1
|
Jang G, Lee EM, Kim HJ, Park Y, Bang NH, Lee Kang J, Park EM. Visceral adiposity is associated with iron deposition and myelin loss in the brains of aged mice. Neurochem Int 2024; 179:105833. [PMID: 39128623 DOI: 10.1016/j.neuint.2024.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Iron deposition and myelin loss are observed in the brain with aging, and iron accumulation is suggested to be involved in myelin damage. However, the exact mechanism of iron deposition with aging remains unclear. This study was aimed to determine whether expanded visceral adipose tissue contributes to iron deposition and myelin loss by inducing hepcidin in the brains of aged male mice. Compared with young adult mice, levels of hepcidin in the brain, epididymal adipose tissue, and circulation were increased in aged mice, which had expanded visceral adipose tissue with inflammation. An increase in expressions of ferritin, an indicator of intracellular iron status, was accompanied by decreased levels of proteins related to myelin sheath in the brains of aged mice. These age-related changes in the brain were improved by visceral fat removal. In addition, IL-6 level, activation of microglia/macrophages, and nuclear translocation of phosphorylated Smad1/5 (pSmad1/5) inducing hepcidin expression were reduced in the brains of aged mice after visceral fat removal, accompanied by decreases of pSmad1/5- and ferritin-positive microglia/macrophages and mature oligodendrocytes. These findings indicate that visceral adiposity contributes to hepcidin-mediated iron deposition and myelin loss with inflammation in the aged brain. Our results support the importance of preventing visceral adiposity for maintaining brain health in older individuals.
Collapse
Affiliation(s)
- Gyeonghui Jang
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Eun-Mi Lee
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Hyun-Jung Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Yelin Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Nayun Hanna Bang
- School of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Jihee Lee Kang
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 07084, Republic of Korea; Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea.
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea.
| |
Collapse
|
2
|
Jia S, Huo X, Sun L, Yao Y, Chen X. The association between the weight-adjusted-waist index and frailty in US older adults: a cross-sectional study of NHANES 2007-2018. Front Endocrinol (Lausanne) 2024; 15:1362194. [PMID: 39319256 PMCID: PMC11420920 DOI: 10.3389/fendo.2024.1362194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/15/2024] [Indexed: 09/26/2024] Open
Abstract
Objective This study aimed to evaluate the relationship between the weight-adjusted waist circumference index (WWI) and the frailty in American adults aged over 60 years. Methods We utilized data from the National Health and Nutrition Examination Surveys (NHANES) spanning from 2007 to 2018. WWI was calculated using the square root of waist circumference (cm) divided by body weight (kg). The frailty index ≥ 0.25 was employed to assess frailty. Weighted multivariate logistic regression was conducted to explore the association between WWI and frailty. Generalized Additive Modeling (GAM) was used to explore potential non-linear relationships. Receiver operating characteristic curve (ROC) analysis was used to assess the predictive ability of WWI for frailty. Results The study encompassed 7765 participants. Higher WWI was significantly associated with higher odds of frailty. In the fully adjusted model, each unit increase of WWI was associated with an 82% increased odds of frailty (OR: 1.82, 95% CI: 1.61 - 2.06; P < 0.001). GAM found significant nonlinear relationships and threshold effects. Conclusion The study presented a robust correlation between elevated WWI and increased odds of frailty among American older adults. However, these findings require further validation in large-scale, prospective studies.
Collapse
Affiliation(s)
- Shanshan Jia
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingwei Huo
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lirong Sun
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yuanyuan Yao
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoping Chen
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Park S, Shimokawa I. Influence of Adipokines on Metabolic Dysfunction and Aging. Biomedicines 2024; 12:873. [PMID: 38672227 PMCID: PMC11048512 DOI: 10.3390/biomedicines12040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, 30% of the global population is overweight or obese, with projections from the World Obesity Federation suggesting that this figure will surpass 50% by 2035. Adipose tissue dysfunction, a primary characteristic of obesity, is closely associated with an increased risk of metabolic abnormalities, such as hypertension, hyperglycemia, and dyslipidemia, collectively termed metabolic syndrome. In particular, visceral fat accretion is considered as a hallmark of aging and is strongly linked to higher mortality rates in humans. Adipokines, bioactive peptides secreted by adipose tissue, play crucial roles in regulating appetite, satiety, adiposity, and metabolic balance, thereby rendering them key players in alleviating metabolic diseases and potentially extending health span. In this review, we elucidated the role of adipokines in the development of obesity and related metabolic disorders while also exploring the potential of certain adipokines as candidates for longevity interventions.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Isao Shimokawa
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- SAGL, Limited Liability Company, 1-4-34, Kusagae, Chuo-ku, Fukuoka 810-0045, Japan
| |
Collapse
|
4
|
Xie X, Wang L, Dong S, Ge S, Zhu T. Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke. Neural Regen Res 2024; 19:519-528. [PMID: 37721279 PMCID: PMC10581566 DOI: 10.4103/1673-5374.380869] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 09/19/2023] Open
Abstract
Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated. In the human body, the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks. Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability. In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other. Here, we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis. We found that abnormal intestinal flora, the intestinal microenvironment, lung infection, chronic diseases, and mechanical ventilation can worsen the outcome of ischemic stroke. This review also introduces the influence of the brain on the gut and lungs after stroke, highlighting the bidirectional feedback effect among the gut, lungs, and brain.
Collapse
Affiliation(s)
- Xiaodi Xie
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Shanshan Dong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - ShanChun Ge
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
5
|
Zhao Y, Yue R. Aging adipose tissue, insulin resistance, and type 2 diabetes. Biogerontology 2024; 25:53-69. [PMID: 37725294 DOI: 10.1007/s10522-023-10067-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
With the increase of population aging, the prevalence of type 2 diabetes (T2D) is also rising. Aging affects the tissues and organs of the whole body, which is the result of various physiological and pathological processes. Adipose tissue has a high degree of plasticity and changes with aging. Aging changes the distribution of adipose tissue, affects adipogenesis, browning characteristics, inflammatory status and adipokine secretion, and increases lipotoxicity. These age-dependent changes in adipose tissue are an important cause of insulin resistance and T2D. Understanding adipose tissue changes can help promote healthy aging process. This review summarizes changes in adipose tissue ascribable to aging, with a focus on the role of aging adipose tissue in insulin resistance and T2D.
