1
|
Sun R, Lu W, Ren W, Zhang S, Yao D, Zhang N, Zhong K, Zhao W, Tang X, Han M, Li T. A novel laboratory-based nomogram for assessing infection presence risk in acute-on-chronic liver failure patients. Sci Rep 2023; 13:16970. [PMID: 37806983 PMCID: PMC10560663 DOI: 10.1038/s41598-023-44006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Accurate assessment of infection presence risk level, timely diagnosis, and effective control are critical for decreasing mortality of Acute‑on‑chronic liver failure (ACLF). We aimed to develop and validate a novel diagnostic model to accurately assess infection presence risk level in ACLF patients. 185 ACLF patients with/without infection were enrolled, and their demographic, physical findings, immune-inflammatory, hepatic function, metabolism, and coagulation-fibrinolysis indicators were analyzed. Regression analysis was performed to identify the independent diagnostic parameters, which were further used to establish diagnostic models with a nomogram for visual. An area under receiver operating characteristic curve (AUROC), calibration plots, clinical impact curves, decision curve analysis, and net reclassification index were used to evaluate and identify the best model. An external validating cohort was introduced to verify the diagnostic accuracy. We screened out white blood cell (WBC) count, LYM%, blood urea nitrogen (BUN), and D-dimer for assessing infection presence risk levels in ACLF patients. WBD (WBC + BUN + D-dimer) was established and proposed as a novel diagnostic model for infection presence risk levels assessment in ACLF patients with an AUROC of 0.803 (95%CI 0.723-0.883), 0.885 (95%CI 0.786-0.984) in training and external cohorts, respectively. In stratification analysis by ACLF etiology and stages, WBD achieved an AUROC of 0.791 (95%CI 0.691-0.891) and 0.873 (95%CI 0.78-0.966) in HBV-related and early-stage patients, respectively. Whereas a higher AUROC of 0.905 (95%CI 0.807-1.00) in the early-stage of HBV-related ACLF patients indicated its optimum application scope. WBD, a novel laboratory-based nomogram, can serve as a decision-making support tool for clinicians to assess infection presence risk levels in ACLF patients.
Collapse
Affiliation(s)
- Rui Sun
- Department of Infectious Diseases, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324#, Jing 5 Road, Jinan, China
| | - Wenli Lu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324#, Jing 5 Road, Jinan, China
| | - Wanhua Ren
- Department of Infectious Diseases, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shuhong Zhang
- Department of Infectious Diseases, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dongxue Yao
- Department of Infectious Diseases, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Nannan Zhang
- Department of Infectious Diseases, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Keqing Zhong
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324#, Jing 5 Road, Jinan, China
| | - Wenrui Zhao
- Department of Infectious Diseases, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaolin Tang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324#, Jing 5 Road, Jinan, China
| | - Meihong Han
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324#, Jing 5 Road, Jinan, China
| | - Tao Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324#, Jing 5 Road, Jinan, China.
| |
Collapse
|
2
|
Eckerling A, Ricon-Becker I, Sorski L, Sandbank E, Ben-Eliyahu S. Stress and cancer: mechanisms, significance and future directions. Nat Rev Cancer 2021; 21:767-785. [PMID: 34508247 DOI: 10.1038/s41568-021-00395-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
The notion that stress and cancer are interlinked has dominated lay discourse for decades. More recent animal studies indicate that stress can substantially facilitate cancer progression through modulating most hallmarks of cancer, and molecular and systemic mechanisms mediating these effects have been elucidated. However, available clinical evidence for such deleterious effects is inconsistent, as epidemiological and stress-reducing clinical interventions have yielded mixed effects on cancer mortality. In this Review, we describe and discuss specific mediating mechanisms identified by preclinical research, and parallel clinical findings. We explain the discrepancy between preclinical and clinical outcomes, through pointing to experimental strengths leveraged by animal studies and through discussing methodological and conceptual obstacles that prevent clinical studies from reflecting the impacts of stress. We suggest approaches to circumvent such obstacles, based on targeting critical phases of cancer progression that are more likely to be stress-sensitive; pharmacologically limiting adrenergic-inflammatory responses triggered by medical procedures; and focusing on more vulnerable populations, employing personalized pharmacological and psychosocial approaches. Recent clinical trials support our hypothesis that psychological and/or pharmacological inhibition of excess adrenergic and/or inflammatory stress signalling, especially alongside cancer treatments, could save lives.
