve the efficacy of agents targeting purinergic signalling. In this review article, we summarize the mechanisms of purinergic signalling in promoting cancer therapeutic resistance and discuss the potentials and challenges of targeting purinergic signalling in future cancer treatment.
Collapse
Affiliation(s)
- Wenhui Jia
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yih-Cherng Liou
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117573, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117573, Singapore
| | | | - Henning Ulrich
- International Joint Research Centre on Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Institute of TCM-Based Stress Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
16
|
Li F, Ling X, Chakraborty S, Fountzilas C, Wang J, Jamroze A, Liu X, Kalinski P, Tang DG. Role of the DEAD-box RNA helicase DDX5 (p68) in cancer DNA repair, immune suppression, cancer metabolic control, virus infection promotion, and human microbiome (microbiota) negative influence. J Exp Clin Cancer Res 2023; 42:213. [PMID: 37596619 PMCID: PMC10439624 DOI: 10.1186/s13046-023-02787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
There is increasing evidence indicating the significant role of DDX5 (also called p68), acting as a master regulator and a potential biomarker and target, in tumorigenesis, proliferation, metastasis and treatment resistance for cancer therapy. However, DDX5 has also been reported to act as an oncosuppressor. These seemingly contradictory observations can be reconciled by DDX5's role in DNA repair. This is because cancer cell apoptosis and malignant transformation can represent the two possible outcomes of a single process regulated by DDX5, reflecting different intensity of DNA damage. Thus, targeting DDX5 could potentially shift cancer cells from a growth-arrested state (necessary for DNA repair) to apoptosis and cell killing. In addition to the increasingly recognized role of DDX5 in global genome stability surveillance and DNA damage repair, DDX5 has been implicated in multiple oncogenic signaling pathways. DDX5 appears to utilize distinct signaling cascades via interactions with unique proteins in different types of tissues/cells to elicit opposing roles (e.g., smooth muscle cells versus cancer cells). Such unique features make DDX5 an intriguing therapeutic target for the treatment of human cancers, with limited low toxicity to normal tissues. In this review, we discuss the multifaceted functions of DDX5 in DNA repair in cancer, immune suppression, oncogenic metabolic rewiring, virus infection promotion, and negative impact on the human microbiome (microbiota). We also provide new data showing that FL118, a molecular glue DDX5 degrader, selectively works against current treatment-resistant prostate cancer organoids/cells. Altogether, current studies demonstrate that DDX5 may represent a unique oncotarget for effectively conquering cancer with minimal toxicity to normal tissues.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Canget BioTekpharma LLC, Buffalo, NY, 14203, USA
| | - Sayan Chakraborty
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Christos Fountzilas
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jianmin Wang
- Department of Bioinformatics & Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Anmbreen Jamroze
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Xiaozhuo Liu
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Program of Tumor Immunology & Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
17
|
Zhang H, Xue Q, Zhou Z, He N, Li S, Zhao C. Co-delivery of doxorubicin and hydroxychloroquine via chitosan/alginate nanoparticles for blocking autophagy and enhancing chemotherapy in breast cancer therapy. Front Pharmacol 2023; 14:1176232. [PMID: 37229260 PMCID: PMC10203398 DOI: 10.3389/fphar.2023.1176232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide, and the standard treatment is chemotherapy or radiotherapy after surgery. In order to reduce the side effects of chemotherapy, various nanoparticles (NPs) have been discovered and synthesized, which has become a promising treatment for BC. In this study, a co-delivery nanodelivery drug system (Co-NDDS) was designed and synthesized with 2,3-dimercaptosuccinic acid (DMSA) coated Fe3O4 NPs as core encapsulated into chitosan/alginate nanoparticles (CANPs) shell, doxorubicin (DOX) and hydroxychloroquine (HCQ) as loading drugs. Smaller NPs carrying DOX (FeAC-DOX NPs) were loaded into larger NPs containing HCQ (FeAC-DOX@PC-HCQ NPs) by ionic gelation and emulsifying solvent volatilization methods. The physicochemical properties of this Co-NDDS were characterised, followed by in vitro studies of the anticancer effects and mechanisms using two different BC cell lines, MCF-7 cells and MDA-MB-231 cells. The results indicated that the Co-NDDS showcases exemplary physicochemical qualities and encapsulation capacity, facilitating accurate intracellular release through pH-sensitive attributes. Importantly, NPs can significantly increase the in vitro cytotoxicity of co-administered drugs and effectively inhibit the autophagy level of tumour cells. The Co-NDDS constructed in this study provides a promising strategy for the treatment of BC.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qingwen Xue
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zihan Zhou
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
- Sino Genomics Technology Co., Ltd, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Cheng Zhao
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
18
|
Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating Glycolysis to Improve Cancer Therapy. Int J Mol Sci 2023; 24:2606. [PMID: 36768924 PMCID: PMC9916680 DOI: 10.3390/ijms24032606] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer cells undergo metabolic reprogramming and switch to a 'glycolysis-dominant' metabolic profile to promote their survival and meet their requirements for energy and macromolecules. This phenomenon, also known as the 'Warburg effect,' provides a survival advantage to the cancer cells and make the tumor environment more pro-cancerous. Additionally, the increased glycolytic dependence also promotes chemo/radio resistance. A similar switch to a glycolytic metabolic profile is also shown by the immune cells in the tumor microenvironment, inducing a competition between the cancer cells and the tumor-infiltrating cells over nutrients. Several recent studies have shown that targeting the enhanced glycolysis in cancer cells is a promising strategy to make them more susceptible to treatment with other conventional treatment modalities, including chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and photodynamic therapy. Although several targeting strategies have been developed and several of them are in different stages of pre-clinical and clinical evaluation, there is still a lack of effective strategies to specifically target cancer cell glycolysis to improve treatment efficacy. Herein, we have reviewed our current understanding of the role of metabolic reprogramming in cancer cells and how targeting this phenomenon could be a potential strategy to improve the efficacy of conventional cancer therapy.
