1
|
Gao Y, Zhang J, Tang T, Liu Z. Hypoxia Pathways in Parkinson's Disease: From Pathogenesis to Therapeutic Targets. Int J Mol Sci 2024; 25:10484. [PMID: 39408813 PMCID: PMC11477385 DOI: 10.3390/ijms251910484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The human brain is highly dependent on oxygen, utilizing approximately 20% of the body's oxygen at rest. Oxygen deprivation to the brain can lead to loss of consciousness within seconds and death within minutes. Recent studies have identified regions of the brain with spontaneous episodic hypoxia, referred to as "hypoxic pockets". Hypoxia can also result from impaired blood flow due to conditions such as heart disease, blood clots, stroke, or hemorrhage, as well as from reduced oxygen intake or excessive oxygen consumption caused by factors like low ambient oxygen, pulmonary diseases, infections, inflammation, and cancer. Severe hypoxia in the brain can manifest symptoms similar to Parkinson's disease (PD), including cerebral edema, mood disturbances, and cognitive impairments. Additionally, the development of PD appears to be closely associated with hypoxia and hypoxic pathways. This review seeks to investigate the molecular interactions between hypoxia and PD, emphasizing the pathological role of hypoxic pathways in PD and exploring their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Jiarui Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| |
Collapse
|
2
|
Tang Y, Chu Q, Xie G, Tan Y, Ye Z, Qin C. MLKL regulates Cx43 ubiquitinational degradation and mediates neuronal necroptosis in ipsilateral thalamus after focal cortical infarction. Mol Brain 2023; 16:74. [PMID: 37904209 PMCID: PMC10617209 DOI: 10.1186/s13041-023-01064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Necroptosis is known to play an important role in the pathophysiology of cerebral ischemia; however, its role in the occurrence of secondary thalamic injury after focal cerebral infarction and the mechanism about how mixed lineage kinase domain-like (MLKL) executes necroptosis in this pathophysiology are still unclear. In this study, Sprague-Dawley rats were subjected to distal branch of middle cerebral artery occlusion (dMCAO). The expression of MLKL, connexin 43 (Cx43) and Von Hippel-Lindau (VHL) in vitro and in vivo were assessed by Western blot. Bioinformatic methods were used to predict the potential binding sites where MLKL interacted with Cx43, and the ubiquitination degradation of Cx43 regulated by VHL. The interactions among MLKL, Cx43, VHL, and Ubiquitin were assessed by immunoprecipitation. Dye uptake assay were used to examine the Cx43 hemichannels. Intracellular Ca2+ concentration was measured using Fluo-4 AM. Overexpression and site-directed mutagenesis studies were used to study the mechanisms by which MLKL regulates Cx43 ubiquitinational degradation to mediate neuronal necroptosis. We found that MLKL and Cx43 were upregulated in the ventral posterolateral nucleus (VPN) of the ipsilateral thalamus after dMCAO. In the in vitro experiments MLKL and Cx43 were upregulated after TSZ-mediated necroptosis in SH-SY5Y cells. The interaction between MLKL and Cx43 inhibited the K48-linked ubiquitination of Cx43 in necroptotic SH-SY5Y cells. VHL is an E3 ubiquitin ligase for Cx43, and MLKL competes with VHL for binding to Cx43. Interaction of MLKL Ser454 with Cx43 can trigger the opening of Cx43 hemichannels, causing increased intracellular Ca2+, and cell necroptosis. This innovative study at animal models, cellular, and molecular levels is anticipated to clarify the roles of MLKL and Cx43 in thalamic damage after focal cortical infarction. Our findings may help identify novel targets for neurological recovery after cortical infarction.
Collapse
Affiliation(s)
- Yanyan Tang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Province, 530021, China
| | - Quanhong Chu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Province, 530021, China
| | - Guanfeng Xie
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Province, 530021, China
| | - Yafu Tan
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Province, 530021, China
| | - Ziming Ye
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Province, 530021, China
| | - Chao Qin
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Province, 530021, China.
| |
Collapse
|
3
|
Kunvariya AD, Dave SA, Modi ZJ, Patel PK, Sagar SR. Exploration of multifaceted molecular mechanism of angiotensin-converting enzyme 2 (ACE2) in pathogenesis of various diseases. Heliyon 2023; 9:e15644. [PMID: 37153428 PMCID: PMC10160752 DOI: 10.1016/j.heliyon.2023.e15644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a homolog of ACE (a transmembrane bound dipeptidyl peptidase enzyme). ACE2 converts angiotensinogen to the heptapeptide angiotensin-(1-7). ACE2 and its product, angiotensin-(1-7), have counteracting effects against the adverse actions of other members of renin-angiotensin system (RAS). ACE2 and its principal product, angiotensin-(1-7), were considered an under recognized arm of the RAS. The COVID-19 pandemic brought to light this arm of RAS with special focus on ACE2. Membrane bound ACE2 serves as a receptor for SARS-CoV-2 viral entry through spike proteins. Apart from that, ACE2 is also involved in the pathogenesis of various other diseases like cardiovascular disease, cancer, respiratory diseases, neurodegenerative diseases and infertility. The present review focuses on the molecular mechanism of ACE2 in neurodegenerative diseases, cancer, cardiovascular disease, infertility and respiratory diseases, including SARS-CoV-2. This review summarizes unveiled roles of ACE2 in the pathogenesis of various diseases which further provides intriguing possibilities for the use of ACE2 activators and RAS modulating agents for various diseases.
Collapse
Affiliation(s)
- Aditi D. Kunvariya
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Shivani A. Dave
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Zeal J. Modi
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Paresh K. Patel
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Sneha R. Sagar
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
- Corresponding author.
| |
Collapse
|
4
|
Lee K, Lee H, Kim YD, Nam HS, Lee HS, Yoo J, Cho S, Heo JH. Association of Substantia Nigra Degeneration with Poor Neurological Recovery in Basal Ganglia Infarctions. J Stroke 2023; 25:169-172. [PMID: 36470247 PMCID: PMC9911844 DOI: 10.5853/jos.2022.02145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/22/2022] [Accepted: 09/24/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Kijeong Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - HyungWoo Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Dae Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Suk Nam
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul, Korea
| | - Joonsang Yoo
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ji Hoe Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Kent DM, Leung LY, Puttock EJ, Wang AY, Luetmer PH, Kallmes DF, Nelson J, Fu S, Zheng C, Vickery EM, Liu H, Noyce AJ, Chen W. Development of Parkinson Disease and Its Relationship with Incidentally Discovered White Matter Disease and Covert Brain Infarction in a Real-World Cohort. Ann Neurol 2022; 92:620-630. [PMID: 35866711 PMCID: PMC9489676 DOI: 10.1002/ana.26458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This study aimed to examine the relationship between covert cerebrovascular disease, comprised of covert brain infarction and white matter disease, discovered incidentally in routine care, and subsequent Parkinson disease. METHODS Patients were ≥50 years and received neuroimaging for non-stroke indications in the Kaiser Permanente Southern California system from 2009 to 2019. Natural language processing identified incidentally discovered covert brain infarction and white matter disease and classified white matter disease severity. The Parkinson disease outcome was defined as 2 ICD diagnosis codes. RESULTS 230,062 patients were included (median follow-up 3.72 years). A total of 1,941 Parkinson disease cases were identified (median time-to-event 2.35 years). Natural language processing identified covert cerebrovascular disease in 70,592 (30.7%) patients, 10,622 (4.6%) with covert brain infarction and 65,814 (28.6%) with white matter disease. After adjustment for known risk factors, white matter disease was associated with Parkinson disease (hazard ratio 1.67 [95%CI, 1.44, 1.93] for patients <70 years and 1.33 [1.18, 1.50] for those ≥70 years). Greater severity of white matter disease was associated with increased incidence of Parkinson disease(/1,000 person-years), from 1.52 (1.43, 1.61) in patients without white matter disease to 4.90 (3.86, 6.13) in those with severe disease. Findings were robust when more specific definitions of Parkinson disease were used. Covert brain infarction was not associated with Parkinson disease (adjusted hazard ratio = 1.05 [0.88, 1.24]). INTERPRETATION Incidentally discovered white matter disease was associated with subsequent Parkinson disease, an association strengthened with younger age and increased white matter disease severity. Incidentally discovered covert brain infarction did not appear to be associated with subsequent Parkinson disease. ANN NEUROL 2022;92:620-630.
Collapse
Affiliation(s)
- David M. Kent
- Predictive Analytics and Comparative Effectiveness Center,
Tufts Medical Center, Boston, MA, USA
| | - Lester Y. Leung
- Department of Neurology, Tufts Medical Center, Boston, MA,
USA
| | - Eric J. Puttock
- Department of Research and Evaluation, Kaiser Permanente
Southern California, Pasadena, CA, USA
| | - Andy Y. Wang
- Predictive Analytics and Comparative Effectiveness Center,
Tufts Medical Center, Boston, MA, USA
| | | | | | - Jason Nelson
- Predictive Analytics and Comparative Effectiveness Center,
Tufts Medical Center, Boston, MA, USA
| | - Sunyang Fu
- Department of AI and Informatics, Mayo Clinic, Rochester,
MN, USA
| | - Chengyi Zheng
- Department of Research and Evaluation, Kaiser Permanente
Southern California, Pasadena, CA, USA
| | - Ellen M. Vickery
- Predictive Analytics and Comparative Effectiveness Center,
Tufts Medical Center, Boston, MA, USA
| | - Hongfang Liu
- Department of AI and Informatics, Mayo Clinic, Rochester,
MN, USA
| | - Alastair J. Noyce
- Preventive Neurology Unit, Wolfson Institute of Population
Health, Queen Mary University of London, UK
- Department of Clinical and Movement Neuroscience, UCL
Institute of Neurology, London, UK
| | - Wansu Chen
- Department of Research and Evaluation, Kaiser Permanente
Southern California, Pasadena, CA, USA
| |
Collapse
|
6
|
Pang J, Matei N, Peng J, Zheng W, Yu J, Luo X, Camara R, Chen L, Tang J, Zhang JH, Jiang Y. Macrophage Infiltration Reduces Neurodegeneration and Improves Stroke Recovery after Delayed Recanalization in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6422202. [PMID: 36035227 PMCID: PMC9402313 DOI: 10.1155/2022/6422202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
Background Recent cerebrovascular recanalization therapy clinical trials have validated delayed recanalization in patients outside of the conventional window. However, a paucity of information on the pathophysiology of delayed recanalization and favorable outcomes remains. Since macrophages are extensively studied in tissue repair, we anticipate that they may play a critical role in delayed recanalization after ischemic stroke. Methods In adult male Sprague-Dawley rats, two ischemic stroke groups were used: permanent middle cerebral artery occlusion (pMCAO) and delayed recanalization at 3 days following middle cerebral artery occlusion (rMCAO). To evaluate outcome, brain morphology, neurological function, macrophage infiltration, angiogenesis, and neurodegeneration were reported. Confirming the role of macrophages, after their depletion, we assessed angiogenesis and neurodegeneration after delayed recanalization. Results No significant difference was observed in the rate of hemorrhage or animal mortality among pMCAO and rMCAO groups. Delayed recanalization increased angiogenesis, reduced infarct volumes and neurodegeneration, and improved neurological outcomes compared to nonrecanalized groups. In rMCAO groups, macrophage infiltration contributed to increased angiogenesis, which was characterized by increased vascular endothelial growth factor A and platelet-derived growth factor B. Confirming these links, macrophage depletion reduced angiogenesis, inflammation, neuronal survival in the peri-infarct region, and favorable outcome following delayed recanalization. Conclusion If properly selected, delayed recanalization at day 3 postinfarct can significantly improve the neurological outcome after ischemic stroke. The sanguineous exposure of the infarct/peri-infarct to macrophages was essential for favorable outcomes after delayed recanalization at 3 days following ischemic stroke.