Collapse
Affiliation(s)
- Yixuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
6
|
Nameni G, Jazayeri S, Salehi M, Esrafili A, Hajebi A, Motevalian SA. Association between visceral adiposity and generalized anxiety disorder (GAD). BMC Psychol 2024; 12:49. [PMID: 38273394 PMCID: PMC10811950 DOI: 10.1186/s40359-024-01542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Due to an increased rate of inflammation in generalized anxiety disorder (GAD), insight into the mediating factors in the onset and recurrence of the inflammatory response can help to achieve novel treatments for alleviating the risk of GAD. In the current study, we aimed to evaluate the possible relationship between visceral adipose tissue (VAT) as an important intermediary in inflammation pathways and GAD in participants of the Employees' Health Cohort Study of Iran (EHCSIR). METHOD We analyzed the data from 3889 included participants aged > 18 years in the EHCSIR study, which were collected from 2017 to 2020. Lifetime and 12-month GAD were assessed using the Composite International Diagnostic Interview (CIDI-2.1) questionnaire. The adjusted prevalence ratio was computed to evaluate the association between GAD and visceral adiposity index (VAI), GAD and visceral fat area (VFA), GAD and body mass index (BMI) and ultimately GAD and waist circumference (WC) in males and females using STATA software. RESULTS Log-binomial analysis showed a higher prevalence ratio of 12-month GAD associated with VFA in women [PR: 1.42, CI: 1.07-1.87, P: 0.015]. The prevalence of lifetime GAD was higher in obese women (BM1 > 30) [PR: 2.35, CI: 1.07-5.13, P:0.03] than in women with normal BMI. Women with higher VAI were also significantly more likely to suffer lifetime GAD [PR: 1.25, CI: 1.05]. 1.48, P:0.01]. In males, the prevalence of lifetime diagnosed GAD per 1 standard deviation increase in VFA was 0.65 [CI: 0.46-0.91, P: 0.01]. CONCLUSION Visceral adiposity as a positive agent was associated with GAD prevalence in women. The presence of GAD symptoms showed no relationship to VFA in men.
Collapse
Affiliation(s)
- Ghazaleh Nameni
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences , Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences , Tehran, Iran.
| | - Masoud Salehi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Hajebi
- Research Center for Addiction & Risky Behaviors (ReCARB), Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Abbas Motevalian
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Choi KE, Joung C, Pahk KJ, Kim H, Pahk K. Metabolic activity of visceral adipose tissue is associated with age-related macular degeneration: a pilot 18F-FDG PET/CT study. Front Endocrinol (Lausanne) 2024; 14:1322326. [PMID: 38260144 PMCID: PMC10801050 DOI: 10.3389/fendo.2023.1322326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Background Obesity is known to increase the risk and severity of age-related macular degeneration (AMD). Increased inflamed metabolic activity of visceral adipose tissue (VAT) is considered as a crucial underlying mechanism for the harmful effects of obesity. In this study, we aimed to investigate the inflamed metabolic activity of VAT with 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and their association with AMD. Materials and methods A total of 57 elderly participants (aged ≥ 50 years) who underwent 18F-FDG PET/CT for health screening and subsequent fundoscopic exam for complaint of recently impaired vision were enrolled. The metabolic activity of VAT was measured from the maximum standardized uptake value (SUVmax) of VAT. The early AMD participant was defined as the participant with either eye satisfying AMD and without any sign of advanced AMD (neovascular AMD or geographic atrophy). The late AMD participant was defined as the participant with either eye satisfying advanced AMD. Results VAT SUVmax was highest in participants with late AMD, intermediate in early AMD, and lowest in non-AMD participants. The levels of systemic inflammation surrogate markers were also highest in late AMD group. Furthermore, VAT SUVmax was positively correlated with systemic inflammation surrogate markers and independently associated with the late AMD. Conclusions The metabolic activity of VAT evaluated by 18F-FDG PET/CT was associated with the severity of AMD and synchronized with the level of systemic inflammation. Thus, VAT SUVmax could be potentially employed as a surrogate marker of obesity-driven VAT inflammation associated with AMD.
Collapse
Affiliation(s)
- Kwang-Eon Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chanmin Joung
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Hyunji Kim
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kisoo Pahk
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Pinson MR, Bake S, Hurst DA, Samiya NT, Sohrabji F, Miranda RC. Prenatal alcohol alters inflammatory signatures in enteric portal tissues following adult-onset cerebrovascular ischemic stroke. iScience 2023; 26:107920. [PMID: 37810225 PMCID: PMC10550726 DOI: 10.1016/j.isci.2023.107920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Prenatal alcohol exposure (PAE) impairs recovery from cerebrovascular ischemic stroke in adult rodents. Since the gut becomes dysbiotic following stroke, we assessed links between PAE and enteric portal inflammation. Adult control and PAE rat offspring received a unilateral endothelin-1-induced occlusion of the middle cerebral artery. Post-stroke behavioral disabilities and brain cytokines were assessed. Mesenteric adipose and liver transcriptomes were assessed from stroke-exposed and stroke-naive offspring. We identified, in the liver of stroke-naive animals, a moderate correlation between PAE and a gene network for inflammatory necroptosis. PAE inhibited the acute-phase brain inflammatory cytokine response to stroke. Post-stroke neurological function was correlated with an adipose gene network associated with B-lymphocyte differentiation and nuclear factor κB (NF-κB) signaling and with a liver pro-inflammatory gene network. Collectively, PAE inhibits brain inflammation but results in an inflammatory signature in enteric portal tissues after stroke, suggesting that PAE persistently and adversely impacts the gut-brain axis following adult-onset disease.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
| | - Shameena Bake
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University School of Medicine, Bryan, TX, USA
| | - David A Hurst
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
| | - Nadia T Samiya
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University School of Medicine, Bryan, TX, USA
| |
Collapse
|
9
|
Huang X, Wang YJ, Xiang Y. Bidirectional communication between brain and visceral white adipose tissue: Its potential impact on Alzheimer's disease. EBioMedicine 2022; 84:104263. [PMID: 36122553 PMCID: PMC9490488 DOI: 10.1016/j.ebiom.2022.104263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
A variety of axes between brain and abdominal organs have been reported, but the interaction between brain and visceral white adipose tissue (vWAT) remains unclear. In this review, we summarized human studies on the association between brain and vWAT, and generalized their interaction and the underlying mechanisms according to animal and cell experiments. On that basis, we come up with the concept of the brain-vWAT axis (BVA). Furthermore, we analyzed the potential mechanisms of involvement of BVA in the pathogenesis of Alzheimer's disease (AD), including vWAT-derived fatty acids, immunological properties of vWAT, vWAT-derived retinoic acid and vWAT-regulated insulin resistance. The proposal of BVA may expand our understanding to some extent of how the vWAT impacts on brain health and diseases, and provide a novel approach to study the pathogenesis and treatment strategies of neurodegenerative disorders.
