1
|
Dyatlova AS, Kochenda OL, Lavrov NV, Korneva EA. c-Fos Expression in Rat Medulla Oblongata after Subdiaphragmatic Vagotomy and Various Antigens Administration. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Hadamitzky M, Lückemann L, Pacheco-López G, Schedlowski M. Pavlovian Conditioning of Immunological and Neuroendocrine Functions. Physiol Rev 2020; 100:357-405. [DOI: 10.1152/physrev.00033.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system’s function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient’s benefit.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustavo Pacheco-López
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Honig G, Mader S, Chen H, Porat A, Ochani M, Wang P, Volpe BT, Diamond B. Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve. PLoS One 2016; 11:e0144215. [PMID: 26790027 PMCID: PMC4720404 DOI: 10.1371/journal.pone.0144215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/16/2015] [Indexed: 12/29/2022] Open
Abstract
Systemic infection can initiate or exacerbate central nervous system (CNS) pathology, even in the absence of overt invasion of bacteria into the CNS. Recent epidemiological studies have demonstrated that human survivors of sepsis have an increased risk of long-term neurocognitive decline. There is thus a need for improved understanding of the physiological mechanisms whereby acute sepsis affects the CNS. In particular, MyD88-dependent activation of brain microvascular endothelial cells and a resulting loss of blood-brain barrier integrity have been proposed to play an important role in the effects of systemic inflammation on the CNS. Signaling through the vagus nerve has also been considered to be an important component of CNS responses to systemic infection. Here, we demonstrate that blood-brain barrier permeabilization and hippocampal transcriptional responses during polymicrobial sepsis occur even in the absence of MyD88-dependent signaling in cerebrovascular endothelial cells. We further demonstrate that these transcriptional responses can occur without vagus nerve input. These results suggest that redundant signals mediate CNS responses in sepsis. Either endothelial or vagus nerve activation may be individually sufficient to transmit systemic inflammation to the central nervous system. Transcriptional activation in the forebrain in sepsis may be mediated by MyD88-independent endothelial mechanisms or by non-vagal neuronal pathways.
Collapse
Affiliation(s)
- Gerard Honig
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Simone Mader
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Huiyi Chen
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Amit Porat
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Mahendar Ochani
- Center for Translational Research, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ping Wang
- Center for Translational Research, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Bruce T. Volpe
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Fuggle NR, Howe FA, Allen RL, Sofat N. New insights into the impact of neuro-inflammation in rheumatoid arthritis. Front Neurosci 2014; 8:357. [PMID: 25414636 PMCID: PMC4222329 DOI: 10.3389/fnins.2014.00357] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/17/2014] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is considered to be, in many respects, an archetypal autoimmune disease that causes activation of pro-inflammatory pathways resulting in joint and systemic inflammation. RA remains a major clinical problem with the development of several new therapies targeted at cytokine inhibition in recent years. In RA, biologic therapies targeted at inhibition of tumor necrosis factor alpha (TNFα) have been shown to reduce joint inflammation, limit erosive change, reduce disability and improve quality of life. The cytokine TNFα has a central role in systemic RA inflammation and has also been shown to have pro-inflammatory effects in the brain. Emerging data suggests there is an important bidirectional communication between the brain and immune system in inflammatory conditions like RA. Recent work has shown how TNF inhibitor therapy in people with RA is protective for Alzheimer's disease. Functional MRI studies to measure brain activation in people with RA to stimulus by finger joint compression, have also shown that those who responded to TNF inhibition showed a significantly greater activation volume in thalamic, limbic, and associative areas of the brain than non-responders. Infections are the main risk of therapies with biologic drugs and infections have been shown to be related to disease flares in RA. Recent basic science data has also emerged suggesting that bacterial components including lipopolysaccharide induce pain by directly activating sensory neurons that modulate inflammation, a previously unsuspected role for the nervous system in host-pathogen interactions. In this review, we discuss the current evidence for neuro-inflammation as an important factor that impacts on disease persistence and pain in RA.
