1
|
Devaraju M, Li A, Ha S, Li M, Shivakumar M, Li H, Nishiguchi EP, Gérardin P, Waldorf KA, Al-Haddad BJS. Beyond TORCH: A narrative review of the impact of antenatal and perinatal infections on the risk of disability. Neurosci Biobehav Rev 2023; 153:105390. [PMID: 37708918 PMCID: PMC10617835 DOI: 10.1016/j.neubiorev.2023.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Infections and inflammation during pregnancy or early life can alter child neurodevelopment and increase the risk for structural brain abnormalities and mental health disorders. There is strong evidence that TORCH infections (i.e., Treponema pallidum, Toxoplasma gondii, rubella virus, cytomegalovirus, herpes virus) alter fetal neurodevelopment across multiple developmental domains and contribute to motor and cognitive disabilities. However, the impact of a broader range of viral and bacterial infections on fetal development and disability is less well understood. We performed a literature review of human studies to identify gaps in the link between maternal infections, inflammation, and several neurodevelopmental domains. We found strong and moderate evidence respectively for a higher risk of motor and cognitive delays and disabilities in offspring exposed to a range of non-TORCH pathogens during fetal life. In contrast, there is little evidence for an increased risk of language and sensory disabilities. While guidelines for TORCH infection prevention during pregnancy are common, further consideration for prevention of non-TORCH infections during pregnancy for fetal neuroprotection may be warranted.
Collapse
Affiliation(s)
- Monica Devaraju
- University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA; University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Amanda Li
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA; Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA
| | - Sandy Ha
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Miranda Li
- University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA; University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Megana Shivakumar
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Hanning Li
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Erika Phelps Nishiguchi
- University of Hawaii, Department of Pediatrics, Division of Community Pediatrics, 1319 Punahou St, Honolulu, HI, USA
| | - Patrick Gérardin
- INSERM CIC1410, Centre Hospitalier Universitaire de la Réunion, Saint Pierre, Réunion, France; Platform for Clinical and Translational Research, Centre Hospitalier Universitaire, Saint Pierre, Réunion, France
| | - Kristina Adams Waldorf
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA.
| | - Benjamin J S Al-Haddad
- University of Minnesota, Department of Pediatrics, Division of Neonatology, Academic Office Building, 2450 Riverside Ave S AO-401, Minneapolis, MN 55454, USA; Masonic Institute for the Developing Brain, 2025 E River Pkwy, Minneapolis, MN 55414, USA.
| |
Collapse
|
2
|
Dabbah-Assadi F, Rashid S, Golani I, Rubinstein A, Doron R, Alon D, Palzur E, Beloosesky R, Shamir A. Long-term effects of prophylactic MgSO 4 in maternal immune activation rodent model at adolescence and adulthood. J Neurosci Res 2023; 101:316-326. [PMID: 36434794 PMCID: PMC10100175 DOI: 10.1002/jnr.25148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
The effects of MgSO4 as an anti-inflammatory agent in pregnant women have been investigated in the last few years. Infections can cause an inflammatory reaction involving the placenta membranes and amniotic cavity. They may have short-term effects on the mother and her fetuses, like preterm birth, cerebral palsy, and developmental delay. Despite the alleged advantages of MgSO4 as a neuroprotective agent in the preterm brain, the long-term molecular and behavioral function of MgSO4 has not been fully elucidated. Here, we investigated the long-term effect of antenatal MgSO4 , during late gestation, on offspring's behavior focusing on cognitive function, motor activity, and social cognition in adolescence and adulthood, and explored its influence on brain gene expression (e.g., ErbB signaling, pro-inflammatory, and dopaminergic markers) in adulthood. A significant abnormal exploratory behavior of offspring of MgSO4 -treated dams was found compared to the control group in both adolescence and adulthood. Furthermore, we found that adult females exposed to MgSO4 under inflammation displayed working and recognition memory impairment. A reduction in IL-6 expression was detected in the prefrontal cortex, and hippocampus specimens derived from LPS-Mg-treated group. In contrast, an imbalanced expression of dopamine 1 and 2 receptors was detected only in prefrontal cortex specimens. Besides, we found that MgSO4 ameliorated the overexpression of the Nrg1 and Erbb4 receptors induced by LPS in the hippocampus. Thus, MgSO4 treatment for preventing brain injuries can adversely affect offspring cognition behavior later in life, depending on the sex and age of the offspring.