Collapse
Affiliation(s)
- Anabel Eckerling
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itay Ricon-Becker
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liat Sorski
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elad Sandbank
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Hernández-Arciga U, Herrera M. LG, Ibáñez-Contreras A, Miranda-Labra RU, Flores-Martínez JJ, Königsberg M. Baseline and post-stress seasonal changes in immunocompetence and redox state maintenance in the fishing bat Myotis vivesi. PLoS One 2018; 13:e0190047. [PMID: 29293551 PMCID: PMC5749750 DOI: 10.1371/journal.pone.0190047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/07/2017] [Indexed: 01/24/2023] Open
Abstract
Little is known of how the stress response varies when animals confront seasonal life-history processes. Antioxidant defenses and damage caused by oxidative stress and their link with immunocompetence are powerful biomarkers to assess animal´s physiological stress response. The aim of this study was A) to determine redox state and variation in basal (pre-acute stress) immune function during summer, autumn and winter (spring was not assessed due to restrictions in collecting permit) in the fish-eating Myotis (Myotis vivesi; Chiroptera), and B) to determine the effect of acute stress on immunocompetence and redox state during each season. Acute stress was stimulated by restricting animal movement for 6 and 12 h. The magnitude of the cellular immune response was higher during winter whilst that of the humoral response was at its highest during summer. Humoral response increased after 6 h of movement restriction stress and returned to baseline levels after 12 h. Basal redox state was maintained throughout the year, with no significant changes in protein damage, and antioxidant activity was modulated mainly in relation to variation to environment cues, increasing during high temperatures and decreasing during windy nights. Antioxidant activity increased after the 6 h of stressful stimuli especially during summer and autumn, and to a lesser extent in early winter, but redox state did not vary. However, protein damage increased after 12 h of stress during summer. Prolonged stress when the bat is engaged in activities of high energy demand overcame its capacity to maintain homeostasis resulting in oxidative damage.
Collapse
Affiliation(s)
- Ulalume Hernández-Arciga
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - L. Gerardo Herrera M.
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio, Jalisco, México
| | - Alejandra Ibáñez-Contreras
- Laboratorio de Neurofisiología, Applied Research in Experimental Biomedicine S.A. de C.V. (APREXBIO), Ciudad de México, México
- Unidad de Experimentación Animal, Biología Integral para Vertebrados (BIOINVERT®), Estado de México, México
| | - Roxana U. Miranda-Labra
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - José Juan Flores-Martínez
- Laboratorio de Sistemas de Información Geográfica, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mina Königsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, México
| |
Collapse
|
4
|
Bekhbat M, Neigh GN. Sex differences in the neuro-immune consequences of stress: Focus on depression and anxiety. Brain Behav Immun 2018; 67:1-12. [PMID: 28216088 PMCID: PMC5559342 DOI: 10.1016/j.bbi.2017.02.006] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022] Open
Abstract
Women appear to be more vulnerable to the depressogenic effects of inflammation than men. Chronic stress, one of the most pertinent risk factors of depression and anxiety, is known to induce behavioral and affective-like deficits via neuroimmune alterations including activation of the brain's immune cells, pro-inflammatory cytokine expression, and subsequent changes in neurotransmission and synaptic plasticity within stress-related neural circuitry. Despite well-established sexual dimorphisms in the stress response, immunity, and prevalence of stress-linked psychiatric illnesses, much of current research investigating the neuroimmune impact of stress remains exclusively focused on male subjects. We summarize and evaluate here the available data regarding sex differences in the neuro-immune consequences of stress, and some of the physiological factors contributing to these differences. Furthermore, we discuss the extent to which sex differences in stress-related neuroinflammation can account for the overall female bias in stress-linked psychiatric disorders including major depressive disorder and anxiety disorders. The currently available evidence from rodent studies does not unequivocally support the peripheral inflammatory changes seen in women following stress. Replication of many recent findings in stress-related neuroinflammation in female subjects is necessary in order to build a framework in which we can assess the extent to which sex differences in stress-related inflammation contribute to the overall female bias in stress-related affective disorders.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - Gretchen N Neigh
