1
|
Liu D, Hu Z, Lu J, Yi C. Redox-Regulated Iron Metabolism and Ferroptosis in Ovarian Cancer: Molecular Insights and Therapeutic Opportunities. Antioxidants (Basel) 2024; 13:791. [PMID: 39061859 PMCID: PMC11274267 DOI: 10.3390/antiox13070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer (OC), known for its lethality and resistance to chemotherapy, is closely associated with iron metabolism and ferroptosis-an iron-dependent cell death process, distinct from both autophagy and apoptosis. Emerging evidence suggests that dysregulation of iron metabolism could play a crucial role in OC by inducing an imbalance in the redox system, which leads to ferroptosis, offering a novel therapeutic approach. This review examines how disruptions in iron metabolism, which affect redox balance, impact OC progression, focusing on its essential cellular functions and potential as a therapeutic target. It highlights the molecular interplay, including the role of non-coding RNAs (ncRNAs), between iron metabolism and ferroptosis, and explores their interactions with key immune cells such as macrophages and T cells, as well as inflammation within the tumor microenvironment. The review also discusses how glycolysis-related iron metabolism influences ferroptosis via reactive oxygen species. Targeting these pathways, especially through agents that modulate iron metabolism and ferroptosis, presents promising therapeutic prospects. The review emphasizes the need for deeper insights into iron metabolism and ferroptosis within the redox-regulated system to enhance OC therapy and advocates for continued research into these mechanisms as potential strategies to combat OC.
Collapse
Affiliation(s)
- Dan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Zewen Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Jinzhi Lu
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| |
Collapse
|
2
|
Mohamed AH, Ahmed AT, Al Abdulmonem W, Bokov DO, Shafie A, Al-Hetty HRAK, Hsu CY, Alissa M, Nazir S, Jamali MC, Mudhafar M. Interleukin-6 serves as a critical factor in various cancer progression and therapy. Med Oncol 2024; 41:182. [PMID: 38900329 DOI: 10.1007/s12032-024-02422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, 51001, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq.
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | | | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shahid Nazir
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mohammad Chand Jamali
- Faculty of Medical and Health Sciences, Liwa College, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mustafa Mudhafar
- Department of Medical Physics, College of Applied Medical Sciences, University of Kerbala, Karbala, 56001, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff University College, Kerbala, 56001, Iraq
| |
Collapse
|
3
|
Yu Z, Wang J, Xia W, Wang Y, Zhang Y, Tang J, Cui H, Yang X, Bao C, Ye Z. The Development of an Isotope Dilution Mass Spectrometry Method for Interleukin-6 Quantification. Int J Mol Sci 2024; 25:6777. [PMID: 38928482 PMCID: PMC11203838 DOI: 10.3390/ijms25126777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Inflammatory responses and tumor developments are closely related, with interleukin-6 (IL-6) playing important roles in both processes. IL-6 has been extensively identified as a potential tumor biomarker. This study developed an isotope dilution mass spectrometry (IDMS) method for quantifying IL-6 based on signature peptides. These peptides were screened by excluding those with missed cleavage or post-translational modification. The method's accuracy was verified using amino acid-based IDMS, in which purified IL-6 protein samples were quantified after hydrolyzing them into amino acids, and no significant difference was observed (p-value < 0.05). The method demonstrated good linearity and sensitivity upon testing. The specificity and matrix effect of the method were verified, and a precision study showed that the coefficient of variation was less than 5% for both the intra-day and inter-day tests. Compared to immunoassays, this method offers distinct advantages, such as the facilitation of multi-target analysis. Furthermore, the peptides used in this study are much more convenient for storage and operation than the antibodies or purified proteins typically used in immunoassays.