Collapse
Affiliation(s)
- Fadwa Dabbah-Assadi
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sally Rashid
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Idit Golani
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Alon Rubinstein
- Faculty of Medicine in the Galilee, Bar-Ilan University, Zefat, Israel
| | - Ravid Doron
- Department of Education and Psychology, the Open University, Raanana, Israel
| | - David Alon
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel
| | - Eilam Palzur
- The Neuroscience Laboratory, Galilee Medical Center Research Institute, Nahariya, Israel
| | - Ron Beloosesky
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Barron A, Manna S, McElwain CJ, Musumeci A, McCarthy FP, O’Keeffe GW, McCarthy CM. Maternal pre-eclampsia serum increases neurite growth and mitochondrial function through a potential IL-6-dependent mechanism in differentiated SH-SY5Y cells. Front Physiol 2023; 13:1043481. [PMID: 36714304 PMCID: PMC9877349 DOI: 10.3389/fphys.2022.1043481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction: Pre-eclampsia (PE) is a common and serious hypertensive disorder of pregnancy, which affects 3%-5% of first-time pregnancies and is a leading cause of maternal and neonatal morbidity and mortality. Prenatal exposure to PE is associated with an increased risk of neurodevelopmental disorders in affected offspring, although the cellular and molecular basis of this increased risk is largely unknown. Methods: Here, we examined the effects of exposure to maternal serum from women with PE or a healthy uncomplicated pregnancy on the survival, neurite growth and mitochondrial function of neuronally differentiated human SH-SY5Y neuroblastoma cells, which are commonly used to study neurite growth. Neurite growth and mitochondrial function are two strongly linked neurodevelopmental parameters in which alterations have been implicated in neurodevelopmental disorders. Following this, we investigated the pleiotropic cytokine interleukin-6 (IL-6) levels as a potential mechanism. Results: Cells exposed to 3% (v/v) PE serum for 72 h exhibited increased neurite growth (p < 0.05), which was validated in the human neural progenitor cell line, ReNcell® VM (p < 0.01), and mitochondrial respiration (elevated oxygen consumption rate (p < 0.05), basal mitochondrial respiration, proton leak, ATP synthesis, and non-mitochondrial respiration) compared to control serum-treated cells. ELISA analysis showed elevations in maternal IL-6 in PE sera (p < 0.05) and placental explants (p < 0.05). In support of this, SH-SY5Y cells exposed to 3% (v/v) PE serum for 24 h had increased phospho-STAT3 levels, which is a key intracellular mediator of IL-6 signalling (p < 0.05). Furthermore, treatment with anti-IL-6 neutralizing antibody blocked the effects of PE serum on neurite growth (p < 0.05), and exposure to IL-6 promoted neurite growth in SH-SY5Y cells (p < 0.01). Discussion: Collectively these data show elevated serum levels of maternal IL-6 in PE, which increases neurite growth and mitochondrial function in SH-SY5Y cells. This rationalizes the further study of IL-6 as a potential mediator between PE exposure and neurodevelopmental outcome in the offspring.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland,Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Samprikta Manna
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland,Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Colm J. McElwain
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Andrea Musumeci
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland,Cork Neuroscience Centre, University College Cork, Cork, Ireland,*Correspondence: Gerard W. O’Keeffe, ; Cathal M. McCarthy,
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland,*Correspondence: Gerard W. O’Keeffe, ; Cathal M. McCarthy,
| |
Collapse
|
4
|
Mao MJ, Yu HL, Wen YZ, Sun XY, Xu CY, Gao YZ, Jiang M, Yuan HM, Feng SW. Deficit of perineuronal net induced by maternal immune activation mediates the cognitive impairment in offspring during adolescence. Behav Brain Res 2022; 434:114027. [PMID: 35905839 DOI: 10.1016/j.bbr.2022.114027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/07/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022]
Abstract
Maternal immune activation (MIA) during pregnancy is considered a risk factor for neurodevelopment in the offspring, resulting in behavioral abnormalities. Furthermore, adolescence is a vulnerable period for developing different psycho-cognitive deficits. Here, we aimed to observe the cognitive consequences of prenatal MIA exposure in adolescents and explored the underlying mechanisms. We divided dams into CON and MIA groups after inducing a mouse model of MIA using lipopolysaccharide (120μg/kg) on gestational day 15. Open field (OF), elevated plus maze (EPM), and novel object recognition (NOR) tests were performed on postnatal day (PD) 35-37. The expression of hippocampal Wisteria floribunda agglutinin (WFA)+ perineuronal net (PNN), parvalbumin (PV), glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule-1(Iba-1) were evaluated using immunofluorescence, and the expression of matrix metalloprotein-9 (MMP-9) in the hippocampus was assessed using the western blot. Following the infusion of chondroitinase ABC (ChABC) into CA1 in the offspring from the CON group on PD 30, they were divided into ChABC and Sham groups. OF, EPM, and NOR were performed on PD 35-37. Compared to the CON group, decreased exploration time of the novel object and preference ratio were observed in the MIA group. Meanwhile, the MIA group presented significantly decreased WFA+ PNN in CA1, increased Iba-1+ microglia, and MMP-9 in the hippocampus. Additionally, the density of PV+ neurons and GFAP+ astrocytes was comparable between both groups. After digesting the PNN, the exploration time of novel object and preference ratio decreased in the ChABC group compared to the Sham group. Conclusively, the PNN deficit in CA1 caused by prenatal MIA might, at least partially, induce cognitive impairment in adolescents. Microglia and MMP-9 may also be potential candidates for PNN deficit after MIA.