Collapse
Affiliation(s)
| | - Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youngkee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Republic of Korea
| |
Collapse
|
19
|
Tuli HS, Rath P, Chauhan A, Ramniwas S, Vashishth K, Varol M, Jaswal VS, Haque S, Sak K. Phloretin, as a Potent Anticancer Compound: From Chemistry to Cellular Interactions. Molecules 2022; 27:8819. [PMID: 36557950 PMCID: PMC9787340 DOI: 10.3390/molecules27248819] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Phloretin is a natural dihydrochalcone found in many fruits and vegetables, especially in apple tree leaves and the Manchurian apricots, exhibiting several therapeutic properties, such as antioxidant, antidiabetic, anti-inflammatory, and antitumor activities. In this review article, the diverse aspects of the anticancer potential of phloretin are addressed, presenting its antiproliferative, proapoptotic, antimetastatic, and antiangiogenic activities in many different preclinical cancer models. The fact that phloretin is a planar lipophilic polyphenol and, thus, a membrane-disrupting Pan-Assay Interference compound (PAIN) compromises the validity of the cell-based anticancer activities. Phloretin significantly reduces membrane dipole potential and, therefore, is expected to be able to activate a number of cellular signaling pathways in a non-specific way. In this way, the effects of this minor flavonoid on Bax and Bcl-2 proteins, caspases and MMPs, cytokines, and inflammatory enzymes are all analyzed in the current review. Moreover, besides the anticancer activities exerted by phloretin alone, its co-effects with conventional anticancer drugs are also under discussion. Therefore, this review presents a thorough overview of the preclinical anticancer potential of phloretin, allowing one to take the next steps in the development of novel drug candidates and move on to clinical trials.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh, Chandigarh 160012, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Vivek Sheel Jaswal
- Department of Chemistry and Chemical Science, School of Physical & Material Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | | |
Collapse
|
20
|
Beylerli O, Sufianova G, Shumadalova A, Zhang D, Gareev I. MicroRNAs-mediated regulation of glucose transporter (GLUT) expression in glioblastoma. Noncoding RNA Res 2022; 7:205-211. [PMID: 36157351 PMCID: PMC9467858 DOI: 10.1016/j.ncrna.2022.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022] Open
Abstract
Current knowledge about the role of microRNAs (miRNAs) in tumor glucose metabolism is growing, and a number of studies regularly confirm the impact miRNAs can have on glucose metabolism reprogramming in tumors. However, there remains a lack of understanding of the broader perspective on the role of miRNAs in energy reprogramming in glioblastoma. An important role in the metabolism of glucose is played by carrier proteins that ensure its transmembrane movement. Carrier proteins in mammalian cells are glucose transporters (GLUTs). In total, 12 types of GLUTs are distinguished, differing in localization, affinity for glucose and ability to regulate. The fact of increased consumption of glucose in tumors compared to non-proliferating normal tissues is known. Tumor cells need glucose to ensure their survival and growth, so the type of transport proteins like GLUT are critical for them. Previous studies have shown that GLUT-1 and GLUT-3 may play an important role in the development of some types of malignant tumors, including glioblastoma. In addition, there is evidence of how GLUT-1 and GLUT-3 expression is regulated by miRNAs in glioblastoma. Thus, the aim of this study is to highlight the role of specific miRNAs in modulating GLUT levels in order to take into account the use of miRNAs expression modulators as a useful strategy to increase the sensitivity of glioblastoma to current therapies.