Collapse
|
10
|
Woo A, Botta A, Shi SSW, Paus T, Pausova Z. Obesity-Related Neuroinflammation: Magnetic Resonance and Microscopy Imaging of the Brain. Int J Mol Sci 2022; 23:8790. [PMID: 35955925 PMCID: PMC9368789 DOI: 10.3390/ijms23158790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/01/2022] Open
Abstract
Obesity is a major risk factor of Alzheimer's disease and related dementias. The principal feature of dementia is a loss of neurons and brain atrophy. The mechanistic links between obesity and the neurodegenerative processes of dementias are not fully understood, but recent research suggests that obesity-related systemic inflammation and subsequent neuroinflammation may be involved. Adipose tissues release multiple proinflammatory molecules (fatty acids and cytokines) that impact blood and vessel cells, inducing low-grade systemic inflammation that can transition to tissues, including the brain. Inflammation in the brain-neuroinflammation-is one of key elements of the pathobiology of neurodegenerative disorders; it is characterized by the activation of microglia, the resident immune cells in the brain, and by the structural and functional changes of other cells forming the brain parenchyma, including neurons. Such cellular changes have been shown in animal models with direct methods, such as confocal microscopy. In humans, cellular changes are less tangible, as only indirect methods such as magnetic resonance (MR) imaging are usually used. In these studies, obesity and low-grade systemic inflammation have been associated with lower volumes of the cerebral gray matter, cortex, and hippocampus, as well as altered tissue MR properties (suggesting microstructural variations in cellular and molecular composition). How these structural variations in the human brain observed using MR imaging relate to the cellular variations in the animal brain seen with microscopy is not well understood. This review describes the current understanding of neuroinflammation in the context of obesity-induced systemic inflammation, and it highlights need for the bridge between animal microscopy and human MR imaging studies.
Collapse
Affiliation(s)
- Anita Woo
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Amy Botta
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Sammy S. W. Shi
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Tomas Paus
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC H3T 1C5, Canada
- Departments of Psychiatry of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- ECOGENE-21, Chicoutimi, QC G7H 7K9, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
- ECOGENE-21, Chicoutimi, QC G7H 7K9, Canada
| |
Collapse
|
11
|
Adipose Tissue Aging and Metabolic Disorder, and the Impact of Nutritional Interventions. Nutrients 2022; 14:nu14153134. [PMID: 35956309 PMCID: PMC9370499 DOI: 10.3390/nu14153134] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Adipose tissue is the largest and most active endocrine organ, involved in regulating energy balance, glucose and lipid homeostasis and immune function. Adipose tissue aging processes are associated with brown adipose tissue whitening, white adipose tissue redistribution and ectopic deposition, resulting in an increase in age-related inflammatory factors, which then trigger a variety of metabolic syndromes, including diabetes and hyperlipidemia. Metabolic syndrome, in turn, is associated with increased inflammatory factors, all-cause mortality and cognitive impairment. There is a growing interest in the role of nutritional interventions in adipose tissue aging. Nowadays, research has confirmed that nutritional interventions, involving caloric restriction and the use of vitamins, resveratrol and other active substances, are effective in managing adipose tissue aging’s adverse effects, such as obesity. In this review we summarized age-related physiological characteristics of adipose tissue, and focused on what nutritional interventions can do in improving the retrogradation and how they do this.
Collapse
|
12
|
Nguyen TT, Hulme J, Vo TK, Van Vo G. The Potential Crosstalk Between the Brain and Visceral Adipose Tissue in Alzheimer's Development. Neurochem Res 2022; 47:1503-1512. [PMID: 35298764 DOI: 10.1007/s11064-022-03569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
The bidirectional communication between the brain and peripheral organs have been widely documented, but the impact of visceral adipose tissue (VAT) dysfunction and its relation to structural and functional brain changes have yet to be fully elucidated. This review initially examines the clinical evidence supporting associations between the brain and VAT before visiting the roles of the autonomic nervous system, fat and glucose metabolism, neuroinflammation, and metabolites. Finally, the possible effects and potential mechanisms of the brain-VAT axis on the pathogenesis of Alzheimer's disease are discussed, providing new insights regarding future prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City, 700000, Vietnam
| | - John Hulme
- Department of BioNano Technology, Gachon University, Seongnam, 461-701, Republic of Korea.
| | - Tuong Kha Vo
- Vietnam Sports Hospital, Ministry of Culture, Sports and Tourism, Hanoi, 100000, Vietnam.,Department of Sports Medicine, University of Medicine and Pharmacy (VNU-UMP), Vietnam National University Hanoi, Hanoi, 100000, Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam. .,Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam. .,Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
13
|
Kim HJ, Moon CM, Kang JL, Park EM. Aging effects on the diurnal patterns of gut microbial composition in male and female mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:575-583. [PMID: 34697268 PMCID: PMC8552826 DOI: 10.4196/kjpp.2021.25.6.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 11/15/2022]
Abstract
Composition of the gut microbiota changes with aging and plays an important role in age-associated disease such as metabolic syndrome, cancer, and neurodegeneration. The gut microbiota composition oscillates through the day, and the disruption of their diurnal rhythm results in gut dysbiosis leading to metabolic and immune dysfunctions. It is well documented that circadian rhythm changes with age in several biological functions such as sleep, body temperature, and hormone secretion. However, it is not defined whether the diurnal pattern of gut microbial composition is affected by aging. To evaluate aging effects on the diurnal pattern of the gut microbiome, we evaluated the taxa profiles of cecal contents obtained from young and aged mice of both sexes at daytime and nighttime points by 16S rRNA gene sequencing. At the phylum level, the ratio of Firmicutes to Bacteroidetes and the relative abundances of Verrucomicrobia and Cyanobacteria were increased in aged male mice at night compared with that of young male mice. Meanwhile, the relative abundances of Sutterellaceae, Alloprevotella, Lachnospiraceae UCG-001, and Parasutterella increased in aged female mice at night compared with that of young female mice. The Lachnospiraceae NK4A136 group relative abundance increased in aged mice of both sexes but at opposite time points. These results showed the changes in diurnal patterns of gut microbial composition with aging, which varied depending on the sex of the host. We suggest that disturbed diurnal patterns of the gut microbiome can be a factor for the underlying mechanism of age-associated gut dysbiosis.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07084, Korea
| | - Chang Mo Moon
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul 07084, Korea.,Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07084, Korea
| | - Jihee Lee Kang
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07084, Korea.,Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07084, Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07084, Korea
| |
Collapse
|
14
|
Cho J, Seo S, Kim WR, Kim C, Noh Y. Association Between Visceral Fat and Brain Cortical Thickness in the Elderly: A Neuroimaging Study. Front Aging Neurosci 2021; 13:694629. [PMID: 34248609 PMCID: PMC8261238 DOI: 10.3389/fnagi.2021.694629] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Background Despite emerging evidence suggesting that visceral fat may play a major role in obesity-induced neurodegeneration, little evidence exists on the association between visceral fat and brain cortical thickness in the elderly. Purpose We aimed to examine the association between abdominal fat and brain cortical thickness in a Korean elderly population. Methods This cross-sectional study included elderly individuals without dementia (n = 316). Areas of visceral fat and subcutaneous fat (cm2) were estimated from computed tomography scans. Regional cortical thicknesses (mm) were obtained by analyzing brain magnetic resonance images. Given the inverted U-shaped relationship between visceral fat area and global cortical thickness (examined using a generalized additive model), visceral fat area was categorized into quintiles, with the middle quintile being the reference group. A generalized linear model was built to explore brain regions associated with visceral fat. The same approach was used for subcutaneous fat. Results The mean (standard deviation) age was 67.6 (5.0) years. The highest quintile (vs. the middle quintile) group of visceral fat area had reduced cortical thicknesses in the global [β = -0.04 mm, standard error (SE) = 0.02 mm, p = 0.004], parietal (β = -0.04 mm, SE = 0.02 mm, p = 0.01), temporal (β = -0.05 mm, SE = 0.02 mm, p = 0.002), cingulate (β = -0.06 mm, SE = 0.02 mm, p = 0.01), and insula lobes (β = -0.06 mm, SE = 0.03 mm, p = 0.02). None of the regional cortical thicknesses significantly differed between the highest and the middle quintile groups of subcutaneous fat area. Conclusion The findings suggest that a high level of visceral fat, but not subcutaneous fat, is associated with a reduced cortical thickness in the elderly.