Collapse
Affiliation(s)
- Nicholas R Fuggle
- Institute of Infection and Immunity, St. George's University London, UK
| | - Franklyn A Howe
- Neuroscience Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University London, UK
| | - Rachel L Allen
- Institute of Infection and Immunity, St. George's University London, UK
| | - Nidhi Sofat
- Institute of Infection and Immunity, St. George's University London, UK
| |
Collapse
|
5
|
Ubiquitin E3 ligase A20 is required in degradation of microbial superantigens in vascular endothelial cells. Cell Biochem Biophys 2014; 66:649-55. [PMID: 23306968 DOI: 10.1007/s12013-012-9509-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The endothelial cells and tight junctions or adherens junctions form the endothelial barrier on the inner surface of the blood vessels. How the endothelial barrier degrades the endocytic microbial products, such as Staphylococcal enterotoxin B (SEB), is not fully understood yet. Ubiquitination is involved in protein degradation. This study aims to investigate the role of ubiquitin E3 ligase A20 (A20) in the degradation of endocytic SEB in endothelial cells. The human microvascular endothelial cell line, Hmvec, was cultured to monolayers in the inserts of transwells. SEB was added to the apical chambers to observe the endocytosis and degradation of SEB in Hmvecs. The fusion of endosome/lysosome was observed by immune staining. After exposed to SEB for 30 min, SEB was detected in Hmvecs. SEB could attach to the surface of Hmvecs and endocytosed into the cytoplasm of Hmvecs. The endocytosed SEB was degraded in the Hmvecs, which was transported to the transwell basal chambers in A20-deficient Hmvec monolayers. The SEB-carrying endosomes fused to the lysosomes in Hmvecs; the fusion of endosome/lysosome was disturbed in A20-deficient Hmvecs. In conclusion, A20 plays an important role in the degradation of the endocytic microbial product, SEB, in cardiac endothelial cells.
Collapse
|
6
|
Sociality and sickness: have cytokines evolved to serve social functions beyond times of pathogen exposure? Brain Behav Immun 2014; 37:15-20. [PMID: 24184399 PMCID: PMC3951666 DOI: 10.1016/j.bbi.2013.10.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 12/31/2022] Open
Abstract
During pathogen exposure or some forms of stress, proinflammatory processes induce an array of motivated and behavioral adjustments termed "sickness behaviors". Although withdrawal from social interactions is a commonly observed sickness behavior, the relation between social behavior and sickness is much more complex. Sickness can suppress or stimulate social behavior. Sickness can serve as a social cue. Stressors that are social in nature can induce sickness behaviors, and sickness behavior can be readily suppressed by meaningful social stimuli. The nature, context, and timing of these effects together suggest that cytokine-induced behavior may play a role in mediating social interactions in various non-pathological conditions.
Collapse
|
7
|
Schedlowski M, Engler H, Grigoleit JS. Endotoxin-induced experimental systemic inflammation in humans: a model to disentangle immune-to-brain communication. Brain Behav Immun 2014; 35:1-8. [PMID: 24491305 DOI: 10.1016/j.bbi.2013.09.015] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 12/12/2022] Open
Abstract
Systemic inflammation is among the most prominent and most frequently observed responses of the immune system. Over the past decades, it has become clear that inflammatory cytokines not only affect immune and metabolic functions but also cause a wide range of behavioral and mood changes. Based on experimental findings in animals and observations in clinical populations it has been hypothesized that inflammation-induced neurocognitive changes contribute to the pathophysiology of neuropsychiatric diseases. However, since certain aspects of human behavior cannot be modeled in laboratory animals, there is a need for human models of systemic inflammation. In this review, we summarize recent studies employing administration of endotoxin as a model to induce transient systemic inflammation in healthy human subjects.
