1
|
Pongratz G, Straub RH. Chronic Effects of the Sympathetic Nervous System in Inflammatory Models. Neuroimmunomodulation 2023; 30:113-134. [PMID: 37231902 DOI: 10.1159/000530969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
The immune system is embedded in a network of regulatory systems to keep homeostasis in case of an immunologic challenge. Neuroendocrine immunologic research has revealed several aspects of these interactions over the past decades, e.g., between the autonomic nervous system and the immune system. This review will focus on evidence revealing the role of the sympathetic nervous system (SNS) in chronic inflammation, like colitis, multiple sclerosis, systemic sclerosis, lupus erythematodes, and arthritis with a focus on animal models supported by human data. A theory of the contribution of the SNS in chronic inflammation will be presented that spans these disease entities. One major finding is the biphasic nature of the sympathetic contribution to inflammation, with proinflammatory effects until the point of disease outbreak and mainly anti-inflammatory influence thereafter. Since sympathetic nerve fibers are lost from sites of inflammation during inflammation, local cells and immune cells achieve the capability to endogenously produce catecholamines to fine-tune the inflammatory response independent of brain control. On a systemic level, it has been shown across models that the SNS is activated in inflammation as opposed to the parasympathetic nervous system. Permanent overactivity of the SNS contributes to many of the known disease sequelae. One goal of neuroendocrine immune research is defining new therapeutic targets. In this respect, it will be discussed that at least in arthritis, it might be beneficial to support β-adrenergic and inhibit α-adrenergic activity besides restoring autonomic balance. Overall, in the clinical setting, we now need controlled interventional studies to successfully translate the theoretical knowledge into benefits for patients.
Collapse
Affiliation(s)
- Georg Pongratz
- Department of Gastroenterology, Division of Rheumatology and Clinical Immunology, St. John of God Hospital, Regensburg, Germany
- Medical Faculty of the University of Regensburg, Regensburg, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Pilipović I, Stojić-Vukanić Z, Leposavić G. Adrenoceptors as potential target for add-on immunomodulatory therapy in multiple sclerosis. Pharmacol Ther 2023; 243:108358. [PMID: 36804434 DOI: 10.1016/j.pharmthera.2023.108358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
This review summarizes recent findings related to the role of the sympathetic nervous system (SNS) in pathogenesis of multiple sclerosis (MS) and its commonly used experimental model - experimental autoimmune encephalomyelitis (EAE). They indicate that noradrenaline, the key end-point mediator of the SNS, acting through β-adrenoceptor, has a contributory role in the early stages of MS/EAE development. This stage is characterized by the SNS hyperactivity (increased release of noradrenaline) reflecting the net effect of different factors, such as the disease-associated inflammation, stress, vitamin D hypovitaminosis, Epstein-Barr virus infection and dysbiosis. Thus, the administration of propranolol, a non-selective β-adrenoceptor blocker, readily crossing the blood-brain barrier, to experimental rats before the autoimmune challenge and in the early (preclinical/prodromal) phase of the disease mitigates EAE severity. This phenomenon has been ascribed to the alleviation of neuroinflammation (due to attenuation of primarily microglial activation/proinflammatory functions) and the diminution of the magnitude of the primary CD4+ T-cell autoimmune response (the effect associated with impaired autoantigen uptake by antigen presenting cells and their migration into draining lymph nodes). The former is partly related to breaking of the catecholamine-dependent self-amplifying microglial feed-forward loop and the positive feedback loop between microglia and the SNS, leading to down-regulation of the SNS hyperactivity and its enhancing influence on microglial activation/proinflammatory functions and the magnitude of autoimmune response. The effects of propranolol are shown to be more prominent in male EAE animals, the phenomenon important as males (like men) are likely to develop clinically more severe disease. Thus, these findings could serve as a firm scientific background for formulation of a new sex-specific immune-intervention strategy for the early phases of MS (characterized by the SNS hyperactivity) exploiting anti-(neuro)inflammatory and immunomodulatory properties of propranolol and other relatively cheap and safe adrenergic drugs with similar therapeutic profile.
Collapse
Affiliation(s)
- Ivan Pilipović
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- University of Belgrade-Faculty of Pharmacy, Department of Microbiology and Immunology, Belgrade, Serbia
| | - Gordana Leposavić
- University of Belgrade-Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia.
| |
Collapse
|
3
|
Vasconcelos DP, Jabangwe C, Lamghari M, Alves CJ. The Neuroimmune Interplay in Joint Pain: The Role of Macrophages. Front Immunol 2022; 13:812962. [PMID: 35355986 PMCID: PMC8959978 DOI: 10.3389/fimmu.2022.812962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 12/29/2022] Open
Abstract
Chronic pain associated with joint disorders, such as rheumatoid arthritis (RA), osteoarthritis (OA) and implant aseptic loosening (AL), is a highly debilitating symptom that impacts mobility and quality of life in affected patients. The neuroimmune crosstalk has been demonstrated to play a critical role in the onset and establishment of chronic pain conditions. Immune cells release cytokines and immune mediators that can activate and sensitize nociceptors evoking pain, through interaction with receptors in the sensory nerve terminals. On the other hand, sensory and sympathetic nerve fibers release neurotransmitters that bind to their specific receptor expressed on surface of immune cells, initiating an immunomodulatory role. Macrophages have been shown to be key players in the neuroimmune crosstalk. Moreover, macrophages constitute the dominant immune cell population in RA, OA and AL. Importantly, the targeting of macrophages can result in anti-nociceptive effects in chronic pain conditions. Therefore, the aim of this review is to discuss the nature and impact of the interaction between the inflammatory response and nerve fibers in these joint disorders regarding the genesis and maintenance of pain. The role of macrophages is highlighted. The alteration in the joint innervation pattern and the inflammatory response are also described. Additionally, the immunomodulatory role of sensory and sympathetic neurotransmitters is revised.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Clive Jabangwe
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar, Universidade de Porto, Porto, Portugal
| | - Cecília J Alves
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Bellinger DL, Wood C, Wergedal JE, Lorton D. Driving β 2- While Suppressing α-Adrenergic Receptor Activity Suppresses Joint Pathology in Inflammatory Arthritis. Front Immunol 2021; 12:628065. [PMID: 34220796 PMCID: PMC8249812 DOI: 10.3389/fimmu.2021.628065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Hypersympathetic activity is prominent in rheumatoid arthritis, and major life stressors precede onset in ~80% of patients. These findings and others support a link between stress, the sympathetic nervous system and disease onset and progression. Here, we extend previous research by evaluating how selective peripherally acting α/β2-adrenergic drugs affect joint destruction in adjuvant-induced arthritis. Methods Complete Freund's adjuvant induced inflammatory arthritis in male Lewis rats. Controls received no treatment. Arthritic rats then received vehicle or twice-daily treatment with the α-adrenergic antagonist, phentolamine (0.5 mg/day) and the β2-adrenergic agonist, terbutaline (1200 µg/day, collectively named SH1293) from day (D) of disease onset (D12) through acute (D21) and severe disease (D28). Disease progression was assessed in the hind limbs using dorsoplantar widths, X-ray analysis, micro-computed tomography, and routine histology on D14, D21, and D28 post-immunization. Results On D21, SH1293 significantly attenuated arthritis in the hind limbs, based on reduced lymphocytic infiltration, preservation of cartilage, and bone volume. Pannus formation and sympathetic nerve loss were not affected by SH1293. Bone area and osteoclast number revealed high- and low-treatment-responding groups. In high-responding rats, treatment with SH1293 significantly preserved bone area and decreased osteoclast number, data that correlated with drug-mediated joint preservation. SH1293 suppressed abnormal bone formation based on reduced production of osteophytes. On D28, the arthritic sparing effects of SH1293 on lymphocytic infiltration, cartilage and bone sparing were maintained at the expense of bone marrow adipocity. However, sympathetic nerves were retracted from the talocrural joint. Conclusion and Significance Our findings support a significant delay in early arthritis progression by treatment with SH1293. Targeting sympathetic neurotransmission may provide a strategy to slow disease progression.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic beta-2 Receptor Agonists/pharmacology