- Department of Physiology, Emory University, Atlanta, GA 30322, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
5
|
Teffer AK, Hinch SG, Miller KM, Patterson DA, Farrell AP, Cooke SJ, Bass AL, Szekeres P, Juanes F. Capture severity, infectious disease processes and sex influence post-release mortality of sockeye salmon bycatch. CONSERVATION PHYSIOLOGY 2017; 5:cox017. [PMID: 28852514 PMCID: PMC5569998 DOI: 10.1093/conphys/cox017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 05/21/2023]
Abstract
Bycatch is a common occurrence in heavily fished areas such as the Fraser River, British Columbia, where fisheries target returning adult Pacific salmon (Oncorhynchus spp.) en route to spawning grounds. The extent to which these encounters reduce fish survival through injury and physiological impairment depends on multiple factors including capture severity, river temperature and infectious agents. In an effort to characterize the mechanisms of post-release mortality and address fishery and managerial concerns regarding specific regulations, wild-caught Early Stuart sockeye salmon (Oncorhynchus nerka) were exposed to either mild (20 s) or severe (20 min) gillnet entanglement and then held at ecologically relevant temperatures throughout their period of river migration (mid-late July) and spawning (early August). Individuals were biopsy sampled immediately after entanglement and at death to measure indicators of stress and immunity, and the infection intensity of 44 potential pathogens. Biopsy alone increased mortality (males: 33%, females: 60%) when compared with non-biopsied controls (males: 7%, females: 15%), indicating high sensitivity to any handling during river migration, especially among females. Mortality did not occur until 5-10 days after entanglement, with severe entanglement resulting in the greatest mortality (males: 62%, females: 90%), followed by mild entanglement (males: 44%, females: 70%). Infection intensities of Flavobacterium psychrophilum and Ceratonova shasta measured at death were greater in fish that died sooner. Physiological indicators of host stress and immunity also differed depending on longevity, and indicated anaerobic metabolism, osmoregulatory failure and altered immune gene regulation in premature mortalities. Together, these results implicate latent effects of entanglement, especially among females, resulting in mortality days or weeks after release. Although any entanglement is potentially detrimental, reducing entanglement durations can improve post-release survival.
Collapse
Affiliation(s)
- Amy K. Teffer
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
- Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Scott G. Hinch
- Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kristi M. Miller
- Fisheries and Oceans Canada, Molecular Genetics Section, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
| | - David A. Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Anthony P. Farrell
- Department of Zoology, Department of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Arthur L. Bass
- Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Petra Szekeres
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
6
|
Circadian rhythms accelerate wound healing in female Siberian hamsters. Physiol Behav 2016; 171:165-174. [PMID: 27998755 DOI: 10.1016/j.physbeh.2016.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
Abstract
Circadian rhythms (CRs) provide temporal regulation and coordination of numerous physiological traits, including immune function. CRs in multiple aspects of immune function are impaired in rodents that have been rendered circadian-arrhythmic through various methods. In Siberian hamsters, circadian arrhythmia can be induced by disruptive light treatments (DPS). Here we examined CRs in wound healing, and the effects of circadian disruption on wound healing in DPS-arrhythmic hamsters. Circadian entrained/rhythmic (RHYTH) and behaviorally-arrhythmic (ARR) female hamsters were administered a cutaneous wound either 3h after light onset (ZT03) or 2h after dark onset (ZT18); wound size was quantified daily using image analyses. Among RHYTH hamsters, ZT03 wounds healed faster than ZT18 wounds, whereas in ARR hamsters, circadian phase did not affect wound healing. In addition, wounds healed slower in ARR hamsters. The results document a clear CR in wound healing, and indicate that the mere presence of organismal circadian organization enhances this aspect of immune function. Faster wound healing in CR-competent hamsters may be mediated by CR-driven coordination of the temporal order of mechanisms (inflammation, leukocyte trafficking, tissue remodeling) underlying cutaneous wound healing.