Collapse
Affiliation(s)
- Zetao Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Jing Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Wenqiang Xia
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China;
| | - Yuemin Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Jintian Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Xiaoying Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Chenchen Bao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.Y.); (J.W.); (Y.W.); (Y.Z.); (J.T.); (H.C.); (X.Y.); (C.B.)
| |
Collapse
|
4
|
Carmi YK, Agbarya A, Khamaisi H, Farah R, Shechtman Y, Korobochka R, Gopas J, Mahajna J. Ovarian cancer ascites confers platinum chemoresistance to ovarian cancer cells. Transl Oncol 2024; 44:101939. [PMID: 38489872 PMCID: PMC10955424 DOI: 10.1016/j.tranon.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
Ovarian cancer (OC), the second most common form of gynecologic malignancy, has a poor prognosis and is often discovered in the late stages. Platinum-based chemotherapy is the first line of therapy. Nevertheless, treatment OC has proven challenging due to toxicity and the development of acquired resistance to therapy. Tumor microenvironment (TME) has been associated with platinum chemoresistance. Malignant ascites has been used as OC tumor microenvironment and its ability to induce platinum chemoresistance has been investigated. Our results suggest that exposure to OC ascites induces platinum chemoresistance in 11 of 13 cases (85 %) on OC cells. In contrast, 75 % of cirrhotic ascites (3 of 4) failed to confer platinum chemoresistance to OC cells. Cytokine array analysis revealed that IL -6 and to a lesser extent HGF were enriched in OC ascites, whereas IL -22 was enriched in cirrhotic ascites. Pharmaceutical inhibitors targeting the IL -6/ JAK pathway were mildly effective in overcoming platinum chemoresistance induced by malignant ascites. In contrast, crizotinib, an HGF/c- MET inhibitor, and 2-hydroxyestradiol (2HE2) were effective in restoring platinum chemosensitivity to OC. Our results demonstrate the importance of OC ascites in supporting platinum chemoresistance and the potential of combination therapy to restore chemosensitivity of OC cells.
Collapse
Affiliation(s)
- Yifat Koren Carmi
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel; Shraga Segal Department of Microbiology, Immunology and Genetics, and Department of Oncology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Abed Agbarya
- Oncology Department, Bnai Zion MC, Haifa, Israel
| | - Hazem Khamaisi
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel
| | - Raymond Farah
- Department of Internal Medicine, Ziv Medical Center, Safed, Israel
| | | | | | - Jacob Gopas
- Shraga Segal Department of Microbiology, Immunology and Genetics, and Department of Oncology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel.
| |
Collapse
|
5
|
Dadgar N, Sherry C, Zimmerman J, Park H, Lewis C, Donnenberg A, Zaidi AH, Fan Y, Xiao K, Bartlett D, Donnenberg V, Wagner PL. Targeting interleukin-6 as a treatment approach for peritoneal carcinomatosis. J Transl Med 2024; 22:402. [PMID: 38689325 PMCID: PMC11061933 DOI: 10.1186/s12967-024-05205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Peritoneal carcinomatosis (PC) is a complex manifestation of abdominal cancers, with a poor prognosis and limited treatment options. Recent work identifying high concentrations of the cytokine interleukin-6 (IL-6) and its soluble receptor (sIL-6-Rα) in the peritoneal cavity of patients with PC has highlighted this pathway as an emerging potential therapeutic target. This review article provides a comprehensive overview of the current understanding of the potential role of IL-6 in the development and progression of PC. We discuss mechansims by which the IL-6 pathway may contribute to peritoneal tumor dissemination, mesothelial adhesion and invasion, stromal invasion and proliferation, and immune response modulation. Finally, we review the prospects for targeting the IL-6 pathway in the treatment of PC, focusing on common sites of origin, including ovarian, gastric, pancreatic, colorectal and appendiceal cancer, and mesothelioma.