Collapse
Affiliation(s)
- Ozal Beylerli
- Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Alina Shumadalova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ilgiz Gareev
- Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
21
|
Zhang Y, Qin H, Bian J, Ma Z, Yi H. SLC2As as diagnostic markers and therapeutic targets in LUAD patients through bioinformatic analysis. Front Pharmacol 2022; 13:1045179. [PMID: 36518662 PMCID: PMC9742449 DOI: 10.3389/fphar.2022.1045179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 11/05/2023] Open
Abstract
Facilitative glucose transporters (GLUTs), which are encoded by solute carrier 2A (SLC2A) genes, are responsible for mediating glucose absorption. In order to meet their higher energy demands, cancer cells are more likely than normal tissue cells to have elevated glucose transporters. Multiple pathogenic processes, such as cancer and immunological disorders, have been linked to GLUTs. Few studies, meanwhile, have been conducted on individuals with lung adenocarcinoma (LUAD) to evaluate all 14 SLC2A genes. We first identified increased protein levels of SLC2A1, SLC2A5, SLC2A6, and SLC2A9 via HPA database and downregulated mRNA levels of SLC2A3, SLC2A6, SLC2A9, and SLC2A14 by ONCOMINE and UALCAN databases in patients with LUAD. Additionally, lower levels of SLC2A3, SLC2A6, SLC2A9, SLC2A12, and SLC2A14 and higher levels of SLC2A1, SLC2A5, SLC2A10, and SLC2A11 had an association with advanced tumor stage. SLC2A1, SLC2A7, and SLC2A11 were identified as prognostic signatures for LUAD. Kaplan-Meier analysis, Univariate Cox regression, multivariate Cox regression and ROC analyses further revealed that these three genes signature was a novel and important prognostic factor. Mechanistically, the aberrant expression of these molecules was caused, in part, by the hypomethylation of SLC2A3, SLC2A10, and SLC2A14 and by the hypermethylation of SLC2A1, SLC2A2, SLC2A5, SLC2A6, SLC2A7, and SLC2A11. Additionally, SLC2A3, SLC2A5, SLC2A6, SLC2A9, and SLC2A14 contributed to LUAD by positively modulating M2 macrophage and T cell exhaustion. Finally, pathways involving SLC2A1/BUB1B/mitotic cell cycle, SLC2A5/CD86/negative regulation of immune system process, SLC2A6/PLEK/lymphocyte activation, SLC2A9/CD4/regulation of cytokine production might participate in the pathogenesis of LUAD. In summary, our results will provide the theoretical basis on SLC2As as diagnostic markers and therapeutic targets in LUAD.
Collapse
Affiliation(s)
- Yanli Zhang
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
- Echocardiography Department, The First Hospital of Jilin University, Changchun, China
| | - Han Qin
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| | - Jing Bian
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| |
Collapse
|
22
|
Temre MK, Kumar A, Singh SM. An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors. Front Pharmacol 2022; 13:1035510. [PMID: 36386187 PMCID: PMC9663470 DOI: 10.3389/fphar.2022.1035510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 07/23/2023] Open
Abstract
Neoplastic cells displayed altered metabolism with accelerated glycolysis. Therefore, these cells need a mammoth supply of glucose for which they display an upregulated expression of various glucose transporters (GLUT). Thus, novel antineoplastic strategies focus on inhibiting GLUT to intersect the glycolytic lifeline of cancer cells. This review focuses on the current status of various GLUT inhibition scenarios. The GLUT inhibitors belong to both natural and synthetic small inhibitory molecules category. As neoplastic cells express multiple GLUT isoforms, it is necessary to use pan-GLUT inhibitors. Nevertheless, it is also necessary that such pan-GLUT inhibitors exert their action at a low concentration so that normal healthy cells are left unharmed and minimal injury is caused to the other vital organs and systems of the body. Moreover, approaches are also emerging from combining GLUT inhibitors with other chemotherapeutic agents to potentiate the antineoplastic action. A new pan-GLUT inhibitor named glutor, a piperazine-one derivative, has shown a potent antineoplastic action owing to its inhibitory action exerted at nanomolar concentrations. The review discusses the merits and limitations of the existing GLUT inhibitory approach with possible future outcomes.