Collapse
|
7
|
Koschwanez H, Vurnek M, Weinman J, Tarlton J, Whiting C, Amirapu S, Colgan S, Long D, Jarrett P, Broadbent E. Stress-related changes to immune cells in the skin prior to wounding may impair subsequent healing. Brain Behav Immun 2015; 50:47-51. [PMID: 26102314 DOI: 10.1016/j.bbi.2015.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/06/2015] [Accepted: 06/16/2015] [Indexed: 12/31/2022] Open
Abstract
Higher psychological stress is associated with slower dermal wound healing, but the immunological mechanisms behind this effect are only partially understood. This paper aims to investigate whether immune cells present in the skin prior to wounding can affect subsequent healing in high-stress and low-stress participants. Two studies are presented in which skin biopsies were analysed using immunohistochemistry for numbers of macrophages and Langerhans cells, and immune cell activation (Study 2 only). Immune cells were related to perceived stress levels and subsequent healing. Study 1 included 19 healthy older adults and showed that higher stress was associated with significantly fewer macrophages in the skin. Study 2 included 22 younger adults and showed that higher stress was associated with significantly lower activation of immune cells in the skin. Furthermore, lower activation of immune cells (as measured by human leukocyte antigen (HLA expression)) and fewer Langerhans cells were associated with slower healing. Together these studies show the first preliminary evidence that the number and activation of immune cells in the skin prior to wounding are affected by stress and can impact healing. Larger studies are needed to confirm these effects.
Collapse
Affiliation(s)
- Heidi Koschwanez
- Department of Psychological Medicine, The University of Auckland, New Zealand
| | - Maja Vurnek
- Department of Psychology, Centre for Croatian Studies, University of Zagreb, Croatia
| | - John Weinman
- Institute of Pharmaceutical Sciences, King's College London, United Kingdom
| | - John Tarlton
- School of Veterinary Sciences, University of Bristol, United Kingdom
| | - Christine Whiting
- School of Veterinary Sciences, University of Bristol, United Kingdom
| | - Satya Amirapu
- Department of Anatomy, The University of Auckland, New Zealand
| | - Sarah Colgan
- Department of Psychological Medicine, The University of Auckland, New Zealand
| | - David Long
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Paul Jarrett
- Counties Manukau District Health Board, Otahuhu, Auckland, New Zealand
| | - Elizabeth Broadbent
- Department of Psychological Medicine, The University of Auckland, New Zealand.
| |
Collapse
|
8
|
Raby GD, Donaldson MR, Hinch SG, Clark TD, Eliason EJ, Jeffries KM, Cook KV, Teffer A, Bass AL, Miller KM, Patterson DA, Farrell AP, Cooke SJ. Fishing for Effective Conservation: Context and Biotic Variation are Keys to Understanding the Survival of Pacific Salmon after Catch-and-Release. Integr Comp Biol 2015. [PMID: 26199324 DOI: 10.1093/icb/icv088] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute stressors are commonly experienced by wild animals but their effects on fitness rarely are studied in the natural environment. Billions of fish are captured and released annually around the globe across all fishing sectors (e.g., recreational, commercial, subsistence). Whatever the motivation, release often occurs under the assumption of post-release survival. Yet, capture by fisheries (hereafter "fisheries-capture") is likely the most severe acute stressor experienced in the animal's lifetime, which makes the problem of physiological recovery and survival of relevance to biology and conservation. Indeed, fisheries managers require accurate estimates of mortality to better account for total mortality from fishing, while fishers desire guidance on strategies for reducing mortality and maintaining the welfare of released fish, to maximize current and future opportunities for fishing. In partnership with stakeholders, our team has extensively studied the effects of catch-and-release on Pacific salmon in both marine and freshwater environments, using biotelemetry and physiological assessments in a combined laboratory-based and field-based approach. The emergent theme is that post-release rates of mortality are consistently context-specific and can be affected by a suite of interacting biotic and abiotic factors. The fishing gear used, location of a fishery, water temperature, and handling techniques employed by fishers each can dramatically affect survival of the salmon they release. Variation among individuals, co-migrating populations, and between sexes all seem to play a role in the response of fish to capture and in their subsequent survival, potentially driven by pre-capture pathogen-load, maturation states, and inter-individual variation in responsiveness to stress. Although some of these findings are fascinating from a biological perspective, they all create unresolved challenges for managers. We summarize our findings by highlighting the patterns that have emerged most consistently, and point to areas of uncertainty that require further research.
