1
|
Cheng WY, Chan PL, Ong HY, Wong KH, Chang RCC. Systemic Inflammation Disrupts Circadian Rhythms and Diurnal Neuroimmune Dynamics. Int J Mol Sci 2024; 25:7458. [PMID: 39000563 PMCID: PMC11242289 DOI: 10.3390/ijms25137458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Circadian rhythms regulate physiological processes in approximately 24 h cycles, and their disruption is associated with various diseases. Inflammation may perturb circadian rhythms, though these interactions remain unclear. This study examined whether systemic inflammation induced by an intraperitoneal injection of lipopolysaccharide (LPS) could alter central and peripheral circadian rhythms and diurnal neuroimmune dynamics. Mice were randomly assigned to two groups: the saline control group and the LPS group. The diurnal expression of circadian clock genes and inflammatory cytokines were measured in the hypothalamus, hippocampus, and liver. Diurnal dynamic behaviors of microglia were also assessed. Our results revealed that the LPS perturbed circadian gene oscillations in the hypothalamus, hippocampus, and liver. Furthermore, systemic inflammation induced by the LPS could trigger neuroinflammation and perturb the diurnal dynamic behavior of microglia in the hippocampus. These findings shed light on the intricate link between inflammation and circadian disruption, underscoring their significance in relation to neurodegenerative diseases.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, China; (H.-Y.O.); (K.-H.W.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China;
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Po-Lam Chan
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Hang-Yin Ong
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, China; (H.-Y.O.); (K.-H.W.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Ka-Hing Wong
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, China; (H.-Y.O.); (K.-H.W.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Shahanoor Z, Sultana R, Savenkova M, Karatsoreos IN, Romeo RD. Metabolic dysfunctions following chronic oral corticosterone are modified by adolescence and sex in mice. Physiol Behav 2023; 269:114289. [PMID: 37422081 PMCID: PMC10530018 DOI: 10.1016/j.physbeh.2023.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Adolescence is a period of development in which shifts in responses to glucocorticoids is well-documented. Obesity and metabolic syndrome are substantial health issues whose rates continue to rise in both adult and adolescent populations. Though many interacting factors contribute to these dysfunctions, how these shifts in glucocorticoid responses may be related remain unknown. Using a model of oral corticosterone (CORT) exposure in male and female mice, we demonstrate differential responses during adolescence (30-58 days of age) or adulthood (70-98 day of age) in endpoints relevant to metabolic function. Our data indicate that CORT resulted in significant weight gain in adult- and adolescent-exposed females and adult-exposed males, but not adolescent-exposed males. Despite this difference, all animals treated with high levels of CORT showed significant increases in white adipose tissue, indicating a dissociation between weight gain and adiposity in adolescent-treated males. Similarly, all experimental groups showed significant increases in plasma insulin, leptin, and triglyceride levels, further suggesting potential disconnects between overt weight gain, and underlying metabolic dysregulation. Finally, we found age- and dose-dependent changes in the expression of hepatic genes important in glucocorticoid receptor and lipid regulation, which showed different patterns in males and females. Thus, altered transcriptional pathways in the liver might be contributing differentially to the similar metabolic phenotype observed among these experimental groups. We also show that despite little CORT-induced changes in the hypothalamic levels of orexin-A and NPY, we found that food and fluid intake were elevated in adolescent-treated males and females. These data indicate chronic exposure to elevated glucocorticoid levels results in metabolic dysfunction in both males and females, which can be further modulated by developmental stage.
Collapse
Affiliation(s)
- Ziasmin Shahanoor
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, United States
| | - Razia Sultana
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, United States
| | - Marina Savenkova
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States
| | - Ilia N Karatsoreos
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Russell D Romeo
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, United States.
| |
Collapse
|
3
|
Roberts BL, Karatsoreos IN. Circadian desynchronization disrupts physiological rhythms of prefrontal cortex pyramidal neurons in mice. Sci Rep 2023; 13:9181. [PMID: 37280307 DOI: 10.1038/s41598-023-35898-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Disruption of circadian rhythms, such as shift work and jet lag, are associated with negative physiological and behavioral outcomes, including changes in affective state, learning and memory, and cognitive function. The prefrontal cortex (PFC) is heavily involved in all of these processes. Many PFC-associated behaviors are time-of-day dependent, and disruption of daily rhythms negatively impacts these behavioral outputs. Yet how disruption of daily rhythms impacts the fundamental function of PFC neurons, and the mechanism(s) by which this occurs, remains unknown. Using a mouse model, we demonstrate that the activity and action potential dynamics of prelimbic PFC neurons are regulated by time-of-day in a sex specific manner. Further, we show that postsynaptic K+ channels play a central role in physiological rhythms, suggesting an intrinsic gating mechanism mediating physiological activity. Finally, we demonstrate that environmental circadian desynchronization alters the intrinsic functioning of these neurons independent of time-of-day. These key discoveries demonstrate that daily rhythms contribute to the mechanisms underlying the essential physiology of PFC circuits and provide potential mechanisms by which circadian disruption may impact the fundamental properties of neurons.
Collapse
Affiliation(s)
- Brandon L Roberts
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Tobin Hall, 135 Hicks Way, Amherst, MA, 01003S, USA
| | - Ilia N Karatsoreos
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Tobin Hall, 135 Hicks Way, Amherst, MA, 01003S, USA.
| |
Collapse
|
4
|
Phillips DJ, Blaine S, Wallace NK, Karatsoreos IN. Brain-derived neurotrophic factor Val66Met polymorphism modulates the effects of circadian desynchronization on activity and sleep in male mice. Front Neurosci 2023; 16:1013673. [PMID: 36699530 PMCID: PMC9868941 DOI: 10.3389/fnins.2022.1013673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/30/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Understanding how environmental interact challenges with genetic predispositions modulate health and wellbeing is an important area of biomedical research. Circadian rhythms play an important role in coordinating the multitude of cellular and tissue processes that organisms use to predict and adapt to regular changes in the environment, and robust circadian rhythms contribute to optimal physiological and behavioral responses to challenge. However, artificial lighting and modern round-the-clock lifestyles can disrupt the circadian system, leading to desynchronization of clocks throughout the brain and body. When coupled with genetic predispositions, circadian desynchronization may compound negative outcomes. Polymorphisms in the brain-derived neurotrophic (BDNF) gene contribute to variations in neurobehavioral responses in humans, including impacts on sleep, with the common Val66Met polymorphism linked to several negative outcomes. Methods We explored how the Val66Met polymorphism modulates the response to environmental circadian desynchronization (ECD) in a mouse model. ECD was induced by housing adult male mice in a 20 h light-dark cycle (LD10:10; 10 h light, 10 h dark). Sleep and circadian activity were recorded in homozygous (Met) mice and their wild-type (Val) littermates in a standard 24 h LD cycle (LD12:12), then again after 20, 40, and 60 days of ECD. Results We found ECD significantly affected the sleep/wake timing in Val mice, however, Met mice maintained appropriate sleep timing after 20 days ECD, but not after 40 and 60 days of ECD. In addition, the rise in delta power at lights on was absent in Val mice but was maintained in Met mice. To elucidate the circadian and homeostatic contribution to disrupted sleep, mice were sleep deprived by gentle handling in LD12:12 and after 20 days in ECD. Following 6 h of sleep deprivation delta power was increased for both Val and Met mice in LD12:12 and ECD conditions. However, the time constant was significantly longer in the Val mice during ECD compared to LD12:12, suggesting a functioning but altered sleep homeostat. Discussion These data suggest the Val66Met mutation is associated with an ability to resist the effects of LD10:10, which may result in carriers suffering fewer negative impacts of ECD.