Collapse
Affiliation(s)
- Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Deparment of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
23
|
Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies. Cancers (Basel) 2022; 14:cancers14194568. [PMID: 36230492 PMCID: PMC9559313 DOI: 10.3390/cancers14194568] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Reprogramming of glucose metabolism is a hallmark of cancer and can be targeted by therapeutic agents. Some metabolism regulators, such as ivosidenib and enasidenib, have been approved for cancer treatment. Currently, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Furthermore, some natural products have shown efficacy in killing tumor cells by regulating glucose metabolism, offering novel therapeutic opportunities in cancer. However, most of them have failed to be translated into clinical applications due to low selectivity, high toxicity, and side effects. Recent studies suggest that combining glucose metabolism modulators with chemotherapeutic drugs, immunotherapeutic drugs, and other conventional anticancer drugs may be a future direction for cancer treatment. Abstract Reprogramming of glucose metabolism provides sufficient energy and raw materials for the proliferation, metastasis, and immune escape of cancer cells, which is enabled by glucose metabolism-related enzymes that are abundantly expressed in a broad range of cancers. Therefore, targeting glucose metabolism enzymes has emerged as a promising strategy for anticancer drug development. Although several glucose metabolism modulators have been approved for cancer treatment in recent years, some limitations exist, such as a short half-life, poor solubility, and numerous adverse effects. With the rapid development of medicinal chemicals, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Additionally, several studies have found that some natural products can suppress cancer progression by regulating glucose metabolism enzymes. In this review, we summarize the mechanisms underlying the reprogramming of glucose metabolism and present enzymes that could serve as therapeutic targets. In addition, we systematically review the existing drugs targeting glucose metabolism enzymes, including small-molecule modulators and natural products. Finally, the opportunities and challenges for glucose metabolism enzyme-targeted anticancer drugs are also discussed. In conclusion, combining glucose metabolism modulators with conventional anticancer drugs may be a promising cancer treatment strategy.
Collapse
|
24
|
Yu Z, Zhou X, Wang X. Metabolic Reprogramming in Hematologic Malignancies: Advances and Clinical Perspectives. Cancer Res 2022; 82:2955-2963. [PMID: 35771627 PMCID: PMC9437558 DOI: 10.1158/0008-5472.can-22-0917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Metabolic reprogramming is a hallmark of cancer progression. Metabolic activity supports tumorigenesis and tumor progression, allowing cells to uptake essential nutrients from the environment and use the nutrients to maintain viability and support proliferation. The metabolic pathways of malignant cells are altered to accommodate increased demand for energy, reducing equivalents, and biosynthetic precursors. Activated oncogenes coordinate with altered metabolism to control cell-autonomous pathways, which can lead to tumorigenesis when abnormalities accumulate. Clinical and preclinical studies have shown that targeting metabolic features of hematologic malignancies is an appealing therapeutic approach. This review provides a comprehensive overview of the mechanisms of metabolic reprogramming in hematologic malignancies and potential therapeutic strategies to target cancer metabolism.
Collapse
Affiliation(s)
- Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China.,Corresponding Authors: Xin Wang, Department of Hematology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; Fax: 8653-1870-61197; E-mail: ; Xiangxiang Zhou, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; E-mail:
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China.,Corresponding Authors: Xin Wang, Department of Hematology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; Fax: 8653-1870-61197; E-mail: ; Xiangxiang Zhou, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; E-mail:
| |
Collapse
|
25
|
Lv L, Yang S, Zhu Y, Zhai X, Li S, Tao X, Dong D. Relationship between metabolic reprogramming and drug resistance in breast cancer. Front Oncol 2022; 12:942064. [PMID: 36059650 PMCID: PMC9434120 DOI: 10.3389/fonc.2022.942064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the leading cause of cancer death in women. At present, chemotherapy is the main method to treat breast cancer in addition to surgery and radiotherapy, but the process of chemotherapy is often accompanied by the development of drug resistance, which leads to a reduction in drug efficacy. Furthermore, mounting evidence indicates that drug resistance is caused by dysregulated cellular metabolism, and metabolic reprogramming, including enhanced glucose metabolism, fatty acid synthesis and glutamine metabolic rates, is one of the hallmarks of cancer. Changes in metabolism have been considered one of the most important causes of resistance to treatment, and knowledge of the mechanisms involved will help in identifying potential treatment deficiencies. To improve women's survival outcomes, it is vital to elucidate the relationship between metabolic reprogramming and drug resistance in breast cancer. This review analyzes and investigates the reprogramming of metabolism and resistance to breast cancer therapy, and the results offer promise for novel targeted and cell-based therapies.