Collapse
Affiliation(s)
- Jaelim Cho
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Human Complexity and Systems Science, Yonsei University, Incheon, South Korea
| | - Seongho Seo
- Department of Electronic Engineering, Pai Chai University, Daejeon, South Korea.,Department of Neuroscience, College of Medicine, Gachon University, Incheon, South Korea
| | - Woo-Ram Kim
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Changsoo Kim
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Human Complexity and Systems Science, Yonsei University, Incheon, South Korea.,Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Noh
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea.,Department of Health Science and Technology, GAIHST, Gachon University, Incheon, South Korea
| |
Collapse
|
15
|
Kaukas L, Krieg J, Collins-Praino L, Corrigan F. Effects of Remote Immune Activation on Performance in the 5-Choice Serial Reaction Time Task Following Mild Traumatic Brain Injury in Adolescence. Front Behav Neurosci 2021; 15:659679. [PMID: 33867953 PMCID: PMC8046921 DOI: 10.3389/fnbeh.2021.659679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
In adult pre-clinical models, traumatic brain injury (TBI) has been shown to prime microglia, exaggerating the central inflammatory response to an acute immune challenge, worsening depressive-like behavior, and enhancing cognitive deficits. Whether this phenomenon exists following mTBI during adolescence has yet to be explored, with age at injury potentially altering the inflammatory response. Furthermore, to date, studies have predominantly examined hippocampal-dependent learning domains, although pre-frontal cortex-driven functions, including attention, motivation, and impulsivity, are significantly affected by both adolescent TBI and acute inflammatory stimuli. As such, the current study examined the effects of a single acute peripheral dose of LPS (0.33 mg/kg) given in adulthood following mTBI in mid-adolescence in male Sprague–Dawley rats on performance in the 5-choice serial reaction time task (5-CSRTT). Only previously injured animals given LPS showed an increase in omissions and reward collection latency on the 5-CSRTT, with no effect noted in sham animals given LPS. This is suggestive of impaired motivation and a prolonged central inflammatory response to LPS administration in these animals. Indeed, morphological analysis of myeloid cells within the pre-frontal cortex, via IBA1 immunohistochemistry, found that injured animals administered LPS had an increase in complexity in IBA1+ve cells, an effect that was seen to a lesser extent in sham animals. These findings suggest that there may be ongoing alterations in the effects of acute inflammatory stimuli that are driven, in part by increased reactivity of microglial cells.
Collapse
Affiliation(s)
- Lola Kaukas
- Head Injury Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Justin Krieg
- Head Injury Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Lyndsey Collins-Praino
- Head Injury Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Frances Corrigan
- Head Injury Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
16
|
Candelario-Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. Exp Neurol 2021; 335:113494. [PMID: 33035516 PMCID: PMC7874968 DOI: 10.1016/j.expneurol.2020.113494] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a highly complex and devastating neurological disease. The sudden loss of blood flow to a brain region due to an ischemic insult leads to severe damage to that area resulting in the formation of an infarcted tissue, also known as the ischemic core. This is surrounded by the peri-infarct region or penumbra that denotes the functionally impaired but potentially salvageable tissue. Thus, the penumbral tissue is the main target for the development of neuroprotective strategies to minimize the extent of ischemic brain damage by timely therapeutic intervention. Given the limitations of reperfusion therapies with recombinant tissue plasminogen activator or mechanical thrombectomy, there is high enthusiasm to combine reperfusion therapy with neuroprotective strategies to further reduce the progression of ischemic brain injury. Till date, a large number of candidate neuroprotective drugs have been identified as potential therapies based on highly promising results from studies in rodent ischemic stroke models. However, none of these interventions have shown therapeutic benefits in stroke patients in clinical trials. In this review article, we discussed the urgent need to utilize preclinical models of ischemic stroke that more accurately mimic the clinical conditions in stroke patients by incorporating aged animals and animal stroke models with comorbidities. We also outlined the recent findings that highlight the significant differences in stroke outcome between young and aged animals, and how major comorbid conditions such as hypertension, diabetes, obesity and hyperlipidemia dramatically increase the vulnerability of the brain to ischemic damage that eventually results in worse functional outcomes. It is evident from these earlier studies that including animal models of aging and comorbidities during the early stages of drug development could facilitate the identification of neuroprotective strategies with high likelihood of success in stroke clinical trials.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
17
|
Shin JA, Kim HS, Lee Kang J, Park EM. Estrogen deficiency is associated with brain iron deposition via upregulation of hepcidin expression in aged female mice. Neurobiol Aging 2020; 96:33-42. [PMID: 32920472 DOI: 10.1016/j.neurobiolaging.2020.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/02/2020] [Accepted: 08/17/2020] [Indexed: 01/19/2023]
Abstract
The total iron level in the brain increases with age, and excess iron is associated with neurodegenerative diseases; however, the mechanism of brain iron deposition is unknown. In peripheral cells, the expression of hepcidin, a master regulator of iron homeostasis, is regulated by estrogen. This study aimed to determine whether hepcidin was involved in iron deposition in the brain and brain endothelial cells of estrogen-deficient aged female mice. Aged mice showed increased levels of hepcidin and ferritin in the brain and brain microvessels compared with young mice, and these levels were reduced by estrogen replacement in ovariectomized aged mice. In the brain endothelial cell line bEnd.3, the lipopolysaccharide (10 ng/mL)-induced increases of hepcidin mRNA and protein levels, the number of Prussian blue-positive cells, and free radicals were reduced after estrogen treatment. These results suggest that estrogen deficiency with an increase of hepcidin is partly responsible for iron deposition in the brain and brain endothelial cells and that hepcidin can be a target to prevent brain aging and neurodegeneration in postmenopausal women.