Collapse
Affiliation(s)
- Neda Dadgar
- Translational Hematology & Oncology Research, Enterprise Cancer Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Christopher Sherry
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Jenna Zimmerman
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Hyun Park
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Catherine Lewis
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Albert Donnenberg
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Ali H Zaidi
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Yong Fan
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Kunhong Xiao
- Center for Proteomics & Artificial Intelligence, Center for Clinical Mass Spectrometry, Allegheny Health Network Cancer Institute, Pittsburgh, PA, 15224, USA
| | - David Bartlett
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Vera Donnenberg
- University of Pittsburgh School of MedicineDepartment of Cardiothoracic SurgeryUPMC Hillman Cancer Center Wagner, Patrick; Allegheny Health Network Cancer Institute, Pittsburgh, USA
| | - Patrick L Wagner
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
6
|
Axemaker H, Plesselova S, Calar K, Jorgensen M, Wollman J, de la Puente P. Normal Uterine Fibroblast Are Reprogramed into Ovarian Cancer-Associated Fibroblasts by Ovarian Tumor-derived Conditioned Media. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560158. [PMID: 37873479 PMCID: PMC10592803 DOI: 10.1101/2023.09.29.560158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are key contributors to ovarian cancer (OC) progression and therapeutic resistance through dysregulation of the extracellular matrix (ECM). CAFs are a heterogenous population derived from different cell types through activation and reprogramming. Current studies rely on uncharacterized heterogenous primary CAFs or normal fibroblasts that fail to recapitulate CAF-like tumor behavior. Here, we present a translatable-based approach for the reprogramming of normal uterine fibroblasts into ovarian CAFs using ovarian tumor-derived conditioned media to establish two well-characterized ovarian conditioned CAF lines. Phenotypic and functional characterization demonstrated that the conditioned CAFs expressed a CAF-like phenotype, strengthened proliferation, secretory, contractility, and ECM remodeling properties when compared to resting normal fibroblasts, consistent with an activated fibroblast status. Moreover, conditioned CAFs significantly enhanced drug resistance and tumor progression and resembled a CAF-like subtype associated with worse prognosis. The present study provides a reproducible, cost-effective, and clinically relevant protocol to reprogram normal fibroblasts into CAFs using tumor-derived conditioned media. Using these resources, further development of therapeutics that possess potentiality and specificity towards CAF-mediated chemoresistance in OC are further warranted.
Collapse
|
7
|
Nenu I, Toadere TM, Topor I, Țichindeleanu A, Bondor DA, Trella ȘE, Sparchez Z, Filip GA. Interleukin-6 in Hepatocellular Carcinoma: A Dualistic Point of View. Biomedicines 2023; 11:2623. [PMID: 37892997 PMCID: PMC10603956 DOI: 10.3390/biomedicines11102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is a pressing health concern, demanding a deep understanding of various mediators' roles in its development for therapeutic progress. Notably, interleukin-6 (IL-6) has taken center stage in investigations due to its intricate and context-dependent functions. This review delves into the dual nature of IL-6 in HCC, exploring its seemingly contradictory roles as both a promoter and an inhibitor of disease progression. We dissect the pro-tumorigenic effects of IL-6, including its impact on tumor growth, angiogenesis, and metastasis. Concurrently, we examine its anti-tumorigenic attributes, such as its role in immune response activation, cellular senescence induction, and tumor surveillance. Through a comprehensive exploration of the intricate interactions between IL-6 and the tumor microenvironment, this review highlights the need for a nuanced comprehension of IL-6 signaling in HCC. It underscores the importance of tailored therapeutic strategies that consider the dynamic stages and diverse surroundings within the tumor microenvironment. Future research directions aimed at unraveling the multifaceted mechanisms of IL-6 in HCC hold promise for developing more effective treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Iuliana Nenu
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Department of Gastroenterology, "Prof. Dr. O. Fodor" Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Teodora Maria Toadere
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Ioan Topor