Collapse
Affiliation(s)
- Ming-Jie Mao
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hui-Ling Yu
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ya-Zhou Wen
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiao-Yun Sun
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chen-Yang Xu
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yu-Zhu Gao
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Ming Jiang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Hong-Mei Yuan
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Shan-Wu Feng
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
5
|
Maternal immune activation and adolescent alcohol exposure increase alcohol drinking and disrupt cortical-striatal-hippocampal oscillations in adult offspring. Transl Psychiatry 2022; 12:288. [PMID: 35859084 PMCID: PMC9300672 DOI: 10.1038/s41398-022-02065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Maternal immune activation (MIA) is strongly associated with an increased risk of developing mental illness in adulthood, which often co-occurs with alcohol misuse. The current study aimed to begin to determine whether MIA, combined with adolescent alcohol exposure (AE), could be used as a model with which we could study the neurobiological mechanisms behind such co-occurring disorders. Pregnant Sprague-Dawley rats were treated with polyI:C or saline on gestational day 15. Half of the offspring were given continuous access to alcohol during adolescence, leading to four experimental groups: controls, MIA, AE, and Dual (MIA + AE). We then evaluated whether MIA and/or AE alter: (1) alcohol consumption; (2) locomotor behavior; and (3) cortical-striatal-hippocampal local field potentials (LFPs) in adult offspring. Dual rats, particularly females, drank significantly more alcohol in adulthood compared to all other groups. MIA led to reduced locomotor behavior in males only. Using machine learning to build predictive models from LFPs, we were able to differentiate Dual rats from control rats and AE rats in both sexes, and Dual rats from MIA rats in females. These data suggest that Dual "hits" (MIA + AE) increases substance use behavior and disrupts activity in reward-related circuits, and that this may be a valuable heuristic model we can use to study the neurobiological underpinnings of co-occurring disorders. Our future work aims to extend these findings to other addictive substances to enhance the translational relevance of this model, as well as determine whether amelioration of these circuit disruptions can reduce substance use behavior.
Collapse
|
6
|
Anderson RC, O'Keeffe GW, McDermott KW. Characterisation of the consequences of maternal immune activation on distinct cell populations in the developing rat spinal cord. J Anat 2022; 241:938-950. [PMID: 35808977 PMCID: PMC9482694 DOI: 10.1111/joa.13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Maternal immune activation (MIA) during gestation has been implicated in the development of neurological disorders such as schizophrenia and autism. Epidemiological studies have suggested that the effect of MIA may depend on the gestational timing of the immune challenge and the region of the central nervous system (CNS) in question. This study investigated the effects of MIA with 100 μg/kg lipopolysaccharide at either Embryonic days (E)12 or E16 on the oligodendrocytes, microglia and astrocytes of the offspring spinal cord. At E16, MIA decreased the number of olig2+ and Iba‐1+ cells in multiple grey and white matter regions of the developing spinal cord 5 h after injection. These decreases were not observed at postnatal day 14. In contrast, MIA at E12 did not alter Olig2+ or Iba‐1+ cell number in the developing spinal cord 5 h after injection, however, Olig2+ cell number was decreased in the ventral grey matter of the P14 spinal cord. No changes were observed in glial fibrillary acidic protein (GFAP) expression at P14 following MIA at either E12 or E16. These data suggest that E16 may be a window of immediate vulnerability to MIA during spinal cord development, however, the findings also suggest that the developmental process may be capable of compensation over time. Potential changes in P14 animals following the challenge at E12 are indicative of the complexity of the effects of MIA during the developmental process.
Collapse
Affiliation(s)
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
7
|
Disruption of Alternative Splicing in the Amygdala of Pigs Exposed to Maternal Immune Activation. IMMUNO 2021. [DOI: 10.3390/immuno1040035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The inflammatory response of gestating females to infection or stress can disrupt gene expression in the offspring’s amygdala, resulting in lasting neurodevelopmental, physiological, and behavioral disorders. The effects of maternal immune activation (MIA) can be impacted by the offspring’s sex and exposure to additional stressors later in life. The objectives of this study were to investigate the disruption of alternative splicing patterns associated with MIA in the offspring’s amygdala and characterize this disruption in the context of the second stress of weaning and sex. Differential alternative splicing was tested on the RNA-seq profiles of a pig model of viral-induced MIA. Compared to controls, MIA was associated with the differential alternative splicing (FDR-adjusted p-value < 0.1) of 292 and 240 genes in weaned females and males, respectively, whereas 132 and 176 genes were differentially spliced in control nursed female and male, respectively. The majority of the differentially spliced (FDR-adjusted p-value < 0.001) genes (e.g., SHANK1, ZNF672, KCNA6) and many associated enriched pathways (e.g., Fc gamma R-mediated phagocytosis, non-alcoholic fatty liver disease, and cGMP-PKG signaling) have been reported in MIA-related disorders including autism and schizophrenia in humans. Differential alternative splicing associated with MIA was detected in the gene MAG across all sex-stress groups except for unstressed males and SLC2A11 across all groups except unstressed females. Precise understanding of the effect of MIA across second stressors and sexes necessitates the consideration of splicing isoform profiles.