Collapse
Affiliation(s)
- Derrick J. Phillips
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, United States,*Correspondence: Derrick J. Phillips,
| | - Scott Blaine
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Naomi K. Wallace
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Ilia N. Karatsoreos
- Neuroscience and Behavior Program, Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States,Ilia N. Karatsoreos,
| |
Collapse
|
5
|
Kinlein SA, Wallace NK, Savenkova MI, Karatsoreos IN. Chronic hypothalamic-pituitary-adrenal axis disruption alters glutamate homeostasis and neural responses to stress in male C57Bl6/N mice. Neurobiol Stress 2022; 19:100466. [PMID: 35720261 PMCID: PMC9198473 DOI: 10.1016/j.ynstr.2022.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
It is now well-established that stress elicits brain- and body-wide changes in physiology and has significant impacts on many aspects of health. The hypothalamic-pituitary-adrenal (HPA) axis is the major neuroendocrine system mediating the integrated response to stress. Appropriate engagement and termination of HPA activity enhances survival and optimizes physiological and behavioral responses to stress, while dysfunction of this system is linked to negative health outcomes such as depression, anxiety, and post-traumatic stress disorder. Glutamate signaling plays a large role in the transmission of stress-related information throughout the brain. Furthermore, aberrant glutamate signaling has negative consequences for neural plasticity and synaptic function and is linked to stress-related pathology. However, the connection between HPA dysfunction and glutamate signaling is not fully understood. We tested how HPA axis dysfunction (using low dose chronic corticosterone in the drinking water) affects glutamate homeostasis and neural responses under baseline and acute stress in male C57BL/6N mice. Using laser microdissection and transcriptomic analyses, we show that chronic disruption of the HPA axis alters the expression of genes related to glutamate signaling in the medial prefrontal cortex (mPFC), hippocampus, and amygdala. While neural responses to stress (as measured by FOS) in the hippocampus and amygdala were not affected in our model of HPA dysfunction, we observed an exaggerated response to stress in the mPFC. To further probe this we undertook in vivo biosensor measurements of the dynamics of extracellular glutamate responses to stress in the mPFC in real-time, and found glutamate dynamics in the mPFC were significantly altered by chronic HPA dysfunction. Together, these findings support the hypothesis that chronic HPA axis dysfunction alters glutamatergic signaling in regions known to regulate emotional behavior, providing more evidence linking HPA dysfunction and stress vulnerability.
Collapse
|
6
|
Zitting KM, Vetrivelan R, Yuan RK, Vujovic N, Wang W, Bandaru SS, Quan SF, Klerman EB, Scheer FAJL, Buxton OM, Williams JS, Duffy JF, Saper CB, Czeisler CA. Chronic circadian disruption on a high-fat diet impairs glucose tolerance. Metabolism 2022; 130:155158. [PMID: 35150732 DOI: 10.1016/j.metabol.2022.155158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Nearly 14% of Americans experience chronic circadian disruption due to shift work, increasing their risk of obesity, diabetes, and other cardiometabolic disorders. These disorders are also exacerbated by modern eating habits such as frequent snacking and consumption of high-fat foods. METHODS We investigated the effects of recurrent circadian disruption (RCD) on glucose metabolism in C57BL/6 mice and in human participants exposed to non-24-h light-dark (LD) schedules vs. those on standard 24-h LD schedules. These LD schedules were designed to induce circadian misalignment between behaviors including rest/activity and fasting/eating with the output of the near-24-h central circadian pacemaker, while minimizing sleep loss, and were maintained for 12 weeks in mice and 3 weeks in humans. We examined interactions of these circadian-disrupted schedules compared to control 24-h schedules with a lower-fat diet (LFD, 13% in mouse and 25-27% in humans) and high-fat diet (HFD, 45% in mouse and 45-50% in humans). We also used young vs. older mice to determine whether they would respond differently to RCD. RESULTS When combined with a HFD, we found that RCD caused significant weight gain in mice and increased body fat in humans, and significantly impaired glucose tolerance and insulin sensitivity in both mice and humans, but this did not occur when RCD was combined with a LFD. This effect was similar in both young and older mice. CONCLUSION These results in both humans and a model organism indicate that circadian disruption has an adverse effect on metabolism among individuals eating a high-fat Western-style diet, even in the absence of significant sleep loss, and suggest that reducing dietary fat may protect against the metabolic consequences of a lifestyle (such as shift work) that involves chronic circadian disruption.
Collapse
Affiliation(s)
- Kirsi-Marja Zitting
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ramalingam Vetrivelan
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Program in Neuroscience and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Robin K Yuan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nina Vujovic
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sathyajit S Bandaru
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Program in Neuroscience and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Stuart F Quan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Orfeu M Buxton
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Biobehavioral Health, University Park PA 16802, USA
| | - Jonathan S Williams
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Clifford B Saper
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Program in Neuroscience and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Oosthuizen MK, Bennett NC. Clocks Ticking in the Dark: A Review of Biological Rhythms in Subterranean African Mole-Rats. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.878533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological rhythms are rhythmic fluctuations of biological functions that occur in almost all organisms and on several time scales. These rhythms are generated endogenously and entail the coordination of physiological and behavioural processes to predictable, external environmental rhythms. The light-dark cycle is usually the most prominent environmental cue to which animals synchronise their rhythms. Biological rhythms are believed to provide an adaptive advantage to organisms. In the present review, we will examine the occurrence of circadian and seasonal rhythms in African mole-rats (family Bathyergidae). African mole-rats are strictly subterranean, they very rarely emerge aboveground and therefore, do not have regular access to environmental light. A key adaptation to their specialised habitat is a reduction in the visual system. Mole-rats exhibit both daily and seasonal rhythmicity in a range of behaviours and physiological variables, albeit to different degrees and with large variability. We review previous research on the entire circadian system of African mole-rats and discuss output rhythms in detail. Laboratory experiments imply that light remains the strongest zeitgeber for entrainment but in the absence of light, animals can entrain to ambient temperature rhythms. Field studies report that rhythmic daily and seasonal behaviour is displayed in their natural habitat. We suggest that ambient temperature and rainfall play an important role in the timing of rhythmic behaviour in mole-rats, and that they likely respond directly to these zeitgebers in the field rather than exhibit robust endogenous rhythms. In the light of climate change, these subterranean animals are buffered from the direct and immediate effects of changes in temperature and rainfall, partly because they do not have robust circadian rhythms, however, on a longer term they are vulnerable to changes in their food sources and dispersal abilities.