Collapse
Affiliation(s)
- Manfred Schedlowski
- Institute of Medical Psychology & Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Harald Engler
- Institute of Medical Psychology & Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan-Sebastian Grigoleit
- Institute of Medical Psychology & Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Abstract
Like other physiological responses, immune functions are the subject of behavioural conditioning. Conditioned immunosuppression can be induced by contingently pairing a novel taste with an injection of the immunosuppressant cyclosporine A (CsA) in an associative learning paradigm. This learned immunosuppression is centrally mediated by the insular cortex and the amygdala. However, the afferent mechanisms by which the brain detects CsA are not understood. In this study we analysed whether CsA is sensed via the chemosensitive vagus nerve or whether CsA directly acts on the brain. Our experiments revealed that a single peripheral administration of CsA increases neuronal activity in the insular cortex and the amygdala as evident from increased electric activity, c-Fos expression and amygdaloid noradrenaline release. However, this increased neuronal activity was not affected by prior vagal deafferentation but rather seems to partially be induced by direct action of CsA on cortico-amygdaloid structures and the chemosensitive brainstem regions area postrema and nucleus of the solitary tract. Together, these data indicate that CsA as an unconditioned stimulus may directly act on the brain by a still unknown transduction mechanism.
Collapse
|
9
|
Prager G, Hadamitzky M, Engler A, Doenlen R, Wirth T, Pacheco-López G, Krügel U, Schedlowski M, Engler H. Amygdaloid signature of peripheral immune activation by bacterial lipopolysaccharide or staphylococcal enterotoxin B. J Neuroimmune Pharmacol 2012; 8:42-50. [PMID: 22639228 DOI: 10.1007/s11481-012-9373-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 04/27/2012] [Indexed: 01/21/2023]
Abstract
Activated immune cells produce soluble mediators that not only coordinate local and systemic immune responses but also act on the brain to initiate behavioral, neuroendocrine and metabolic adaptations. Earlier studies have shown that the amygdala, a group of nuclei located in the medial temporal lobe, is engaged in the central processing of afferent signals from the peripheral immune system. Here, we compared amygdaloid responses to lipopolysaccharide (LPS) and staphylococcal enterotoxin B (SEB), two prototypic bacterial products that elicit distinct immune responses. Intraperitoneal administration of LPS (0.1 mg/kg) or SEB (1 mg/kg) in adult rats induced substantial increases in amygdaloid neuronal activity as measured by intracerebral electroencephalography and c-fos gene expression. Amygdaloid neuronal activation was accompanied by an increase in anxiety-related behavior in the elevated plus-maze test. However, only treatment with LPS, but not SEB, enhanced amygdaloid IL-1β and TNF-α mRNA expression. This supports the view of the immune system as a sensory organ that recognizes invading pathogens and rapidly relays this information to the brain, independent of the nature of the immune response induced. The observation that neuronal and behavioral responses to peripheral immune challenges are not necessarily accompanied by increased brain cytokine expression suggests that cytokines are not the only factors driving sickness-related responses in the CNS.
Collapse
Affiliation(s)
- Geraldine Prager
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pacheco-López G, Bermúdez-Rattoni F. Brain-immune interactions and the neural basis of disease-avoidant ingestive behaviour. Philos Trans R Soc Lond B Biol Sci 2011; 366:3389-405. [PMID: 22042916 PMCID: PMC3189354 DOI: 10.1098/rstb.2011.0061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuro-immune interactions are widely manifested in animal physiology. Since immunity competes for energy with other physiological functions, it is subject to a circadian trade-off between other energy-demanding processes, such as neural activity, locomotion and thermoregulation. When immunity is challenged, this trade-off is tilted to an adaptive energy protecting and reallocation strategy that is identified as 'sickness behaviour'. We review diverse disease-avoidant behaviours in the context of ingestion, indicating that several adaptive advantages have been acquired by animals (including humans) during phylogenetic evolution and by ontogenetic experiences: (i) preventing waste of energy by reducing appetite and consequently foraging/hunting (illness anorexia), (ii) avoiding unnecessary danger by promoting safe environments (preventing disease encounter by olfactory cues and illness potentiation neophobia), (iii) help fighting against pathogenic threats (hyperthermia/somnolence), and (iv) by associative learning evading specific foods or environments signalling danger (conditioned taste avoidance/aversion) and/or at the same time preparing the body to counteract by anticipatory immune responses (conditioning immunomodulation). The neurobiology behind disease-avoidant ingestive behaviours is reviewed with special emphasis on the body energy balance (intake versus expenditure) and an evolutionary psychology perspective.