Collapse
|
8
|
Mora S, Martín-González E, Prados-Pardo Á, Flores P, Moreno M. Increased Compulsivity in Adulthood after Early Adolescence Immune Activation: Preclinical Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4684. [PMID: 33924858 PMCID: PMC8125663 DOI: 10.3390/ijerph18094684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022]
Abstract
Immune activation during early developmental stages has been proposed as a contributing factor in the pathogenesis of neuropsychiatric conditions such as obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, and autism in both human and animal studies. However, its relationship with the vulnerability to inhibitory control deficit, which is a shared feature among those conditions, remains unclear. The present work studied whether postnatal immune activation during early adolescence, combined with exposure to early-life adverse events, could lead to adult vulnerability to impulsive and/or compulsive behaviors. Male Wistar rats were exposed to lipopolysaccharide (LPS) in early adolescence at postnatal day 26 (PND26). During peripuberal period, half of the animals were exposed to a mild stress protocol. In adulthood, behavioral assessment was performed with the aid of the sustained attentional 5-choice serial reaction time (5-CSRT) task, schedule-induced polydipsia (SIP), and open-field locomotor activity and novelty reactivity. Rats exposed to LPS showed more compulsive responses than their control counterparts on 5-CSRT task, although no differences were observed in SIP or locomotor responses. Our study contributes to the knowledge of the relationship between immune activation and inhibitory control deficit. Future studies should aim to disentangle how, and to what extent, immune activation impacts behavior, and to understand the role of early life mild stress.
Collapse
Affiliation(s)
- Santiago Mora
- Department of Psychology and Health Research Centre, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain; (E.M.-G.); (Á.P.-P.); (P.F.)
| | | | | | | | - Margarita Moreno
- Department of Psychology and Health Research Centre, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain; (E.M.-G.); (Á.P.-P.); (P.F.)
| |
Collapse
|
9
|
Paquin V, Lapierre M, Veru F, King S. Early Environmental Upheaval and the Risk for Schizophrenia. Annu Rev Clin Psychol 2021; 17:285-311. [PMID: 33544627 DOI: 10.1146/annurev-clinpsy-081219-103805] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Why does prenatal exposure to wars, natural disasters, urbanicity, or winter increase the risk for schizophrenia? Research from the last two decades has provided rich insight about the underlying chains of causation at play during environmental upheaval, from conception to early infancy. In this review, we appraise the evidence linking schizophrenia spectrum disorder to prenatal maternal stress, obstetric complications, early infections, and maternal nutrition and other lifestyle factors. We discuss putative mechanisms, including the maternal stress system, perinatal hypoxia, and maternal-offspring immune activation. We propose that gene-environment interactions, timing during development, and sex differentiate the neuropsychiatric outcomes. Future research should pursue the translation of animal studies to humans and the longitudinal associations between early exposures, intermediate phenotypes, and psychiatric disorders. Finally, to paint a comprehensive model of risk and to harness targets for prevention, we argue that risk factors should be situated within the individual's personal ecosystem.
Collapse
Affiliation(s)
- Vincent Paquin
- Department of Psychiatry, McGill University, Montréal, Québec H3A 1A1, Canada; .,Douglas Research Centre, Montréal, Québec H4H 1R3, Canada
| | - Mylène Lapierre
- Douglas Research Centre, Montréal, Québec H4H 1R3, Canada.,Department of Psychology, Université de Montréal, Montréal, Québec H2V 2S9, Canada
| | - Franz Veru
- Department of Psychiatry, McGill University, Montréal, Québec H3A 1A1, Canada; .,Douglas Research Centre, Montréal, Québec H4H 1R3, Canada
| | - Suzanne King
- Department of Psychiatry, McGill University, Montréal, Québec H3A 1A1, Canada; .,Douglas Research Centre, Montréal, Québec H4H 1R3, Canada.,Department of Psychology, Université de Montréal, Montréal, Québec H2V 2S9, Canada
| |
Collapse
|
10
|
Foster CG, Landowski LM, Sutherland BA, Howells DW. Differences in fatigue-like behavior in the lipopolysaccharide and poly I:C inflammatory animal models. Physiol Behav 2021; 232:113347. [PMID: 33529685 DOI: 10.1016/j.physbeh.2021.113347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 11/30/2022]
Abstract
Central fatigue is a condition associated with impairment of the central nervous system often leading to the manifestation of a range of debilitating symptoms. Fatigue can be a consequence of systemic inflammation following an infection. Administration of lipopolysaccharide (LPS) and polyriboinosinic:polyribocytidlic (poly I:C) to animals can induce systemic inflammation by mimicking a bacterial or viral infection respectively and therefore have been used as models of fatigue. We evaluated a range of phenotypic behaviors exhibited in the LPS and poly I:C animal models to assess whether they adequately replicate fatigue symptomology in humans. In addition to standard observation- and intervention-based behavioral assessments, we used powerful in-cage monitoring technology to quantify rodent behavior without external interference. LPS and poly I:C treated Sprague Dawley rats displayed 'sickness behaviors' of elevated temperature, weight loss and reduced activity in the open field test and with in-cage monitoring within 24 h post-treatment, but only LPS-treated rats displayed these behaviors beyond these acute timepoints. Once sickness behavior diminished, LPS-treated rats exhibited an increase in reward-seeking and motivation behaviors. Overall, these results suggest that the LPS animal model produces an extensive and sustained fatigue-like phenotype, whereas the poly I:C model only produced acute effects. Our results suggest that the LPS animal model is a more suitable candidate for further studies on central fatigue-like behavior.