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Drug Combinations
- Freund's Adjuvant
- Joints/diagnostic imaging
- Joints/drug effects
- Joints/metabolism
- Joints/pathology
- Male
- Phentolamine/pharmacology
- Rats, Inbred Lew
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction
- Terbutaline/pharmacology
- Rats
Collapse
Affiliation(s)
- Denise L. Bellinger
- Department of Human Anatomy and Pathology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Carlo Wood
- Department of Human Anatomy and Pathology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jon E. Wergedal
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Departments of Medicine and Biochemistry, Loma Linda University, Loma Linda, CA, United States
| | - Dianne Lorton
- Hoover Arthritis Research Center, Banner Health Research Institute, Sun City, AZ, United States
| |
Collapse
|
5
|
Lückemann L, Stangl H, Straub RH, Schedlowski M, Hadamitzky M. Learned Immunosuppressive Placebo Response Attenuates Disease Progression in a Rodent Model of Rheumatoid Arthritis. Arthritis Rheumatol 2020; 72:588-597. [PMID: 31509354 DOI: 10.1002/art.41101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Patients with chronic inflammatory autoimmune diseases benefit from a broad spectrum of immunosuppressive and antiproliferative medication available today. However, nearly all of these therapeutic compounds have unwanted toxic side effects. Recent knowledge about the neurobiology of placebo responses indicates that associative learning procedures can be utilized for dose reduction in immunopharmacotherapy while simultaneously maintaining treatment efficacy. This study was undertaken to examine whether and to what extent a 75% reduction of pharmacologic medication in combination with learned immunosuppression affects the clinical outcome in a rodent model of type II collagen-induced arthritis. METHODS An established protocol of taste-immune conditioning was applied in a disease model of chronic inflammatory autoimmune disease (type II collagen-induced arthritis) in rats, where a novel taste (saccharin; conditioned stimulus [CS]) was paired with an injection of the immunosuppressive drug cyclosporin A (CSA) (unconditioned stimulus [US]). Following conditioning with 3 CS/US pairings (acquisition), the animals were immunized with type II collagen and Freund's incomplete adjuvant. Fourteen days later, at the first occurrence of clinical symptoms, retrieval was started by presenting the CS together with low-dose CSA as reminder cues to prevent the conditioned response from being extinguished. RESULTS This "memory-updating" procedure stabilized the learned immune response and significantly suppressed disease progression in immunized rats. Clinical arthritis score and histologic inflammatory symptoms (both P < 0.05) were significantly diminished by learned immunosuppression in combination with low-dose CSA (25% of the full therapeutic dose) via β-adrenoceptor-dependent mechanisms, to the same extent as with full-dose (100%) pharmacologic treatment. CONCLUSION These results indicate that learned immunosuppression appears to be mediated via β-adrenoceptors and might be beneficial as a supportive regimen in the treatment of chronic inflammatory autoimmune diseases by diminishing disease exacerbation.
Collapse
Affiliation(s)
- Laura Lückemann
- University Hospital Essen and University of Duisburg-Essen, Essen, Germany
| | | | | | | | - Martin Hadamitzky
- University Hospital Essen and University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Cox MA, Bassi C, Saunders ME, Nechanitzky R, Morgado-Palacin I, Zheng C, Mak TW. Beyond neurotransmission: acetylcholine in immunity and inflammation. J Intern Med 2020; 287:120-133. [PMID: 31710126 DOI: 10.1111/joim.13006] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/24/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
Acetylcholine (ACh) is best known as a neurotransmitter and was the first such molecule identified. ACh signalling in the neuronal cholinergic system has long been known to regulate numerous biological processes (reviewed by Beckmann and Lips). In actuality, ACh is a ubiquitous signalling molecule that is produced by numerous non-neuronal cell types and even by some single-celled organisms. Within multicellular organisms, a non-neuronal cholinergic system that includes the immune system functions in parallel with the neuronal cholinergic system. Several immune cell types both respond to ACh signals and can directly produce ACh. Recent work from our laboratory has demonstrated that the capacity to produce ACh is an intrinsic property of T cells responding to viral infection, and that this ability to produce ACh is dependent upon IL-21 signalling to the T cells. Furthermore, during infection this immune-derived ACh is necessary for the T cells to migrate into infected tissues. In this review, we will discuss the various sources of ACh that are relevant during immune responses and describe how ACh acts on immune cells to influence their functions. We will also address the clinical implications of this fascinating aspect of immunity, focusing on ACh's role in the migration of T cells during infection and cancer.
Collapse
Affiliation(s)
- M A Cox
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - C Bassi
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - M E Saunders
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - R Nechanitzky
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - I Morgado-Palacin
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - C Zheng
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - T W Mak
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
7
|
Straub RH, Dufner B, Rauch L. Proinflammatory α-Adrenergic Neuronal Regulation of Splenic IFN-γ, IL-6, and TGF-β of Mice from Day 15 onwards in Arthritis. Neuroimmunomodulation 2020; 27:58-68. [PMID: 32610310 PMCID: PMC7446300 DOI: 10.1159/000508109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION In arthritic mice, a sympathetic influence is proinflammatory from the time point of immunization until the onset of disease (days 0-32), but reasons are unknown. Disruption of the major anti-inflammatory pathway through Gαs-coupled receptors probably play a role. For example, noradrenaline cannot operate via anti-inflammatory β2-adrenoceptors but through proinflammatory α1/2-ad-renoceptors. This might happen, first, through a loss of sympathetic nerve fibers in inflamed tissue with low neurotransmitter levels (noradrenaline only binds to high-affinity α-adrenoceptors) and, second, through an alteration in G-protein receptor coupling with a predominance of α-adrenergic signaling. We hypothesized that both mechanisms play a role in the course of collagen type II-induced arthritis (CIA) in the spleen in mice. METHODS In CIA mice, nerve fiber density in the spleen was quantified by immunohistochemistry techniques. The functional impact of sympathetic nerve fibers in the spleen was studied by a micro-superfusion technique of spleen slices with a focus on the secretion of IFN-γ and IL-6 (proinflammatory) and TGF-β (anti-inflammatory). RESULTS During CIA, sympathetic nerve fibers get increasingly lost from day14 until day 55 after immunization. The influence of electrically released noradrenaline diminishes in the course of arthritis. At all investigated time points (days 14, 32, and 55), only proinflammatory neuronal α-adrenergic effects on cytokine secretion were demonstrated (i.e., stimulation of IFN-γ and IL-6 and inhibition of TGF-β). CONCLUSION Sympathetic nerve fibers are rapidly lost in the spleen, and only proinflammatory α-adrenergic neuronal regulation of cytokine secretion takes place throughout the course of arthritis. These results support a predominance of a proinflammatory α-adrenergic sympathetic influence in arthritis.