Collapse
Affiliation(s)
- Jin A Shin
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Lee Kang
- Department of Physiology and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Chen L, Li M, Yang Z, Tao W, Wang P, Tian X, Li X, Wang W. Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112829. [PMID: 32311486 DOI: 10.1016/j.jep.2020.112829] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia jasminoides Ellis is a popular shrub in the Rubiaceae family. The desiccative ripe fruits of this plant (called Zhizi in China) are well known and frequently used not only as an excellent natural colourant, but also as an important traditional medicine for the treatment of different diseases, such as reducing fire except vexed, clearing away heat evil, and cooling blood and eliminating stasis to activate blood circulation. It has also been declared as the first batch of dual-purpose plants used for food and medical functions in China. AIM OF THE STUDY This review aims to provide a critical and systematic summary of the traditional uses, ethnopharmacology, phytochemistry, pharmacology, toxicity and industrial applications of Gardenia jasminoides Ellis and briefly proposes several suggestions for future application prospects. MATERIALS AND METHODS The related information on Gardenia jasminoides Ellis was obtained from internationally recognized scientific databases through the Internet (PubMed, CNKI, Google Scholar, Baidu Scholar, Web of Science, Medline Plus, ACS, Elsevier and Flora of China) and libraries. RESULTS Approximately 162 chemical compounds have been isolated and identified from this herb. Among them, iridoid glycosides and yellow pigment are generally considered the main bioactive and characteristic ingredients. Various pharmacological properties, such as a beneficial effect on the nervous, cardiovascular and digestive systems, hepatoprotective activity, antidepressant activity, and anti-inflammatory activity, were also validated in vitro and in vivo. Moreover, geniposide and genipin are the most important iridoid compounds isolated from Gardenia jasminoides Ellis, and genipin is the aglycone of geniposide. As the predominant active ingredient with a distinct pharmacological activity, genipin is also an outstanding biological crosslinking agent. Gardenia yellow pigment has also been widely used as an excellent natural dye-stuff. Hence, Gardenia jasminoides Ellis has been applied to many other fields, including the food industry, textile industry and chemical industry, in addition to its predominant medicinal uses. CONCLUSIONS According to this review, Gardenia jasminoides Ellis is outstanding traditional medical plant used in medicine and food. Pharmacological investigations support the traditional use of this herb and may validate the folk medicinal use of Gardenia jasminoides Ellis to treat different diseases. Iridoid glycosides are potential medicines. Gardenia yellow pigment has been the most important source of a natural colourant for food, cloth and paint for thousands of years. This herb has made great contributions to human survival and development. Moreover, it has also achieved outstanding progress in human life and even in art. Although Gardenia jasminoides Ellis has extremely high and comprehensive utilization values, it is still far from being completely explored. Therefore, the comprehensive development of Gardenia jasminoides Ellis deserves further analysis.
Collapse
Affiliation(s)
- Liping Chen
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Maoxing Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China.
| | - Zhiqiang Yang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Wendi Tao
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Peng Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Xiuyu Tian
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Xiaolin Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Weigang Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| |
Collapse
|
19
|
Multiple Anesthesia/Surgery Cannot Impair Reference Memory in Adult Mice. Mediators Inflamm 2020; 2020:3736912. [PMID: 32214903 PMCID: PMC7081041 DOI: 10.1155/2020/3736912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Postoperative cognitive dysfunction increases mortality and morbidity in perioperative patients. Numerous studies have demonstrated that multiple surgery/anesthesia during the neurodevelopmental period affects cognitive function, whereas a single anesthesia/surgery rarely causes cognitive dysfunction in adults. However, whether adults who undergo multiple anesthesia/surgery over a short period will experience cognitive dysfunction remains unclear. In this study, central nervous system inflammation and changes in cholinergic markers were investigated in adult mice subjected to multiple laparotomy procedures over a short period of time. The results showed that despite the increased expression of IL-6 and TNF-α in the hippocampus after multiple operations and the activation of microglia, multiple anesthesia/surgery did not cause a decline in cognitive function in adult mice. There were no changes in the cholinergic markers after multiple anesthesia/surgery.
Collapse
|
20
|
Yegla B, Foster T. Effect of Systemic Inflammation on Rat Attentional Function and Neuroinflammation: Possible Protective Role for Food Restriction. Front Aging Neurosci 2019; 11:296. [PMID: 31708767 PMCID: PMC6823289 DOI: 10.3389/fnagi.2019.00296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Aging is characterized by subtle cognitive decline, which correlates with increased peripheral inflammation. Acute activation of the peripheral immune system, via lipopolysaccharide (LPS) injection, elicits deficits in hippocampal-dependent spatial memory. Little is known concerning the effect of chronic inflammation on prefrontal cortex (PFC)-dependent vigilance. We examined the impact of repeated LPS injections in young and middle-age rats on the 5-choice serial reaction time task (5-CSRTT), expecting repeated LPS treatment to induce attentional deficits with greater disruption in middle-age. Methods: Male Fischer-344 rats, 4- and 12-months-old, were food restricted and trained on the 5-CSRTT. Once rats reached criterion, they were injected with LPS (1 mg/kg, i.p.) weekly for 4 weeks and testing started 48 h after each injection. To examine the possibility that mild food restriction inherent to the behavioral task influenced inflammation markers, a second group of food-restricted or ad-lib-fed rats was assessed for cytokine changes 48 h after one injection. Results: Performing LPS-treated rats exhibited a sickness response, manifesting as reduced initiated and completed trials during the first week but recovered by the second week of testing. After the first week, LPS-treated rats continued to exhibit longer response latencies, despite no change in food retrieval latency, suggestive of LPS-induced cognitive slowing. Similarly, LPS-induced impairment of attention was observed as increased omissions with heightened cognitive demand and increased age. Repeated LPS-treatment increased the level of PFC IL-1α, and PFC IL-6 was marginally higher in middle-age rats. No effect of age or treatment was observed for plasma cytokines in performing rats. Histological examination of microglia indicated increased colocalization of Iba1+ and CD68+ cells from middle-age relative to young rats. Examination of food restriction demonstrated an attenuation of age- and LPS-related increases in plasma cytokine levels. Conclusions: Systemic inflammation, induced through LPS treatment, impaired attentional function, which was independent of sickness and exacerbated by increased cognitive demand and increased age. Additional studies revealed that food restriction, associated with the task, attenuated markers of neuroinflammation and plasma cytokines. The results emphasize the need for improved methods for modeling low-level chronic systemic inflammation to effectively examine its impact on attention during aging.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Thomas Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Gannon OJ, Robison LS, Custozzo AJ, Zuloaga KL. Sex differences in risk factors for vascular contributions to cognitive impairment & dementia. Neurochem Int 2018; 127:38-55. [PMID: 30471324 DOI: 10.1016/j.neuint.2018.11.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is the second most common cause of dementia. While males overall appear to be at a slightly higher risk for VCID throughout most of the lifespan (up to age 85), some risk factors for VCID more adversely affect women. These include female-specific risk factors associated with pregnancy related disorders (e.g. preeclampsia), menopause, and poorly timed hormone replacement. Further, presence of certain co-morbid risk factors, such as diabetes, obesity and hypertension, also may more adversely affect women than men. In contrast, some risk factors more greatly affect men, such as hyperlipidemia, myocardial infarction, and heart disease. Further, stroke, one of the leading risk factors for VCID, has a higher incidence in men than in women throughout much of the lifespan, though this trend is reversed at advanced ages. This review will highlight the need to take biological sex and common co-morbidities for VCID into account in both preclinical and clinical research. Given that there are currently no treatments available for VCID, it is critical that we understand how to mitigate risk factors for this devastating disease in both sexes.