Collapse
Affiliation(s)
- Catherine G Foster
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Lila M Landowski
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - David W Howells
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia.
| |
Collapse
|
11
|
Barron A, McCarthy CM, O'Keeffe GW. Preeclampsia and Neurodevelopmental Outcomes: Potential Pathogenic Roles for Inflammation and Oxidative Stress? Mol Neurobiol 2021; 58:2734-2756. [PMID: 33492643 DOI: 10.1007/s12035-021-02290-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Preeclampsia (PE) is a common and serious hypertensive disorder of pregnancy that occurs in approximately 3-5% of first-time pregnancies and is a well-known leading cause of maternal and neonatal mortality and morbidity. In recent years, there has been accumulating evidence that in utero exposure to PE acts as an environmental risk factor for various neurodevelopmental disorders, particularly autism spectrum disorder and ADHD. At present, the mechanism(s) mediating this relationship are uncertain. In this review, we outline the most recent evidence implicating a causal role for PE exposure in the aetiology of various neurodevelopmental disorders and provide a novel interpretation of neuroanatomical alterations in PE-exposed offspring and how these relate to their sub-optimal neurodevelopmental trajectory. We then postulate that inflammation and oxidative stress, two prominent features of the pathophysiology of PE, are likely to play a major role in mediating this association. The increased inflammation in the maternal circulation, placenta and fetal circulation in PE expose the offspring to both prenatal maternal immune activation-a risk factor for neurodevelopmental disorders, which has been well-characterised in animal models-and directly higher concentrations of pro-inflammatory cytokines, which adversely affect neuronal development. Similarly, the exaggerated oxidative stress in the mother, placenta and foetus induces the placenta to secrete factors deleterious to neurons, and exposes the fetal brain to directly elevated oxidative stress and thus adversely affects neurodevelopmental processes. Finally, we describe the interplay between inflammation and oxidative stress in PE, and how both systems interact to potentially alter neurodevelopmental trajectory in exposed offspring.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland.,Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland. .,Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
12
|
Gałecka M, Bliźniewska-Kowalska K, Maes M, Su KP, Gałecki P. Update on the neurodevelopmental theory of depression: is there any 'unconscious code'? Pharmacol Rep 2020; 73:346-356. [PMID: 33385173 PMCID: PMC7994228 DOI: 10.1007/s43440-020-00202-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
Abstract
Depression is currently one of the most common psychiatric disorders and the number of patients receiving antidepressant treatment is increasing every year. Therefore, it is essential to understand the underlying mechanisms that are associated with higher prevalence of depression. The main component leading to the change in functioning, in the form of apathy, anhedonia, lack of motivation and sleep disturbances, is stress. This is the factor that in recent decades—due to the civilization speed, dynamic technological development as well as competitiveness and competition in relationships—significantly affects the psychophysical condition, which results in an increase in the prevalence of civilization diseases, including depression. To understand the mechanism of susceptibility to this disease, one should consider the significant role of the interaction between immune and nervous systems. Their joint development from the moment of conception is a matrix of later predispositions, both associated with the mobilization of the proinflammatory pathways (TNFα, IL-1β, IL-6) and associated with psychological coping with stress. Such an early development period is associated with epigenetic processes that are strongly marked in prenatal development up to 1 year of age and determinate the characteristic phenotype for various forms of pathology, including depression. Regarding the inflammatory hypothesis of depression, interleukin 17 (IL-17), among other proinflammatory cytokines, might play an important role in the development of depressive disorders. It is secreted by Th17 cells, crossed the placental barrier and acts on the brain structures of the fetus by increasing IL-17 receptor levels and affecting the intensity of its signaling in the brain.
Collapse
Affiliation(s)
- Małgorzata Gałecka
- Department of Psychotherapy, Medical University of Lodz, Aleksandrowska 159, 91-229, Lodz, Poland.
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kuan-Pin Su
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev 2020; 121:128-143. [PMID: 33358985 DOI: 10.1016/j.neubiorev.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.
Collapse
|
14
|
Using Precision Medicine with a Neurodevelopmental Perspective to Study Inflammation and Depression. Curr Psychiatry Rep 2020; 22:87. [PMID: 33289044 DOI: 10.1007/s11920-020-01206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW To consider various precision medicine approaches to further elucidate the relationship between inflammation and depression and to illustrate how a neurodevelopmental perspective can help in this regard. RECENT FINDINGS Inflammation associates most strongly with phenotypes of depression that reflect illness behavior and/or metabolic dysfunction and obesity. A separate body of research has shown that maternal inflammation during pregnancy can alter brain circuitry important for mood regulation and/or reward in the developing fetus. Our research group is finding that maternal CRP levels differentially predict positive and negative affect in children assessed at age 4 years, depending on the timing of plasma sampling during pregnancy and the sex of the child. Recent authors have stressed the need to use a variety of precision medicine approaches to refine our understanding of inflammation-depression links. Adding a neurodevelopmental perspective may help to address some of the methodological challenges in this active area of study.