Collapse
|
8
|
McEwen BS, Karatsoreos IN. Sleep Deprivation and Circadian Disruption Stress, Allostasis, and Allostatic Load. Sleep Med Clin 2022; 17:253-262. [DOI: 10.1016/j.jsmc.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Finger A, Kramer A. Mammalian circadian systems: Organization and modern life challenges. Acta Physiol (Oxf) 2021; 231:e13548. [PMID: 32846050 DOI: 10.1111/apha.13548] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Humans and other mammalian species possess an endogenous circadian clock system that has evolved in adaptation to periodically reoccurring environmental changes and drives rhythmic biological functions, as well as behavioural outputs with an approximately 24-hour period. In mammals, body clocks are hierarchically organized, encompassing a so-called pacemaker clock in the hypothalamic suprachiasmatic nucleus (SCN), non-SCN brain and peripheral clocks, as well as cell-autonomous oscillators within virtually every cell type. A functional clock machinery on the molecular level, alignment among body clocks, as well as synchronization between endogenous circadian and exogenous environmental cycles has been shown to be crucial for our health and well-being. Yet, modern life constantly poses widespread challenges to our internal clocks, for example artificial lighting, shift work and trans-meridian travel, potentially leading to circadian disruption or misalignment and the emergence of associated diseases. For instance many of us experience a mismatch between sleep timing on work and free days (social jetlag) in our everyday lives without being aware of health consequences that may arise from such chronic circadian misalignment, Hence, this review provides an overview of the organization and molecular built-up of the mammalian circadian system, its interactions with the outside world, as well as pathologies arising from circadian disruption and misalignment.
Collapse
Affiliation(s)
- Anna‐Marie Finger
- Laboratory of Chronobiology Institute for Medical immunology Charité Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| | - Achim Kramer
- Laboratory of Chronobiology Institute for Medical immunology Charité Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| |
Collapse
|
10
|
Abo SMC, Layton AT. Modeling the circadian regulation of the immune system: Sexually dimorphic effects of shift work. PLoS Comput Biol 2021; 17:e1008514. [PMID: 33788832 PMCID: PMC8041207 DOI: 10.1371/journal.pcbi.1008514] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/12/2021] [Accepted: 03/06/2021] [Indexed: 12/31/2022] Open
Abstract
The circadian clock exerts significance influence on the immune system and disruption of circadian rhythms has been linked to inflammatory pathologies. Shift workers often experience circadian misalignment as their irregular work schedules disrupt the natural light-dark cycle, which in turn can cause serious health problems associated with alterations in genetic expressions of clock genes. In particular, shift work is associated with impairment in immune function, and those alterations are sex-specific. The goal of this study is to better understand the mechanisms that explain the weakened immune system in shift workers. To achieve that goal, we have constructed a mathematical model of the mammalian pulmonary circadian clock coupled to an acute inflammation model in the male and female rats. Shift work was simulated by an 8h-phase advance of the circadian system with sex-specific modulation of clock genes. The model reproduces the clock gene expression in the lung and the immune response to various doses of lipopolysaccharide (LPS). Under normal conditions, our model predicts that a host is more sensitive to LPS at circadian time (CT) CT12 versus CT0 due to a dynamic change of Interleukin 10 (IL-10), an anti-inflammatory cytokine. We identify REV-ERB as a key modulator of IL-10 activity throughout the circadian day. The model also predicts a reversal of the times of lowest and highest sensitivity to LPS, with males and females exhibiting an exaggerated response to LPS at CT0, which is countered by a blunted immune response at CT12. Overall, females produce fewer pro-inflammatory cytokines than males, but the extent of sequelae experienced by males and females varies across the circadian day. This model can serve as an essential component in an integrative model that will yield mechanistic understanding of how shift work-mediated circadian disruptions affect the inflammatory and other physiological responses.
Collapse
Affiliation(s)
- Stéphanie M. C. Abo
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
11
|
Time is of the essence: Coupling sleep-wake and circadian neurobiology to the antidepressant effects of ketamine. Pharmacol Ther 2020; 221:107741. [PMID: 33189715 DOI: 10.1016/j.pharmthera.2020.107741] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022]
Abstract
Several studies have demonstrated the effectiveness of ketamine in rapidly alleviating depression and suicidal ideation. Intense research efforts have been undertaken to expose the precise mechanism underlying the antidepressant action of ketamine; however, the translation of findings into new clinical treatments has been slow. This translational gap is partially explained by a lack of understanding of the function of time and circadian timing in the complex neurobiology around ketamine. Indeed, the acute pharmacological effects of a single ketamine treatment last for only a few hours, whereas the antidepressant effects peak at around 24 hours and are sustained for the following few days. Numerous studies have investigated the acute and long-lasting neurobiological changes induced by ketamine; however, the most dramatic and fundamental change that the brain undergoes each day is rarely taken into consideration. Here, we explore the link between sleep and circadian regulation and rapid-acting antidepressant effects and summarize how diverse phenomena associated with ketamine's antidepressant actions - such as cortical excitation, synaptogenesis, and involved molecular determinants - are intimately connected with the neurobiology of wake, sleep, and circadian rhythms. We review several recently proposed hypotheses about rapid antidepressant actions, which focus on sleep or circadian regulation, and discuss their implications for ongoing research. Considering these aspects may be the last piece of the puzzle necessary to gain a more comprehensive understanding of the effects of rapid-acting antidepressants on the brain.
Collapse
|
12
|
Yang CH, Hwang CF, Chuang JH, Lian WS, Wang FS, Huang EI, Yang MY. Constant Light Dysregulates Cochlear Circadian Clock and Exacerbates Noise-Induced Hearing Loss. Int J Mol Sci 2020; 21:E7535. [PMID: 33066038 PMCID: PMC7589695 DOI: 10.3390/ijms21207535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023] Open
Abstract
Noise-induced hearing loss is one of the major causes of acquired sensorineural hearing loss in modern society. While people with excessive exposure to noise are frequently the population with a lifestyle of irregular circadian rhythms, the effects of circadian dysregulation on the auditory system are still little known. Here, we disturbed the circadian clock in the cochlea of male CBA/CaJ mice by constant light (LL) or constant dark. LL significantly repressed circadian rhythmicity of circadian clock genes Per1, Per2, Rev-erbα, Bmal1, and Clock in the cochlea, whereas the auditory brainstem response thresholds were unaffected. After exposure to low-intensity (92 dB) noise, mice under LL condition initially showed similar temporary threshold shifts to mice under normal light-dark cycle, and mice under both conditions returned to normal thresholds after 3 weeks. However, LL augmented high-intensity (106 dB) noise-induced permanent threshold shifts, particularly at 32 kHz. The loss of outer hair cells (OHCs) and the reduction of synaptic ribbons were also higher in mice under LL after noise exposure. Additionally, LL enhanced high-intensity noise-induced 4-hydroxynonenal in the OHCs. Our findings convey new insight into the deleterious effect of an irregular biological clock on the auditory system.