Collapse
Affiliation(s)
- Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Nathanael Matei
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wen Zheng
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jing Yu
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xu Luo
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Richard Camara
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiping Tang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - John H. Zhang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
7
|
Guo M, Ji X, Liu J. Hypoxia and Alpha-Synuclein: Inextricable Link Underlying the Pathologic Progression of Parkinson's Disease. Front Aging Neurosci 2022; 14:919343. [PMID: 35959288 PMCID: PMC9360429 DOI: 10.3389/fnagi.2022.919343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease, with typical motor symptoms as the main clinical manifestations. At present, there are about 10 million patients with PD in the world, and its comorbidities and complications are numerous and incurable. Therefore, it is particularly important to explore the pathogenesis of PD and find possible therapeutic targets. Because the etiology of PD is complex, involving genes, environment, and aging, finding common factors is the key to identifying intervention targets. Hypoxia is ubiquitous in the natural environment and disease states, and it is considered to be closely related to the etiology of PD. Despite research showing that hypoxia increases the expression and aggregation of alpha-synuclein (α-syn), the most important pathogenic protein, there is still a lack of systematic studies on the role of hypoxia in α-syn pathology and PD pathogenesis. Considering that hypoxia is inextricably linked with various causes of PD, hypoxia may be a co-participant in many aspects of the PD pathologic process. In this review, we describe the risk factors for PD, and we discuss the possible role of hypoxia in inducing PD pathology by these risk factors. Furthermore, we attribute the pathological changes caused by PD etiology to oxygen uptake disorder and oxygen utilization disorder, thus emphasizing the possibility of hypoxia as a critical link in initiating or promoting α-syn pathology and PD pathogenesis. Our study provides novel insight for exploring the pathogenesis and therapeutic targets of PD.
Collapse
Affiliation(s)
- Mengyuan Guo
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- *Correspondence: Jia Liu
| |
Collapse
|
8
|
Frase S, Löffler F, Hosp JA. Enhancing Post-Stroke Rehabilitation and Preventing Exo-Focal Dopaminergic Degeneration in Rats-A Role for Substance P. Int J Mol Sci 2022; 23:ijms23073848. [PMID: 35409207 PMCID: PMC8999050 DOI: 10.3390/ijms23073848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Dopaminergic signaling is a prerequisite for motor learning. Delayed degeneration of dopaminergic neurons after stroke is linked to motor learning deficits impairing motor rehabilitation. This study investigates safety and efficacy of substance P (SP) treatment on post-stroke rehabilitation, as this neuropeptide combines neuroprotective and plasticity-promoting properties. Male Sprague Dawley rats received a photothrombotic stroke within the primary motor cortex (M1) after which a previously acquired skilled reaching task was rehabilitated. Rats were treated with intraperitoneal saline (control group, n = 7) or SP-injections (250 µg/kg) 30 min before (SP-pre; n = 7) or 16 h (SP-post; n = 6) after rehabilitation training. Dopaminergic neurodegeneration, microglial activation and substance P-immunoreactivity (IR) were analyzed immunohistochemically. Systemic SP significantly facilitated motor rehabilitation. This effect was more pronounced in SP-pre compared to SP-post animals. SP prevented dopaminergic cell loss after stroke, particularly in the SP-pre condition. Despite its proinflammatory propensity, SP administration did not increase stroke volumes, post-stroke deficits or activation of microglia in the midbrain. Finally, SP administration prevented ipsilesional hypertrophy of striatal SPergic innervation, particularly in the SP-post condition. Mechanistically, SP-pre likely involved plasticity-promoting effects in the early phase of rehabilitation, whereas preservation of dopaminergic signaling may have ameliorated rehabilitative success in both SP groups during later stages of training. Our results demonstrate the facilitating effect of SP treatment on motor rehabilitation after stroke, especially if administered prior to training. SP furthermore prevented delayed dopaminergic degeneration and preserved physiological endogenous SPergic innervation.
Collapse
|
9
|
Mao H, Dou W, Wang X, Chen K, Wang X, Guo Y, Zhang C. Iron Deposition in Gray Matter Nuclei of Patients With Intracranial Artery Stenosis: A Quantitative Susceptibility Mapping Study. Front Neurol 2022; 12:785822. [PMID: 35069414 PMCID: PMC8766754 DOI: 10.3389/fneur.2021.785822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study aimed to use quantitative susceptibility mapping (QSM) to systematically investigate the changes of iron content in gray matter (GM) nuclei in patients with long-term anterior circulation artery stenosis (ACAS) and posterior circulation artery stenosis (PCAS). Methods: Twenty-five ACAS patients, 25 PCAS patients, and 25 age- and sex-matched healthy controls underwent QSM examination. Patients were scored using the National Institutes of Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS) to assess the degree of neural function deficiency. On QSM images, iron related susceptibility of GM nuclei, including bilateral caudate nucleus, putamen (PU), globus pallidus (GP), thalamus (TH), substantia nigra (SN), red nucleus, and dentate nucleus (DN), were assessed. Susceptibility was compared between bilateral GM nuclei in healthy controls, ACAS patients, and PCAS patients. Partial correlation analysis, with age as a covariate, was separately performed to assess the relationships of susceptibility with NIHSS and mRS scores. Results: There were no significant differences between the susceptibilities for left and right hemispheres in all seven GM nucleus subregions for healthy controls, ACAS patients, and PCAS patients. Compared with healthy controls, mean susceptibility of bilateral PU, GP, and SN in ACAS patients and of bilateral PU, GP, SN, and DN in PCAS patients were significantly increased (all P < 0.05). In addition, mean susceptibility of bilateral TH and SN in PCAS patients was significantly higher than in ACAS patients (both P < 0.05). With partial correlation analysis, mean susceptibility at bilateral PU of ACAS patients was significantly correlated with mRS score (r = 0.415, P < 0.05), and at bilateral PU in PCAS patients was correlated with NIHSS score (r = 0.424, P < 0.05). Conclusion: Our findings indicated that abnormal iron metabolism may present in different subregions of GM nuclei after long-term ACAS and PCAS. In addition, iron content of PU in patients with ACAS and PCAS was correlated with neurological deficit scores. Therefore, iron quantification measured by QSM susceptibility may provide a new insight to understand the pathological mechanism of ischemic stroke caused by ACAS and PCAS.
Collapse
Affiliation(s)
- Huimin Mao
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Postgraduate Department, Shandong First Medical University, Jinan, China
| | | | - Xinyi Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Kunjian Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Postgraduate Department, Shandong First Medical University, Jinan, China
| | - Xinyu Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Postgraduate Department, Shandong First Medical University, Jinan, China
| | - Yu Guo
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Postgraduate Department, Shandong First Medical University, Jinan, China
| | - Chao Zhang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
10
|
Stuckey SM, Ong LK, Collins-Praino LE, Turner RJ. Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke? Int J Mol Sci 2021; 22:ijms222313101. [PMID: 34884906 PMCID: PMC8658328 DOI: 10.3390/ijms222313101] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/13/2023] Open
Abstract
Ischaemic stroke involves the rapid onset of focal neurological dysfunction, most commonly due to an arterial blockage in a specific region of the brain. Stroke is a leading cause of death and common cause of disability, with over 17 million people worldwide suffering from a stroke each year. It is now well-documented that neuroinflammation and immune mediators play a key role in acute and long-term neuronal tissue damage and healing, not only in the infarct core but also in distal regions. Importantly, in these distal regions, termed sites of secondary neurodegeneration (SND), spikes in neuroinflammation may be seen sometime after the initial stroke onset, but prior to the presence of the neuronal tissue damage within these regions. However, it is key to acknowledge that, despite the mounting information describing neuroinflammation following ischaemic stroke, the exact mechanisms whereby inflammatory cells and their mediators drive stroke-induced neuroinflammation are still not fully understood. As a result, current anti-inflammatory treatments have failed to show efficacy in clinical trials. In this review we discuss the complexities of post-stroke neuroinflammation, specifically how it affects neuronal tissue and post-stroke outcome acutely, chronically, and in sites of SND. We then discuss current and previously assessed anti-inflammatory therapies, with a particular focus on how failed anti-inflammatories may be repurposed to target SND-associated neuroinflammation.
Collapse
Affiliation(s)
- Shannon M. Stuckey
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan 2308, Australia
| | - Lyndsey E. Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Renée J. Turner
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
- Correspondence: ; Tel.: +61-8-8313-3114
| |
Collapse
|
11
|
Peng Z, Zhou R, Liu D, Cui M, Yu K, Yang H, Li L, Liu J, Chen Y, Hong W, Huang J, Wang C, Ma J, Zhou H. Association Between Metabolic Syndrome and Mild Parkinsonian Signs Progression in the Elderly. Front Aging Neurosci 2021; 13:722836. [PMID: 34658837 PMCID: PMC8518184 DOI: 10.3389/fnagi.2021.722836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: This study investigated the impact of metabolic syndrome on the progression from mild parkinsonian signs (MPS) to Parkinson's disease (PD). Methods: A total of 1,563 participants with MPS completed 6 years of follow-up. The diagnosis of metabolic syndrome was made according to Adult Treatment Panel III of the National Cholesterol Education Program. The evaluations of MPS and PD were based on the motor portion of the Unified Parkinson's Disease Rating Scale. Cox proportional hazard models were used to identify the association between metabolic syndrome and PD conversion. Results: Of the 1,563 participants, 482 (30.8%) with MPS developed PD at the end of the follow-up. Metabolic syndrome (HR: 1.69, 95% CI: 1.29-2.03) was associated with the risk of PD conversion. Metabolic syndrome was associated with the progression of bradykinesia (HR: 1.85, 95% CI: 1.43-2.34), rigidity (HR: 1.36, 95% CI: 1.19-1.57), tremor (HR: 1.98, 95% CI: 1.73-2.32), and gait/balance impairment (HR: 1.66, 95% CI: 1.25-2.11). The effect of metabolic syndrome on the progression of bradykinesia and tremor was nearly two fold. Participants treated for two or three to four components of metabolic syndrome, including high blood pressure, high fasting plasma glucose, hypertriglyceridemia, and low HDL-C, had a lower risk of PD conversion. Conclusion: Metabolic syndrome increased the risk of progression from MPS to PD. Participants treated for two or more components of metabolic syndrome had a lower risk of PD conversion.