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, Regensburg, Germany,
| | - Bianca Dufner
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, Regensburg, Germany
| | - Luise Rauch
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, Regensburg, Germany
| |
Collapse
|
8
|
Tatu AL, Elisei AM, Chioncel V, Miulescu M, Nwabudike LC. Immunologic adverse reactions of β-blockers and the skin. Exp Ther Med 2019; 18:955-959. [PMID: 31384329 PMCID: PMC6639944 DOI: 10.3892/etm.2019.7504] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022] Open
Abstract
β-Blockers are a widely utilised class of medication. They have been in use for a variety of systemic disorders including hypertension, heart failure and intention tremors. Their use in dermatology has garnered growing interest with the discovery of their therapeutic effects in the treatment of haemangiomas, their potential positive effects in wound healing, Kaposi sarcoma, melanoma and pyogenic granuloma, and, more recently, pemphigus. Since β-blockers are deployed in a variety of disorders, which have cutaneous co-morbidities such as psoriasis, their pertinence to dermatologists cannot be overstated. Likewise, β-blockers, like any other drug category, carry risks of side effects, some of which are dermatologic. These include triggering and exacerbation of psoriasis, psoriatic and rheumatoid arthritis, anaphylaxis, contact dermatitis, occupational contact dermatitis, Raynaud's disease, alopecia, lichen planus-like drug eruption, hyperhydrosis and vitiligo. While recent articles have focussed on the positive uses of β-blockers, it may also be wise to call our attention to the potential dermatologic adverse effects that may follow β-blocker use, as well as possible therapeutic approaches to these. This short review will focus on those dermatoses resulting from β-blocker use, which have an immunologic basis.
Collapse
Affiliation(s)
- Alin Laurentiu Tatu
- Medical and Pharmaceutical Research Unit/Competitive, Interdisciplinary Research Integrated Platform 'Dunărea de Jos', ReForm-UDJG; Research Centre in the Field of Medical and Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Department of Pharmaceutical Sciences, 'Dunărea de Jos' University of Galați, 800010 Galati, Romania
| | - Alina Mihaela Elisei
- Medical and Pharmaceutical Research Unit/Competitive, Interdisciplinary Research Integrated Platform 'Dunărea de Jos', ReForm-UDJG; Research Centre in the Field of Medical and Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Department of Pharmaceutical Sciences, 'Dunărea de Jos' University of Galați, 800010 Galati, Romania
| | - Valentin Chioncel
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, 'Carol Davila' University of Medicine and Phamacy, 050474 Bucharest, Romania
| | - Magdalena Miulescu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, 'Dunarea de Jos University' of Galati, 800010 Galati, Romania
| | - Lawrence Chukwudi Nwabudike
- Department of Diabetic Foot Care, 'Prof. N. Paulescu' National Institute of Diabetes, 011233 Bucharest, Romania
| |
Collapse
|
9
|
|
10
|
Chen J, Wang Y, Wu H, Yan S, Chang Y, Wei W. A Modified Compound From Paeoniflorin, CP-25, Suppressed Immune Responses and Synovium Inflammation in Collagen-Induced Arthritis Mice. Front Pharmacol 2018; 9:563. [PMID: 29930509 PMCID: PMC5999790 DOI: 10.3389/fphar.2018.00563] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022] Open
Abstract
Paeoniflorin-6’-O-benzene sulfonate (CP-25) is a modified paeoniflorin, which is the main bioactive component of total glucosides of peony. This study evaluated the anti-inflammatory and immunoregulatory effects of CP-25 in mice with collagen-induced arthritis (CIA) and the potential mechanisms underlying these effects. After the onset of CIA, mice were given CP-25 (17.5, 35, or 70 mg/kg) or methotrexate (MTX, 2.0 mg/kg). The arthritis index, swollen joint count, and joint and spleen histopathology were evaluated. T and B cell subsets were assayed using flow cytometry, while the proliferation of these cells and fibroblast-like synoviocytes (FLSs) were evaluated using the Cell Counting Kit-8. β2-adrenoceptor (β2-AR) expression was assayed using flow cytometry, immunohistochemistry, and western blotting. FLS migration and invasion were assayed using Transwells. CP-25 (35 or 70 mg/kg) attenuated the arthritis index and swollen joint count, alleviated joint and spleen histopathology, suppressed excessive T cell activation, and attenuated humoral immunity in CIA mice. CP-25 increased β2-AR expression on T cells, B cells, dendritic cells, and the synovium in CIA mice. CP-25 up-regulated the β2-AR agonist response and attenuated FLS activation; these effects may reflect CP-25-mediated reduction of β2-AR desensitization due to down-regulation of membrane G protein-coupled receptor kinase 2 expression. These results suggest that CP-25 suppressed immune responses and synovium inflammation in mice with CIA, effects that were associated with reduced β2-AR desensitization and the promotion of β2-AR signaling.
Collapse
Affiliation(s)
- Jingyu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Ying Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Huaxun Wu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Shangxue Yan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Yan Chang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, China
| |
Collapse
|
11
|
Bellinger DL, Lorton D. Sympathetic Nerve Hyperactivity in the Spleen: Causal for Nonpathogenic-Driven Chronic Immune-Mediated Inflammatory Diseases (IMIDs)? Int J Mol Sci 2018; 19:ijms19041188. [PMID: 29652832 PMCID: PMC5979464 DOI: 10.3390/ijms19041188] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Immune-Mediated Inflammatory Diseases (IMIDs) is a descriptive term coined for an eclectic group of diseases or conditions that share common inflammatory pathways, and for which there is no definitive etiology. IMIDs affect the elderly most severely, with many older individuals having two or more IMIDs. These diseases include, but are not limited to, type-1 diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, and autoimmunity, such as rheumatoid arthritis (RA), Sjőgren's syndrome, systemic lupus erythematosus, psoriasis, psoriatic arthritis, and multiple sclerosis. These diseases are ostensibly unrelated mechanistically, but increase in frequency with age and share chronic systemic inflammation, implicating major roles for the spleen. Chronic systemic and regional inflammation underlies the disease manifestations of IMIDs. Regional inflammation and immune dysfunction promotes targeted end organ tissue damage, whereas systemic inflammation increases morbidity and mortality by affecting multiple organ systems. Chronic inflammation and skewed dysregulated cell-mediated immune responses drive many of these age-related medical disorders. IMIDs are commonly autoimmune-mediated or suspected to be autoimmune diseases. Another shared feature is dysregulation of the autonomic nervous system and hypothalamic pituitary adrenal (HPA) axis. Here, we focus on dysautonomia. In many IMIDs, dysautonomia manifests as an imbalance in activity/reactivity of the sympathetic and parasympathetic divisions of the autonomic nervous system (ANS). These major autonomic pathways are essential for allostasis of the immune system, and regulating inflammatory processes and innate and adaptive immunity. Pathology in ANS is a hallmark and causal feature of all IMIDs. Chronic systemic inflammation comorbid with stress pathway dysregulation implicate neural-immune cross-talk in the etiology and pathophysiology of IMIDs. Using a rodent model of inflammatory arthritis as an IMID model, we report disease-specific maladaptive changes in β₂-adrenergic receptor (AR) signaling from protein kinase A (PKA) to mitogen activated protein kinase (MAPK) pathways in the spleen. Beta₂-AR signal "shutdown" in the spleen and switching from PKA to G-coupled protein receptor kinase (GRK) pathways in lymph node cells drives inflammation and disease advancement. Based on these findings and the existing literature in other IMIDs, we present and discuss relevant literature that support the hypothesis that unresolvable immune stimulation from chronic inflammation leads to a maladaptive disease-inducing and perpetuating sympathetic response in an attempt to maintain allostasis. Since the role of sympathetic dysfunction in IMIDs is best studied in RA and rodent models of RA, this IMID is the primary one used to evaluate data relevant to our hypothesis. Here, we review the relevant literature and discuss sympathetic dysfunction as a significant contributor to the pathophysiology of IMIDs, and then discuss a novel target for treatment. Based on our findings in inflammatory arthritis and our understanding of common inflammatory process that are used by the immune system across all IMIDs, novel strategies to restore SNS homeostasis are expected to provide safe, cost-effective approaches to treat IMIDs, lower comorbidities, and increase longevity.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Dianne Lorton
- College of Arts and Sciences, Kent State University, Kent, OH 44304, USA.