Collapse
Affiliation(s)
- Gustavo Pacheco-López
- Physiology and Behaviour Laboratory, ETH (Swiss Federal Institute of Technology)-Zurich, Schwerzenbach 8603, Switzerland
| | - Federico Bermúdez-Rattoni
- Neuroscience Division, Cellular Physiology Institute, UNAM (National University of Mexico), Mexico City 04510, Mexico
| |
Collapse
|
11
|
Engler H, Doenlen R, Engler A, Riether C, Prager G, Niemi MB, Pacheco-López G, Krügel U, Schedlowski M. Acute amygdaloid response to systemic inflammation. Brain Behav Immun 2011; 25:1384-92. [PMID: 21521653 DOI: 10.1016/j.bbi.2011.04.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 01/22/2023] Open
Abstract
The amygdala, a group of nuclei located in the medial temporal lobe, is a key limbic structure involved in mood regulation, associative learning, and modulation of cognitive functions. Functional neuroanatomical studies suggest that this brain region plays also an important role in the central integration of afferent signals from the peripheral immune system. In the present study, intracerebral electroencephalography and microdialysis were employed to investigate the electrophysiological and neurochemical consequences of systemic immune activation in the amygdala of freely moving rats. Intraperitoneal administration of bacterial lipopolysaccharide (100 μg/kg) induced with a latency of about 2 h a significant increase in amygdaloid neuronal activity and a substantial rise in extracellular noradrenaline levels. Activated neurons in the amygdaloid complex, identified by c-Fos immunohistochemistry, were mainly located in the central nucleus and, to a lesser extent, in the basolateral nucleus of the amygdala. Gene expression analysis in micropunches of the amygdala revealed that endotoxin administration induced a strong time-dependent increase in IL-1β, IL-6, and TNF-α mRNA levels indicating that these cytokines are de novo synthesized in the amygdala in response to peripheral immune activation. The changes in amygdaloid activity were timely related to an increase in anxiety-like behavior and decreased locomotor activity and exploration in the open-field. Taken together, these data give novel insights into different features of the acute amygdaloid response during experimental inflammation and provides further evidence that the amygdala integrates immune-derived information to coordinate behavioral and autonomic responses.