Collapse
Affiliation(s)
- O J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - L S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - A J Custozzo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - K L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
22
|
Visceral fat-related systemic inflammation and the adolescent brain: a mediating role of circulating glycerophosphocholines. Int J Obes (Lond) 2018; 43:1223-1230. [PMID: 30206338 DOI: 10.1038/s41366-018-0202-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/24/2018] [Accepted: 06/10/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Life-long maintenance of brain health is important for the prevention of cognitive impairment in older age. Low-grade peripheral inflammation associated with excess visceral fat (VF) may influence brain structure and function. Here we examined (i) if this type of inflammation is associated with altered white-matter (WM) microstructure and lower cognitive functioning in adolescents, and (ii) if recently identified circulating glycerophosphocholines (GPCs) can index this type of inflammation and associated variations in WM microstructure and cognitive functioning. SUBJECTS We studied a community-based sample of 872 adolescents (12-18 years, 48% males) in whom we assessed VF and WM microstructure with magnetic resonance imaging, processing speed with cognitive testing, serum C-reactive protein (CRP, a common marker of peripheral inflammation) with a high-sensitivity assay, and serum levels of a panel of 64 GPCs with advanced mass spectrometry. RESULTS VF was associated with CRP, and CRP in turn was associated with "altered" WM microstructure and lower processing speed (all p < 0.003). Further, "altered" WM microstructure was associated with lower processing speed (p < 0.0001). Of all 64 tested GPCs, 4 were associated with both VF and CRP (at Bonferroni corrected p < 0.0004). One of them, PC16:0/2:0, was also associated with WM microstructure (p < 0.0001) and processing speed (p = 0.0003), and mediated the directed associations between VF and both WM microstructure (p < 0.0001) and processing speed (p = 0.02). As a mediator, PC16:0/2:0 explained 21% of shared variance between VF and WM microstructure, and 22% of shared variance between VF and processing speed. Similar associations were observed in an auxiliary study of 80 middle-aged adults. CONCLUSIONS Our results show that VF-related peripheral inflammation is associated with "altered" WM microstructure and lower cognitive functioning already in adolescents, and a specific circulating GPC may be a new molecule indexing this VF-related peripheral inflammation and its influences on brain structure and function.
Collapse
|
23
|
Reduced ex vivo release of pro-inflammatory cytokines and elevated plasma interleukin-6 are inflammatory signatures of post-stroke delirium. J Neuroinflammation 2018; 15:111. [PMID: 29669581 PMCID: PMC5907192 DOI: 10.1186/s12974-018-1156-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/09/2018] [Indexed: 11/10/2022] Open
Abstract
Background Experimental studies suggest that systemic inflammation contributes to the pathophysiology of delirium. The aim of our study was to determine blood-derived inflammatory signatures of post-stroke delirium. Methods We included 144 ischemic stroke patients. We assessed delirium on a daily basis during the first 7 days of hospitalization. Venous blood was collected at day 3 after the onset of stroke and stimulated ex vivo with lipopolysaccharide (LPS). We measured LPS-induced cytokine concentration (TNFα, IP-10, IL-1β, IL-6, IL-8, IL-10, and IL-12p70) as well as plasma levels of IL-6 and TNFα. Results Delirium was diagnosed in 21.5% of patients. After correction for monocyte count, patients with delirium had reduced LPS-induced TNFα, IP-10, IL-1β, IL-6, and IL-12 release. The plasma IL-6 level was higher in delirious patients compared to patients without delirium. After adjusting for stroke severity and infections, higher ex vivo TNFα (OR 0.29, 95%CI 0.11–0.72, P = 0.01), IP-10 (OR 0.25, 95%CI 0.08–0.73, P = 0.01), IL-1β (OR 0.42, 95%CI 0.20–0.89, P = 0.02), and IL-12 (OR 0.07, 95%CI 0.01–0.70, P = 0.02) release was associated with the reduced risk of delirium. In multivariate analysis, the higher plasma IL-6 was associated with the increased risk of delirium (OR 1.61, 95%CI 1.00–2.58, P = 0.04). Conclusions Reduced ex vivo release of pro-inflammatory cytokines after LPS stimulation and the elevated plasma IL-6 are signatures of post-stroke delirium.
Collapse
|
24
|
Haley MJ, Mullard G, Hollywood KA, Cooper GJ, Dunn WB, Lawrence CB. Adipose tissue and metabolic and inflammatory responses to stroke are altered in obese mice. Dis Model Mech 2017; 10:1229-1243. [PMID: 28798136 PMCID: PMC5665457 DOI: 10.1242/dmm.030411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Obesity is an independent risk factor for stroke, although several clinical studies have reported that obesity improves stroke outcome. Obesity is hypothesised to aid recovery by protecting against post-stroke catabolism. We therefore assessed whether obese mice had an altered metabolic and inflammatory response to stroke. Obese ob/ob mice underwent a 20-min middle cerebral artery occlusion and 24-h reperfusion. Lipid metabolism and expression of inflammatory cytokines were assessed in the plasma, liver and adipose tissue. The obese-specific metabolic response to stroke was assessed in plasma using non-targeted ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) metabolomics coupled with univariate and multivariate analysis. Obesity had no effect on the extent of weight loss 24 h after stroke but affected the metabolic and inflammatory responses to stroke, predominantly affecting lipid metabolism. Specifically, obese mice had increases in plasma free fatty acids and expression of adipose lipolytic enzymes. Metabolomics identified several classes of metabolites affected by stroke in obese mice, including fatty acids and membrane lipids (glycerophospholipids, lysophospholipids and sphingolipids). Obesity also featured increases in inflammatory cytokines in the plasma and adipose tissue. Overall, these results demonstrate that obesity affected the acute metabolic and inflammatory response to stroke and suggest a potential role for adipose tissue in this effect. These findings could have implications for longer-term recovery and also further highlight the importance of considering comorbidities in preclinical stroke research, especially when identifying biomarkers for stroke. However, further work is required to assess whether these changes translate into long-term effects on recovery. Summary: Obesity, a co-morbidity for stroke, affected the acute metabolic and inflammatory response to stroke, highlighting the importance of considering comorbidities in preclinical stroke research, especially when identifying biomarkers.