| |
Collapse
|
12
|
Dopaminergic receptors and adrenoceptors in circulating lymphocytes as putative biomarkers for the early onset and progression of multiple sclerosis. J Neuroimmunol 2016; 298:82-9. [DOI: 10.1016/j.jneuroim.2016.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022]
|
13
|
Gómez-SanMiguel AB, Gomez-Moreira C, Nieto-Bona MP, Fernández-Galaz C, Villanúa MÁ, Martín AI, López-Calderón A. Formoterol decreases muscle wasting as well as inflammation in the rat model of rheumatoid arthritis. Am J Physiol Endocrinol Metab 2016; 310:E925-37. [PMID: 27245339 DOI: 10.1152/ajpendo.00503.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
Abstract
Adjuvant-induced arthritis is an experimental model of rheumatoid arthritis that is associated with body weight loss and muscle wasting. β2-adrenergic receptor agonists are powerful anabolic agents that trigger skeletal muscle hypertrophy and have been proposed as a promising treatment for muscle wasting in human patients. The aim of this work was to determine whether formoterol, a selective β2-adrenoreceptor agonist, is able to ameliorate muscle wasting in arthritic rats. Arthritis was induced in male Wistar rats by intradermal injection of Freund's adjuvant. Control and arthritic rats were injected daily with 50 μg/kg sc formoterol or saline for 12 days. Body weight change, food intake, and arthritis index were analyzed. After euthanasia, in the gastrocnemius mRNA was analyzed by PCR, and proteins were analyzed by Western blotting. Arthritis decreased gastrocnemius weight, cross-sectional area, and myofiber size, whereas formoterol increased those variables in both arthritic and control rats. Formoterol decreased the external signs of arthritis as well as NF-κB(p65) activation, TNFα, and COX-2 levels in the gastrocnemius of arthritic and control rats. Those effects of formoterol were associated with a decreased expression of myostatin, atrogin-1, and MuRF1 and in LC3b lipidation. Arthritis increased the expression of MyoD, myogenin, IGF-I, and IGFBP-3 and -5 in the gastrocnemius. In control and in arthritic rats, treatment with formoterol increased Akt phosphorylation and myogenin levels, whereas it decreased IGFBP-3 expression in the gastrocnemius. These data suggest that formoterol has an anti-inflammatory effect and decreases muscle wasting in arthritic rats through increasing Akt activity and myogenin and decreasing myostatin, the p-NF-κB(p65)/TNF pathway, and IGFBP-3.
Collapse
Affiliation(s)
| | - Carolina Gomez-Moreira
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain; and
| | - María Paz Nieto-Bona
- Department of Basic Sciences in Health, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Carmen Fernández-Galaz
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain; and
| | - Maria Ángeles Villanúa
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain; and
| | - Ana Isabel Martín
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain; and
| | | |
Collapse
|
14
|
Klatt S, Stangl H, Kunath J, Lowin T, Pongratz G, Straub RH. Peripheral elimination of the sympathetic nervous system stimulates immunocyte retention in lymph nodes and ameliorates collagen type II arthritis. Brain Behav Immun 2016; 54:201-210. [PMID: 26872423 DOI: 10.1016/j.bbi.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 02/01/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES In collagen type II-induced arthritis (CIA), early activation of the sympathetic nervous system (SNS) is proinflammatory. Here, we wanted to find new target organs contributing to proinflammatory SNS effects. In addition, we wanted to clarify the importance of SNS-modulated immunocyte migration. METHODS A new technique termed spatial energy expenditure configuration (SEEC) was developed to demonstrate bodily areas of high energy demand (to find new targets). We studied homing of labeled cells in vivo, lymphocyte expression of CCR7, supernatant concentration of CCL21, and serum levels of sphingosine-1-phosphate (S1P) in sympathectomized control/arthritic animals. RESULTS During the course of arthritis, SEEC identified an early marked increase of energy expenditure in draining lymph nodes and spleen (nowhere else!). Although early sympathectomy ameliorated later disease, early sympathectomy increased energy consumption, organ weight, and cell numbers in arthritic secondary lymphoid organs, possibly a sign of lymphocyte retention (also in controls). Elimination of the SNS retained lymph node cells, elevated expression of CCR7 on lymph node cells, and increased CCL21. Serum levels of S1P, an important factor for lymphocyte egress, were higher in arthritic than control animals. Sympathectomy decreased S1P levels in arthritic animals to control levels. Transfer of retained immune cells from draining lymph nodes of sympathectomized donors to sympathectomized recipients markedly increased arthritis severity over weeks. CONCLUSIONS By using the SEEC technique, we identified draining lymph nodes and spleen as major target organs of the SNS. The data show that the SNS increases egress of lymphocytes from draining lymph nodes to stimulate arthritic inflammation.
Collapse
Affiliation(s)
- Susanne Klatt
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Hubert Stangl
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Julia Kunath
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Georg Pongratz
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Germany.
| |
Collapse
|
15
|
Case AJ, Zimmerman MC. Sympathetic-mediated activation versus suppression of the immune system: consequences for hypertension. J Physiol 2015; 594:527-36. [PMID: 26830047 DOI: 10.1113/jp271516] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023] Open
Abstract
It is generally well-accepted that the immune system is a significant contributor in the pathogenesis of hypertension. Specifically, activated and pro-inflammatory T-lymphocytes located primarily in the vasculature and kidneys appear to have a causal role in exacerbating elevated blood pressure. It has been proposed that increased sympathetic nerve activity and noradrenaline outflow associated with hypertension may be primary contributors to the initial activation of the immune system early in the disease progression. However, it has been repeatedly demonstrated in many different human and experimental diseases that sympathoexcitation is immunosuppressive in nature. Moreover, human hypertensive patients have demonstrated increased susceptibility to secondary immune insults like infections. Thus, it is plausible, and perhaps even likely, that in diseases like hypertension, specific immune cells are activated by increased noradrenaline, while others are in fact suppressed. We propose a model in which this differential regulation is based upon activation status of the immune cell as well as the resident organ. With this, the concept of global immunosuppression is obfuscated as a viable target for hypertension treatment, and we put forth the concept of focused organ-specific immunotherapy as an alternative option.