Collapse
Affiliation(s)
- Zeyan Peng
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Zhou
- Department of Neurology, Army Medical Center of PLA, Chongqing, China
| | - Dong Liu
- Southwest Hospital, Army Medical University, Chongqing, China
| | - Min Cui
- State Key Laboratory of Trauma, Army Medical Center of PLA, Chongqing, China
| | - Ke Yu
- Department of Neurology, The General Hospital of Central Theater Command, Wuhan, China
| | - Hai Yang
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ling Li
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Juan Liu
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yang Chen
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenjuan Hong
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jie Huang
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| | - Congguo Wang
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jingjing Ma
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| | - Huadong Zhou
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
12
|
Park SH, Nam GE, Han K, Huh Y, Kim W, Lee MK, Koh ES, Kim ES, Kim MK, Kwon HS, Kim SM, Cho KH, Park YG. Association of Dynamic Changes in Metabolic Syndrome Status with the Risk of Parkinson's Disease: A Nationwide Cohort Study. JOURNAL OF PARKINSONS DISEASE 2021; 11:1751-1759. [PMID: 34120914 DOI: 10.3233/jpd-212589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The longitudinal association between dynamic changes in the metabolic syndrome (MS) status and Parkinson's disease (PD) has been poorly studied. OBJECTIVE We examined whether dynamic changes in MS status are associated with altered risk for PD. METHODS This study was a nationwide retrospective cohort study. We enrolled 5,522,813 individuals aged≥40 years who had undergone health examinations under the National Health Insurance Service between 2009 and 2010 (two health examinations with a 2-year interval). Participants were followed up until the end of 2017. The participants were categorized into four groups according to MS status changes over 2 years: non-MS, improved MS, incident MS, and persistent MS groups. Multivariable Cox hazard regression was performed. RESULTS During the 7-year median follow-up, there were 20,524 cases of newly developed PD. Compared with non-MS group, improved, incident, and persistent MS groups for 2 years were significantly associated with higher risks of PD (model 3; hazard ratio: 1.12, 95%confidence interval: 1.06-1.19 [improved MS]; 1.15, 1.09-1.22 [incident MS]; and 1.25, 1.20-1.30 [persistent MS]). Individuals with incident and persistent abdominal obesity, low levels of high-density lipoprotein cholesterol, hypertriglyceridemia, and hyperglycemia had a significantly increased risks of PD compared with those without either condition over 2 years. CONCLUSION Persistent and incident MS and its components may be risk factors for incident PD. Ever exposure to MS may also be associated with PD risk. Appropriate intervention for preventing and improving MS may be crucial in decreasing the PD incidence.
Collapse
Affiliation(s)
- Sang Hyun Park
- Department of Biomedicine & Health Science, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ga Eun Nam
- Department of Family Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Youn Huh
- Department of Family Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Wonsock Kim
- Department of Family Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Kyung Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Eun-Sil Koh
- Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sook Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Mee Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon Mee Kim
- Department of Family Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hwan Cho
- Department of Family Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong Gyu Park
- Department of Medical Lifescience, College of Medicine, The catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
13
|
Kamagata K, Andica C, Kato A, Saito Y, Uchida W, Hatano T, Lukies M, Ogawa T, Takeshige-Amano H, Akashi T, Hagiwara A, Fujita S, Aoki S. Diffusion Magnetic Resonance Imaging-Based Biomarkers for Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22105216. [PMID: 34069159 PMCID: PMC8155849 DOI: 10.3390/ijms22105216] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
There has been an increasing prevalence of neurodegenerative diseases with the rapid increase in aging societies worldwide. Biomarkers that can be used to detect pathological changes before the development of severe neuronal loss and consequently facilitate early intervention with disease-modifying therapeutic modalities are therefore urgently needed. Diffusion magnetic resonance imaging (MRI) is a promising tool that can be used to infer microstructural characteristics of the brain, such as microstructural integrity and complexity, as well as axonal density, order, and myelination, through the utilization of water molecules that are diffused within the tissue, with displacement at the micron scale. Diffusion tensor imaging is the most commonly used diffusion MRI technique to assess the pathophysiology of neurodegenerative diseases. However, diffusion tensor imaging has several limitations, and new technologies, including neurite orientation dispersion and density imaging, diffusion kurtosis imaging, and free-water imaging, have been recently developed as approaches to overcome these constraints. This review provides an overview of these technologies and their potential as biomarkers for the early diagnosis and disease progression of major neurodegenerative diseases.
Collapse
Affiliation(s)
- Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
- Correspondence:
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| | - Ayumi Kato
- Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan;
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (T.H.); (T.O.); (H.T.-A.)
| | - Matthew Lukies
- Department of Diagnostic and Interventional Radiology, Alfred Health, Melbourne, VIC 3004, Australia;
| | - Takashi Ogawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (T.H.); (T.O.); (H.T.-A.)
| | - Haruka Takeshige-Amano
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (T.H.); (T.O.); (H.T.-A.)
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| |
Collapse
|
14
|
Dyavar SR, Potts LF, Beck G, Dyavar Shetty BL, Lawson B, Podany AT, Fletcher CV, Amara RR, Papa SM. Transcriptomic approach predicts a major role for transforming growth factor beta type 1 pathway in L-Dopa-induced dyskinesia in parkinsonian rats. GENES BRAIN AND BEHAVIOR 2020; 19:e12690. [PMID: 32741046 DOI: 10.1111/gbb.12690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023]
Abstract
Dyskinesia induced by long-term L-Dopa (LID) therapy in Parkinson disease is associated with altered striatal function whose molecular bases remain unclear. Here, a transcriptomic approach was applied for comprehensive analysis of distinctively regulated genes in striatal tissue, their specific pathways, and functional- and disease-associated networks in a rodent model of LID. This approach has identified transforming growth factor beta type 1 (TGFβ1) as a highly upregulated gene in dyskinetic animals. TGFβ1 pathway is a top aberrantly regulated pathway in the striatum following LID development based on differentially expressed genes (> 1.5 fold change and P < 0.05). The induction of TGFβ1 pathway specific genes, TGFβ1, INHBA, AMHR2 and PMEPA1 was also associated with regulation of NPTX2, PDP1, SCG2, SYNPR, TAC1, TH, TNNT1 genes. Transcriptional network and upstream regulator analyses have identified AKT-centered functional and ERK-centered disease networks revealing the association of TGFβ1, IL-1β and TNFα with LID development. Therefore, results support that TGFβ1 pathway is a major contributor to the pathogenic mechanisms of LID.
Collapse
Affiliation(s)
- Shetty Ravi Dyavar
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Lisa F Potts
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Goichi Beck
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | - Benton Lawson
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Anthony T Podany
- Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Courtney V Fletcher
- Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rama Rao Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Wilkaniec A, Cieślik M, Murawska E, Babiec L, Gąssowska-Dobrowolska M, Pałasz E, Jęśko H, Adamczyk A. P2X7 Receptor is Involved in Mitochondrial Dysfunction Induced by Extracellular Alpha Synuclein in Neuroblastoma SH-SY5Y Cells. Int J Mol Sci 2020; 21:ijms21113959. [PMID: 32486485 PMCID: PMC7312811 DOI: 10.3390/ijms21113959] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
The purinergic P2X7 receptor (P2X7R) belongs to a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). Several studies have pointed to a role of P2X7R-dependent signalling in Parkinson's disease (PD)-related neurodegeneration. The pathology of (PD) is characterized by the formation of insoluble alpha-synuclein (α-Syn) aggregates—Lewy bodies, but the mechanisms underlying α-Syn-induced dopaminergic cell death are still partially unclear. Our previous studies indicate that extracellular α-Syn directly interact with neuronal P2X7R and induces intracellular free calcium mobilization in neuronal cells. The main objective of this study was to examine the involvement of P2X7R receptor in α-Syn-induced mitochondrial dysfunction and cell death. We found that P2X7R stimulation is responsible for α-Syn-induced oxidative stress and activation of the molecular pathways of programmed cell death. Exogenous α-Syn treatment led to P2X7R-dependent decrease in mitochondrial membrane potential as well as elevation of mitochondrial ROS production resulting in breakdown of cellular energy production. Moreover, P2X7R-dependent deregulation of AMP-activated protein kinase as well as decrease in parkin protein level could be responsible for α-Syn-induced mitophagy impairment and accumulation of dysfunctional mitochondria. P2X7R might be putative pharmacological targets in molecular mechanism of extracellular α-Syn toxicity.
Collapse
Affiliation(s)
- Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
- Correspondence: ; Tel.: +48-22-608-66-00; Fax: +48-22-608-64-13
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Emilia Murawska
- Department of Applied Microbiology, Institute of Microbiology, Warsaw University, Miecznikowa 1 Street, 02-096 Warsaw, Poland;
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Ewelina Pałasz
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| |
Collapse
|
16
|
Hosp JA, Greiner KL, Martinez Arellano L, Roth F, Löffler F, Reis J, Fritsch B. Progressive secondary exo-focal dopaminergic neurodegeneration occurs in not directly connected midbrain nuclei after pure motor-cortical stroke. Exp Neurol 2020; 327:113211. [PMID: 31987834 DOI: 10.1016/j.expneurol.2020.113211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
Transsynaptic anterograde and retrograde degeneration of neurons and neural fibers are assumed to trigger local excitotoxicity and inflammatory processes. These processes in turn are thought to drive exo-focal neurodegeneration in remote areas connected to the infarcted tissue after ischemic stroke. In the case of middle cerebral artery occlusion (MCAO), in which striato-nigral connections are affected, the hypothesis of inflammation-induced remote neurodegeneration is based on the temporal dynamics of an early appearance of inflammatory markers in midbrain followed by dopaminergic neuronal loss. To test the hypothesis of a direct transsynaptic mediation of secondary exo-focal post-ischemic neurodegeneration, we used a photochemical induction of a stroke (PTS) in Sprague-Dawley rats restricted to motor cortex (MC), thereby sparing the striatal connections to dopaminergic midbrain nuclei. To dissect the temporal dynamics of post-ischemic neurodegeneration, we analyzed brain sections harvested at day 7 and 14 post stroke. Here, an unexpectedly pronounced and widespread loss of dopaminergic neurons occurred 14 days after stroke also affecting dopaminergic nuclei that are not directly coupled to MC. Since the pattern of neurodegeneration in case of a pure motor stroke is similar to a major stroke including the striatum, it is unlikely that direct synaptic coupling is a prerequisite for delayed secondary exo-focal post ischemic neurodegeneration. Furthermore, dopaminergic neurodegeneration was already detected by Fluoro-Jade C staining at day 7, coinciding with a solely slight inflammatory response. Thus, inflammation cannot be assumed to be the primary driver of exo-focal post-ischemic cell death. Moreover, nigral substance P (SP) expression indicated intact striato-nigral innervation after PTS, whereas opposing effects on SP expression after striatal infarcts argue against a critical role of SP in neurodegenerative or inflammatory processes during exo-focal neurodegeneration.