Collapse
|
15
|
Hamdy N, Eide S, Sun HS, Feng ZP. Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp Neurol 2020; 334:113457. [PMID: 32889009 DOI: 10.1016/j.expneurol.2020.113457] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
Neonatal hypoxia-ischemia and resulting encephalopathies are of significant concern. Intrapartum asphyxia is a leading cause of neonatal death globally. Among surviving infants, there remains a high incidence of hypoxic-ischemic encephalopathy due to neonatal hypoxic-ischemic brain injury, manifesting as mild conditions including attention deficit hyperactivity disorder, and debilitating disorders such as cerebral palsy. Various animal models of neonatal hypoxic brain injury have been implemented to explore cellular and molecular mechanisms, assess the potential of novel therapeutic strategies, and characterize the functional and behavioural correlates of injury. Each of the animal models has individual advantages and limitations. The present review looks at several widely-used and alternative rodent models of neonatal hypoxia and hypoxia-ischemia; it highlights their strengths and limitations, and their potential for continued and improved use.
Collapse
Affiliation(s)
- Nancy Hamdy
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sarah Eide
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
16
|
Mora S, Martín-González E, Flores P, Moreno M. Neuropsychiatric consequences of childhood group A streptococcal infection: A systematic review of preclinical models. Brain Behav Immun 2020; 86:53-62. [PMID: 30818033 DOI: 10.1016/j.bbi.2019.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, clinical studies have shown strong epidemiological evidence of an increased risk of developing neuropsychiatric disorders after childhood exposure to streptococcal infection, including the Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal infection (PANDAS). New preclinical studies on group A streptococcus (GAS) exposure investigate how to disentangle the influences of immune activation to induce long-term neurobehavioral effects associated with neuropsychiatric disorders such as obsessive-compulsive disorder, schizophrenia or autism. The present systematic review collects neurobehavioral evidence regarding the use of GAS exposure in animal models to study the vulnerability to different neuropsychiatric disorders, improving our understanding of its possible causes and consequences, and compares its contribution with other preclinical models of immune activation in a variety of paradigms. Specifically, we reviewed the effects of postnatal GAS exposure, in comparison with post- and prenatal exposure to Lipopolysaccharide (LPS) and Polyinosinic:polycytidylic acid (Poly I:C), on the long-term effects concerning psychomotor, cognition and socioemotional outcomes in rodents. GAS exposure in animal models has revealed different behavioral alterations such as reduced locomotion and motor coordination, a deficit in sensorimotor gating, learning, working memory, altered social behavior, and increased anxiety and stereotyped behavior. Most of the results found are in accordance with other immune activation models -LPS and Poly I:C-, with some discrepancies. The systematic review of the literature supports the preclinical model of GAS exposure as a valid model for studying the neurobehavioral consequences of streptococcal infections. Future studies on streptococcal infection could contribute increasing our knowledge on preventive actions or treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Santiago Mora
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Elena Martín-González
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Pilar Flores
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Margarita Moreno
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain.
| |
Collapse
|
17
|
Santos-Toscano R, Ucha M, Borcel É, Ambrosio E, Higuera-Matas A. Maternal immune activation is associated with a lower number of dopamine receptor 3-expressing granulocytes with no alterations in cocaine reward, resistance to extinction or cue-induced reinstatement. Pharmacol Biochem Behav 2020; 193:172930. [PMID: 32294488 DOI: 10.1016/j.pbb.2020.172930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023]
Abstract
There is evidence for increased rates of drug use among schizophrenic patients. However, the causality in this relationship remains unclear. In the present work, we use a maternal immune activation model to test whether animals at high risk of developing a schizophrenia-like condition are more prone to acquire cocaine self-administration, show enhanced sensitivity to the reinforcing actions of cocaine or if they are resistant to extinction or vulnerable to relapse. Also, given that D3 and CB2 receptor expression in immune cells is altered in patients with schizophrenia, we examined the populations of immune cells expressing these receptors. Pregnant rats were daily injected with lipopolysaccharide (LPS) (2 mg/kg s.c.) or saline during pregnancy, and we tested prepulse inhibition -PPI- in the offspring. After this, one group of rats was submitted to cocaine self-administration (0.5 mg/kg) under fixed and progressive ratio schedules, dose-response testing, extinction and cue-induced drug-seeking. Another group was sacrificed to study the immune blood cells by flow cytometry. While rats born to LPS-treated mothers showed impaired PPI, there were no differences in cocaine self-administration acquisition, responsiveness to dose shifts, extinction or cue-induced reinstatement. Finally, there were fewer D3R+ granulocytes in the LPS-offspring and an exciting trend for CB2R+ lymphocytes to be more abundant in LPS-exposed rats. Our results indicate that the higher prevalence of cocaine abuse among people with schizophrenia is not due to a pre-existing pathology and suggest that D3R+ granulocytes and possibly CB2R+ lymphocytes could be potential biomarkers of schizophrenia.