Collapse
Affiliation(s)
- Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| |
Collapse
|
16
|
Abstract
The central nervous system, and the spinal cord in particular, is involved in multiple mechanisms that influence peripheral inflammation. Both pro- and anti-inflammatory feedback loops can involve just the peripheral nerves and spinal cord or can also include more complex, supraspinal structures such as the vagal nuclei and the hypothalamic-pituitary axis. Analysis is complicated by the fact that inflammation encompasses a constellation of end points from simple edema to changes in immune cell infiltration and pathology. Whether or not any of these individual elements is altered by any potential mechanism is determined by a complex algorithm including, but not limited to, chronicity of the inflammation, tissue type, instigating stimulus, and state/tone of the immune system. Accordingly, the pharmacology and anatomical substrate of spinal cord modulation of peripheral inflammation are discussed with regard to peripheral tissue type, inflammatory insult (initiating stimulus), and duration of the inflammation.
Collapse
Affiliation(s)
- Linda S Sorkin
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA,
| |
Collapse
|
17
|
Lubahn CL, Lorton D, Schaller JA, Sweeney SJ, Bellinger DL. Targeting α- and β-Adrenergic Receptors Differentially Shifts Th1, Th2, and Inflammatory Cytokine Profiles in Immune Organs to Attenuate Adjuvant Arthritis. Front Immunol 2014; 5:346. [PMID: 25157248 PMCID: PMC4127464 DOI: 10.3389/fimmu.2014.00346] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/07/2014] [Indexed: 12/13/2022] Open
Abstract
The sympathetic nervous system (SNS) regulates host defense responses and restores homeostasis. SNS-immune regulation is altered in rheumatoid arthritis (RA) and rodent models of RA, characterized by nerve remodeling in immune organs and defective adrenergic receptor (AR) signaling to immune cell targets. The SNS typically promotes or suppresses inflammation via α- and β2-AR activation, respectively, and indirectly drives humoral immunity by blocking Th1 cytokine secretion. Here, we investigate how β2-AR stimulation and/or α-AR blockade at disease onset affects disease pathology and cytokine profiles in relevant immune organs from male Lewis rats with adjuvant-induced arthritis (AA). Rats challenged to induce AA were treated with terbutaline (TERB), a β2-AR agonist (600 μg/kg/day) and/or phentolamine (PHEN), an α-AR antagonist (5.0 mg/kg/day) or vehicle from disease onset through severe disease. We report that in spleen, mesenteric (MLN) and draining lymph node (DLN) cells, TERB reduces proliferation, an effect independent of IL-2. TERB also fails to shift T helper (Th) cytokines from a Th1 to Th2 profile in spleen and MLN (no effect on IFN-γ) and DLN (greater IFN-γ) cells. In splenocytes, TERB, PHEN, and co-treatment (PT) promotes an anti-inflammatory profile (greater IL-10) and lowers TNF-α (PT only). In DLN cells, drug treatments do not affect inflammatory profiles, except PT, which raised IL-10. In MLN cells, TERB or PHEN lowers MLN cell secretion of TNF-α or IL-10, respectively. Collectively, our findings indicate disrupted β2-AR, but not α-AR signaling in AA. Aberrant β2-AR signaling consequently derails the sympathetic regulation of lymphocyte expansion, Th cell differentiation, and inflammation in the spleen, DLNs and MLs that is required for immune system homeostasis. Importantly, this study provides potential mechanisms through which reestablished balance between α- and β2-AR function in the immune system ameliorates inflammation and joint destruction in AA.
Collapse
Affiliation(s)
- Cheri L Lubahn
- College of Arts and Sciences, Kent State University , Kent, OH , USA
| | - Dianne Lorton
- College of Arts and Sciences, Kent State University , Kent, OH , USA
| | - Jill A Schaller
- College of Arts and Sciences, Kent State University , Kent, OH , USA
| | - Sarah J Sweeney
- College of Arts and Sciences, Kent State University , Kent, OH , USA
| | - Denise L Bellinger
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine , Loma Linda, CA , USA
| |
Collapse
|
18
|
Bellinger DL, Lorton D. Autonomic regulation of cellular immune function. Auton Neurosci 2014; 182:15-41. [PMID: 24685093 DOI: 10.1016/j.autneu.2014.01.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022]
Abstract
The nervous system and the immune system (IS) are two integrative systems that work together to detect threats and provide host defense, and to maintain/restore homeostasis. Cross-talk between the nervous system and the IS is vital for health and well-being. One of the major neural pathways responsible for regulating host defense against injury and foreign antigens and pathogens is the sympathetic nervous system (SNS). Stimulation of adrenergic receptors (ARs) on immune cells regulates immune cell development, survival, proliferative capacity, circulation, trafficking for immune surveillance and recruitment, and directs the cell surface expression of molecules and cytokine production important for cell-to-cell interactions necessary for a coordinated immune response. Finally, AR stimulation of effector immune cells regulates the activational state of immune cells and modulates their functional capacity. This review focuses on our current understanding of the role of the SNS in regulating host defense and immune homeostasis. SNS regulation of IS functioning is a critical link to the development and exacerbation of chronic immune-mediated diseases. However, there are many mechanisms that need to be further unraveled in order to develop sound treatment strategies that act on neural-immune interaction to resolve or prevent chronic inflammatory diseases, and to improve health and quality of life.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology and Human Anatomy, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA.
| | - Dianne Lorton
- College of Arts and Sciences, Kent State University and the Kent Summa Initiative for Clinical and Translational Research, Summa Health System, Akron, OH 44304, USA
| |
Collapse
|
19
|
Schaible HG, Straub RH. Function of the sympathetic supply in acute and chronic experimental joint inflammation. Auton Neurosci 2013; 182:55-64. [PMID: 24423405 DOI: 10.1016/j.autneu.2013.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/11/2013] [Indexed: 12/27/2022]
Abstract
Joints are densely innervated by postganglionic sympathetic nerve fibers. These fibers control the blood flow in the joint and vascular permeability, either directly or indirectly, in cooperation with leukocytes. Chemical sympathectomy or suppression of adrenergic signaling significantly reduces inflammatory processes in the initial acute state of inflammation whereas the same procedures may increase inflammation at later stages. These findings indicate that the sympathetic nervous system supports the development of inflammation but may reduce inflammation at more chronic stages. During chronic inflammation the density of sympathetic nerve fibers in synovial tissue is reduced but other tyrosine hydroxylase-positive cells secreting noradrenaline appear in the inflamed joint. In addition to local vascular effects in the joint, the sympathetic nervous system influences numerous immune processes in the joint and in lymphoid organs. Hence the net effect of the sympathetic nervous system on inflamed tissue results from local sympathetic effects in the joint as well as from sympathetic influences on major systemic immune processes.