Collapse
Affiliation(s)
- Chao-Hui Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; (J.-H.C.); (F.-S.W.)
| | - Chung-Feng Hwang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Jiin-Haur Chuang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; (J.-H.C.); (F.-S.W.)
- Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Feng-Sheng Wang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; (J.-H.C.); (F.-S.W.)
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Ethan I. Huang
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Ming-Yu Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; (J.-H.C.); (F.-S.W.)
| |
Collapse
|
13
|
Hablitz LM, Plá V, Giannetto M, Vinitsky HS, Stæger FF, Metcalfe T, Nguyen R, Benrais A, Nedergaard M. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun 2020; 11:4411. [PMID: 32879313 PMCID: PMC7468152 DOI: 10.1038/s41467-020-18115-2] [Citation(s) in RCA: 307] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
The glymphatic system is a network of perivascular spaces that promotes movement of cerebrospinal fluid (CSF) into the brain and clearance of metabolic waste. This fluid transport system is supported by the water channel aquaporin-4 (AQP4) localized to vascular endfeet of astrocytes. The glymphatic system is more effective during sleep, but whether sleep timing promotes glymphatic function remains unknown. We here show glymphatic influx and clearance exhibit endogenous, circadian rhythms peaking during the mid-rest phase of mice. Drainage of CSF from the cisterna magna to the lymph nodes exhibits daily variation opposite to glymphatic influx, suggesting distribution of CSF throughout the animal depends on time-of-day. The perivascular polarization of AQP4 is highest during the rest phase and loss of AQP4 eliminates the day-night difference in both glymphatic influx and drainage to the lymph nodes. We conclude that CSF distribution is under circadian control and that AQP4 supports this rhythm.
Collapse
Affiliation(s)
- Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Virginia Plá
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Michael Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hanna S Vinitsky
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Frederik Filip Stæger
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Tanner Metcalfe
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Rebecca Nguyen
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Abdellatif Benrais
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
14
|
Circadian desynchronization alters metabolic and immune responses following lipopolysaccharide inoculation in male mice. Brain Behav Immun 2020; 88:220-229. [PMID: 32413558 PMCID: PMC7415642 DOI: 10.1016/j.bbi.2020.05.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 01/05/2023] Open
Abstract
Metabolism and inflammation are linked at many levels. Sickness behaviors are elicited by the immune system's response to antigenic stimuli, and include changes in feeding and metabolism. The immune system is also regulated by the circadian (daily) clock, which generates endogenous rhythms, and synchronizes these rhythms to the light-dark cycle. Modern society has resulted in chronic misalignment or desynchronization of the circadian clock and the external environment. We have demonstrated that circadian desynchronization (CD) in mice alters metabolic function, and also affects both peripheral and central immune responses following a low-dose lipopolysaccharide (LPS) challenge. However, it is unclear how this altered immune response impacts sickness behaviors and metabolism following challenge. To test this, we housed male mice in circadian desynchronized (10-hours light:10-hours dark) or control (12-hours light:12-hours dark) conditions for 5-6 weeks. We then challenged mice with LPS (i.p., 0.4 mg/kg) or PBS and measured changes in body mass, feeding, drinking and locomotion using a comprehensive phenotyping system. Plasma, liver, and brain were collected 36 h post-inoculation (hpi) and inflammatory messengers were measured via multiplex cytokine/chemokine array and qPCR. We find that recovery of locomotion and body mass is prolonged in CD mice following LPS challenge. Additionally, at 36 hpi the expression of several proinflammatory cytokines differ depending on pre-inoculation lighting conditions. Our findings add to the growing literature which documents how desynchronization of circadian rhythms can lead to disrupted immune responses and changes in metabolic function.
Collapse
|
15
|
Western diet-induced obesity disrupts the diurnal rhythmicity of hippocampal core clock gene expression in a mouse model. Brain Behav Immun 2020; 88:815-825. [PMID: 32454134 DOI: 10.1016/j.bbi.2020.05.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
Western diet (WD) feeding disrupts core clock gene expression in peripheral tissues and contributes to WD-induced metabolic disease. The hippocampus, the mammalian center for memory, is also sensitive to WD feeding, but whether the WD disrupts its core clock is unknown. To this end, male mice were maintained on a WD for 16 weeks and diurnal metabolism, gene expression and memory were assessed. WD-induced obesity disrupted the diurnal rhythms of whole-body metabolism, markers of inflammation and hepatic gene expression, but did not disrupt diurnal expression of hypothalamic Bmal1, Npas2 and Per2. However, all measured core clock genes were disrupted in the hippocampus after WD feeding and the expression pattern of genes implicated in Alzheimer's disease and synaptic function were altered. Finally, WD feeding disrupted hippocampal memory in a task- and time-dependent fashion. Our results implicate WD-induced alterations in the rhythmicity of hippocampal gene expression in the etiology of diet-induced memory deficits.
Collapse
|
16
|
Xie C, Zhu H, Chen S, Wen Y, Jin L, Zhang L, Tong J, Shen Y. Chronic retinal injury induced by white LED light with different correlated color temperatures as determined by microarray analyses of genome-wide expression patterns in mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111977. [PMID: 32738749 DOI: 10.1016/j.jphotobiol.2020.111977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
Widely used white light-emitting diodes (LEDs) currently deliver higher levels of blue light than conventional domestic light sources. The high intensity of the blue component is the main source of concern regarding possible health risks of LED to chronic light toxicity to the retina. Therefore, we analyzed retinal injury and genome-wide changes in gene expression induced by white LED light with different correlated color temperatures (CCTs) in a mouse model. Balb/c mice (10 weeks old) were exposed to LED light with CCTs of 2954, 5624, and 7378 K, at different illuminance levels (250, 500, 1000, and 3000 lx) and for different exposure times (7, 14, and 28 days). Hematoxylin and eosin staining revealed that exposure to 7378 K light at 250 lx for 28 days resulted in a significant reduction of outer nuclear layer (ONL) nuclei, whereas 2954 K light at <3000 lx led to only a mild reduction in the number of ONL nuclei. In addition, 5624 and 7378 K light at 3000 lx resulted in a significant increase in TUNEL-positive apoptotic nuclei, which was not found at an illuminance of 1000 lx. Genome-wide expression analyses showed that, compared to a control group, there were 121 upregulated differentially expressed genes (DEGs) and 458 downregulated DEGs found in the 7378 K group, and 59 upregulated and only 4 downregulated DEGs in the 2954 K group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the DEGs were involved in 341 GO terms and 16 related pathways for the 7378 K group and in 12 GO terms and 7 related pathways for the 2954 K group. Signal pathways related to ubiquitin potentially played an important role in light-induced retinal degeneration. Furthermore, retinal immunohistochemistry (IHC) indicated downregulation of ubiquitin and autophagy function caused by 7378 K light. Taken together, these results indicate that retinal injury in the mice induced by white LED light occurred in a CCT-dependent manner, and that light with a higher CCT was more likely to reduce ONL nuclei; however, the apoptosis pathway may not be the only mechanism involved. Based on genome-wide expression analyses and retinal IHC, the ubiquitin-mediated proteolysis signal pathway may have participated in the induction retinal degeneration.