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Andra Țichindeleanu
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Daniela Andreea Bondor
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Șerban Ellias Trella
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Zeno Sparchez
- Department of Gastroenterology, "Prof. Dr. O. Fodor" Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- Department of Internal Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Kinoshita Y, Shiratsuchi N, Araki M, Inoue YH. Anti-Tumor Effect of Turandot Proteins Induced via the JAK/STAT Pathway in the mxc Hematopoietic Tumor Mutant in Drosophila. Cells 2023; 12:2047. [PMID: 37626857 PMCID: PMC10453024 DOI: 10.3390/cells12162047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Several antimicrobial peptides suppress the growth of lymph gland (LG) tumors in Drosophila multi sex comb (mxc) mutant larvae. The activity of another family of polypeptides, called Turandots, is also induced via the JAK/STAT pathway after bacterial infection; however, their influence on Drosophila tumors remains unclear. The JAK/STAT pathway was activated in LG tumors, fat body, and circulating hemocytes of mutant larvae. The mRNA levels of Turandot (Tot) genes increased markedly in the mutant fat body and declined upon silencing Stat92E in the fat body, indicating the involvement of the JAK/STAT pathway. Furthermore, significantly enhanced tumor growth upon a fat-body-specific silencing of the mRNAs demonstrated the antitumor effects of these proteins. The proteins were found to be incorporated into small vesicles in mutant circulating hemocytes (as previously reported for several antimicrobial peptides) but not normal cells. In addition, more hemocytes containing these proteins were found to be associated with tumors. The mutant LGs contained activated effector caspases, and a fat-body-specific silencing of Tots inhibited apoptosis and increased the number of mitotic cells in the LG, thereby suggesting that the proteins inhibited tumor cell proliferation. Thus, Tot proteins possibly exhibit antitumor effects via the induction of apoptosis and inhibition of cell proliferation.
Collapse
Affiliation(s)
| | | | | | - Yoshihiro H. Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Mastugasaki, Kyoto 606-0962, Japan; (Y.K.); (N.S.); (M.A.)
| |
Collapse
|
9
|
Morton M, Patterson J, Sciuva J, Perni J, Backes F, Nagel C, O'Malley DM, Chambers LM. Malnutrition, sarcopenia, and cancer cachexia in gynecologic cancer. Gynecol Oncol 2023; 175:142-155. [PMID: 37385068 DOI: 10.1016/j.ygyno.2023.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
Patients with gynecologic cancers are at risk for malnutrition, cancer cachexia, and sarcopenia. Accumulating data supports that malnourished patients with gynecologic cancer have worse overall survival, increased healthcare utilization and costs, and a higher incidence of postoperative complications and treatment toxicity than those who are not malnourished. Malnutrition is defined as insufficient energy intake, leading to altered body composition and subsequent impaired physical and cognitive function, and can result in sarcopenia and cachexia, defined as the loss of lean body mass and loss of body weight respectively. The etiology of cancer-related malnutrition is complex, resulting from a systemic pro-inflammatory state of malignancy with upregulation of muscle degradation pathways and metabolic derangements, including lipolysis and proteolysis, that may not respond to nutritional repletion alone. Numerous validated scoring systems and radiographic measures have been described to define and quantify the severity of malnutrition and muscle loss in both clinical and research settings. "Prehabilitation" and optimization of nutrition and functional status early in therapy may combat the development or worsening of malnutrition and associated syndromes and ultimately improve oncologic outcomes, but limited data exist in the context of gynecologic cancer. Multi-modality nutrition and physical activity interventions have been proposed to combat the biophysical losses related to malnutrition. Several trials are underway in gynecologic oncology patients to address these aims, but significant gaps in knowledge persist. Pharmacologic interventions and potential immune targets for combating cachexia related to malignancy are discussed in this review and may provide opportunities to target disease and cachexia. This article reviews currently available data regarding the implications, diagnostics, physiology, and intervention strategies for gynecologic oncology patients with malnutrition and its associated conditions.