Collapse
Affiliation(s)
- Hans-Georg Schaible
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich Schiller University of Jena, Teichgraben 8, 07743 Jena, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine-Immunology, Division of Rheumatology, Department of Internal Medicine I,University Hospital Regensburg, 93042 Regensburg, Germany
| |
Collapse
|
20
|
Meinel T, Pongratz G, Rauch L, Straub RH. Neuronal α1/2-adrenergic stimulation of IFN-γ, IL-6, and CXCL-1 in murine spleen in late experimental arthritis. Brain Behav Immun 2013; 33:80-9. [PMID: 23791889 DOI: 10.1016/j.bbi.2013.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 06/01/2013] [Accepted: 06/07/2013] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Functional cross-talk exists between sympathetic nerve fibers and cytokine-producing splenic cells in early collagen type II-induced arthritis (CIA) (day 32). These earlier experiments demonstrated exclusively neuronal sympathetic regulation of IFN-γ, CXCL1, IL-6, and TGF-β. However, in late arthritis, the sympathetic influence might change due to loss of sympathetic nerve fibers and appearance of neurotransmitter-producing cells. We aimed to investigate neurotransmitter-dependent regulation of IFN-γ, CXCL1, IL-6, and TGF-β in murine spleen in late CIA. METHODS Spleens were removed when animals reached day 58 (46-68) after immunization to generate 0.35 mm-thick spleen slices, which were transferred to superfusion microchambers to electrically induce release of neurotransmitters. Using respective neurotransmitter antagonists, effects of released neurotransmitters on cytokine secretion were investigated. RESULTS There was electrically induced inhibition of IFN-γ, CXCL1, and IL-6, and stimulation of TGF-β, which was much less pronounced than in early CIA. There existed β adrenergic inhibition of IFN-γ, IL-6, and TGF-β (and stimulation of CXCL1) independent of electrical stimulation (interpreted as non-neuronal). However, there was a neuronal α1/2 adrenergic stimulation of IFN-γ, CXCL1, and IL-6 and, we observed neuronal A1-adenosinergic stimulation of TGF-β. CONCLUSIONS In the late phase of CIA, non-neuronal modulation of cytokine secretion increases while neuronal regulation strikingly decreases. Particularly, β-adrenergic effects are non-neuronal while α1/2-adrenergic effects are clearly neuronal. We suggest that alterations in sympathetic innervation of the spleen fundamentally change the functional neuroimmune interplay in the spleen of arthritic mice.
Collapse
Affiliation(s)
- Thomas Meinel
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, 93042 Regensburg, Germany
| | | | | | | |
Collapse
|
21
|
Altered sympathetic-to-immune cell signaling via β₂-adrenergic receptors in adjuvant arthritis. Clin Dev Immunol 2013; 2013:764395. [PMID: 24194774 PMCID: PMC3806360 DOI: 10.1155/2013/764395] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 08/02/2013] [Indexed: 01/08/2023]
Abstract
Adjuvant-induced arthritic (AA) differentially affects norepinephrine concentrations in immune organs, and in vivo β-adrenergic receptor (β-AR) agonist treatment distinctly regulates ex vivo cytokine profiles in different immune organs. We examined the contribution of altered β-AR functioning in AA to understand these disparate findings. Twenty-one or 28 days after disease induction, we examined β2-AR expression in spleen and draining lymph nodes (DLNs) for the arthritic limbs using radioligand binding and western blots and splenocyte β-AR-stimulated cAMP production using enzyme-linked immunoassay (EIA). During severe disease, β-AR agonists failed to induce splenocyte cAMP production, and β-AR affinity and density declined, indicating receptor desensitization and downregulation. Splenocyte β2-AR phosphorylation (pβ2-AR) by protein kinase A (pβ2-ARPKA) decreased in severe disease, and pβ2-AR by G protein-coupled receptor kinases (pβ2-ARGRK) increased in chronic disease. Conversely, in DLN cells, pβ2-ARPKA rose during severe disease, but fell during chronic disease, and pβ2-ARGRK increased during both disease stages. A similar pβ2-AR pattern in DLN cells with the mycobacterial cell wall component of complete Freund's adjuvant suggests that pattern recognition receptors (i.e., toll-like receptors) are important for DLN pβ2-AR patterns. Collectively, our findings indicate lymphoid organ- and disease stage-specific sympathetic dysregulation, possibly explaining immune compartment-specific differences in β2-AR-mediated regulation of cytokine production in AA and rheumatoid arthritis.
Collapse
|
22
|
Straub RH, Bijlsma JWJ, Masi A, Cutolo M. Role of neuroendocrine and neuroimmune mechanisms in chronic inflammatory rheumatic diseases--the 10-year update. Semin Arthritis Rheum 2013; 43:392-404. [PMID: 23731531 DOI: 10.1016/j.semarthrit.2013.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/04/2013] [Accepted: 04/13/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Neuroendocrine immunology in musculoskeletal diseases is an emerging scientific field. It deals with the aspects of efferent neuronal and neurohormonal bearing on the peripheral immune and musculoskeletal systems. This review aims to add new information that appeared since 2001. SEARCH STRATEGY The following PubMed search sentence was used to find a total of 15,462 references between 2001 and March 2013: "(rheum* OR SLE OR vasculitis) AND (nerve OR hormone OR neurotransmitter OR neuropeptide OR steroid)." In a continuous process, year by year, this search strategy yielded relevant papers that were screened and collected in a database, which build the platform of this review. RESULTS The main findings are the anti-inflammatory role of androgens, the loss of androgens (androgen drain), the bimodal role of estrogens (support B cells and inhibit macrophages and T cells), increased conversion of androgens to estrogens in inflammation (androgen drain), disturbances of the gonadal axis, inadequate amount of HPA axis hormones relative to inflammation (disproportion principle), biologics partly improve neuroendocrine axes, anti-corticotropin-releasing hormone therapies improve inflammation (antalarmin), bimodal role of the sympathetic nervous system (proinflammatory early, anti-inflammatory late-most probably due to catecholamine-producing local cells), anti-inflammatory role of alpha melanocyte-stimulating hormone, vasoactive intestinal peptide, and the Vagus nerve via α7 nicotinergic receptors. Circadian rhythms of hypothalamic origin are responsible for circadian rhythms of symptoms (neuroimmune link revealed). Important new pain-sensitizing immunological pathways were found in the last decade. CONCLUSIONS The last decade brought much new information that gave birth to the first therapies of chronic inflammatory diseases on the basis of neuroendocrine immune targets. In addition, a new theory linked evolutionary medicine, neuroendocrine regulation of distribution of energy-rich fuels, and volume regulation that can explain many disease sequelae in patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Division of Rheumatology, Department of Internal Medicine I, University Hospital, Regensburg, Germany.
| | | | | | | |
Collapse
|
23
|
Koopman FA, Stoof SP, Straub RH, van Maanen MA, Vervoordeldonk MJ, Tak PP. Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med 2011; 17:937-48. [PMID: 21607292 PMCID: PMC3188868 DOI: 10.2119/molmed.2011.00065] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 05/19/2011] [Indexed: 01/14/2023] Open
Abstract
The immunomodulatory effect of the autonomic nervous system has raised considerable interest over the last decades. Studying the influence on the immune system and the role in inflammation of the sympathetic as well as the parasympathetic nervous system not only will increase our understanding of the mechanism of disease, but also could lead to the identification of potential new therapeutic targets for chronic immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA). An imbalanced autonomic nervous system, with a reduced parasympathetic and increased sympathetic tone, has been a consistent finding in RA patients. Studies in animal models of arthritis have shown that influencing the sympathetic (via α- and β-adrenergic receptors) and the parasympathetic (via the nicotinic acetylcholine receptor α7nAChR or by electrically stimulating the vagus nerve) nervous system can have a beneficial effect on inflammation markers and arthritis. The immunosuppressive effect of the parasympathetic nervous system appears less ambiguous than the immunomodulatory effect of the sympathetic nervous system, where activation can lead to increased or decreased inflammation depending on timing, doses and kind of adrenergic agent used. In this review we will discuss the current knowledge of the role of both the sympathetic (SNS) and parasympathetic nervous system (PNS) in inflammation with a special focus on the role in RA. In addition, potential antirheumatic strategies that could be developed by targeting these autonomic pathways are discussed.