Collapse
Affiliation(s)
- Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Zhang X, Lu JJ, Abudukeyoumu A, Hou DY, Dong J, Wu JN, Liu LB, Li MQ, Xie F. Glucose transporters: Important regulators of endometrial cancer therapy sensitivity. Front Oncol 2022; 12:933827. [PMID: 35992779 PMCID: PMC9389465 DOI: 10.3389/fonc.2022.933827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Glucose is of great importance in cancer cellular metabolism. Working together with several glucose transporters (GLUTs), it provides enough energy for biological growth. The main glucose transporters in endometrial cancer (EC) are Class 1 (GLUTs 1-4) and Class 3 (GLUTs 6 and 8), and the overexpression of these GLUTs has been observed. Apart from providing abundant glucose uptake, these highly expressed GLUTs also participate in the activation of many crucial signaling pathways concerning the proliferation, angiogenesis, and metastasis of EC. In addition, overexpressed GLUTs may also cause endometrial cancer cells (ECCs) to be insensitive to hormone therapy or even resistant to radiotherapy and chemoradiotherapy. Therefore, GLUT inhibitors may hopefully become a sensitizer for EC precision-targeted therapies. This review aims to summarize the expression regulation, function, and therapy sensitivity of GLUTs in ECCs, aiming to provide a new clue for better diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Xing Zhang
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ayitila Abudukeyoumu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jing Dong
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Clinical Research Center, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Li-Bing Liu
- Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
27
|
Karthika C, Najda A, Klepacka J, Zehravi M, Akter R, Akhtar MF, Saleem A, Al-Shaeri M, Mondal B, Ashraf GM, Tagde P, Ramproshad S, Ahmad Z, Khan FS, Rahman MH. Involvement of Resveratrol against Brain Cancer: A Combination Strategy with a Pharmaceutical Approach. Molecules 2022; 27:4663. [PMID: 35889532 PMCID: PMC9320031 DOI: 10.3390/molecules27144663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
A brain tumor (BT) is a condition in which there is growth or uncontrolled development of the brain cells, which usually goes unrecognized or is diagnosed at the later stages. Since the mechanism behind BT is not clear, and the various physiological conditions are difficult to diagnose, the success rate of BT is not very high. This is the central issue faced during drug development and clinical trials with almost all types of neurodegenerative disorders. In the first part of this review, we focus on the concept of brain tumors, their barriers, and the types of delivery possible to target the brain cells. Although various treatment methods are available, they all have side effects or toxic effects. Hence, in the second part, a correlation was made between the use of resveratrol, a potent antioxidant, and its advantages for brain diseases. The relationship between brain disease and the blood-brain barrier, multi-drug resistance, and the use of nanomedicine for treating brain disorders is also mentioned. In short, a hypothetical concept is given with a background investigation into the use of combination therapy with resveratrol as an active ingredient, the possible drug delivery, and its formulation-based approach.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20280 Lublin, Poland
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10719 Olsztyn, Poland;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Riphah International University, Lahore 54950, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| |
Collapse
|
28
|
Zang S, Huang K, Li J, Ren K, Li T, He X, Tao Y, He J, Dong Z, Li M, He Q. Metabolic Reprogramming by Dual-targeting Biomimetic Nanoparticles for Enhanced Tumor Chemo-Immunotherapy. Acta Biomater 2022; 148:181-193. [PMID: 35649505 DOI: 10.1016/j.actbio.2022.05.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 01/28/2023]
Abstract
Cancer-associated fibroblasts (CAFs)-mediated metabolic support plays a vital role in tumorigenesis. The metabolic network between cancer cells and CAFs may serve as promising targets for cancer therapy. Here, aiming at targeted blockade of the metabolic support of CAFs to cancer cells, a biomimetic nanocarrier is designed by coating solid lipid nanoparticles containing chemotherapeutic paclitaxel (PTX) and glycolysis inhibitor PFK15 with hybrid membranes of cancer cells and activated fibroblasts. The nanoparticles possess outstanding dual-targeting ability which can simultaneously target cancer cells and CAFs. The encapsulated glycolysis inhibitor PFK15 can prevent the glycolysis of cancer cells and CAFs at the same time, thus increasing the chemosensitivity of cancer cells and blocking the metabolic support of CAFs to cancer cells. The results showed that the combination of PTX and PFK15 exhibited synergistic effects and inhibited tumor growth effectively. Moreover, the biomimetic nanoparticles obviously reduced the lactate production in the tumor microenvironment, leading to activated immune responses and enhanced tumor suppression. This work presents a facile strategy to destroy the metabolic network between cancer cells and CAFs, and proves the potential to elevate chemo-immunotherapy by glycolysis inhibition. STATEMENT OF SIGNIFICANCE: : In many solid tumors, most cancer cells produce energy and carry out biosynthesis through glycolysis, even in aerobic conditions. As the main tumor stromal cells, cancer-associated fibroblasts (CAFs) usually turn oxidative phosphorylation into aerobic glycolysis with metabolic reprogramming and provide high-energy glycolytic metabolites for cancer cells. The metabolic network between cancer cells and CAFs is regarded as the vulnerability among cancer cells. Moreover, lactate produced by cancer cells and CAFs through glycolysis often leads to the immunosuppressive tumor microenvironment. The present study provides an effective approach to destroy the metabolic network between cancer cells and CAFs and greatly improves the antitumor immune response by reducing lactate production, which serves as a promising strategy for combined chemo-immunotherapy mediated by glycolysis.