Collapse
Affiliation(s)
- J A Hosp
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - K L Greiner
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - L Martinez Arellano
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F Roth
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F Löffler
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J Reis
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - B Fritsch
- Department of Neurology and Neuroscience, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Zuo X, Hu S, Tang Y, Zhan L, Sun W, Zheng J, Han Y, Xu E. Attenuation of secondary damage and Aβ deposits in the ipsilateral thalamus of dMCAO rats through reduction of cathepsin B by bis(propyl)-cognitin, a multifunctional dimer. Neuropharmacology 2020; 162:107786. [DOI: 10.1016/j.neuropharm.2019.107786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/01/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022]
|
18
|
Liu X, Feng Z, Du L, Huang Y, Ge J, Deng Y, Mei Z. The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury. Int J Mol Sci 2019; 21:ijms21010120. [PMID: 31878035 PMCID: PMC6981583 DOI: 10.3390/ijms21010120] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia injury, the leading cause of morbidity and mortality worldwide, initiates sequential molecular and cellular pathologies that underlie ischemic encephalopathy (IE), such as ischemic stroke, Alzheimer disease (AD), Parkinson's disease (PD), epilepsy, etc. Targeted therapeutic treatments are urgently needed to tackle the pathological processes implicated in these neurological diseases. Recently, accumulating studies demonstrate that microRNA-124 (miR-124), the most abundant miRNA in brain tissue, is aberrant in peripheral blood and brain vascular endothelial cells following cerebral ischemia. Importantly, miR-124 regulates a variety of pathophysiological processes that are involved in the pathogenesis of age-related IE. However, the role of miR-124 has not been systematically illustrated. Paradoxically, miR-124 exerts beneficial effects in the age-related IE via regulating autophagy, neuroinflammation, oxidative stress, neuronal excitability, neurodifferentiation, Aβ deposition, and hyperphosphorylation of tau protein, while it may play a dual role via regulating apoptosis and exerts detrimental effects on synaptic plasticity and axonal growth. In the present review, we thus focus on the paradoxical roles of miR-124 in age-related IE, as well as the underlying mechanisms. A great understanding of the effects of miR-124 on the hypoxic-ischemic brain will open new avenues for therapeutic approaches to protect against cerebral ischemia injury.
Collapse
Affiliation(s)
- Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Yaguang Huang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Jinwen Ge
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Yihui Deng
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Zhigang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
- Correspondence:
| |
Collapse
|
19
|
Zhong ZF, Han J, Zhang JZ, Xiao Q, Chen JY, Zhang K, Hu J, Chen LD. Neuroprotective Effects of Salidroside on Cerebral Ischemia/Reperfusion-Induced Behavioral Impairment Involves the Dopaminergic System. Front Pharmacol 2019; 10:1433. [PMID: 31920641 PMCID: PMC6923222 DOI: 10.3389/fphar.2019.01433] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Salidroside, a phenylpropanoid glycoside, is the main bioactive component of Rhodiola rosea L. Salidroside has prominent anti-stroke effects in cerebral ischemia/reperfusion models. However, the underlying mechanisms of its actions are poorly understood. This study examined the anti-stroke effects of salidroside in middle cerebral artery occlusion (MCAO)-induced rat model of stroke and its potential mechanisms involving the dopaminergic system. Salidroside administration increased the levels of dopamine (DA), homovanillic acid (HVA), and 3,4-dihydroxyphenylacetic acid (DOPAC) in the ipsilateral striatum after induction of transient ischemia, which were assessed using microdialysis with high-performance liquid chromatography coupled with electrochemical detection (HPLC-ECD). Furthermore, treatment with salidroside ameliorated neurobehavioral impairment, assessed with the modified neurological severity scores (mNSS), the balance beam test, and the foot fault test. Moreover, enzyme-linked immunosorbent assay (ELISA) suggested that MCAO-induced reduction in monoamine oxidase (MAO) was inhibited by salidroside. Immunohistochemical and immunofluorescence analyses revealed high level of tyrosine hydroxylase (TH) in the ipsilateral striatal caudate putamen (CPu) after cerebral ischemia/reperfusion, which could be further elevated by salidroside. In addition, salidroside could reverse the decreased immunoreactivity of TH in the substantia nigra pars compacta (SNpc). These results suggest that the anti-stroke effects of salidroside in MCAO-induced cerebral ischemia/reperfusion may involve the modulation of monoamine metabolism in the striatum and SNpc, which may be related to the function of the dopaminergic system in the rat brain.
Collapse
Affiliation(s)
- Zhi-Feng Zhong
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China.,Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China
| | - Jing Han
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China
| | - Ji-Zhou Zhang
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China
| | - Qing Xiao
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China
| | - Jing-Yan Chen
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China
| | - Kai Zhang
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China
| | - Juan Hu
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China.,School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li-Dian Chen
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China.,School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
20
|
Clément T, Lee JB, Ichkova A, Rodriguez-Grande B, Fournier ML, Aussudre J, Ogier M, Haddad E, Canini F, Koehl M, Abrous DN, Obenaus A, Badaut J. Juvenile mild traumatic brain injury elicits distinct spatiotemporal astrocyte responses. Glia 2019; 68:528-542. [PMID: 31670865 DOI: 10.1002/glia.23736] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
Mild-traumatic brain injury (mTBI) represents ~80% of all emergency room visits and increases the probability of developing long-term cognitive disorders in children. To date, molecular and cellular mechanisms underlying post-mTBI cognitive dysfunction are unknown. Astrogliosis has been shown to significantly alter astrocytes' properties following brain injury, potentially leading to significant brain dysfunction. However, such alterations have never been investigated in the context of juvenile mTBI (jmTBI). A closed-head injury model was used to study jmTBI on postnatal-day 17 mice. Astrogliosis was evaluated using glial fibrillary acidic protein (GFAP), vimentin, and nestin immunolabeling in somatosensory cortex (SSC), dentate gyrus (DG), amygdala (AMY), and infralimbic area (ILA) of prefrontal cortex in both hemispheres from 1 to 30 days postinjury (dpi). In vivo T2-weighted-imaging (T2WI) and diffusion tensor imaging (DTI) were performed at 7 and 30 dpi to examine tissue level structural alterations. Increased GFAP-labeling was observed up to 30 dpi in the ipsilateral SSC, the initial site of the impact. However, vimentin and nestin expression was not perturbed by jmTBI. The morphology of GFAP positive cells was significantly altered in the SSC, DG, AMY, and ILA up to 7 dpi that some correlated with magnetic resonance imaging changes. T2WI and DTI values were significantly altered at 30 dpi within these brain regions most prominently in regions distant from the impact site. Our data show that jmTBI triggers changes in astrocytic phenotype with a distinct spatiotemporal pattern. We speculate that the presence and time course of astrogliosis may contribute to pathophysiological processes and long-term structural alterations following jmTBI.
Collapse
Affiliation(s)
| | - Jeong B Lee
- Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | | | | | | | | | - Michael Ogier
- Département des Neurosciences et Sciences Cognitives, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Elizabeth Haddad
- Department of Pediatrics, University of California, Irvine, Irvine, California
| | - Frederic Canini
- Département des Neurosciences et Sciences Cognitives, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Muriel Koehl
- Neurocentre Magendie INSERM U1215, Bordeaux, France
| | | | - Andre Obenaus
- Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Pediatrics, University of California, Irvine, Irvine, California
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France.,Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
21
|
He J, Huang Y, Du G, Wang Z, Xiang Y, Wang Q. Lasting spatial learning and memory deficits following chronic cerebral hypoperfusion are associated with hippocampal mitochondrial aging in rats. Neuroscience 2019; 415:215-229. [DOI: 10.1016/j.neuroscience.2019.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
|
22
|
Jin J, Tang Y, Li K, Zuo X, Zhan L, Sun W, Xu E. Bone Marrow Stromal Cells Alleviate Secondary Damage in the Substantia Nigra After Focal Cerebral Infarction in Rats. Front Cell Neurosci 2019; 13:338. [PMID: 31396057 PMCID: PMC6668054 DOI: 10.3389/fncel.2019.00338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/10/2019] [Indexed: 12/02/2022] Open
Abstract
Transplantation of bone marrow stromal cells (BMSCs) is a promising therapy for ischemic stroke. Previously, we had reported that the secondary degeneration occurred in the ipsilateral substantia nigra (SN) after permanent distal branch of middle cerebral artery occlusion (dMCAO) in Sprague-Dawley rats. However, whether BMSCs have neurorestorative effects on the secondary damage in the SN after focal cerebral infarction has not known. In this study, rats were subjected to dMCAO followed by intravenous administration of BMSCs 1 day later. We found that transplanted BMSCs survived and migrated to cortical infarct areas and ipsilateral SN. Furthermore, BMSCs promoted neurogenesis through proliferation and differentiation in the SN after dMCAO. Rats implanted with BMSCs showed significant improvement in their performance of modified neurological severity scores and adhesive-removal test. Engrafted BMSCs enhanced survival of dopaminergic neuron, reduced gliosis in the ipsilateral SN, and increased contents of dopamine (DA) and its metabolites in the ipsilateral striatum after dMCAO. With pseudorabies virus-152 as a retrograde tracer, we also demonstrated that BMSCs could effectively enhance the cortico-striatum-nigral connections. These results suggest that BMSCs transplantation exerts neurorestorative effects after cortical infarction through promoting endogenous neurogenesis, increasing contents of DA and its metabolites, alleviating the secondary neuronal damage in the SN, enhancing the cortico-striatum-nigral projections pathway, and finally improving the neurological functional outcome.
Collapse
Affiliation(s)
- Jizi Jin
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Yanyan Tang
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Kongping Li
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Xialin Zuo
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Lixuan Zhan
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Weiwen Sun
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - En Xu
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| |
Collapse
|
23
|
Fluoxetine suppresses inflammatory reaction in microglia under OGD/R challenge via modulation of NF-κB signaling. Biosci Rep 2019; 39:BSR20181584. [PMID: 30944203 PMCID: PMC6487262 DOI: 10.1042/bsr20181584] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/28/2019] [Accepted: 03/31/2019] [Indexed: 12/15/2022] Open
Abstract
We aimed to investigate the anti-inflammatory role of fluoxetine, a selective serotonin reuptake inhibitor, in microglia (MG) and the mechanisms under oxygen glucose deprivation/reoxygenation (OGD/R). An OGD/R model on BV-2 cells was used for the study of microglia under ischemia/reperfusion injury in ischemic stroke. Lentiviral transfection was applied to knock down IκB-α. Enzyme-linked immunosorbent assay (ELISA) was used for detecting levels of TNF-α, IL-1β, and IL-6, and real-time PCR was used to assess the expression of IκB-α protein. Western blotting was applied to analyze NF-κB-signaling related proteins and Cell Counting Kit-8 (CCK-8) was used for assessing cell viability. Molecular docking and drug affinity responsive target stability (DARTS) assay were used for the detection of the interaction between IκB-α and fluoxetine. We found that fluoxetine decreased the levels of TNF-α, IL-1β, and IL-6 in supernatant as well as NF-κB subunits p65 and p50 in BV-2 cells under OGD/R. Fluoxetine significantly increased the level of IκB-α through the inhibition of IκB-α ubiquitylation and promoted the bonding of IκB-α and fluoxetine in BV-2 cells under OGD/R. Knocking down IκB-α attenuated the decreasing effect of TNF-α, IL-1β, and IL-6 as well as p65 and p50 in BV-2 cells under OGD/R led to by fluoxetine. In conclusion, our present study demonstrated the anti-inflammatory role of fluoxetine and its mechanisms related to the modulation of NF-κB-related signaling in MG under ischemia/reperfusion challenge.