Collapse
Affiliation(s)
- Chen Xie
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuyang Chen
- Department of Ophthalmology, TONGDE, Hospital of Zhejiang Province, China
| | - Yingying Wen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Le Jin
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyue Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Jiao X, Lu D, Pei X, Qi D, Huang S, Song Z, Gu J, Li Z. Type 1 diabetes mellitus impairs diurnal oscillations in murine extraorbital lacrimal glands. Ocul Surf 2020; 18:438-452. [PMID: 32360784 DOI: 10.1016/j.jtos.2020.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE People with diabetes are at high risk of lacrimal gland dysfunction, but the underlying mechanism is not well understood. In this study, we determined how type 1 diabetes mellitus (T1DM) influences circadian homeostasis of the murine extraorbital lacrimal glands (ELGs). METHODS A T1DM animal model was established by systemic streptozotocin injection in C57BL/6J mice. After 5 weeks, ELGs were collected at 3-h intervals over a 24-h circadian cycle. Total extracted RNA was subjected to high-throughput RNA sequencing, and rhythmic transcriptional data were evaluated using the Jonckheere-Terpstra-Kendall algorithm, Kyoto Encyclopedia of Genes and Genomes pathway analysis, Phase Set Enrichment Analysis, and time series cluster analysis to determine the phase, rhythmicity, and unique signature of the transcripts over temporally coordinated expression. Additionally, mass, cell size, histology, and tear secretion of the ELGs were evaluated. RESULTS T1DM globally altered the composition of the ELG transcriptome. Specifically, T1DM significantly reprogrammed the circadian transcriptomic profiles of normal ELGs and reorganized core clock machinery. Unique temporal and clustering enrichment pathways were also rewired by T1DM. Finally, normal daily rhythms of mass, cell size, and tear secretion of mouse ELGs were significantly impaired by streptozotocin-induced diabetes. CONCLUSIONS T1DM significantly reprograms the diurnal oscillations of the lacrimal glands and impairs their structure and tear secretion. This information may reveal potential targets for improving lacrimal gland dysfunction in patients with diabetes.
Collapse
Affiliation(s)
- Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zongming Song
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Jianqin Gu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| |
Collapse
|
18
|
Red light at night permits the nocturnal rise of melatonin production in horses. Vet J 2019; 252:105360. [DOI: 10.1016/j.tvjl.2019.105360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022]
|
19
|
Floessner TSE, Boekelman FE, Druiven SJM, de Jong M, Rigter PMF, Beersma DGM, Hut RA. Lifespan is unaffected by size and direction of daily phase shifts in Nasonia, a hymenopteran insect with strong circadian light resetting. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103896. [PMID: 31194973 DOI: 10.1016/j.jinsphys.2019.103896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Most organisms have an endogenous circadian clock with a period length of approximately 24 h that enables adaptation, synchronization and anticipation to environmental cycles. The circadian system (circa = about or around, diem = a day) may provide evolutionary benefits when entrained to the 24-h light-dark cycle. The more the internal circadian period (τ) deviates from the external light-dark cycle, the larger the daily phase shifts need to be to synchronize to the environment. In some species, large daily phase shifts reduce survival rate. Here we tested this 'resonance fitness hypothesis' on the diurnal wasp Nasonia vitripennis, which exhibits a large latitudinal cline in free-running period with longer circadian period lengths in the north than in the south. Longevity was measured in northern and southern wasps placed into light-dark cycles (T-cycles) with periods ranging from 20 h to 28 h. Further, locomotor activity was recorded to estimate range and phase angle of entrainment under these various T-cycles. A light pulse induced phase response curve (PRC) was measured in both lines to understand entrainment results. We expected a concave survival curve with highest longevity at T = τ and a reduction in longevity the further τ deviates from T (τ/T<>1). Our results do not support this resonance fitness hypothesis. We did not observe a reduction in longevity when τ deviates from T. Our results may be understood by the strong circadian light resetting mechanism (type 0 PRC) to single light pulses that we measured in Nasonia, resulting in: (1) the broad range of entrainment, (2) the wide natural variation in circadian free-running period, and (3) the lack of reduced survival when τ/T ratio's deviates from 1. Together this indicates that circadian adaption to latitude may lead to changes in circadian period and light response, without negative influences on survival.
Collapse
Affiliation(s)
- Theresa S E Floessner
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Floor E Boekelman
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Stella J M Druiven
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Maartje de Jong
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Pomme M F Rigter
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Domien G M Beersma
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Roelof A Hut
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands.
| |
Collapse
|
20
|
Exposure to artificial light at night increases innate immune activity during development in a precocial bird. Comp Biochem Physiol A Mol Integr Physiol 2019; 233:84-88. [PMID: 30974186 DOI: 10.1016/j.cbpa.2019.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 01/26/2023]
Abstract
Humans have greatly altered Earth's night-time photic environment via the production of artificial light at night (ALAN; e.g. street lights, car traffic, billboards, lit buildings). ALAN is a problem of growing importance because it may significantly disrupt the seasonal and daily physiological rhythms and behaviors of animals. There has been considerable interest in the impacts of ALAN on health of humans and other animals, but most of this work has centered on adults and we know comparatively little about effects on young animals. We exposed 3-week-old king quail (Excalfactoria chinensis) to a constant overnight blue-light regime for 6 weeks and assessed weekly bactericidal activity of plasma against Escherichia coli - a commonly employed metric of innate immunity in animals. We found that chronic ALAN exposure significantly increased bactericidal activity and that this elevation in immune performance manifested at different developmental time points in males and females. Whether this short-term increase in immune activity can be extended to wild animals, and whether ALAN-mediated increases in immune activity have positive or negative fitness effects, are unknown and will provide interesting avenues for future studies.
Collapse
|
21
|
Leise TL, Goldberg A, Michael J, Montoya G, Solow S, Molyneux P, Vetrivelan R, Harrington ME. Recurring circadian disruption alters circadian clock sensitivity to resetting. Eur J Neurosci 2018; 51:2343-2354. [PMID: 30269396 DOI: 10.1111/ejn.14179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 01/12/2023]
Abstract
A single phase advance of the light:dark (LD) cycle can temporarily disrupt synchrony of neural circadian rhythms within the suprachiasmatic nucleus (SCN) and between the SCN and peripheral tissues. Compounding this, modern life can involve repeated disruptive light conditions. To model chronic disruption to the circadian system, we exposed male mice to more than a month of a 20-hr light cycle (LD10:10), which mice typically cannot entrain to. Control animals were housed under LD12:12. We measured locomotor activity and body temperature rhythms in vivo, and rhythms of PER2::LUC bioluminescence in SCN and peripheral tissues ex vivo. Unexpectedly, we discovered strong effects of the time of dissection on circadian phase of PER2::LUC bioluminescent rhythms, which varied across tissues. White adipose tissue was strongly reset by dissection, while thymus phase appeared independent of dissection timing. Prior light exposure impacted the SCN, resulting in strong resetting of SCN phase by dissection for mice housed under LD10:10, and weak phase shifts by time of dissection in SCN from control LD12:12 mice. These findings suggest that exposure to circadian disruption may desynchronize SCN neurons, increasing network sensitivity to perturbations. We propose that tissues with a weakened circadian network, such as the SCN under disruptive light conditions, or with little to no coupling, for example, some peripheral tissues, will show increased resetting effects. In particular, exposure to light at inconsistent circadian times on a recurring weekly basis disrupts circadian rhythms and alters sensitivity of the SCN neural pacemaker to dissection time.