Collapse
Affiliation(s)
- Michael J Haley
- Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Graham Mullard
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK
| | - Katherine A Hollywood
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Garth J Cooper
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland 1020, New Zealand.,Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Warwick B Dunn
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Catherine B Lawrence
- Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
25
|
Chen R, Yan J, Liu P, Wang Z, Wang C. Plasminogen activator inhibitor links obesity and thrombotic cerebrovascular diseases: The roles of PAI-1 and obesity on stroke. Metab Brain Dis 2017; 32:667-673. [PMID: 28378106 DOI: 10.1007/s11011-017-0007-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/30/2017] [Indexed: 12/18/2022]
Abstract
One of the global socioeconomic phenomena occurred during the last decades is the increased prevalence of obesity, with direct consequence on the risk of developing thrombotic disorders. As the physiological inhibitor of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1) is well known for its role in fibrinolysis. More and more evidences have shown that PAI-1 involves in physiopathologic mechanisms of many diseases and metabolic disorder. Increased serum level of PAI-1 has been observed in obesity and it also contributes to the development of adipose tissue and then has effects on obesity. Meantime, obesity affects also the PAI-1 levels. These evidences indicate the complicated interaction between PAI-1 and obesity. Many clinic studies have confirmed that obesity relates to the stroke outcome although there are many contradictory results. Simultaneously, correlation is found between plasma PAI-1 and thrombotic cerebrovascular diseases. This article reviews contemporary knowledge regarding the complex interplay of obesity, PAI-1 and stroke.
Collapse
Affiliation(s)
- Rui Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Peijing Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Cuiping Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| |
Collapse
|
26
|
Kobyliak N, Virchenko O, Falalyeyeva T, Kondro M, Beregova T, Bodnar P, Shcherbakov O, Bubnov R, Caprnda M, Delev D, Sabo J, Kruzliak P, Rodrigo L, Opatrilova R, Spivak M. Cerium dioxide nanoparticles possess anti-inflammatory properties in the conditions of the obesity-associated NAFLD in rats. Biomed Pharmacother 2017; 90:608-614. [DOI: 10.1016/j.biopha.2017.03.099] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 02/09/2023] Open
|
27
|
Old Maids: Aging and Its Impact on Microglia Function. Int J Mol Sci 2017; 18:ijms18040769. [PMID: 28379162 PMCID: PMC5412353 DOI: 10.3390/ijms18040769] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Microglia are highly active and vigilant housekeepers of the central nervous system that function to promote neuronal growth and activity. With advanced age, however, dysregulated inflammatory signaling and defects in phagocytosis impede their ability to perform the most essential of homeostatic functions, including immune surveillance and debris clearance. Microglial activation is one of the hallmarks of the aging brain and coincides with age-related neurodegeneration and cognitive decline. Age-associated microglial dysfunction leads to cellular senescence and can profoundly alter the response to sterile injuries and immune diseases, often resulting in maladaptive responses, chronic inflammation, and worsened outcomes after injury. Our knowledge of microglia aging and the factors that regulate age-related microglial dysfunction remain limited, as the majority of pre-clinical studies are performed in young animals, and human brain samples are difficult to obtain quickly post-mortem or in large numbers. This review outlines the impact of normal aging on microglial function, highlights the potential mechanisms underlying age-related changes in microglia, and discusses how aging can shape the recovery process following injury.
Collapse
|
28
|
Bennis MT, Schneider A, Victoria B, Do A, Wiesenborn DS, Spinel L, Gesing A, Kopchick JJ, Siddiqi SA, Masternak MM. The role of transplanted visceral fat from the long-lived growth hormone receptor knockout mice on insulin signaling. GeroScience 2017; 39:51-59. [PMID: 28299640 PMCID: PMC5352587 DOI: 10.1007/s11357-017-9957-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022] Open
Abstract
Growth hormone receptor knockout mice (GHRKO) are characterized by high insulin sensitivity and extended lifespan. Interestingly, the secretory activity of visceral fat in GHRKO mice is altered, stimulating whole body insulin sensitivity. In this study, we transplanted normal (N) mice with visceral fat pads from GHRKO or N mice to determine the role of visceral fat on the insulin signaling. We found that the transplant of visceral fat from GHRKO mice to N mice (N-GHRKO) improved whole body insulin sensitivity when comparing with sham-operated mice (N-S) and with mice that received visceral fat from N mice (N-N). This was associated with increased hepatic insulin sensitivity as observed by the increased phosphorylated insulin receptor and increased hepatic expression of Pparα and Pparγ. In conclusion, we demonstrated that visceral fat transplant from GHRKO mice into normal mice enhanced insulin sensitivity and glucose tolerance. These results further confirm the differential physiological role played by visceral adipose tissue from GH receptor deficient mice, indicating that the increase of this fat depot can be associated with beneficial effects on insulin signaling and longevity.
Collapse
Affiliation(s)
- Mohammed T Bennis
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Berta Victoria
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Andrew Do
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Denise S Wiesenborn
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, 66421, Homburg, Germany
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, 66482, Zweibrücken, Germany
| | - Lina Spinel
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Adam Gesing
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland
| | - John J Kopchick
- Edison Biotechnology Institute, Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - Shadab A Siddiqi
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA.
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland.
| |
Collapse
|
29
|
Zhang H, Lai Q, Li Y, Liu Y, Yang M. Learning and memory improvement and neuroprotection of Gardenia jasminoides (Fructus gardenia) extract on ischemic brain injury rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:225-235. [PMID: 27940085 DOI: 10.1016/j.jep.2016.11.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia jasminoides Ellis is a traditional Chinese medicine (TCM) that containing a variety of effective active ingredients and exhibits diverse pharmacological functions, such as anti-inflammatory, antioxidant and nerve protection. AIM OF THE STUDY This study investigated the effect of Gardenia jasminoides extract (GJE) and Geniposide on learning and memory improvement and neuroprotection in a rat model with chronic cerebral ischemia, as well as explore the underlying mechanisms. MATERIALS AND METHODS The crude GJE was prepared using the methods of water extraction and alcohol precipitation, and refined by macroporous adsorption resin. The chronic cerebral ischemia model was simulated by permanent occlusion of bilateral common carotid arteries in rats. GJE was taken at three doses groups (150mg/kg, 100mg/kg, 50mg/kg), Geniposide group (50mg/kg), and oral administration for 30 days. Memory function was assessed using Morris water maze test. The morphological changes of hippocampus and related parts of brain in rats by Hematoxylin and Eosin (HE) staining were observed. Moreover, the levels of Acetylcholin Esterase (AchE), Nitric Oxide Synthase (NOS), Malondialdehyde (MDA), Superoxide Dismutase (SOD) in the brain tissue were quantified. RESULTS GJE contained 27% gardenoside and 72% total iridoid glycoside. The chronic cerebral ischemia rat model has been proved successfully. The memory function of the rats assessed using Morris water maze test showed that GJE significantly shortened the escape latency of rats, but had no significant improvement on the number of times crossing the platform and the percentage of time spent in the target quadrant. HE staining showed that the apoptosis and necrosis of the cortex and hippocampus in the GJE group were significantly reduced. In addition, it was found that GJE could significantly improved the content of SOD, inhibited NOS and AchE activity in brain tissue, but did not show a significant reduction in the content of MDA. The effect of medium dosage of GJE was the best among these three dose groups and also better than Geniposide according to the results of all the detection index. CONCLUSIONS GJE had the functions of learning and memory improvement and the neuroprotection on chronic cerebral ischemia model rats. The mechanisms were found to be strongly correlated with antioxygen free radical, reduction of NO toxicity and AChE activity, and brain neuron protective effect. GJE could be able to play a better effect on improving chronic cerebral ischemia than Geniposide.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China.