Collapse
Affiliation(s)
- Frieda A Koopman
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
| | - Susanne P Stoof
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
- Arthrogen BV, Amsterdam, the Netherlands
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Marjolein A van Maanen
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
| | - Margriet J Vervoordeldonk
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
- Arthrogen BV, Amsterdam, the Netherlands
| | - Paul P Tak
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
| |
Collapse
|
24
|
Härle P, Pongratz G, Albrecht J, Tarner IH, Straub RH. An early sympathetic nervous system influence exacerbates collagen-induced arthritis via CD4+CD25+ cells. ACTA ACUST UNITED AC 2008; 58:2347-55. [PMID: 18668589 DOI: 10.1002/art.23628] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Activation of the sympathetic nervous system (SNS) ameliorates collagen-induced arthritis (CIA) in the late phase of the disease but aggravates it in the presymptomatic phase. The aim of the present study was to determine whether CD4+CD25+ T cells are influenced by the SNS of mice and play a disease-modifying role in the early symptomatic phase of the disease. METHODS We tested the effects of the SNS on arthritis by transferring CD4+CD25+ T cells from sympathectomized mice immunized with type II collagen and from immunized, SNS-intact animals (controls). We further characterized transferred cells by studying forkhead box P3 (FoxP3) expression, cell proliferation, and cytokine secretion. RESULTS Using anti-dopamine-beta-hydroxylase antibodies for systemic sympathectomy, we noticed a time-dependent disease amelioration (strongest when sympathectomy was performed 7 days before immunization, with no effect 30 days after immunization). When CD4+CD25+ T cells from immunized and sympathectomized animals were transferred into mice with CIA (on day 32), disease severity was reduced compared with that in controls. However, the number of CD4+CD25+FoxP3+ cells and the FoxP3 expression level in CD4+CD25+ cells were not changed by sympathectomy. In a mixed assay of donor CD4+CD25- and CD4+CD25+ cells, proliferation was reduced when cells from sympathectomized animals were studied. In the same assay, secretion of tumor necrosis factor, interleukin-17 (IL-17), IL-10, and IL-4 (not interferon-gamma) was markedly reduced when cells were taken from sympathectomized animals. Culture of CD4+CD25+ cells with norepinephrine (10(-5)M) for 24 hours before transfer worsened the arthritis. CONCLUSION The SNS increases disease severity in the early phase of symptomatic CIA by stimulating several proinflammatory aspects of CD4+CD25+ T cells.
Collapse
Affiliation(s)
- Peter Härle
- University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Bellinger DL, Millar BA, Perez S, Carter J, Wood C, ThyagaRajan S, Molinaro C, Lubahn C, Lorton D. Sympathetic modulation of immunity: relevance to disease. Cell Immunol 2008; 252:27-56. [PMID: 18308299 PMCID: PMC3551630 DOI: 10.1016/j.cellimm.2007.09.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 09/01/2007] [Indexed: 02/05/2023]
Abstract
Optimal host defense against pathogens requires cross-talk between the nervous and immune systems. This paper reviews sympathetic-immune interaction, one major communication pathway, and its importance for health and disease. Sympathetic innervation of primary and secondary immune organs is described, as well as evidence for neurotransmission with cells of the immune system as targets. Most research thus far has focused on neural-immune modulation in secondary lymphoid organs, has revealed complex sympathetic modulation resulting in both potentiation and inhibition of immune functions. SNS-immune interaction may enhance immune readiness during disease- or injury-induced 'fight' responses. Research also indicate that dysregulation of the SNS can significantly affect the progression of immune-mediated diseases. However, a better understanding of neural-immune interactions is needed to develop strategies for treatment of immune-mediated diseases that are designed to return homeostasis and restore normal functioning neural-immune networks.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology & Human Anatomy, Loma Linda University School of Medicine, 11021 Campus Street, Alumni Hall 325, Loma Linda, CA 92352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kelly S, Dunham JP, Donaldson LF. Sensory nerves have altered function contralateral to a monoarthritis and may contribute to the symmetrical spread of inflammation. Eur J Neurosci 2007; 26:935-42. [PMID: 17714187 PMCID: PMC2121144 DOI: 10.1111/j.1460-9568.2007.05737.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Rheumatoid arthritis (RA) and rat models of RA exhibit symmetrical mirror-image spread. Many studies have sought to understand the underlying mechanisms and have reported contralateral effects that are manifested in many different forms. It is now well accepted that neurogenic mechanisms contribute to the symmetrical spread of inflammation. However, very few investigators have directly assessed changes in contralateral nerve function and there is a paucity of data. In the present study our aim was to investigate whether there are changes, in particular in the nervous system but also in the vascular system contralateral to an inflamed rat knee joint, that might precede overt inflammation and symmetrical spread. Three to five days following Complete Freund's Adjuvant (CFA) injection we found spontaneous antidromic (away from the CNS) activity in the homologous sensory nerve contralateral to the inflamed joint. Antidromic activity of this nature is known to result in the peripheral release of pro-inflammatory and vasoactive neuropeptides. Importantly, this activity was modulated by systemic analgesic treatment. Furthermore, levels of Evans blue dye extravasation were significantly increased in the joint contralateral to inflammation, indicating altered vascular function. These data suggest that contralateral increases in sensory neural activity and vascular function may account for the symmetrical spread of RA, and that early analgesic treatment may prevent or delay the spread of this debilitating disease.
Collapse
Affiliation(s)
- Sara Kelly
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
27
|
Correa SG, Maccioni M, Rivero VE, Iribarren P, Sotomayor CE, Riera CM. Cytokines and the immune–neuroendocrine network: What did we learn from infection and autoimmunity? Cytokine Growth Factor Rev 2007; 18:125-34. [PMID: 17347025 DOI: 10.1016/j.cytogfr.2007.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The initial view of the neuroendocrine-immune communication as the brake of immune activation is changing. Recent evidence suggests that the optimization of the body's overall response to infection could be actually the role of the immune-endocrine network. In gradually more complex organisms, the multiplicity of host-pathogen interfaces forced the development of efficient and protective responses. Molecules such as cytokines and Toll-like receptors (TLRs) are distributed both in the periphery and in the brain to participate in a coordinated adaptive function. When sustained release of inflammatory mediators occurs, as in autoimmune diseases, undesirable pathological consequences become evident with different manifestations and outcomes. Clearly, organisms are not well adapted to that disregulated condition yet, suggesting that additional partners within neuroendocrine-immune interactions might emerge from the evolutionary road.