Collapse
|
24
|
Wang H, Cheung F, Stoll AC, Rockwell P, Figueiredo-Pereira ME. Mitochondrial and calcium perturbations in rat CNS neurons induce calpain-cleavage of Parkin: Phosphatase inhibition stabilizes pSer 65Parkin reducing its calpain-cleavage. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1436-1450. [PMID: 30796971 DOI: 10.1016/j.bbadis.2019.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
Mitochondrial impairment and calcium (Ca++) dyshomeostasis are associated with Parkinson's disease (PD). When intracellular ATP levels are lowered, Ca++-ATPase pumps are impaired causing cytoplasmic Ca++ to be elevated and calpain activation. Little is known about the effect of calpain activation on Parkin integrity. To address this gap, we examined the effects of mitochondrial inhibitors [oligomycin (Oligo), antimycin and rotenone] on endogenous Parkin integrity in rat midbrain and cerebral cortical cultures. All drugs induced calpain-cleavage of Parkin to ~36.9/43.6 kDa fragments. In contrast, treatment with the proinflammatory prostaglandin J2 (PGJ2) and the proteasome inhibitor epoxomicin induced caspase-cleavage of Parkin to fragments of a different size, previously shown by others to be triggered by apoptosis. Calpain-cleaved Parkin was enriched in neuronal mitochondrial fractions. Pre-treatment with the phosphatase inhibitor okadaic acid prior to Oligo-treatment, stabilized full-length Parkin phosphorylated at Ser65, and reduced calpain-cleavage of Parkin. Treatment with the Ca++ ionophore A23187, which facilitates Ca++ transport across the plasma membrane, mimicked the effect of Oligo by inducing calpain-cleavage of Parkin. Removing extracellular Ca++ from the media prevented oligomycin- and ionophore-induced calpain-cleavage of Parkin. Computational analysis predicted that calpain-cleavage of Parkin liberates its UbL domain. The phosphagen cyclocreatine moderately mitigated Parkin cleavage by calpain. Moreover, the pituitary adenylate cyclase activating peptide (PACAP27), which stimulates cAMP production, prevented caspase but not calpain-cleavage of Parkin. Overall, our data support a link between Parkin phosphorylation and its cleavage by calpain. This mechanism reflects the impact of mitochondrial impairment and Ca++-dyshomeostasis on Parkin integrity and could influence PD pathogenesis.
Collapse
Affiliation(s)
- Hu Wang
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA
| | - Fanny Cheung
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA
| | - Anna C Stoll
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA
| | - Patricia Rockwell
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, NY 10065, USA.
| |
Collapse
|
25
|
Huang J, Ren Y, Xu Y, Chen T, Xia TC, Li Z, Zhao J, Hua F, Sheng S, Xia Y. The delta-opioid receptor and Parkinson's disease. CNS Neurosci Ther 2018; 24:1089-1099. [PMID: 30076686 PMCID: PMC6489828 DOI: 10.1111/cns.13045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a common degenerative neurological disease leading to a series of familial, medical, and social problems. Although it is known that the major characteristics of PD pathophysiology are the dysfunction of basal ganglia due to injury/loss of dopaminergic neurons in the substantia nigra pars compacta dopaminergic and exhaustion of corpus striatum dopamine, therapeutic modalities for PD are limited in clinical settings up to date. It is of utmost importance to better understand PD pathophysiology and explore new solutions for this serious neurodegenerative disorder. Our recent work and those of others suggest that the delta-opioid receptor (DOR) is neuroprotective and serves an antiparkinsonism role in the brain. This review summarizes recent progress in this field and explores potential mechanisms for DOR-mediated antiparkinsonism.
Collapse
Affiliation(s)
- Jin‐Zhong Huang
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Yi Ren
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Yuan Xu
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Tao Chen
- Hainan General HospitalHaikouHainanChina
| | | | - Zhuo‐Ri Li
- Hainan General HospitalHaikouHainanChina
| | | | - Fei Hua
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Shi‐Ying Sheng
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint FunctionFudan UniversityShanghaiChina
- Department of Aeronautics and AstronauticsFudan UniversityShanghaiChina
| |
Collapse
|
26
|
Zhang G, Zhang C, Wang Y, Wang L, Zhang Y, Xie H, Lu J, Nie K. Is hyperhomocysteinemia associated with the structural changes of the substantia nigra in Parkinson's disease? A two-year follow-up study. Parkinsonism Relat Disord 2018; 60:46-50. [PMID: 30316729 DOI: 10.1016/j.parkreldis.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE It was recently found that structural changes in the substantia nigra (SN) and motor symptoms become more prominent in Parkinson's disease (PD) patients with striatal silent lacunar infarction (SSLI) than in those without SSLI. Hyperhomocysteinemia (HHCY) was an independent risk factor for SSLI in PD patients. In this follow-up study, we investigated the relationship between HHCY and structural changes of the SN in PD patients. METHODS A total of 72 untreated early PD patients without SSLI, divided into control and HHCY groups, were enrolled in this study. All participants underwent conventional MRI and diffusion kurtosis imaging (DKI) twice; at baseline and at the 2-year visit. The differences of the following variables between the two groups were analyzed: mean kurtosis (MK) values of the SN, the severity of disease, daily dosage of levodopa, and the variation of these indexes from baseline to 2-year visit. Logistic regression analysis was used to identify the relationship between HHCY and structural changes of the SN in PD patients. RESULTS 1.All variables mentioned above showed significant differences between the two groups. 2. The variation in MK values of the SN were positively correlated with the variation in the severity of disease. 3. HHCY was an independent risk factor for the variation in MK values of the SN in PD patients. CONCLUSION HHCY is associated with the structural changes of the SN in PD patients. As PD progresses, motor symptoms become aggravated with increased structural changes to the SN, especially in patients with HHCY.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Neurology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, People's Republic of China
| | - Chengguo Zhang
- Department of Neurology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, People's Republic of China
| | - Yukai Wang
- Department of Neurology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, People's Republic of China.
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Haiqun Xie
- Department of Neurology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, People's Republic of China
| | - Jiancong Lu
- Department of Neurology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, People's Republic of China
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China
| |
Collapse
|
27
|
Peng Z, Dong S, Tao Y, Huo Y, Zhou Z, Huang W, Qu H, Liu J, Chen Y, Xu Z, Wang Y, Zhou H. Metabolic syndrome contributes to cognitive impairment in patients with Parkinson's disease. Parkinsonism Relat Disord 2018; 55:68-74. [DOI: 10.1016/j.parkreldis.2018.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 01/13/2023]
|
28
|
Gower A, Tiberi M. The Intersection of Central Dopamine System and Stroke: Potential Avenues Aiming at Enhancement of Motor Recovery. Front Synaptic Neurosci 2018; 10:18. [PMID: 30034335 PMCID: PMC6043669 DOI: 10.3389/fnsyn.2018.00018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Dopamine, a major neurotransmitter, plays a role in a wide range of brain sensorimotor functions. Parkinson's disease and schizophrenia are two major human neuropsychiatric disorders typically associated with dysfunctional dopamine activity levels, which can be alleviated through the druggability of the dopaminergic systems. Meanwhile, several studies suggest that optimal brain dopamine activity levels are also significantly impacted in other serious neurological conditions, notably stroke, but this has yet to be fully appreciated at both basic and clinical research levels. This is of utmost importance as there is a need for better treatments to improve recovery from stroke. Here, we discuss the state of knowledge regarding the modulation of dopaminergic systems following stroke, and the use of dopamine boosting therapies in animal stroke models to improve stroke recovery. Indeed, studies in animals and humans show stroke leads to changes in dopamine functioning. Moreover, evidence from animal stroke models suggests stimulation of dopamine receptors may be a promising therapeutic approach for enhancing motor recovery from stroke. With respect to the latter, we discuss the evidence for several possible receptor-linked mechanisms by which improved motor recovery may be mediated. One avenue of particular promise is the subtype-selective stimulation of dopamine receptors in conjunction with physical therapy. However, results from clinical trials so far have been more mixed due to a number of potential reasons including, targeting of the wrong patient populations and use of drugs which modulate a wide array of receptors. Notwithstanding these issues, it is hoped that future research endeavors will assist in the development of more refined dopaminergic therapeutic approaches to enhance stroke recovery.
Collapse
Affiliation(s)
- Annette Gower
- Ottawa Hospital Research Institute (Neuroscience Program), Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Departments of Medicine, Cellular and Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, ON, Canada
| | - Mario Tiberi
- Ottawa Hospital Research Institute (Neuroscience Program), Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Departments of Medicine, Cellular and Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
29
|
Zuo X, Hou Q, Jin J, Chen X, Zhan L, Tang Y, Shi Z, Sun W, Xu E. Inhibition of Cathepsins B Induces Neuroprotection Against Secondary Degeneration in Ipsilateral Substantia Nigra After Focal Cortical Infarction in Adult Male Rats. Front Aging Neurosci 2018; 10:125. [PMID: 29867438 PMCID: PMC5954112 DOI: 10.3389/fnagi.2018.00125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/13/2018] [Indexed: 11/27/2022] Open
Abstract
Stroke is the leading cause of adult disability in the world. In general, recovery from stroke is incomplete. Accumulating evidences have shown that focal cerebral infarction leads to dynamic trans-neuronal degeneration in non-ischemic remote brain regions, with the disruption of connections to synapsed neurons sustaining ischemic insults. Previously, we had reported that the ipsilateral striatum, thalamus degenerated in succession after permanent distal branch of middle cerebral artery occlusion (dMCAO) in Sprague-Dawley (SD) rats and cathepsin (Cath) B was activated before these relay degeneration. Here, we investigate the role of CathB in the secondary degeneration of ipsilateral substantia nigra (SN) after focal cortical infarction. We further examined whether the inhibition of CathB with L-3-trans-(Propyl-carbamoyloxirane-2-carbonyl)-L-isoleucyl-L-proline methyl ester (CA-074Me) would attenuate secondary degeneration through enhancing the cortico-striatum-nigral connections and contribute to the neuroprotective effects. Our results demonstrated that secondary degeneration in the ipsilateral SN occurred and CathB was upregulated in the ipsilateral SN after focal cortical infarction. The inhibition of CathB with CA-074Me reduced the neuronal loss and gliosis in the ipsilateral SN. Using biotinylated dextran amine (BDA) or pseudorabies virus (PRV) 152 as anterograde or retrograde tracer to trace striatum-nigral and cortico-nigral projections pathway, CA-074Me can effectively enhance the cortico-striatum-nigral connections and exert neuroprotection against secondary degeneration in the ipsilateral SN after cortical ischemia. Our study suggests that the lysosomal protease CathB mediates the secondary damage in the ipsilateral SN after dMCAO, thus it can be a promising neuroprotective target for the rehabilitation of stroke patients.