Collapse
Affiliation(s)
- Raquel Santos-Toscano
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Érika Borcel
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain.
| |
Collapse
|
18
|
Truttmann AC, Ginet V, Puyal J. Current Evidence on Cell Death in Preterm Brain Injury in Human and Preclinical Models. Front Cell Dev Biol 2020; 8:27. [PMID: 32133356 PMCID: PMC7039819 DOI: 10.3389/fcell.2020.00027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Despite tremendous advances in neonatal intensive care over the past 20 years, prematurity carries a high burden of neurological morbidity lasting lifelong. The term encephalopathy of prematurity (EoP) coined by Volpe in 2009 encompasses all aspects of the now known effects of prematurity on the immature brain, including altered and disturbed development as well as specific lesional hallmarks. Understanding the way cells are damaged is crucial to design brain protective strategies, and in this purpose, preclinical models largely contribute to improve the comprehension of the cell death mechanisms. While neuronal cell death has been deeply investigated and characterized in (hypoxic–ischemic) encephalopathy of the newborn at term, little is known about the types of cell death occurring in preterm brain injury. Three main different morphological cell death types are observed in the immature brain, specifically in models of hypoxic–ischemic encephalopathy, namely, necrotic, apoptotic, and autophagic cell death. Features of all three types may be present in the same dying neuron. In preterm brain injury, description of cell death types is sparse, and cell loss primarily concerns immature oligodendrocytes and, infrequently, neurons. In the present review, we first shortly discuss the different main severe preterm brain injury conditions that have been reported to involve cell death, including periventricular leucomalacia (PVL), diffuse white matter injury (dWMI), and intraventricular hemorrhages, as well as potentially harmful iatrogenic conditions linked to premature birth (anesthesia and caffeine therapy). Then, we present an overview of current evidence concerning cell death in both clinical human tissue data and preclinical models by focusing on studies investigating the presence of cell death allowing discriminating between the types of cell death involved. We conclude that, to improve brain protective strategies, not only apoptosis but also other cell death (such as regulated necrotic and autophagic) pathways now need to be investigated together in order to consider all cell death mechanisms involved in the pathogenesis of preterm brain damage.
Collapse
Affiliation(s)
- Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Vanessa Ginet
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
19
|
Trus I, Udenze D, Cox B, Berube N, Nordquist RE, van der Staay FJ, Huang Y, Kobinger G, Safronetz D, Gerdts V, Karniychuk U. Subclinical in utero Zika virus infection is associated with interferon alpha sequelae and sex-specific molecular brain pathology in asymptomatic porcine offspring. PLoS Pathog 2019; 15:e1008038. [PMID: 31725819 PMCID: PMC6855438 DOI: 10.1371/journal.ppat.1008038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023] Open
Abstract
Zika virus (ZIKV) infection during human pregnancy may lead to severe fetal pathology and debilitating impairments in offspring. However, the majority of infections are subclinical and not associated with evident birth defects. Potentially detrimental life-long health outcomes in asymptomatic offspring evoke high concerns. Thus, animal models addressing sequelae in offspring may provide valuable information. To induce subclinical infection, we inoculated selected porcine fetuses at the mid-stage of development. Inoculation resulted in trans-fetal virus spread and persistent infection in the placenta and fetal membranes for two months. Offspring did not show congenital Zika syndrome (e.g., microcephaly, brain calcifications, congenital clubfoot, arthrogryposis, seizures) or other visible birth defects. However, a month after birth, a portion of offspring exhibited excessive interferon alpha (IFN-α) levels in blood plasma in a regular environment. Most affected offspring also showed dramatic IFN-α shutdown during social stress providing the first evidence for the cumulative impact of prenatal ZIKV exposure and postnatal environmental insult. Other eleven cytokines tested before and after stress were not altered suggesting the specific IFN-α pathology. While brains from offspring did not have histopathology, lesions, and ZIKV, the whole genome expression analysis of the prefrontal cortex revealed profound sex-specific transcriptional changes that most probably was the result of subclinical in utero infection. RNA-seq analysis in the placenta persistently infected with ZIKV provided independent support for the sex-specific pattern of in utero-acquired transcriptional responses. Collectively, our results provide strong evidence that two hallmarks of fetal ZIKV infection, altered type I IFN response and molecular brain pathology can persist after birth in offspring in the absence of congenital Zika syndrome. A number of studies showed that Zika virus (ZIKV) can cause severe abnormalities in fetuses, e.g., brain lesions, and subsequently life-long developmental and cognitive impairment in children. However, the majority of infections in pregnant women are subclinical and are not associated with developmental abnormalities in fetuses and newborns. It is known that disruptions to the in utero environment during fetal development can program increased risks for disease in adulthood. For this reason, children affected in utero even by mild ZIKV infection can appear deceptively healthy at birth but develop immune dysfunction and brain abnormalities during postnatal development. Here, we used the porcine model of subclinical fetal ZIKV infection to determine health sequelae in offspring which did not show apparent signs of the disease. We demonstrated that subclinical fetal infection was associated with abnormal immunological responses in apparently healthy offspring under normal environmental conditions and during social stress. We also showed silent sex-specific brain pathology as represented by altered gene expression. Our study provides new insights into potential outcomes of subclinical in utero ZIKV infection. It also emphasizes that further attempts to better understand silent pathology and develop alleviative interventions in ZIKV-affected offspring should take into account interactions of host factors, like sex, and environmental insults, like social stress.