Collapse
Affiliation(s)
- Tanya L Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - Ariella Goldberg
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - John Michael
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - Grace Montoya
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - Sabrina Solow
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - Penny Molyneux
- Neuroscience Program, Smith College, Northampton, Massachusetts
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | |
Collapse
|
22
|
Aulsebrook AE, Jones TM, Mulder RA, Lesku JA. Impacts of artificial light at night on sleep: A review and prospectus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:409-418. [PMID: 29869374 DOI: 10.1002/jez.2189] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022]
Abstract
Natural cycles of light and darkness govern the timing of most aspects of animal behavior and physiology. Artificial light at night (ALAN)-a recent and pervasive form of pollution-can mask natural photoperiodic cues and interfere with biological rhythms. One such rhythm vulnerable to perturbation is the sleep-wake cycle. ALAN may greatly influence sleep in humans and wildlife, particularly in animals that sleep predominantly at night. There has been some recent evidence for impacts of ALAN on sleep, but critical questions remain. Some of these can be addressed by adopting approaches already entrenched in sleep research. In this paper, we review the current evidence for impacts of ALAN on sleep, highlight gaps in our understanding, and suggest opportunities for future research.
Collapse
Affiliation(s)
- Anne E Aulsebrook
- The University of Melbourne, School of BioSciences, Melbourne, Victoria, Australia
| | - Therésa M Jones
- The University of Melbourne, School of BioSciences, Melbourne, Victoria, Australia
| | - Raoul A Mulder
- The University of Melbourne, School of BioSciences, Melbourne, Victoria, Australia
| | - John A Lesku
- La Trobe University, School of Life Sciences, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
De Somma E, Jain RW, Poon KW, Tresidder KA, Segal JP, Ghasemlou N. Chronobiological regulation of psychosocial and physiological outcomes in multiple sclerosis. Neurosci Biobehav Rev 2018; 88:73-83. [DOI: 10.1016/j.neubiorev.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/10/2018] [Accepted: 03/10/2018] [Indexed: 12/18/2022]
|
24
|
Cissé YM, Borniger JC, Lemanski E, Walker WH, Nelson RJ. Time-Restricted Feeding Alters the Innate Immune Response to Bacterial Endotoxin. THE JOURNAL OF IMMUNOLOGY 2017; 200:681-687. [PMID: 29203514 DOI: 10.4049/jimmunol.1701136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022]
Abstract
An important entraining signal for the endogenous circadian clock, independent of light, is food intake. The circadian and immune systems are linked; forced desynchrony of the circadian clock via nighttime light exposure or genetic ablation of core clock components impairs immune function. The timing of food intake affects various aspects of the circadian clock, but its effects on immune function are unknown. We tested the hypothesis that temporal desynchrony of food intake alters innate immune responses. Adult male Swiss Webster mice were provided with food during the night, the day, or ad libitum for 4 wk, followed by administration of LPS prior to the onset of either the active phase (zeitgeber time [ZT]12: Experiment 1) or the inactive phase (ZT0: Experiment 2). Three hours after LPS administration, blood was collected, and serum was tested for bacteria-killing capacity against Escherichia coli, as a functional assay of immune function. Additionally, cytokine expression was examined in the serum (protein), spleen, and hypothalamus (mRNA). Day-fed mice suppressed bacteria-killing capacity and serum cytokine responses to LPS during the active phase (ZT12). Night-fed mice increased bactericidal capacity, as well as serum and hypothalamic mRNA responses of certain proinflammatory cytokines during the active phase. Only day-fed mice enhanced serum cytokine responses when LPS challenge occurred during the inactive phase (ZT0); this did not result in enhanced bactericidal capacity. These data suggest that mistimed feeding has functional relevance for immune function and provide further evidence for the integration of the circadian, metabolic, and immune systems.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Neuroscience Research Institute, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210; and Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210
| | - Jeremy C Borniger
- Neuroscience Research Institute, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210; and Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210
| | - Elise Lemanski
- Neuroscience Research Institute, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210; and Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210
| | - William H Walker
- Neuroscience Research Institute, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210; and Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210
| | - Randy J Nelson
- Neuroscience Research Institute, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210; and Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
25
|
Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast 2017; 2017:1504507. [PMID: 29230328 PMCID: PMC5694588 DOI: 10.1155/2017/1504507] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders.
Collapse
|
26
|
Lewin DS, Wang G, Chen YI, Skora E, Hoehn J, Baylor A, Wang J. Variable School Start Times and Middle School Student's Sleep Health and Academic Performance. J Adolesc Health 2017; 61:205-211. [PMID: 28476283 DOI: 10.1016/j.jadohealth.2017.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/09/2017] [Accepted: 02/14/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE Improving sleep health among adolescents is a national health priority and implementing healthy school start times (SSTs) is an important strategy to achieve these goals. This study leveraged the differences in middle school SST in a large district to evaluate associations between SST, sleep health, and academic performance. METHODS This cross-sectional study draws data from a county-wide surveillance survey. Participants were three cohorts of eighth graders (n = 26,440). The school district is unique because SST ranged from 7:20 a.m. to 8:10 a.m. Path analysis and probit regression were used to analyze associations between SST and self-report measures of weekday sleep duration, grades, and homework controlling for demographic variables (sex, race, and socioeconomic status). The independent contributions of SST and sleep duration to academic performance were also analyzed. RESULTS Earlier SST was associated with decreased sleep duration (χ2 = 173, p < .0001) and deficient sleep (≤7 hours) among 45% of students. Students with SST before 7:45 a.m. were at increased risk of decreased sleep duration, academic performance, and academic effort. Path analysis models demonstrated the independent contributions of sleep duration, SST, and variable effects for demographic variables. CONCLUSIONS This is the first study to evaluate the independent contributions of SST and sleep to academic performance in a large sample of middle school students. Deficient sleep was prevalent, and the earliest SST was associated with decrements in sleep and academics. These findings support the prioritization of policy initiatives to implement healthy SST for younger adolescents and highlight the importance of sleep health education disparities among race and gender groups.