Collapse
Affiliation(s)
- Silvia G Correa
- Immunology, Department of Biochemical Chemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Haya de la Torre y Medina Allende, 5000 Cordoba, Argentina.
| | | | | | | | | | | |
Collapse
|
28
|
Bellinger DL, Millar BA, Perez S, Carter J, Wood C, ThyagaRajan S, Molinaro C, Lubahn C, Lorton D. Innervation of lymphoid organs: Clinical implications. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.cnr.2006.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Abstract
Interest in the interactions between nervous and immune systems involved in both pathological and homeostatic mechanisms of host defence has prompted studies of neuroendocrine immune modulation and cytokine involvement in neuropathologies. In this review we concentrate on a distinct area of homeostatic control of both normal and abnormal host defence activity involving the network of peripheral c-fibre nerve fibres. These nerve fibres have long been recognized by dermatologists and gastroenterologists as key players in abnormal inflammatory processes, such as dermatitis and eczema. However, the involvement of nerves can all too easily be regarded as that of isolated elements in a local phenomenon. On the contrary, it is becoming increasingly clear that neural monitoring of host defence activities takes place, and that involvement of central/spinal mechanisms are crucial in the co-ordination of the adaptive response to host challenge. We describe studies demonstrating neural control of host defence and use the specific examples of bone marrow haemopoiesis and contact sensitivity to highlight the role of direct nerve fibre connections in these activities. We propose a host monitoring system that requires interaction between specialized immune cells and nerve fibres distributed throughout the body and that gives rise to both neural and immune memories of prior challenge. While immunological mechanisms alone may be sufficient for local responsiveness to subsequent challenge, data are discussed that implicate the neural memory in co-ordination of host defence across the body, at distinct sites not served by the same nerve fibres, consistent with central nervous mediation.
Collapse
Affiliation(s)
- Andrew J Shepherd
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | |
Collapse
|
30
|
Gasparotto OC, Lopes DM, Carobrez SG. Pair housing affects anxiety-like behaviors induced by a social but not by a physiological stressor in male Swiss mice. Physiol Behav 2005; 85:603-12. [PMID: 16051284 DOI: 10.1016/j.physbeh.2005.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 06/10/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
The role of pair housing in the modulation of anxiety-like behaviour in socially and physiologically stressed mice was investigated. The protocol of psychosocial stress consisted of submitting male adult mice to daily social confrontation with a male conspecific for a period of thirteen days. In an attempt to study a possible effect of pair housing as a social support, each male mouse was housed with a female throughout the period of experimentation, except during the agonistic interactions. As a physiological stressor, 10(9) sheep red blood cells (SRBC)/ml were injected intraperitoneally on the 1st and 7th days of the experiments. The respective control groups were as follows: non-socially stressed, non-pair housed and saline-injected mice. The humoral immune response was analysed by haemagglutination assay. The level of anxiety-like behaviours was measured in the elevated plus-maze test on the 13th day of the experiment. As a result, no significant changes in humoral immunity to SRBC were observed in mice subjected to social confrontation in a neutral arena as compared to non-socially stressed mice. As a consequence, no effect of pair housing on humoral immunity to SRBC could be evaluated. Concerning the effects of pair housing on the anxiety-like behaviours, it was possible to demonstrate that the pair housing proved to be effective in modulating anxiety-like behaviour, although in the stressed groups the percentage of time in the open arms and the time in risk assessment did not change in a symmetrical opposite form, as expected. The physiological stressor induced an anxiety-like behaviour that was not reversed by the pair housed condition. This suggests that different types of stressors activate different neural and peripheral pathways, which may or may not be modulated by pair housing, a finding that deserves our attention as a way to better understand the mechanisms that influence adaptations to stress.
Collapse
Affiliation(s)
- O C Gasparotto
- Department of Physiological Sciences, Biological Sciences Centre, Federal University of Santa Catarina, Trindade, Florianópolis (SC), Brazil, 88040-900.
| | | | | |
Collapse
|
31
|
Härle P, Möbius D, Carr DJJ, Schölmerich J, Straub RH. An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. ACTA ACUST UNITED AC 2005; 52:1305-13. [PMID: 15818682 DOI: 10.1002/art.20987] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The sympathetic nervous system (SNS) seems to play a proinflammatory role in the early asymptomatic phase of arthritis, but its role in the late stages of chronic arthritis is not well known. The purpose of this study was to examine the effects of the SNS on late-stage chronic arthritis in mice with type II collagen-induced arthritis (CIA). METHODS We tested the effects of the SNS by ablating sympathetic nerves at different time points in mice with CIA. Early sympathectomy was performed 7 days before immunization. Late sympathectomy was performed on day 56. Cytokine stimulation assays were performed on local lymph node cells and spleen cells, and levels of interleukin-10 (IL-10), IL-4, tumor necrosis factor alpha (TNFalpha), and interferon-gamma (IFNgamma) were determined. RESULTS Animals with CIA that underwent early sympathectomy showed significantly lower arthritis scores than the controls. In contrast, animals that underwent late sympathectomy had significantly increased arthritis scores compared with controls. On day 0, lymph node cells from animals subjected to early sympathectomy had increased levels of IL-10 and IL-4 and unchanged levels of TNFalpha and IFNgamma compared with those from untreated animals. This indicates an immune-stimulating property of the SNS in draining lymph nodes. On day 80, lymph node cells and spleen cells from animals subjected to late sympathectomy showed increased levels of TNFalpha and IFNgamma compared with those from nonsympathectomized controls with CIA. This indicates an immune-depressing property of the SNS in draining lymph nodes and spleen. Arthritis per se largely diminished sympathetic nerve fiber density in synovium on day 80 (P < 0.01). CONCLUSION The effect of the SNS is bimodal, enhancing or depressing levels of proinflammatory and antiinflammatory cytokines. This feature is dependent on the time point of immune system activation and the respective compartment. The SNS supports inflammation during the asymptomatic phase of CIA, whereas it inhibits inflammation during the chronic symptomatic phase.
Collapse
Affiliation(s)
- Peter Härle
- University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
32
|
Abstract
This article demonstrates the dual pro- and anti-inflammatory role of the sympathetic nervous system (SNS) in inflammatory joint disease (IJD) by way of distinct adrenoceptors. The dual role of the SNS depends on involved compartments, timing of distinct effector mechanisms during the inflammatory process, availability of respective adrenoceptors on target cells, and an intricate shift from beta-to-alpha adrenergic signaling in the progressing course of the inflammatory disease (beta-to-alpha adrenergic shift). Additional critical points for the dual role of the SNS in inflammation are the underlying change of immune effector mechanisms during the process of disease progression and the behavior of sympathetic nerve fibers in inflamed tissue (nerve fiber loss). This is accompanied by a relative lack of anti-inflammatory glucocorticoids in relation to inflammation. In quintessence, in early stages of IJD, the SNS plays a predominantly proinflammatory role, whereas in late stages of the disease the SNS most probably exerts anti-inflammatory effects. Because patients who have rheumatoid arthritis most often present in the chronic phase of the disease, support of anti-inflammatory sympathetic pathways can be a promising therapeutic option.
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Neuroendocrinoimmunology, Department of Internal Medicine I, University Hospital Regensburg, FJS-Allee 11, 93042 Regensburg, Germany.
| | | |
Collapse
|
33
|
Abstract
We have summarised evidence in the literature for modulatory effects of stress on inflammatory autoimmune disease. We find that overall there is strong evidence for such an interrelationship. Apparent discrepancies between groups and studies are probably due to differences in experimental design, whether longitudinal or retrospective. Other important variables are the specific effects of different types of stress and the intensity and timing of the stressor relative to onset of inflammation. We conclude that there is much of benefit to be learned from scientific study of stress, such as harnessing and rationalising of stressful experiences through self-expression in patients, or the identification of novel anti-inflammatory compounds activated by stress.
Collapse
Affiliation(s)
- D S Jessop
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, UK.
| | | | | |
Collapse
|