Collapse
Affiliation(s)
- Molly Morton
- Division of Gynecologic Oncology; The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Starling Loving Hall, M210, 320 W. 10(th) Avenue, Columbus, OH 43210, United States of America.
| | - Jenna Patterson
- Department of Obstetrics and Gynecology; The Ohio State University Wexner Medical Center, 456 W 10(th) Avenue, Columbus, OH 43210, United States of America
| | - Jessica Sciuva
- The Ohio State University College of Medicine; 370 W. 9(th) Ave, Columbus, OH 43210, United States of America
| | - Jaya Perni
- The Ohio State University; 281 W Lane Ave, Columbus, OH 43210, United States of America
| | - Floor Backes
- Division of Gynecologic Oncology; The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Starling Loving Hall, M210, 320 W. 10(th) Avenue, Columbus, OH 43210, United States of America
| | - Christa Nagel
- Division of Gynecologic Oncology; The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Starling Loving Hall, M210, 320 W. 10(th) Avenue, Columbus, OH 43210, United States of America
| | - David M O'Malley
- Division of Gynecologic Oncology; The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Starling Loving Hall, M210, 320 W. 10(th) Avenue, Columbus, OH 43210, United States of America
| | - Laura M Chambers
- Division of Gynecologic Oncology; The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Starling Loving Hall, M210, 320 W. 10(th) Avenue, Columbus, OH 43210, United States of America
| |
Collapse
|
10
|
Bizoń M, Awiżeń-Panufnik Z, Sawicki W. Comparison of Interleukin-6 with Other Markers in Diagnosis of Ovarian Cancer. J Pers Med 2023; 13:980. [PMID: 37373969 DOI: 10.3390/jpm13060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The lack of specific symptoms in ovarian cancer delays onset of the diagnostic process. Hence, most cases are recognized in late stages of the disease. The aim of this study was to confirm the role of Il-6 compared to other markers in diagnosis and survival in ovarian cancer. The database was collected from 13 January 2021 to 15 February 2023. In total, 101 patients with pelvic tumors with a mean age of 57.86 ± 16.39 participated in the study. In every case, CA125, HE4, CEA, CA19-9, Il-6, C-reactive protein and procalcitonin measurements were taken. Patients with ovarian borderline tumor and metastatic ovarian tumors were excluded from further analysis. Statistically significant correlations were found between diagnosis of ovarian cancer and levels of CA125, HE4, CRP, PCT and Il-6. Comparison of Il-6 with other markers revealed that longer overall survival correlated with lower values of Il-6. In the case of a higher concentration of Il-6, OS and PFS were shorter. Sensitivity and specificity of Il-6 in diagnosis of ovarian cancer were 46.8% and 77.8%, respectively, while for CA125, CRP and PCT were 76.6% and 63%; 68% and 57.5%; 36% and 77%, respectively. More investigations are needed to identify the most specific and sensitive marker for ovarian cancer.
Collapse
Affiliation(s)
- Magdalena Bizoń
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 03-242 Warszawa, Poland
- LUX MED Oncology Hospital, sw. Wincentego 103, 03-291 Warszawa, Poland
| | - Zofia Awiżeń-Panufnik
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 03-242 Warszawa, Poland
| | - Włodzimierz Sawicki
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 03-242 Warszawa, Poland
| |
Collapse
|
11
|
Cheng CA, Chiang LC, Chu YS. Integrated pipeline for ultrasensitive protein detection in cancer nanomedicine. RSC Adv 2023; 13:14685-14697. [PMID: 37197682 PMCID: PMC10183811 DOI: 10.1039/d3ra02092d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Although nanotechnologies have attractive attributes in cancer therapy, their full potential has yet to be realized due to challenges in their translation to clinical settings. The evaluation of cancer nanomedicine efficacy in preclinical in vivo studies is limited to tumor size and animal survival metrics, which do not provide adequate understanding of the nanomedicine's mechanism of action. To address this, we have developed an integrated pipeline called nanoSimoa that combines an ultrasensitive protein detection technique (Simoa) with cancer nanomedicine. As a proof-of concept, we assessed the therapeutic efficacy of an ultrasound-responsive mesoporous silica nanoparticle (MSN) drug delivery system on OVCAR-3 ovarian cancer cells using CCK-8 assays to evaluate cell viability and Simoa assays to measure IL-6 protein levels. The results demonstrated significant reductions in both IL-6 levels and cell viability following nanomedicine treatment. In addition, a Ras Simoa assay (limit of detection: 0.12 pM) was developed to detect and quantify Ras protein levels in OVCAR-3 cells, which are undetectable by commercial enzyme-linked immunosorbent assays (ELISA). These results suggest that nanoSimoa has the potential to guide the development of cancer nanomedicines and predict their behavior in vivo, making it a valuable tool for preclinical testing and accelerating the development of precision medicine if its generalizability is confirmed.