Collapse
Affiliation(s)
- Daniel S Lewin
- Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC.
| | - Guanghai Wang
- Department of Developmental and Behavioral Pediatrics, Institute, Shanghai Children's Medical Center, Shanghai, China; School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yao I Chen
- Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC
| | - Elizabeth Skora
- Department of Psychology, University of Wisconsin, Madison, Wisconsin
| | - Jessica Hoehn
- Nationwide Children's Hospital, Department of Psychology, Baltimore County, Baltimore, Maryland
| | - Allison Baylor
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia
| | - Jichuan Wang
- Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC
| |
Collapse
|
27
|
Borniger JC, Cisse YM, Surbhi, Nelson RJ. Reciprocal Regulation of Circadian Rhythms and Immune Function. CURRENT SLEEP MEDICINE REPORTS 2017. [DOI: 10.1007/s40675-017-0070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Cissé YM, Russart KLG, Nelson RJ. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity. Sci Rep 2017; 7:45497. [PMID: 28361901 PMCID: PMC5374442 DOI: 10.1038/srep45497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/28/2017] [Indexed: 11/09/2022] Open
Abstract
Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Department of Neuroscience, Neuroscience Research Institute, Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kathryn L G Russart
- Department of Neuroscience, Neuroscience Research Institute, Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Randy J Nelson
- Department of Neuroscience, Neuroscience Research Institute, Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Song P, Li Z, Li X, Yang L, Zhang L, Li N, Guo C, Lu S, Wei Y. Transcriptome Profiling of the Lungs Reveals Molecular Clock Genes Expression Changes after Chronic Exposure to Ambient Air Particles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14010090. [PMID: 28106813 PMCID: PMC5295340 DOI: 10.3390/ijerph14010090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/16/2022]
Abstract
The symptoms of asthma, breathlessness, insomnia, etc. all have relevance to pulmonary rhythmic disturbances. Epidemiology and toxicology studies have demonstrated that exposure to ambient air particles can result in pulmonary dysfunction. However, there are no data directly supporting a link between air pollution and circadian rhythm disorder. In the present study, we found that breathing highly polluted air resulted in changes of the molecular clock genes expression in lung by transcriptome profiling analyses in a rodent model. Compared to those exposed to filtered air, in both pregnant and offspring rats in the unfiltered group, key clock genes (Per1, Per2, Per3, Rev-erbα and Dbp) expression level decreased and Bmal1 expression level increased. In both rat dams and their offspring, after continuous exposure to unfiltered air, we observed significant histologic evidence for both perivascular and peribronchial inflammation, increased tissue and systemic oxidative stress in the lungs. Our results suggest that chronic exposure to particulate matter can induce alterations of clock genes expression, which could be another important pathway for explaining the feedbacks of ambient particle exposure in addition to oxidative stress and inflammation.
Collapse
Affiliation(s)
- Pengcheng Song
- College of Environmental Science and Engineering, Dong Hua University, Shanghai 201620, China.
| | - Zhigang Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaoqian Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Lixin Yang
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Lulu Zhang
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Nannan Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Chen Guo
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Shuyu Lu
- College of Environmental Science and Engineering, Dong Hua University, Shanghai 201620, China.
| | - Yongjie Wei
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
30
|
Wang YC, Huang YP, Wang MT, Wang HI, Pan SL. Increased risk of rheumatoid arthritis in patients with migraine: a population-based, propensity score-matched cohort study. Rheumatol Int 2016; 37:273-279. [PMID: 27844125 DOI: 10.1007/s00296-016-3604-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/04/2016] [Indexed: 01/13/2023]
Abstract
Previous cross-sectional studies have suggested an association between migraine and rheumatoid arthritis (RA), but no longitudinal study has been performed to evaluate the temporal relationship between the two conditions. The purpose of the present population-based, propensity score-matched cohort study was to investigate whether migraineurs are at a higher risk of developing RA. A total of 58,749 subjects aged between 20 and 90 years with at least two ambulatory visits with a diagnosis of migraine were recruited in the migraine group. We fit a logistic regression model that included age, sex, comorbid conditions, and socioeconomic status as covariates to compute the propensity score. The non-migraine group consisted of 58,749 propensity score-matched, randomly sampled subjects without migraine. The RA-free survival curves were generated using the Kaplan-Meier method. Stratified Cox proportional hazard regression was used to estimate the effect of migraine on the risk of RA. During follow-up, 461 subjects in the migraine group and 220 in the non-migraine group developed RA. The incidence rate of RA was 3.18 (95% confidence interval [CI] 2.90-3.49) per 1000 person-years in the migraine group and 1.54 (95% CI 1.34-1.76) per 1000 person-years in the non-migraine group. Compared to the non-migraine group, the crude hazard ratio of RA for the migraine group was 2.15 (95% CI 1.82-2.56, P < 0.0001), and the multivariable-adjusted hazard ratio was 1.91 (95% CI 1.58-2.31, P < 0.0001). This study showed that patients with migraine had an increased risk of developing RA.
Collapse
Affiliation(s)
- Yi-Chia Wang
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Ping Huang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Yun-Lin Branch, Yunlin, Taiwan
| | - Mei-Ting Wang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-I Wang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Shin-Liang Pan
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung Shan S. Rd., Taipei, 100, Taiwan.
| |
Collapse
|
31
|
van Ee R, Van de Cruys S, Schlangen LJ, Vlaskamp BN. Circadian-Time Sickness: Time-of-Day Cue-Conflicts Directly Affect Health. Trends Neurosci 2016; 39:738-749. [DOI: 10.1016/j.tins.2016.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022]
|
32
|
Rozov SV, Zant JC, Gurevicius K, Porkka-Heiskanen T, Panula P. Altered Electroencephalographic Activity Associated with Changes in the Sleep-Wakefulness Cycle of C57BL/6J Mice in Response to a Photoperiod Shortening. Front Behav Neurosci 2016; 10:168. [PMID: 27630549 PMCID: PMC5005378 DOI: 10.3389/fnbeh.2016.00168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/17/2016] [Indexed: 11/13/2022] Open
Abstract
AIM Under natural conditions diurnal rhythms of biological processes of the organism are synchronized with each other and to the environmental changes by means of the circadian system. Disturbances of the latter affect hormonal levels, sleep-wakefulness cycle and cognitive performance. To study mechanisms of such perturbations animal models subjected to artificial photoperiods are often used. The goal of current study was to understand the effects of circadian rhythm disruption, caused by a short light-dark cycle regime, on activity of the cerebral cortex in rodents. METHODS We used electroencephalogram to assess the distribution of vigilance states, perform spectral analysis, and estimate the homeostatic sleep drive. In addition, we analyzed spontaneous locomotion of C57BL/6J mice under symmetric, 22-, 21-, and 20-h-long light-dark cycles using video recording and tracking methods. RESULTS AND CONCLUSIONS We found that shortening of photoperiod caused a significant increase of slow wave activity during non-rapid eye movement sleep suggesting an elevation of sleep pressure under such conditions. While the rhythm of spontaneous locomotion was completely entrained by all light-dark cycles tested, periodic changes in the power of the θ- and γ-frequency ranges during wakefulness gradually disappeared under 22- and 21-h-long light-dark cycles. This was associated with a significant increase in the θ-γ phase-amplitude coupling during wakefulness. Our results thus provide deeper understanding of the mechanisms underlying the impairment of learning and memory retention, which is associated with disturbed circadian regulation.