Collapse
Affiliation(s)
- Graham D Raby
- *Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON K1S5B6, Canada;
| | - Michael R Donaldson
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Timothy D Clark
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada; Australian Institute of Marine Science, PMB 3, Townsville MC, QLD 4810, Australia
| | - Erika J Eliason
- *Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON K1S5B6, Canada; Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Kenneth M Jeffries
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Katrina V Cook
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Amy Teffer
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada; Biology Department, University of Victoria, Victoria, BC V8P5C2, Canada
| | - Arthur L Bass
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9R5K6, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Science Branch, Pacific Region, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| | - Anthony P Farrell
- **Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Steven J Cooke
- *Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON K1S5B6, Canada
| |
Collapse
|
9
|
Mao XW, Pecaut MJ, Stodieck LS, Ferguson VL, Bateman TA, Bouxsein ML, Gridley DS. Biological and metabolic response in STS-135 space-flown mouse skin. Free Radic Res 2014; 48:890-7. [PMID: 24796731 DOI: 10.3109/10715762.2014.920086] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p < 0.05) altered in the flight group, with fold changes >1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p < 0.05) between space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue.
Collapse
Affiliation(s)
- X W Mao
- Division of Radiation Research, Department of Basic Sciences, Loma Linda University and Medical Center , Loma Linda, CA , USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Shaashua L, Rosenne E, Neeman E, Sorski L, Sominsky L, Matzner P, Page GG, Ben-Eliyahu S. Plasma IL-12 levels are suppressed in vivo by stress and surgery through endogenous release of glucocorticoids and prostaglandins but not catecholamines or opioids. Psychoneuroendocrinology 2014; 42:11-23. [PMID: 24636497 PMCID: PMC3959722 DOI: 10.1016/j.psyneuen.2013.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 11/26/2022]
Abstract
IL-12 is a prominent Th1 differentiator and leukocyte activator. Ample studies showed suppression of IL-12 production by numerous stress factors, including prostaglandins, catecholamines, glucocorticoids, and opioids, but did so in vitro and in the context of artificial leukocyte activation, not simulating the in vivo setting. In a recent study we reported in vivo suppression of plasma IL-12 levels by behavioral stress and surgery. The current study aims to elucidate neuroendocrine mechanisms underlying this phenomenon in naïve F344 rats. To this end, both adrenalectomy and administration of specific antagonists were used, targeting the aforementioned stress factors. The results indicated that corticosterone and prostaglandins are prominent mediators of the IL-12-suppressing effects of stress and surgery, apparently through directly suppressing leukocyte IL-12 production. Following surgery, endogenous prostaglandins exerted their effects mainly through elevating corticosterone levels. Importantly, stress-induced release of epinephrine or opioids had no impact on plasma IL-12 levels, while pharmacological administration of epinephrine reduced plasma IL-12 levels by elevating corticosterone levels. Last, a whole blood in vitro study indicated that prostaglandins and corticosterone, but not epinephrine, suppressed IL-12 production in non-stimulated leukocytes, and only corticosterone did so in the context of CpG-C-induced IL-12 production. Overall, the findings reiterate the notion that results from in vitro or pharmacological in vivo studies cannot indicate the effects of endogenously released stress hormones under stress/surgery conditions. Herein, corticosterone and prostaglandins, but not catecholamines or opioids, were key mediators of the suppressive effect of stress and surgery on in vivo plasma IL-12 levels in otherwise naïve animals.