Collapse
Affiliation(s)
- Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, D-45122 Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Woodruff RT, Schorpp KM, Lawrenczyk AJ, Chakraborty T, Kusnecov AW. Effects of acute and repeated administration of Staphylococcal enterotoxin A on Morris water maze learning, corticosterone and hippocampal IL-1β and TNFα. Brain Behav Immun 2011; 25:938-46. [PMID: 20946950 PMCID: PMC4247754 DOI: 10.1016/j.bbi.2010.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/24/2010] [Accepted: 10/06/2010] [Indexed: 01/23/2023] Open
Abstract
Staphylococcal enterotoxin A (SEA) is a bacterial superantigen that induces pronounced T cell expansion and cytokine production. In addition, SEA activates the HPA axis and forebrain regions relevant to cognitive functions. Since learning-related cognitive changes have not been assessed in response to SEA, spatial learning in the Morris water maze (MWM) was determined in male C57BL/6J mice subjected to acute or repeated injections of 5μg SEA or Saline. Injections were given 2h prior to 4-5days of hidden platform sessions. Animals were then rested for 1month and given retraining without further injections. In addition, splenic IL-1β, IL-2 and TNFα, plasma corticosterone, and hippocampal IL-1β and TNFα were measured after the regimen of treatment used in the behavioral experiments. The results showed no learning impairment following acute or repeated SEA challenge. Moreover, when retested 1month later, and without further injections, the SEA group showed more rapid relearning of the MWM. This suggested that coincidental superantigenic T cell activation and training served to promote long-term improvement in recovery of learning. Furthermore, repeated SEA challenge continued to drive increases in plasma corticosterone, but with a compensatory reduction in hippocampal IL-1β. However, while hippocampal TNFα was reduced after acute and repeated SEA treatment, this was not statistically significant. In view of the importance of modest glucocorticoid elevations and hippocampal IL-1β in promoting contextual learning, the data point to the hypothesis that SEA promotes long-term plasticity by restraining disruptive increases in hippocampal IL-1β, and possibly TNFα, during learning.
Collapse
Affiliation(s)
- Randall T. Woodruff
- Behavioral Neuroscience Program and Department of Psychology, Rutgers University, Piscataway, NJ 08854
| | - Kristen M. Schorpp
- Behavioral Neuroscience Program and Department of Psychology, Rutgers University, Piscataway, NJ 08854
| | - Agniesczka J. Lawrenczyk
- Behavioral Neuroscience Program and Department of Psychology, Rutgers University, Piscataway, NJ 08854
| | - Trisha Chakraborty
- Behavioral Neuroscience Program and Department of Psychology, Rutgers University, Piscataway, NJ 08854
| | - Alexander W. Kusnecov
- Behavioral Neuroscience Program and Department of Psychology, Rutgers University, Piscataway, NJ 08854,Graduate Program in Toxicology, Rutgers University and University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
13
|
Doenlen R, Krügel U, Wirth T, Riether C, Engler A, Prager G, Engler H, Schedlowski M, Pacheco-López G. Electrical activity in rat cortico-limbic structures after single or repeated administration of lipopolysaccharide or staphylococcal enterotoxin B. Proc Biol Sci 2010; 278:1864-72. [PMID: 21106598 DOI: 10.1098/rspb.2010.2040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune-to-brain communication is essential for an individual to aptly respond to challenging internal and external environments. However, the specificity by which the central nervous system detects or 'senses' peripheral immune challenges is still poorly understood. In contrast to post-mortem c-Fos mapping, we recorded neural activity in vivo in two specific cortico-limbic regions relevant for processing visceral inputs and associating it with other sensory signalling, the amygdala (Am) and the insular cortex (IC). Adult rats were implanted with deep-brain monopolar electrodes and electrical activity was monitored unilaterally before and after administration of two different immunogens, the T-cell-independent antigen lipopolysaccharide (LPS) or the T-cell-dependent antigen staphylococcal enterotoxin B (SEB). In addition, the neural activity of the same individuals was analysed after single as well as repeated antigen administration, the latter inducing attenuation of the immune response. Body temperature and circulating cytokine levels confirmed the biological activity of the antigens and the success of immunization and desensitization protocols. More importantly, the present data demonstrate that neural activity of the Am and IC is not only specific for the type of immune challenge (LPS versus SEB) but seems to be also sensitive to the different immune state (naive versus desensitization). This indicates that the forebrain expresses specific patterns of electrical activity related to the type of peripheral immune activation as well as to the intensity of the stimulation, substantiating associative learning paradigms employing antigens as unconditioned stimuli. Overall, our data support the view of an intensive immune-to-brain communication, which may have evolved to achieve the complex energetic balance necessary for mounting effective immunity and improved individual adaptability by cognitive functions.
Collapse
Affiliation(s)
- Raphael Doenlen
- Swiss Federal Institute of Technology (ETH), Zurich 8092, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|