Collapse
Affiliation(s)
- Stanislav V Rozov
- Department of Anatomy, Faculty of Medicine, Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Janneke C Zant
- Department of Physiology, Faculty of Medicine, University of Helsinki Helsinki, Finland
| | - Kestutis Gurevicius
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | | | - Pertti Panula
- Department of Anatomy, Faculty of Medicine, Neuroscience Center, University of Helsinki Helsinki, Finland
| |
Collapse
|
33
|
Karatsoreos IN. The Complexity of Simplicity: Role of Sex, Development and Environment in the Modulation of the Stress Response. J Neuroendocrinol 2016; 28:10.1111/jne.12388. [PMID: 27005563 PMCID: PMC5007192 DOI: 10.1111/jne.12388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 12/28/2022]
Abstract
Anecdotally, we all know that stress is 'complicated', although most stress research is undertaken using incredibly simplified models that may not allow us to fully understand the underlying interactive mechanisms present in the 'real world'. This attempt at simplification, although sometimes necessary, may explain some of the difficulties faced when integrating basic science findings with the clinical and epidemiological data on stress and stress-related disorders. In a symposium held at the 2015 International Society for Psychoneuroendocrinology meeting in Edinburgh, UK, a series of speakers explored 'The Many Pathways to Plasticity in the Stress System', specifically focusing on variables that, in many cases, are eliminated from studies of stress to provide increased experimental control. Specifically, four speakers tackled the complex contributions of 'Sex, Development and Environment' in stress research, and reported published and unpublished evidence from work conducted in their own laboratories demonstrating that, in our race for simplicity in experimentation, the stories that we tell become all the more complex.
Collapse
Affiliation(s)
- Ilia N. Karatsoreos
- Dept. of Integrative Physiology and Neuroscience, 1815 Ferdinand’s Lane, Room 205, Pullman, WA, 99164 USA, , T: 509-335-4829, F: 509-335-4650
| |
Collapse
|
34
|
Well-being and immune response: a multi-system perspective. Curr Opin Pharmacol 2016; 29:34-41. [PMID: 27318753 DOI: 10.1016/j.coph.2016.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022]
Abstract
Whereas it is well-established that inflammation and other immune responses can change how we feel, most people are still surprised to hear that, conversely, well-being and its violations also affect our immune system. Here we show that those effects are highly adaptive and bear potential for both research and therapeutic applications. The studies discussed in this review demonstrate that immunity is tuned by ones emotions, personality, and social status as well as by other life style variables like sleep, nutrition, obesity, or exercise. We further provide a short excursion on the effects of stress and depression on immunity and discuss acute experimental endotoxemia as a model to study the effects of well-being on the innate immune response in humans.
Collapse
|
35
|
Fonken LK, Weber MD, Daut RA, Kitt MM, Frank MG, Watkins LR, Maier SF. Stress-induced neuroinflammatory priming is time of day dependent. Psychoneuroendocrinology 2016; 66:82-90. [PMID: 26799851 PMCID: PMC4788538 DOI: 10.1016/j.psyneuen.2016.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Circadian rhythms are endogenous cycles of physiology and behavior that align with the daily rotation of the planet and resulting light-dark cycle. The circadian system ensures homeostatic balance and regulates many aspects of physiology, including the stress response and susceptibility to and/or severity of stress-related sequelae. Both acute and chronic stressors amplify neuroinflammatory responses to a subsequent immune challenge, however it is not known whether circadian timing of the stressor regulates the priming response. Here, we test whether stress-induced neuroinflammatory priming is regulated by the circadian system. As has been previously shown, exposure to 100 inescapable tails shocks (IS) increased hippocampal cytokines following a subsequent inflammatory challenge. However, this effect was limited to animals that experienced the stressor during the light phase. Rats exposed to stress during the dark phase did not alter inflammatory potential following lipopolysaccharide (LPS) challenge. To determine whether microglia might be involved in diurnal differences in neuroinflammatory priming, microglia were isolated 24h after stress that occurred either during the middle of the light or dark phase. Only microglia isolated from animals stressed during the light phase demonstrated an exaggerated inflammatory response when treated ex vivo with LPS. To determine possible circadian dependency of microglia responsiveness to glucocorticoids - the likely proximal mediator for stress associated neuroinflammatory priming - microglia were isolated during the middle of the light or dark phase and treated ex vivo with corticosterone. Glucocorticoids treatment downregulated CX3CR1 and CD200R, two genes involved in microglial inflammatory "off" signaling; however, there was no effect of time of day on expression of either gene. Importantly, while absolute concentrations of corticosterone were comparable following IS during the light and dark phase, the magnitude of change in corticosterone was greater during the light phase. This work highlights the importance of studying circadian rhythms to elucidate biological mechanisms of stress.
Collapse
Affiliation(s)
- Laura K. Fonken
- To whom correspondence should be addressed: Laura K. Fonken, Department of Psychology and Neuroscience, University of Colorado, Muenzinger Psychology D244, 1905, Colorado Ave., Boulder, CO 80309 USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Tracy A. Bedrosian
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Laura K. Fonken
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309
| | - Randy J. Nelson
- Department of Neuroscience and Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
37
|
McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, Nasca C. Mechanisms of stress in the brain. Nat Neurosci 2015; 18:1353-63. [PMID: 26404710 PMCID: PMC4933289 DOI: 10.1038/nn.4086] [Citation(s) in RCA: 869] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/08/2015] [Indexed: 02/07/2023]
Abstract
The brain is the central organ involved in perceiving and adapting to social and physical stressors via multiple interacting mediators, from the cell surface to the cytoskeleton to epigenetic regulation and nongenomic mechanisms. A key result of stress is structural remodeling of neural architecture, which may be a sign of successful adaptation, whereas persistence of these changes when stress ends indicates failed resilience. Excitatory amino acids and glucocorticoids have key roles in these processes, along with a growing list of extra- and intracellular mediators that includes endocannabinoids and brain-derived neurotrophic factor (BDNF). The result is a continually changing pattern of gene expression mediated by epigenetic mechanisms involving histone modifications and CpG methylation and hydroxymethylation as well as by the activity of retrotransposons that may alter genomic stability. Elucidation of the underlying mechanisms of plasticity and vulnerability of the brain provides a basis for understanding the efficacy of interventions for anxiety and depressive disorders as well as age-related cognitive decline.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Nicole P Bowles
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Jason D Gray
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Richard G Hunter
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Carla Nasca
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
38
|
Sundar IK, Yao H, Sellix MT, Rahman I. Circadian molecular clock in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1056-75. [PMID: 26361874 DOI: 10.1152/ajplung.00152.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
39
|
Opp MR, Krueger JM. Sleep and immunity: A growing field with clinical impact. Brain Behav Immun 2015; 47:1-3. [PMID: 25849976 PMCID: PMC4685944 DOI: 10.1016/j.bbi.2015.03.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/21/2015] [Indexed: 01/03/2023] Open
Affiliation(s)
- Mark R. Opp
- Department of Anesthesiology & Pain Medicine, and Graduate Program in Neuroscience, University of Washington, Seattle, WA
| | - James M. Krueger
- College of Medical Sciences, Washington State University – Spokane, Spokane, WA
| |
Collapse
|