Collapse
Affiliation(s)
- Lee Shaashua
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ella Rosenne
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Elad Neeman
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Liat Sorski
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Luba Sominsky
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Pini Matzner
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gayle G. Page
- School of Nursing, Johns Hopkins University, Baltimore, MD, USA
| | - Shamgar Ben-Eliyahu
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
11
|
Hall JMF, Witter AR, Racine RR, Berg RE, Podawiltz A, Jones H, Mummert ME. Chronic psychological stress suppresses contact hypersensitivity: potential roles of dysregulated cell trafficking and decreased IFN-γ production. Brain Behav Immun 2014; 36:156-64. [PMID: 24184400 DOI: 10.1016/j.bbi.2013.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 11/29/2022] Open
Abstract
Increasing evidence shows that psychological stress can have dramatic impacts on the immune system, particularly the cutaneous immune response in dermatological disorders. While there have been many studies examining the impact of acute psychological stress on contact hypersensitivity there are relatively few studies concerning the impact of chronic psychological stress. Furthermore, the local immunological mechanisms by which chronic psychological stress impacts contact hypersensitivity still remain to be explored. Here we show that restraint-induced chronic psychological stress stimulates activation of the hypothalamus-pituitary-adrenal axis and delays weight gain in female BALB/c mice. We observed that chronic psychological stress reduces the cutaneous immune response as evidence by reduced ear swelling. This correlated with a significant decrease in the inflammatory cell infiltrate. On the other hand, chronic psychological stress does not influence T cell proliferation, activation, or sensitivity to corticosterone but does increase CD4(+) and CD8(+) T cell percentages in draining lymph nodes during a contact hypersensitivity reaction. Chronic psychological stress induces a decrease in overall circulating white blood cells, lymphocytes, and monocytes during a contact hypersensitivity reaction suggesting extravasation from the circulation. Finally, we found markedly reduced local IFN-γ production in chronically stressed animals. Based on these findings we propose that chronic psychological stress reduces contact hypersensitivity due to dysregulated cell trafficking and reduced production of IFN-γ.
Collapse
Affiliation(s)
- Jessica M F Hall
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Alexandra R Witter
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ronny R Racine
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rance E Berg
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Alan Podawiltz
- Department of Psychiatry and Behavioral Health, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Harlan Jones
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Mark E Mummert
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, United States; Department of Psychiatry and Behavioral Health, University of North Texas Health Science Center, Fort Worth, TX, United States; Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
12
|
Prendergast BJ, Cable EJ, Patel PN, Pyter LM, Onishi KG, Stevenson TJ, Ruby NF, Bradley SP. Impaired leukocyte trafficking and skin inflammatory responses in hamsters lacking a functional circadian system. Brain Behav Immun 2013; 32:94-104. [PMID: 23474187 PMCID: PMC3686870 DOI: 10.1016/j.bbi.2013.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/20/2013] [Accepted: 02/27/2013] [Indexed: 01/19/2023] Open
Abstract
The immune system is under strong circadian control, and circadian desynchrony is a risk factor for metabolic disorders, inflammatory responses and cancer. Signaling pathways that maintain circadian rhythms (CRs) in immune function in vivo, and the mechanisms by which circadian desynchrony impairs immune function, remain to be fully identified. These experiments tested the hypothesis that the hypothalamic circadian pacemaker in the suprachiasmatic nucleus (SCN) drives CRs in the immune system, using a non-invasive model of SCN circadian arrhythmia. Robust CRs in blood leukocyte trafficking, with a peak during the early light phase (ZT4) and nadir in the early dark phase (ZT18), were absent in arrhythmic hamsters, as were CRs in spleen clock gene (per1, bmal1) expression, indicating that a functional pacemaker in the SCN is required for the generation of CRs in leukocyte trafficking and for driving peripheral clocks in secondary lymphoid organs. Pinealectomy was without effect on CRs in leukocyte trafficking, but abolished CRs in spleen clock gene expression, indicating that nocturnal melatonin secretion is necessary for communicating circadian time information to the spleen. CRs in trafficking of antigen presenting cells (CD11c(+) dendritic cells) in the skin were abolished, and antigen-specific delayed-type hypersensitivity skin inflammatory responses were markedly impaired in arrhythmic hamsters. The SCN drives robust CRs in leukocyte trafficking and lymphoid clock gene expression; the latter of which is not expressed in the absence of melatonin. Robust entrainment of the circadian pacemaker provides a signal critical to diurnal rhythms in immunosurveilliance and optimal memory T-cell dependent immune responses.
Collapse
Affiliation(s)
- Brian J. Prendergast
- Department of Psychology, University of Chicago, Chicago, IL 60637,Committee on Neurobiology, University of Chicago, Chicago, IL 60637
| | - Erin J. Cable
- Department of Psychology, University of Chicago, Chicago, IL 60637
| | - Priyesh N. Patel
- Department of Psychology, University of Chicago, Chicago, IL 60637
| | - Leah M. Pyter
- Department of Psychology, University of Chicago, Chicago, IL 60637
| | | | | | - Norman F. Ruby
- Department of Biological Sciences, Stanford University, Palo Alto, CA 94305
| | - Sean P. Bradley
- Department of Psychology, University of Chicago, Chicago, IL 60637
| |
Collapse
|