Collapse
|
29
|
Molecular basis for inhibiting human glucose transporters by exofacial inhibitors. Nat Commun 2022; 13:2632. [PMID: 35552392 PMCID: PMC9098912 DOI: 10.1038/s41467-022-30326-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/26/2022] [Indexed: 12/27/2022] Open
Abstract
Human glucose transporters (GLUTs) are responsible for cellular uptake of hexoses. Elevated expression of GLUTs, particularly GLUT1 and GLUT3, is required to fuel the hyperproliferation of cancer cells, making GLUT inhibitors potential anticancer therapeutics. Meanwhile, GLUT inhibitor-conjugated insulin is being explored to mitigate the hypoglycemia side effect of insulin therapy in type 1 diabetes. Reasoning that exofacial inhibitors of GLUT1/3 may be favored for therapeutic applications, we report here the engineering of a GLUT3 variant, designated GLUT3exo, that can be probed for screening and validating exofacial inhibitors. We identify an exofacial GLUT3 inhibitor SA47 and elucidate its mode of action by a 2.3 Å resolution crystal structure of SA47-bound GLUT3. Our studies serve as a framework for the discovery of GLUTs exofacial inhibitors for therapeutic development. Human glucose transporters (GLUTs), particularly GLUT1 and GLUT3, are potential anticancer therapy targets. Here, Nan Wang et al. use an engineered GLUT 3 variant to identify an exofacial GLUT3 inhibitor, SA47, and elucidate the drug’s inhibitory mechanism.
Collapse
|
30
|
Liu S, Zhong Z, Zhang C, Zhou Y, Fu C, Xu X. Targeted therapy for the treatment of gliomas with multifunctional orange emissive carbon dots. NANOSCALE ADVANCES 2022; 4:894-903. [PMID: 36131815 PMCID: PMC9418263 DOI: 10.1039/d1na00722j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 05/07/2023]
Abstract
As a nano-material, carbon dots have been extensively studied and applied in many ways. Herein, iron-doped orange emissive carbon dots (ICDs) were easily synthesized using the hydrothermal method and coupled with Trf and glucose oxidase (GOD) simply by virtue of the abundant functional groups on their surface. The resulting carbon dots were named IGTCDs. The obtained IGTCDs possessed targeting, therapeutic and imaging functions, achieving the enzymolysis of glucose, the decomposition of H2O2 and the release of reactive oxygen species (ROS) sequentially in gliomas as a multifunctional nano-catalyst, and achieving an efficient glioma targeted killing effect. On the basis of the ideal biocompatibility of the IGTCDs with a cell survival rate of over 85%, even at a high concentration (500 μg ml-1), the IGTCDs, which were coupled substances present within the organism, glucose oxidase and transferrins, showed an obvious inhibitory effect on the growth of tumor cells, and the survival rate of the C6 cells was only 28.10% at 300 μg ml-1. The highly efficient anti-tumor effect was further demonstrated in the treatment of mice suffering from glioma, and the tumor inhibition rate was increased to 56.21-98.32%. This safe and effective multifunctional tumor inhibitor could be conveniently synthesized in large quantities, verifying the feasibility of the anti-tumor therapy based on the tumor microenvironment (TME), creating a novel method for the application of carbon dots in tumor treatment and providing a novel, reasonable and effective method for the treatment of cancer and gliomas.
Collapse
Affiliation(s)
- Shuyao Liu
- West China School of Pharmacy, Sichuan University Chengdu Sichuan 610041 P. R. China
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Zhuoling Zhong
- West China School of Pharmacy, Sichuan University Chengdu Sichuan 610041 P. R. China
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Chuanwei Zhang
- West China School of Pharmacy, Sichuan University Chengdu Sichuan 610041 P. R. China
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Yanqu Zhou
- West China School of Pharmacy, Sichuan University Chengdu Sichuan 610041 P. R. China
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Chunmei Fu
- West China School of Pharmacy, Sichuan University Chengdu Sichuan 610041 P. R. China
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Xiaoping Xu
- West China School of Pharmacy, Sichuan University Chengdu Sichuan 610041 P. R. China
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| |
Collapse
|
31
|
GLUT3 inhibitor discovery through in silico ligand screening and in vivo validation in eukaryotic expression systems. Sci Rep 2022; 12:1429. [PMID: 35082341 PMCID: PMC8791944 DOI: 10.1038/s41598-022-05383-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022] Open
Abstract
The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC50 ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC50 ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC50 ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma’s reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.