Collapse
Affiliation(s)
- Xialin Zuo
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Qinghua Hou
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jizi Jin
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Xiaohui Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yanyan Tang
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Zhe Shi
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
30
|
Hassink GC, Raiss CC, Segers-Nolten IMJ, van Wezel RJA, Subramaniam V, le Feber J, Claessens MMAE. Exogenous α-synuclein hinders synaptic communication in cultured cortical primary rat neurons. PLoS One 2018; 13:e0193763. [PMID: 29565978 PMCID: PMC5863964 DOI: 10.1371/journal.pone.0193763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/17/2018] [Indexed: 12/25/2022] Open
Abstract
Amyloid aggregates of the protein α-synuclein (αS) called Lewy Bodies (LB) and Lewy Neurites (LN) are the pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. We have previously shown that high extracellular αS concentrations can be toxic to cells and that neurons take up αS. Here we aimed to get more insight into the toxicity mechanism associated with high extracellular αS concentrations (50-100 μM). High extracellular αS concentrations resulted in a reduction of the firing rate of the neuronal network by disrupting synaptic transmission, while the neuronal ability to fire action potentials was still intact. Furthermore, many cells developed αS deposits larger than 500 nm within five days, but otherwise appeared healthy. Synaptic dysfunction clearly occurred before the establishment of large intracellular deposits and neuronal death, suggesting that an excessive extracellular αS concentration caused synaptic failure and which later possibly contributed to neuronal death.
Collapse
Affiliation(s)
- G. C. Hassink
- Clinical Neurophysiology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
- Biomedical Signal and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
| | - C. C. Raiss
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Postbus, Enschede, the Netherlands
| | - I. M. J. Segers-Nolten
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Postbus, Enschede, the Netherlands
| | - R. J. A. van Wezel
- Biomedical Signal and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
- Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Postbus, The Netherlands
| | - V. Subramaniam
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Postbus, Enschede, the Netherlands
| | - J. le Feber
- Clinical Neurophysiology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
- Biomedical Signal and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
- * E-mail:
| | - M. M. A. E. Claessens
- Clinical Neurophysiology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
| |
Collapse
|
31
|
Zhang G, Zhang C, Zhang Y, Wang Y, Nie K, Zhang B, Xie H, Lu J, Wang L. The effects of striatal silent lacunar infarction on the substantia nigra and movement disorders in Parkinson's disease: A follow-up study. Parkinsonism Relat Disord 2017; 43:33-37. [DOI: 10.1016/j.parkreldis.2017.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 04/14/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022]
|
32
|
Liu S, Dai Q, Hua R, Liu T, Han S, Li S, Li J. Determination of Brain-Regional Blood Perfusion and Endogenous cPKCγ Impact on Ischemic Vulnerability of Mice with Global Ischemia. Neurochem Res 2017; 42:2814-2825. [DOI: 10.1007/s11064-017-2294-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/19/2017] [Accepted: 05/06/2017] [Indexed: 01/12/2023]
|
33
|
Kim T, Vemuganti R. Mechanisms of Parkinson's disease-related proteins in mediating secondary brain damage after cerebral ischemia. J Cereb Blood Flow Metab 2017; 37:1910-1926. [PMID: 28273718 PMCID: PMC5444552 DOI: 10.1177/0271678x17694186] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Both Parkinson's disease (PD) and stroke are debilitating conditions that result in neuronal death and loss of neurological functions. These two conditions predominantly affect aging populations with the deterioration of the quality of life for the patients themselves and a tremendous burden to families. While the neurodegeneration and symptomology of PD develop chronically over the years, post-stroke neuronal death and dysfunction develop rapidly in days. Despite the discrepancy in the pathophysiological time frame and severity, both conditions share common molecular mechanisms that include oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and activation of various cell death pathways (apoptosis/necrosis/autophagy) that synergistically modulate the neuronal death. Emerging evidence indicates that several proteins associated with early-onset familial PD play critical roles in mediating the neuronal death. Importantly, mutations in the genes encoding Parkin, PTEN-induced putative kinase 1 and DJ-1 mediate autosomal recessive forms of PD, whereas mutations in the genes encoding leucine-rich repeat kinase 2 and α-synuclein are responsible for autosomal dominant PD. This review discusses the significance of these proteins with the emphasis on the role of α-synuclein in mediating post-ischemic brain damage.
Collapse
Affiliation(s)
- TaeHee Kim
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,2 Neuroscience Training Program, Madison, WI, USA
| | - Raghu Vemuganti
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,2 Neuroscience Training Program, Madison, WI, USA.,3 Cellular & Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.,4 William S. Middleton Memorial Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
34
|
Xu Y, Zhi F, Shao N, Wang R, Yang Y, Xia Y. Cytoprotection against Hypoxic and/or MPP⁺ Injury: Effect of δ-Opioid Receptor Activation on Caspase 3. Int J Mol Sci 2016; 17:ijms17081179. [PMID: 27517901 PMCID: PMC5000589 DOI: 10.3390/ijms17081179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022] Open
Abstract
The pathological changes of Parkinson's disease (PD) are, at least partially, associated with the dysregulation of PTEN-induced putative kinase 1 (PINK1) and caspase 3. Since hypoxic and neurotoxic insults are underlying causes of PD, and since δ-opioid receptor (DOR) is neuroprotective against hypoxic/ischemic insults, we sought to determine whether DOR activation could protect the cells from damage induced by hypoxia and/or MPP⁺ by regulating PINK1 and caspase 3 expressions. We exposed PC12 cells to either severe hypoxia (0.5%-1% O₂) for 24-48 h or to MPP⁺ at different concentrations (0.5, 1, 2 mM) and then detected the levels of PINK1 and cleaved caspase 3. Both hypoxia and MPP⁺ reduced cell viability, progressively suppressed the expression of PINK1 and increased the cleaved caspase 3. DOR activation using UFP-512, effectively protected the cells from hypoxia and/or MPP⁺ induced injury, reversed the reduction in PINK1 protein and significantly attenuated the increase in the cleaved caspase 3. On the other hand, the application of DOR antagonist, naltrindole, greatly decreased cell viability and increased cleaved caspase 3. These findings suggest that DOR is cytoprotective against both hypoxia and MPP⁺ through the regulation of PINK1 and caspase 3 pathways.
Collapse
Affiliation(s)
- Yuan Xu
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China.
| | - Feng Zhi
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China.
| | - Naiyuan Shao
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China.
| | - Rong Wang
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China.
| | - Yilin Yang
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China.
| | - Ying Xia
- Department of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Zhang G, Zhang Y, Zhang C, Wang Y, Ma G, Nie K, Xie H, Liu J, Wang L. Striatal silent lacunar infarction is associated with changes to the substantia nigra in patients with early-stage Parkinson's disease: A diffusion kurtosis imaging study. J Clin Neurosci 2016; 33:138-141. [PMID: 27499120 DOI: 10.1016/j.jocn.2016.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/21/2016] [Accepted: 03/06/2016] [Indexed: 10/21/2022]
Abstract
A recent study has shown that striatal silent infarction may occur secondary to the degeneration of dopaminergic neurons in the substantia nigra (SN) of mice. However, it is uncertain whether this phenomenon occurs in patients with early-stage Parkinson's disease (PD) and can be detected by diffusion kurtosis imaging (DKI). A total of 72 untreated patients with early-stage PD underwent conventional MRI and DKI. Participants were divided into control and striatal silent lacunar infarction (SSLI) groups. The differences in mean kurtosis (MK) values of the SN, Hoehn-Yahr (H-Y) staging, and Unified Parkinson's Disease Rating Scale (UPDRS) III score between groups, were analyzed. Linear regression analysis was used to correlate age, SSLI count, silent lacunar infarction count in other brain areas and age-related white matter change score with MK values of the SN. Spearman correlation coefficient analysis was used to correlate MK values of the SN and SSLI count with H-Y staging and UPDRS III score. There was no significant difference in the severity of disease between two groups; however, MK values of the SN with SSLI present were significantly higher than in SN without SSLI. In addition, SSLI count had linear correlation with MK values of the SN, which had positive correlation with H-Y-staging and UPDRS III score. SSLI is associated with structural changes to the SN in patients with early-stage PD, detectable by DKI, and may aggravate their motor impairments.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, People's Republic of China; Dapartment of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, People's Republic of China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, People's Republic of China
| | - Chengguo Zhang
- Dapartment of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, People's Republic of China
| | - Yukai Wang
- Dapartment of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, People's Republic of China
| | - Guixian Ma
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, People's Republic of China
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, People's Republic of China
| | - Haiqun Xie
- Dapartment of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, People's Republic of China
| | - Jianping Liu
- Dapartment of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, People's Republic of China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, People's Republic of China.
| |
Collapse
|
36
|
Nemeth CL, Miller AH, Tansey MG, Neigh GN. Inflammatory mechanisms contribute to microembolism-induced anxiety-like and depressive-like behaviors. Behav Brain Res 2016; 303:160-7. [DOI: 10.1016/j.bbr.2016.01.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 12/17/2022]
|
37
|
Dang G, Chen X, Chen Y, Zhao Y, Ouyang F, Zeng J. Dynamic secondary degeneration in the spinal cord and ventral root after a focal cerebral infarction among hypertensive rats. Sci Rep 2016; 6:22655. [PMID: 26949108 PMCID: PMC4780069 DOI: 10.1038/srep22655] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/18/2016] [Indexed: 01/22/2023] Open
Abstract
Cerebral infarction can cause secondary damage to nonischemic brain regions. However, whether this phenomenon will appear in central nervous system regions outside the brain remains unclear. Here we investigated pathological changes in the spinal cord and ventral root after ischemic stroke. All rats exhibited apparent neurological deficits post-MCAO, which improved gradually but could still be detected 12-weeks. Neuronal filaments in the corticospinal tract (CST) and neurons in the ventral horn were significantly declined in the contralateral cervical and lumbar enlargement 1-week post-MCAO. These decreases remained stable until 12-weeks, accompanied by progressively increased glial activation in the ventral horn. Axonal degeneration and structural derangement were evident in the contralateral cervical and lumbar ventral root 1-week post-MCAO; these changes spontaneously attenuated over time, but abnormalities could still be observed 12-weeks. The number of neural fibers in the contralateral CST and neurons in the contralateral ventral horn were positively correlated with neurological scores 12-weeks post-MCAO. Additionally, GFAP+cell density in the contralateral CST and ventral horn was negatively correlated with neurological scores. Our results suggest that cerebral infarction can elicit secondary degeneration in the cervical and lumbar spinal cord, as well as the projecting ventral root, which may hamper functional recovery after stroke.
Collapse
Affiliation(s)
- Ge Dang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xinran Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yicong Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yuhui Zhao
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Fubing Ouyang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jinsheng Zeng
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
38
|
MRI heralds secondary nigral lesion after brain ischemia in mice: a secondary time window for neuroprotection. J Cereb Blood Flow Metab 2015; 35:1903-9. [PMID: 26126863 PMCID: PMC4671115 DOI: 10.1038/jcbfm.2015.153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 05/12/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia in the territory of the middle cerebral artery (MCA) can induce delayed neuronal cell death in the ipsilateral substantia nigra (SN) remote from the primary ischemic lesion. This exofocal postischemic neuronal degeneration (EPND) may worsen stroke outcomes. However, the mechanisms leading to EPND are poorly understood. Here, we studied the time course of EPND via sequential magnetic resonance imaging (MRI) and immunohistochemistry for up to 28 days after 30 minutes' occlusion of the MCA (MCAo) and reperfusion in the mouse. Furthermore, the effects of delayed treatment with FK506 and MK-801 on the development of EPND were investigated. Secondary neuronal degeneration in the SN occurred within the first week after MCAo and was characterized by a marked neuronal cell loss on histology. Sequential neuroimaging examinations revealed transient MRI changes, which were detectable as early as day 4 after MCAo and thus heralding histologic evidence of EPND. Treatment with MK-801, an established anti-excitotoxic agent, conferred protection against EPND even when initiated days after the initial ischemic event, which was not evident with FK506. Our findings define a secondary time window for delayed neuroprotection after stroke, which may provide a promising target for the development of novel therapies.