Collapse
Affiliation(s)
- Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University Taipei 10050 Taiwan
| | - Li-Chiao Chiang
- School of Pharmacy, College of Medicine, National Taiwan University Taipei 10050 Taiwan
| | - Yu-Syuan Chu
- School of Pharmacy, College of Medicine, National Taiwan University Taipei 10050 Taiwan
| |
Collapse
|
12
|
Koren Carmi Y, Khamaisi H, Adawi R, Noyman E, Gopas J, Mahajna J. Secreted Soluble Factors from Tumor-Activated Mesenchymal Stromal Cells Confer Platinum Chemoresistance to Ovarian Cancer Cells. Int J Mol Sci 2023; 24:ijms24097730. [PMID: 37175439 PMCID: PMC10178190 DOI: 10.3390/ijms24097730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer (OC) ranks as the second most common type of gynecological malignancy, has poor survival rates, and is frequently diagnosed at an advanced stage. Platinum-based chemotherapy, such as carboplatin, represents the standard-of-care for OC. However, toxicity and acquired resistance to therapy have proven challenging for the treatment of patients. Chemoresistance, a principal obstacle to durable response in OC patients, is attributed to alterations within the cancer cells, and it can also be mediated by the tumor microenvironment (TME). In this study, we report that conditioned medium (CM) derived from murine and human stromal cells, MS-5 and HS-5, respectively, and tumor-activated HS-5, was active in conferring platinum chemoresistance to OC cells. Moreover, CM derived from differentiated murine pre-adipocyte (3T3-L1), but not undifferentiated pre-adipocyte cells, confers platinum chemoresistance to OC cells. Interestingly, CM derived from tumor-activated HS-5 was more effective in conferring chemoresistance than was CM derived from HS-5 cells. Various OC cells exhibit variable sensitivity to CM activity. Exploring CM content revealed the enrichment of a number of soluble factors in the tumor-activated HS-5, such as soluble uPAR (SuPAR), IL-6, and hepatocyte growth factor (HGF). FDA-approved JAK inhibitors were mildly effective in restoring platinum sensitivity in two of the three OC cell lines in the presence of CM. Moreover, Crizotinib, an ALK and c-MET inhibitor, in combination with platinum, blocked HGF's ability to promote platinum resistance and to restore platinum sensitivity to OC cells. Finally, exposure to 2-hydroxyestardiol (2HE2) was effective in restoring platinum sensitivity to OC cells exposed to CM. Our results showed the significance of soluble factors found in TME in promoting platinum chemoresistance and the potential of combination therapy to restore chemosensitivity to OC cells.