Collapse
|
32
|
Song Y, Hu C, Fu Y, Gao H. Modulating the blood–brain tumor barrier for improving drug delivery efficiency and efficacy. VIEW 2022. [DOI: 10.1002/viw.20200129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yujun Song
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University Chengdu P. R. China
| | - Chuan Hu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University Chengdu P. R. China
| | - Yao Fu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University Chengdu P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University Chengdu P. R. China
| |
Collapse
|
33
|
Zhang W, Gong C, Chen Z, Li M, Li Y, Gao J. Tumor microenvironment-activated cancer cell membrane-liposome hybrid nanoparticle-mediated synergistic metabolic therapy and chemotherapy for non-small cell lung cancer. J Nanobiotechnology 2021; 19:339. [PMID: 34689761 PMCID: PMC8543810 DOI: 10.1186/s12951-021-01085-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Biomimetic nanotechnology-based RNA interference (RNAi) has been successful in improving theranostic efficacy in malignant tumors. Its integration with hybrid biomimetic membranes made of natural cell membranes fused with liposomal membranes is mutually beneficial and extends their biofunctions. However, limited research has focused on engineering such biomimetics to endow them with unique properties and functions, in particular, those essential for a "smart" drug delivery system, such as a tumor microenvironment (TME)-activated multifunctional biomimetic nanoplatform. RESULTS Herein, we utilized an integrated hybrid nanovesicle composed of cancer cell membranes (Cm) and matrix metallopeptidase 9 (MMP-9)-switchable peptide-based charge-reversal liposome membranes (Lipm) to coat lipoic acid-modified polypeptides (LC) co-loaded with phosphoglycerate mutase 1 (PGAM1) siRNA (siPGAM1) and DTX. The nanovesicle presented a negatively charged coating (citraconic anhydride-grafted poly-L-lysine, PC) in the middle layer for pH-triggered charge conversion functionalization. The established chemotherapeutic drug (DTX) co-delivery system CLip-PC@CO-LC nanoparticles (NPs) have a particle size of ~ 193 nm and present the same surface proteins as the Cm. Confocal microscopy and flow cytometry results indicated a greater uptake of MMP-9-treated CLip-PC@CO-LC NPs compared with that of the CLip-PC@CO-LC NPs without MMP-9 pretreatment. The exposure to MMP-9 activated positively charged cell-penetrating peptides on the surface of the hybrid nanovesicles. Moreover, pH triggered membrane disruption, and redox triggered DTX and siRNA release, leading to highly potent target-gene silencing in glycolysis and chemotherapy with enhanced antiproliferation ability. The biodistribution results demonstrated that the CLip-PC@LC-DiR NPs accumulated in the tumor owing to a combination of long blood retention time, homologous targeting ability, and TME-activated characteristics. The CLip-PC@CO-LC NPs led to more effective tumor growth inhibition than the DTX and free siPGAM1 formulations. CONCLUSIONS TME-activated cancer cell membrane-liposome integrated hybrid NPs provide an encouraging nanoplatform that combines RNAi with chemotherapy for precise treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Chunai Gong
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Ziqiang Chen
- Department of Orthopaedic, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ming Li
- Department of Orthopaedic, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuping Li
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
34
|
Estaras M, Gonzalez A. Modulation of cell physiology under hypoxia in pancreatic cancer. World J Gastroenterol 2021; 27:4582-4602. [PMID: 34366624 PMCID: PMC8326256 DOI: 10.3748/wjg.v27.i28.4582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
In solid tumors, the development of vasculature is, to some extent, slower than the proliferation of the different types of cells that form the tissue, both cancer and stroma cells. As a consequence, the oxygen availability is compromised and the tissue evolves toward a condition of hypoxia. The presence of hypoxia is variable depending on where the cells are localized, being less extreme at the periphery of the tumor and more severe in areas located deep within the tumor mass. Surprisingly, the cells do not die. Intracellular pathways that are critical for cell fate such as endoplasmic reticulum stress, apoptosis, autophagy, and others are all involved in cellular responses to the low oxygen availability and are orchestrated by hypoxia-inducible factor. Oxidative stress and inflammation are critical conditions that develop under hypoxia. Together with changes in cellular bioenergetics, all contribute to cell survival. Moreover, cell-to-cell interaction is established within the tumor such that cancer cells and the microenvironment maintain a bidirectional communication. Additionally, the release of extracellular vesicles, or exosomes, represents short and long loops that can convey important information regarding invasion and metastasis. As a result, the tumor grows and its malignancy increases. Currently, one of the most lethal tumors is pancreatic cancer. This paper reviews the most recent advances in the knowledge of how cells grow in a pancreatic tumor by adapting to hypoxia. Unmasking the physiological processes that help the tumor increase its size and their regulation will be of major relevance for the treatment of this deadly tumor.