Collapse
|
39
|
Tovar-y-Romo LB, Penagos-Puig A, Ramírez-Jarquín JO. Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate. J Neurochem 2015; 136:13-27. [PMID: 26376102 DOI: 10.1111/jnc.13362] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/27/2015] [Accepted: 08/25/2015] [Indexed: 01/08/2023]
Abstract
Neuronal survival depends on multiple factors that comprise a well-fueled energy metabolism, trophic input, clearance of toxic substances, appropriate redox environment, integrity of blood-brain barrier, suppression of programmed cell death pathways and cell cycle arrest. Disturbances of brain homeostasis lead to acute or chronic alterations that might ultimately cause neuronal death with consequent impairment of neurological function. Although we understand most of these processes well when they occur independently from one another, we still lack a clear grasp of the concerted cellular and molecular mechanisms activated upon neuronal damage that intervene in protecting damaged neurons from death. In this review, we summarize a handful of endogenously activated mechanisms that balance molecular cues so as to determine whether neurons recover from injury or die. We center our discussion on mechanisms that have been identified to participate in stroke, although we consider different scenarios of chronic neurodegeneration as well. We discuss two central processes that are involved in endogenous repair and that, when not regulated, could lead to tissue damage, namely, trophic support and neuroinflammation. We emphasize the need to construct integrated models of neuronal degeneration and survival that, in the end, converge in neuronal fate after injury. Under neurodegenerative conditions, endogenously activated mechanisms balance out molecular cues that determine whether neurons contend toxicity or die. Many processes involved in endogenous repair may as well lead to tissue damage depending on the strength of stimuli. Signaling mediated by trophic factors and neuroinflammation are examples of these processes as they regulate different mechanisms that mediate neuronal demise including necrosis, apoptosis, necroptosis, pyroptosis and autophagy. In this review, we discuss recent findings on balanced regulation and their involvement in neuronal death.
Collapse
Affiliation(s)
- Luis B Tovar-y-Romo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F., México
| | - Andrés Penagos-Puig
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F., México
| | - Josué O Ramírez-Jarquín
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F., México
| |
Collapse
|
40
|
Yang YM, Li CC, Yin LK, Feng X. Normalization of T2 relaxation time and apparent diffusion coefficient in relation to the inflammatory changes in the substantia nigra of rats with focal cerebral ischemia. Acta Radiol 2015; 56:837-43. [PMID: 25260416 DOI: 10.1177/0284185114549496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/13/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Focal cerebral ischemia results in delayed neurodegeneration in remote brain regions, such as the substantia nigra. To date, a reasonable explanation is still lacking regarding the correlation of magnetic resonance (MR) signal pseudo-normalization following a transient abnormal change and subsequent progressive pathological damage. PURPOSE To characterize the substantia nigra following middle cerebral artery occlusion and to evaluate the potential pathophysiological changes associated with the pseudo-normalization of MR signals in the substantia nigra at the subacute stage after stroke onset. MATERIAL AND METHODS Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion. During the occlusion of single middle cerebral artery, computed tomography (CT) perfusion was acquired to observe the blood flow perfusion in the primary ischemic striatum and ipsilateral substantia nigra. Next, the MR T2 relaxation time and apparent diffusion coefficient changes within the substantia nigra were determined on days 1, 3, 7, and 14 after stroke onset, and compared with immunohistochemistry for microglia activation and astrogliosis. RESULTS Twenty-four rats with strong hypoperfusion in the primary ischemic territory and no alterations of the perfusion in the ipsilateral substantia nigra detected both visually and measurably during the middle cerebral artery occlusion were further studied. All animals showed MR pseudo-normalization with T2 relaxation time and apparent diffusion coefficient recovered in the ipsilateral substantia nigra at the subacute phase following focal cerebral ischemia. Normalization of the MR signals corresponded well with the spatio-temporal occurrence of microglia activation and astrogliosis. CONCLUSION The pseudo-normalization of T2 relaxation time and apparent diffusion coefficient reflects the neuroinflammatory changes that accompany activation of microglia and astrocytes in the ipsilateral substantia nigra following middle cerebral artery occlusion.
Collapse
Affiliation(s)
- Yan Mei Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Chan Chan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Le Kang Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - XiaoYuan Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
41
|
Kaur P, Muthuraman A, Kaur M. The implications of angiotensin-converting enzymes and their modulators in neurodegenerative disorders: current and future perspectives. ACS Chem Neurosci 2015; 6:508-21. [PMID: 25680080 DOI: 10.1021/cn500363g] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Angiotensin converting enzyme (ACE) is a dipeptidyl peptidase transmembrane bound enzyme. Generally, ACE inhibitors are used for the cardiovascular disorders. ACE inhibitors are primary agents for the management of hypertension, so these cannot be avoided for further use. The present Review focuses on the implications of angiotensin converting enzyme inhibitors in neurodegenerative disorders such as dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, stroke, and diabetic neuropathy. ACE inhibitors such as ramipril, captopril, perindopril, quinapril, lisinopril, enalapril, and trandolapril have been documented to ameliorate the above neurodegenerative disorders. Neurodegeneration occurs not only by angiotensin II, but also by other endogenous factors, such as the formation of free radicals, amyloid beta, immune reactions, and activation of calcium dependent enzymes. ACE inhibitors interact with the above cellular mechanisms. Thus, these may act as a promising factor for future medicine for neurological disorders beyond the cardiovascular actions. Central acting ACE inhibitors can be useful in the future for the management of neuropathic pain due to following actions: (i) ACE-2 converts angiotensinogen to angiotensin(1-7) (hepatapeptide) which produces neuroprotective action; (ii) ACE inhibitors downregulate kinin B1 receptors in the peripheral nervous system which is responsible for neuropathic pain. However, more extensive research is required in the field of neuropathic pain for the utilization of ACE inhibitors in human.
Collapse
Affiliation(s)
- Parneet Kaur
- Department of Pharmacology and Toxicology, Neurodegenerative Research Division, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur-148001, Punjab, India
| | - Arunachalam Muthuraman
- Department of Pharmacology and Toxicology, Neurodegenerative Research Division, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur-148001, Punjab, India
| | - Manjinder Kaur
- Department of Pharmacology and Toxicology, Neurodegenerative Research Division, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur-148001, Punjab, India
| |
Collapse
|
42
|
Smith CJ, Denes A, Tyrrell PJ, Di Napoli M. Phase II anti-inflammatory and immune-modulating drugs for acute ischaemic stroke. Expert Opin Investig Drugs 2015; 24:623-43. [PMID: 25727670 DOI: 10.1517/13543784.2015.1020110] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Stroke is the second leading cause of death worldwide and the leading cause of adult neurological disability. Despite advances in stroke unit care, and increasing use of thrombolysis, there remains an urgent need for safe and effective treatments for acute ischaemic stroke. However, this is against a backdrop of multiple failures in translational drug development. Cerebral ischaemia initiates a complex cascade of immune and inflammatory pathways in the brain microvasculature and periphery, which contribute to the evolution of cerebral injury, resolution and repair. Targeting specific inflammatory or immune pathways, therefore, represents an attractive treatment strategy in acute ischaemic stroke. Although anti-inflammatory drugs have already failed in clinical trial development, several are currently at the Phase II developmental stage. AREAS COVERED The authors highlight several candidate drugs, which modulate a range of inflammatory and immune pathways, and have been investigated in pre-clinical and Phase II studies to date. EXPERT OPINION Drugs targeting inflammatory and immune pathways offer theoretical advantages including potentially longer therapeutic time windows and effects complementary to thrombolysis (ameliorating reperfusion injury). Fundamental changes in the approach to pre-clinical and clinical drug development are required to facilitate successful translation of promising candidate drugs into clinical practice.
Collapse
Affiliation(s)
- Craig J Smith
- Greater Manchester Comprehensive Stroke Centre, Department of Medical Neurosciences, Salford Royal Foundation Trust , Salford , UK
| | | | | | | |
Collapse
|
43
|
Figueiredo-Pereira ME, Rockwell P, Schmidt-Glenewinkel T, Serrano P. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Front Mol Neurosci 2015; 7:104. [PMID: 25628533 PMCID: PMC4292445 DOI: 10.3389/fnmol.2014.00104] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
The immune response of the CNS is a defense mechanism activated upon injury to initiate repair mechanisms while chronic over-activation of the CNS immune system (termed neuroinflammation) may exacerbate injury. The latter is implicated in a variety of neurological and neurodegenerative disorders such as Alzheimer and Parkinson diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, HIV dementia, and prion diseases. Cyclooxygenases (COX-1 and COX-2), which are key enzymes in the conversion of arachidonic acid into bioactive prostanoids, play a central role in the inflammatory cascade. J2 prostaglandins are endogenous toxic products of cyclooxygenases, and because their levels are significantly increased upon brain injury, they are actively involved in neuronal dysfunction induced by pro-inflammatory stimuli. In this review, we highlight the mechanisms by which J2 prostaglandins (1) exert their actions, (2) potentially contribute to the transition from acute to chronic inflammation and to the spreading of neuropathology, (3) disturb the ubiquitin-proteasome pathway and mitochondrial function, and (4) contribute to neurodegenerative disorders such as Alzheimer and Parkinson diseases, and amyotrophic lateral sclerosis, as well as stroke, traumatic brain injury (TBI), and demyelination in Krabbe disease. We conclude by discussing the therapeutic potential of targeting the J2 prostaglandin pathway to prevent/delay neurodegeneration associated with neuroinflammation. In this context, we suggest a shift from the traditional view that cyclooxygenases are the most appropriate targets to treat neuroinflammation, to the notion that J2 prostaglandin pathways and other neurotoxic prostaglandins downstream from cyclooxygenases, would offer significant benefits as more effective therapeutic targets to treat chronic neurodegenerative diseases, while minimizing adverse side effects.
Collapse
Affiliation(s)
- Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Patricia Rockwell
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Thomas Schmidt-Glenewinkel
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Peter Serrano
- Department of Psychology, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| |
Collapse
|
44
|
Gan M, Moussaud S, Jiang P, McLean PJ. Extracellular ATP induces intracellular alpha-synuclein accumulation via P2X1 receptor-mediated lysosomal dysfunction. Neurobiol Aging 2014; 36:1209-20. [PMID: 25480524 DOI: 10.1016/j.neurobiolaging.2014.10.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/18/2014] [Accepted: 10/30/2014] [Indexed: 12/24/2022]
Abstract
The pathologic hallmark of Parkinson's disease (PD) is the accumulation of alpha-synuclein (αsyn) in susceptible neurons in the form of Lewy bodies and Lewy neurites. The etiology of PD remains unclear. Because brain injury has been suggested to facilitate αsyn aggregation, we investigated whether cellular breakdown products from damaged cells can act on neighboring healthy cells and cause intracellular αsyn accumulation and/or aggregation. Using 2 neuronal cell models, we found that extracellular adenosine triphosphate (ATP) induced a significant increase in intracellular αsyn levels between 24 and 48 hours after treatment. Further investigation revealed that the observed αsyn accumulation is a result of lysosome dysfunction caused by extracellular ATP-induced elevation of lysosomal pH. Interestingly, P2X1 receptor appears to mediate the cells' response to extracellular ATP. Although Ca(2+) influx via P2X1 receptor is necessary for αsyn accumulation, Ca(2+) influx per se is not sufficient for increased αsyn accumulation. These findings provide new insight into our knowledge of the role of P2X receptors in PD pathogenesis and may be helpful in identifying new therapeutic targets for PD.