Collapse
Affiliation(s)
- Yifat Koren Carmi
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer Sheva 8400101, Israel
| | - Hazem Khamaisi
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Rina Adawi
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Eden Noyman
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Jacob Gopas
- Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer Sheva 8400101, Israel
- Department of Oncology, Soroka University Medical Center, Beer Sheva 8400101, Israel
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
13
|
Gong X, Chi H, Strohmer DF, Teichmann AT, Xia Z, Wang Q. Exosomes: A potential tool for immunotherapy of ovarian cancer. Front Immunol 2023; 13:1089410. [PMID: 36741380 PMCID: PMC9889675 DOI: 10.3389/fimmu.2022.1089410] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is a malignant tumor of the female reproductive system, with a very poor prognosis and high mortality rates. Chemotherapy and radiotherapy are the most common treatments for ovarian cancer, with unsatisfactory results. Exosomes are a subpopulation of extracellular vesicles, which have a diameter of approximately 30-100 nm and are secreted by many different types of cells in various body fluids. Exosomes are highly stable and are effective carriers of immunotherapeutic drugs. Recent studies have shown that exosomes are involved in various cellular responses in the tumor microenvironment, influencing the development and therapeutic efficacy of ovarian cancer, and exhibiting dual roles in inhibiting and promoting tumor development. Exosomes also contain a variety of genes related to ovarian cancer immunotherapy that could be potential biomarkers for ovarian cancer diagnosis and prognosis. Undoubtedly, exosomes have great therapeutic potential in the field of ovarian cancer immunotherapy. However, translation of this idea to the clinic has not occurred. Therefore, it is important to understand how exosomes could be used in ovarian cancer immunotherapy to regulate tumor progression. In this review, we summarize the biomarkers of exosomes in different body fluids related to immunotherapy in ovarian cancer and the potential mechanisms by which exosomes influence immunotherapeutic response. We also discuss the prospects for clinical application of exosome-based immunotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany,*Correspondence: Zhijia Xia, ; Qin Wang,
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: Zhijia Xia, ; Qin Wang,
| |
Collapse
|
14
|
Rašková M, Lacina L, Kejík Z, Venhauerová A, Skaličková M, Kolář M, Jakubek M, Rosel D, Smetana K, Brábek J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities. Cells 2022; 11:3698. [PMID: 36429126 PMCID: PMC9688109 DOI: 10.3390/cells11223698] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Interleukin 6 (IL-6) belongs to a broad class of cytokines involved in the regulation of various homeostatic and pathological processes. These activities range from regulating embryonic development, wound healing and ageing, inflammation, and immunity, including COVID-19. In this review, we summarise the role of IL-6 signalling pathways in cancer biology, with particular emphasis on cancer cell invasiveness and metastasis formation. Targeting principal components of IL-6 signalling (e.g., IL-6Rs, gp130, STAT3, NF-κB) is an intensively studied approach in preclinical cancer research. It is of significant translational potential; numerous studies strongly imply the remarkable potential of IL-6 signalling inhibitors, especially in metastasis suppression.
Collapse
Affiliation(s)
- Magdalena Rašková
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Lukáš Lacina
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Zdeněk Kejík
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Markéta Skaličková
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Kolář
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 140 00 Prague, Czech Republic
| | - Milan Jakubek
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Karel Smetana
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
15
|
Liu D, Luo X, Xie M, Zhang T, Chen X, Zhang B, Sun M, Wang Y, Feng Y, Ji X, Li Y, Liu B, Huang W, Xia L. HNRNPC downregulation inhibits IL-6/STAT3-mediated HCC metastasis by decreasing HIF1A expression. Cancer Sci 2022; 113:3347-3361. [PMID: 35848884 PMCID: PMC9530878 DOI: 10.1111/cas.15494] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
RNA‐binding protein (RBP) dysregulation is functionally linked to several human diseases, including neurological disorders, cardiovascular disease, and cancer. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RBPs involved in nucleic acid metabolism. A growing body of studies has shown that the dysregulated hnRNPs play important roles in tumorigenesis. Here, we found that heterogeneous nuclear ribonucleoprotein C (C1/C2) (HNRNPC) had good performance in distinguishing between hepatocellular carcinoma (HCC) and normal liver tissues through bioinformatics analysis. Further investigation revealed that HNRNPC was significantly correlated with multiple malignant characteristics of HCC, including tumor size, microvascular invasion, tumor differentiation, and TNM stage. Patients with HCC with positive HNRNPC expression exhibited decreased overall survival and increased recurrence rate. HNRNPC downregulation inhibited HCC invasion and metastasis. The decreased expression of hypoxia inducible factor 1 subunit alpha (HIF1A) was identified as the molecular mechanism underlying HNRNPC downregulation‐inhibited HCC metastasis by RNA sequencing. Mechanistically, HNRNPC downregulation decreased HIF1A expression by destabilizing HIF1A mRNA. HIF1A overexpression rescued the decrease in invasiveness and metastasis of HCC induced by HNRNPC downregulation. Additionally, interleukin (IL)‐6/STAT3 signaling upregulated HNRNPC expression in HCC cells, and knockdown of HNRNPC significantly inhibited IL‐6/STAT3‐enhanced HCC metastasis. Furthermore, anti‐IL‐6 antibody siltuximab significantly inhibited IL‐6‐mediated HCC metastasis. In summary, our research revealed the clinical value, functional role, and molecular mechanism of HNRNPC in HCC and showed the potential of HNRNPC as a biomarker for diagnosis, prognosis, and further therapeutic targets for HCC.