Collapse
Affiliation(s)
- Matias Estaras
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres 10003, Spain
| | - Antonio Gonzalez
- Department of Physiology, Cell Biology and Communication Research Group, University of Extremadura, Caceres 10003, Spain
| |
Collapse
|
35
|
Chen Y, Bei J, Liu M, Huang J, Xie L, Huang W, Cai M, Guo Y, Lin L, Zhu K. Sublethal heat stress-induced O-GlcNAcylation coordinates the Warburg effect to promote hepatocellular carcinoma recurrence and metastasis after thermal ablation. Cancer Lett 2021; 518:23-34. [PMID: 34126196 DOI: 10.1016/j.canlet.2021.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/15/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023]
Abstract
The malignant transformation of residual hepatocellular carcinoma (HCC) cells after thermal ablation is considered as the main factor promoting postoperative HCC progression, which greatly limits the improvement of long-term survival, and at present there is no effective targeted therapeutic strategies. The Warburg effect is a metabolic feature correlated highly with malignant transformation (e.g. epithelial-to-mesenchymal transition [EMT]). Here, we showed that sublethal heat stress triggered a stronger Warburg effect of HCC cells, which contributed to the thermotolerance and invasion of HCC cells. Sublethal heat stress-induced O-GlcNAcylation was involved in this process. Such enhanced Warburg effect in HCC cells may be eliminated through O-GlcNAcylation inhibition, resulting in impaired thermotolerance and EMT, and thereby preventing tumor recurrence and metastasis of HCC-bearing mice after insufficient thermal ablation. Finally, we present evidence that sublethal heat stress-induced O-GlcNAcylation regulates the Warburg effect in HCC cells by promoting hypoxia-inducible factor 1α (HIF-1α) stability. In conclusion, the present study suggests that O-GlcNAcylation coordinates the Warburg effect to promote HCC progression after thermal ablation, which may serve as a novel potential target for controlling postoperative HCC recurrence and metastasis.
Collapse
Affiliation(s)
- Ye Chen
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Jiaxin Bei
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Mingyu Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Jingjun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Lulu Xie
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China.
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China.
| |
Collapse
|
36
|
Baczewska M, Bojczuk K, Kołakowski A, Dobroch J, Guzik P, Knapp P. Obesity and Energy Substrate Transporters in Ovarian Cancer-Review. Molecules 2021; 26:1659. [PMID: 33809784 PMCID: PMC8002293 DOI: 10.3390/molecules26061659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/12/2023] Open
Abstract
Ovarian cancer is the seventh most common cancer in women. It is characterized by a high mortality rate because of its aggressiveness and advanced stage at the time of diagnosis. It is a nonhomogenous group of neoplasms and, of which the molecular basics are still being investigated. Nowadays, the golden standard in the treatment is debulking cytoreductive surgery combined with platinum-based chemotherapy. We have presented the interactions and the resulting perspectives between fatty acid transporters, glucose transporters and ovarian cancer cells. Studies have shown the association between a lipid-rich environment and cancer progression, which suggests the use of correspondent transporter inhibitors as promising chemotherapeutic agents. This review summarizes preclinical and clinical studies highlighting the role of fatty acid transport proteins and glucose transporters in development, growth, metastasizing and its potential use in targeted therapies of ovarian cancer.
Collapse
Affiliation(s)
- Marta Baczewska
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
| | - Klaudia Bojczuk
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
| | - Adrian Kołakowski
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
| | - Jakub Dobroch
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
| | - Paweł Guzik
- Clinical Department of Gynecology and Obstetrics, City Hospital, 35-241 Rzeszów, Poland;
| | - Paweł Knapp
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
- University Oncology Center, University Clinical Hospital in Białystok, 15-276 Białystok, Poland
| |
Collapse
|
37
|
Tang M, Ren X, Fu C, Ding M, Meng X. Regulating glucose metabolism using nanomedicines for cancer therapy. J Mater Chem B 2021; 9:5749-5764. [PMID: 34196332 DOI: 10.1039/d1tb00218j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The regulation of glucose metabolism is a research focus in cancer treatment. Glucose metabolism is essential for maintaining the growth and proliferation of tumor cells, thus offering us great opportunities for tumor treatment. Recently, much progress has been made in efficient cancer treatment by regulating the pathway of glucose metabolism with nanomedicines due to the rapid development of nanotechnology and promising drug targets. In this review, we first introduced the pathway of cell energy supply from the perspective of aerobic and anaerobic processes. Then, we discussed the recent research progress in regulating glucose metabolism for various tumor resistance strategies including heat resistance, multiple drug resistance, and hypoxia. Finally, we presented the prospects and challenges of developing multifunctional nanoagents for efficient chemotherapy, hyperthermia, dynamic therapy and so on by regulating glucose metabolism.
Collapse
Affiliation(s)
- Ming Tang
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China and Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and Key Laboratory of Super Light Material and Surface Technology Ministry of Education, Harbin Engineering University, Harbin 150001, China and CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Minghui Ding
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China and Key Laboratory of Super Light Material and Surface Technology Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|