| | - Qiong Lai
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China
| | - Yan Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang 330006, China.
| | - Yang Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China; Chengdu University of TCM, Chengdu 610075, China
| |
Collapse
|
30
|
Estato V, Nascimento A, Antunes B, Gomes F, Coelho L, Rangel R, Garzoni L, Daliry A, Bousquet P, Tibiriçá E. Cerebral Microvascular Dysfunction and Inflammation Are Improved by Centrally Acting Antihypertensive Drugs in Metabolic Syndrome. Metab Syndr Relat Disord 2016; 15:26-35. [PMID: 27929741 DOI: 10.1089/met.2016.0085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We aimed to investigate the effects of chronic oral treatment with centrally acting antihypertensive drugs, such as clonidine (CLO), an α2-adrenoceptor agonist, or LNP599, a selective I1 imidazoline receptor agonist, on brain microvascular function in rats with high-fat diet (HFD)-induced metabolic syndrome. METHODS Male Wistar Kyoto rats were maintained on a normal diet (CON) or a HFD for 20 weeks. After this period, the HFD group received oral CLO (0.1 mg/kg), LNP599 (20 mg/kg), or vehicle daily for 4 weeks. Systolic blood pressure and heart rate (HR) were evaluated by photoplethysmography. Functional capillary density, endothelial function, and endothelial-leukocyte interactions in the brain were investigated by intravital video microscopy. Cerebral microcirculatory flow was evaluated by laser speckle contrast imaging. Brain tissue endothelial nitric oxide synthase, oxidative enzyme, and inflammatory marker expression levels were analyzed. RESULTS Metabolic syndrome decreased brain functional capillary density and microvascular blood perfusion, changes accompanied by deficient brain microcirculation vasodilatory responses to acetylcholine. Significant numbers of rolling and adherent leukocytes were also observed in the brain venules. Chronic sympathetic inhibition with clonidine and LNP599 reduced blood pressure and HR. These effects were accompanied by reversals of cerebral capillary rarefaction, improvements in cerebral microvascular blood flow and endothelial function, and decreases in endothelial-leukocyte interactions in the cerebral venules. CONCLUSIONS Our results suggest that central sympathetic inhibition exerts beneficial effects by increasing perfusion and reducing inflammatory marker expression and oxidative stress in the brains of rats with metabolic syndrome. Centrally acting antihypertensive drugs may be helpful in regulating cerebral microcirculatory function and vascular inflammation in metabolic syndrome.
Collapse
Affiliation(s)
- Vanessa Estato
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil .,2 Institute of Drug Technology , Owaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alessandro Nascimento
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Barbara Antunes
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Fabiana Gomes
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Laura Coelho
- 3 Laboratory for Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Raquel Rangel
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Luciana Garzoni
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil .,3 Laboratory for Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Anissa Daliry
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Pascal Bousquet
- 4 Laboratory of Neurobiology and Cardiovascular Pharmacology, Faculty of Medicine, University of Strasbourg , Strasbourg, France
| | - Eduardo Tibiriçá
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil .,5 National Institute of Cardiology , Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Wu C, Ren W, Cheng J, Zhu B, Jin Q, Wang L, Chen C, Zhu L, Chang Y, Gu Y, Zhao J, Lv D, Shao B, Zhang S, He J. Association Between Serum Levels of Vitamin D and the Risk of Post-Stroke Anxiety. Medicine (Baltimore) 2016; 95:e3566. [PMID: 27149477 PMCID: PMC4863794 DOI: 10.1097/md.0000000000003566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Low levels of serum vitamin D are common in patients with mood disorders and stroke. It has been shown that low levels of serum vitamin D indicate a risk of depression in post-stroke subjects. Our aim was to determine the relationship between vitamin D and post-stroke anxiety (PSA).A consecutive series of 226 first acute ischemic stroke patients were recruited and followed up for 1 month. Serum levels of vitamin D were measured within 24 hours of admission. Patients with significant clinical symptoms of anxiety and a Hamilton anxiety scale score >7 were diagnosed as having PSA. In addition, 100 healthy subjects were recruited as controls and underwent measurements of serum vitamin D.A total of 60 patients (26.55%) showed anxiety at 1 month. Both PSA patients and non-PSA patients had lower serum levels of vitamin D than healthy subjects. A significant relationship was found between PSA and serum levels of vitamin D. Low serum levels of vitamin D (≤38.48 nmol/L) were independently associated with the development of PSA (OR: 2.49, 95% CI: 1.21-5.13, P = 0.01).Serum vitamin D status is related to the occurrence of anxiety in post-stroke patients and may be an independent risk factor of PSA after 1 month.
Collapse
Affiliation(s)
- Chaowen Wu
- From the Department of Neurology (CW, WR, JC, BZ, QJ, LW, CC, LZ, YC, YG, JZ, DL, BS, JH), The First Affiliated Hospital of Wenzhou Medical University and Department of Neurology, Ruian People's Hospital, Wenzhou (SZ), People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jeong SI, Shin JA, Cho S, Kim HW, Lee JY, Kang JL, Park EM. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice. Neurobiol Aging 2016; 44:74-84. [PMID: 27318135 DOI: 10.1016/j.neurobiolaging.2016.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/05/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
Abstract
Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women.
Collapse
Affiliation(s)
- Sae Im Jeong
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jin A Shin
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sunghee Cho
- Department of Neurology/Neuroscience, Brain & Mind Research Institute, Weill Cornell Medical College at Burke Medical Research Institute, White Plains, NY, USA
| | - Hye Won Kim
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ji Yoon Lee
- School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Lee Kang
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|