Collapse
Affiliation(s)
- Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yangyang Feng
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
16
|
Zhang M, Chen Z, Wang Y, Zhao H, Du Y. The Role of Cancer-Associated Fibroblasts in Ovarian Cancer. Cancers (Basel) 2022; 14:2637. [PMID: 35681617 PMCID: PMC9179444 DOI: 10.3390/cancers14112637] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer is a lethal gynecologic tumor and is generally resistant to conventional treatments. Stable cancer-associated fibroblasts (CAFs) are important cellular components in the ovarian cancer tumor microenvironment and may provide novel resources for future treatment strategies. Different subtypes of CAFs display specific functions in tumor pathogenesis and various CAF markers suggest potential treatment targets, such as FAP and GPR77. Both autocrine and paracrine cytokines play important roles in the CAF activation process and regulate tumor progression. Downstream mediators and pathways, including IL-6, TGF-β, NF-κB, mitogen-activated protein kinase (MAPK), and AKT/mTOR/(p70S6K), play important roles in the initiation, proliferation, invasiveness, and metastasis of ovarian cancer cells and also participate in angiogenesis, therapeutic resistance, and other biological processes. Several clinical or preclinical trials have targeted stromal fibroblasts and focused on the properties of CAFs to enhance ovarian cancer treatment outcomes. This review concentrates on the origins, subtypes, and activation of CAFs, as well as specific roles of CAFs in regulating tumor development and drug resistance, and aims to provide potential and prospective targets for improving the therapeutic efficacy of ovarian cancer treatment.
Collapse
Affiliation(s)
- Mo Zhang
- Clinical Research Unit, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (M.Z.); (Z.C.); (Y.W.)
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Zhixian Chen
- Clinical Research Unit, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (M.Z.); (Z.C.); (Y.W.)
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yan Wang
- Clinical Research Unit, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (M.Z.); (Z.C.); (Y.W.)
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Hongbo Zhao
- Clinical Research Unit, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (M.Z.); (Z.C.); (Y.W.)
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yan Du
- Clinical Research Unit, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (M.Z.); (Z.C.); (Y.W.)
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
17
|
Tumors and Cytomegalovirus: An Intimate Interplay. Viruses 2022; 14:v14040812. [PMID: 35458542 PMCID: PMC9028007 DOI: 10.3390/v14040812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that alternates lytic and latent infection, infecting between 40 and 95% of the population worldwide, usually without symptoms. During its lytic cycle, HCMV can result in fever, asthenia, and, in some cases, can lead to severe symptoms such as hepatitis, pneumonitis, meningitis, retinitis, and severe cytomegalovirus disease, especially in immunocompromised individuals. Usually, the host immune response keeps the virus in a latent stage, although HCMV can reactivate in an inflammatory context, which could result in sequential lytic/latent viral cycles during the lifetime and thereby participate in the HCMV genomic diversity in humans and the high level of HCMV intrahost genomic variability. The oncomodulatory role of HCMV has been reported, where the virus will favor the development and spread of cancerous cells. Recently, an oncogenic role of HCMV has been highlighted in which the virus will directly transform primary cells and might therefore be defined as the eighth human oncovirus. In light of these new findings, it is critical to understand the role of the immune landscape, including the tumor microenvironment present in HCMV-harboring tumors. Finally, the oncomodulatory/oncogenic potential of HCMV could lead to the development of novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies and new therapeutic approaches are actively needed, particularly to fight tumors of poor prognosis.
Collapse
|