Collapse
Affiliation(s)
- Ming Gan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Simon Moussaud
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Peizhou Jiang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Mayo Graduate School, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
45
|
Shivers KY, Nikolopoulou A, Machlovi SI, Vallabhajosula S, Figueiredo-Pereira ME. PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1707-19. [PMID: 24970746 DOI: 10.1016/j.bbadis.2014.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022]
Abstract
Neuroinflammation is a major risk factor in Parkinson's disease (PD). Alternative approaches are needed to treat inflammation, as anti-inflammatory drugs such as NSAIDs that inhibit cyclooxygenase-2 (COX-2) can produce devastating side effects, including heart attack and stroke. New therapeutic strategies that target factors downstream of COX-2, such as prostaglandin J2 (PGJ2), hold tremendous promise because they will not alter the homeostatic balance offered by COX-2 derived prostanoids. In the current studies, we report that repeated microinfusion of PGJ2 into the substantia nigra of non-transgenic mice, induces three stages of pathology that mimic the slow-onset cellular and behavioral pathology of PD: mild (one injection) when only motor deficits are detectable, intermediate (two injections) when neuronal and motor deficits as well as microglia activation are detectable, and severe (four injections) when dopaminergic neuronal loss is massive accompanied by microglia activation and motor deficits. Microglia activation was evaluated in vivo by positron emission tomography (PET) with [(11)C](R)PK11195 to provide a regional estimation of brain inflammation. PACAP27 reduced dopaminergic neuronal loss and motor deficits induced by PGJ2, without preventing microglia activation. The latter could be problematic in that persistent microglia activation can exert long-term deleterious effects on neurons and behavior. In conclusion, this PGJ2-induced mouse model that mimics in part chronic inflammation, exhibits slow-onset PD-like pathology and is optimal for testing diagnostic tools such as PET, as well as therapies designed to target the integrated signaling across neurons and microglia, to fully benefit patients with PD.
Collapse
Affiliation(s)
- Kai-Yvonne Shivers
- Department of Biological Sciences, Hunter College, Graduate School and University Center, CUNY, New York, NY 10065, USA
| | - Anastasia Nikolopoulou
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Saima Ishaq Machlovi
- Department of Biological Sciences, Hunter College, Graduate School and University Center, CUNY, New York, NY 10065, USA
| | - Shankar Vallabhajosula
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, Graduate School and University Center, CUNY, New York, NY 10065, USA.
| |
Collapse
|
46
|
TAN FENG, CHEN JIE, LIANG YANGUI, GU MINHUA, LI YANPING, WANG XUEWEN, MENG DI. Electroacupuncture attenuates cervical spinal cord injury following cerebral ischemia/reperfusion in stroke-prone renovascular hypertensive rats. Exp Ther Med 2014; 7:1529-1534. [PMID: 24926338 PMCID: PMC4043606 DOI: 10.3892/etm.2014.1619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/06/2014] [Indexed: 02/01/2023] Open
Abstract
Cerebral ischemia induces injury, not only in the ischemic core and surrounding penumbra tissues, but also in remote areas such as the cervical spinal cord. The aim of the present study was to determine the effects of electroacupuncture (EA) on cervical spinal cord injury following cerebral ischemia/reperfusion in stroke-prone renovascular hypertensive (RHRSP) rats. The results demonstrated that neuronal loss, which was assayed by Nissl staining in the cervical spinal cords of RHRSP rats subjected to transient middle cerebral artery occlusion (MCAO), was markedly decreased by EA stimulation at the GV20 (Baihui) and GV14 (Dazhui) acupoints compared with that in rats undergoing sham stimulation. Quantitative polymerase chain reaction and western blot analysis demonstrated that EA stimulation blocked the MCAO-induced elevated protein expression levels of glial fibrillary acidic protein and amyloid precursor protein in the cervical spinal cord at days 24 and 48. To further investigate the mechanism underlying the neuroprotective role of EA stimulation, the protein expression levels of Nogo-A and Nogo-66 receptor-1 (NgR1), two key regulatory molecules for neurite growth, were recorded in each group. The results revealed that EA stimulation reduced the MCAO-induced elevation of Nogo-A and NgR1 protein levels at day 14 and 28 in RHRSP rats. Therefore, the results demonstrated that EA reduced cervical spinal cord injury following cerebral ischemia in RHRSP rats, indicating that EA has the potential to be developed as a therapeutic treatment agent for cervical spinal cord injury following stroke.
Collapse
Affiliation(s)
- FENG TAN
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - JIE CHEN
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - YANGUI LIANG
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - MINHUA GU
- Department of Chinese Medicine, Dongsheng Hospital, Guangzhou, Guangdong 510120, P.R. China
| | - YANPING LI
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - XUEWEN WANG
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - DI MENG
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
47
|
Chen T, Li J, Chao D, Sandhu HK, Liao X, Zhao J, Wen G, Xia Y. δ-Opioid receptor activation reduces α-synuclein overexpression and oligomer formation induced by MPP(+) and/or hypoxia. Exp Neurol 2014; 255:127-36. [PMID: 24613828 DOI: 10.1016/j.expneurol.2014.02.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 02/07/2023]
Abstract
Hypoxic/ischemic brain injury is a potential cause of Parkinson's disease (PD) with ɑ-synuclein playing a critical role in the pathophysiology. Since δ-opioid receptor (DOR) is neuroprotective against hypoxic/ischemic insults, we sought to determine if DOR regulates ɑ-synuclein under hypoxia and/or MPP(+) stress. We found that in HEK293 cells 1) MPP(+) in normoxia enhanced ɑ-synuclein expression and the formation of ɑ-synuclein oligomers thereby causing cytotoxic injury; 2) hypoxia at 1% O2 for 48h or at 0.5% O2 for 24h also induced ɑ-synuclein overexpression and its oligomer formation with cell injury; 3) however, hypoxia at 1% O2 for 24h, though increasing ɑ-synuclein expression, did not cause ɑ-synuclein oligomer formation and cell injury; 4) UFP-512 mediated DOR activation markedly attenuated the hypoxic cell injury and ɑ-synuclein overexpression, which was largely attenuated by DOR antagonism with naltrindole or siRNA "knock-down" of the DOR; and 5) DOR activation enhanced CREB phosphorylation and prevented the collapse of mitochondrial membrane potential (△ψm). These findings suggest that DOR activation attenuates MPP(+) or severe hypoxia induced ɑ-synuclein expression/aggregation via a CREB pathway.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA; Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Jessica Li
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Dongman Chao
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Harleen K Sandhu
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Xiaoping Liao
- Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Jianlong Zhao
- Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Guoqiang Wen
- Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Ying Xia
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Fenoy AJ, Goetz L, Chabardès S, Xia Y. Deep brain stimulation: are astrocytes a key driver behind the scene? CNS Neurosci Ther 2014; 20:191-201. [PMID: 24456263 DOI: 10.1111/cns.12223] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/05/2013] [Accepted: 12/07/2013] [Indexed: 01/02/2023] Open
Abstract
Despite its widespread use, the underlying mechanism of deep brain stimulation (DBS) remains unknown. Once thought to impart a "functional inactivation", there is now increasing evidence showing that DBS actually can both inhibit neurons and activate axons, generating a wide range of effects. This implies that the mechanisms that underlie DBS work not only locally but also at the network level. Therefore, not only may DBS induce membrane or synaptic plastic changes in neurons over a wide network, but it may also trigger cellular and molecular changes in other cells, especially astrocytes, where, together, the glial-neuronal interactions may explain effects that are not clearly rationalized by simple activation/inhibition theories alone. Recent studies suggest that (1) high-frequency stimulation (HFS) activates astrocytes and leads to the release of gliotransmitters that can regulate surrounding neurons at the synapse; (2) activated astrocytes modulate synaptic activity and increase axonal activation; (3) activated astrocytes can signal further astrocytes across large networks, contributing to observed network effects induced by DBS; (4) activated astrocytes can help explain the disparate effects of activation and inhibition induced by HFS at different sites; (5) astrocytes contribute to synaptic plasticity through long-term potentiation (LTP) and depression (LTD), possibly helping to mediate the long-term effects of DBS; and (6) DBS may increase delta-opioid receptor activity in astrcoytes to confer neuroprotection. Together, the plastic changes in these glial-neuronal interactions network-wide likely underlie the range of effects seen, from the variable temporal latencies to observed effect to global activation patterns. This article reviews recent research progress in the literature on how astrocytes play a key role in DBS efficacy.
Collapse
Affiliation(s)
- Albert J Fenoy
- Department of Neurosurgery, Mischer Neuroscience Institute, University of Texas Medical School at Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
49
|
Chemokines and neurodegeneration in the early stage of experimental ischemic stroke. Mediators Inflamm 2013; 2013:727189. [PMID: 24324296 PMCID: PMC3844257 DOI: 10.1155/2013/727189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/15/2013] [Accepted: 10/11/2013] [Indexed: 01/17/2023] Open
Abstract
Neurodegeneration is a hallmark of most of the central nervous system (CNS) disorders including stroke. Recently inflammation has been implicated in pathogenesis of neurodegeneration and neurodegenerative diseases. The aim of this study was analysis of expression of several inflammatory markers and its correlation with development of neurodegeneration during the early stage of experimental stroke. Ischemic stroke model was induced by stereotaxic intracerebral injection of vasoconstricting agent endothelin-1 (ET-1). It was observed that neurodegeneration appears very early in that model and correlates well with migration of inflammatory lymphocytes and macrophages to the brain. Although the expression of several studied chemotactic cytokines (chemokines) was significantly increased at the early phase of ET-1 induced stroke model, no clear correlation of this expression with neurodegeneration was observed. These data may indicate that chemokines do not induce neurodegeneration directly. Upregulated in the ischemic brain chemokines may be a potential target for future therapies reducing inflammatory cell migration to the brain in early stroke. Inhibition of inflammatory cell accumulation in the brain at the early stage of stroke may lead to amelioration of ischemic neurodegeneration.
Collapse
|
50
|
Summers L, Kangwantas K, Rodriguez-Grande B, Denes A, Penny J, Kielty C, Pinteaux E. Activation of brain endothelial cells by interleukin-1 is regulated by the extracellular matrix after acute brain injury. Mol Cell Neurosci 2013; 57:93-103. [DOI: 10.1016/j.mcn.2013.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/04/2013] [Accepted: 10/15/2013] [Indexed: 11/15/2022] Open
|