Collapse
Affiliation(s)
- Ivan Trus
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Daniel Udenze
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
| | - Brian Cox
- Department of Physiology, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Nathalie Berube
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Rebecca E. Nordquist
- Behavior and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL, Netherlands
- Brain Center Rudolf Magnus, Utrecht University, Utrecht, Netherlands
| | - Franz Josef van der Staay
- Behavior and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL, Netherlands
| | | | | | - David Safronetz
- Canada National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
20
|
Lipner E, Murphy SK, Ellman LM. Prenatal Maternal Stress and the Cascade of Risk to Schizophrenia Spectrum Disorders in Offspring. Curr Psychiatry Rep 2019; 21:99. [PMID: 31522269 PMCID: PMC7043262 DOI: 10.1007/s11920-019-1085-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Disruptions in fetal development (via genetic and environmental pathways) have been consistently associated with risk for schizophrenia in a variety of studies. Although multiple obstetric complications (OCs) have been linked to schizophrenia, this review will discuss emerging evidence supporting the role of prenatal maternal stress (PNMS) in the etiology of schizophrenia spectrum disorders (SSD). In addition, findings linking PNMS to intermediate phenotypes of the disorder, such as OCs and premorbid cognitive, behavioral, and motor deficits, will be reviewed. Maternal immune and endocrine dysregulation will also be explored as potential mechanisms by which PNMS confers risk for SSD. RECENT FINDINGS PNMS has been linked to offspring SSD; however, findings are mixed due to inconsistent and retrospective assessments of PNMS and lack of specificity about SSD outcomes. PNMS is also associated with various intermediate phenotypes of SSD (e.g., prenatal infection/inflammation, decreased fetal growth, hypoxia-related OCs). Recent studies continue to elucidate the impact of PNMS while considering the moderating roles of fetal sex and stress timing, but it is still unclear which aspects of PNMS (e.g., type, timing) confer risk for SSD specifically. PNMS increases risk for SSD, but only in a small portion of fetuses exposed to PNMS. Fetal sex, genetics, and other environmental factors, as well as additional pre- and postnatal insults, likely contribute to the PNMS-SSD association. Longitudinal birth cohort studies are needed to prospectively illuminate the mechanisms that account for the variability in outcomes following PNMS.
Collapse
Affiliation(s)
- Emily Lipner
- Department of Psychology, Temple University, Weiss Hall, 1701 N. 13th Street, Philadelphia, PA, 19106, USA
| | - Shannon K Murphy
- Department of Psychology, Temple University, Weiss Hall, 1701 N. 13th Street, Philadelphia, PA, 19106, USA
| | - Lauren M Ellman
- Department of Psychology, Temple University, Weiss Hall, 1701 N. 13th Street, Philadelphia, PA, 19106, USA.
| |
Collapse
|
21
|
Dunn GA, Nigg JT, Sullivan EL. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharmacol Biochem Behav 2019; 182:22-34. [PMID: 31103523 PMCID: PMC6855401 DOI: 10.1016/j.pbb.2019.05.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a persistent, and impairing pediatric-onset neurodevelopmental condition. Its high prevalence, and recurrent controversy over its widespread identification and treatment, drive strong interest in its etiology and mechanisms. Emerging evidence for a role for neuroinflammation in ADHD pathophysiology is of great interest. This evidence includes 1) the above-chance comorbidity of ADHD with inflammatory and autoimmune disorders, 2) initial studies indicating an association with ADHD and increased serum cytokines, 3) preliminary evidence from genetic studies demonstrating associations between polymorphisms in genes associated with inflammatory pathways and ADHD, 4) emerging evidence that early life exposure to environmental factors may increase risk for ADHD via an inflammatory mechanism, and 5) mechanistic evidence from animal models of maternal immune activation documenting behavioral and neural outcomes consistent with ADHD. Prenatal exposure to inflammation is associated with changes in offspring brain development including reductions in cortical gray matter volume and the volume of certain cortical areas -parallel to observations associated with ADHD. Alterations in neurotransmitter systems, including the dopaminergic, serotonergic and glutamatergic systems, are observed in ADHD populations. Animal models provide strong evidence that development and function of these neurotransmitters systems are sensitive to exposure to in utero inflammation. In summary, accumulating evidence from human studies and animal models, while still incomplete, support a potential role for neuroinflammation in the pathophysiology of ADHD. Confirmation of this association and the underlying mechanisms have become valuable targets for research. If confirmed, such a picture may be important in opening new intervention routes.
Collapse
Affiliation(s)
| | - Joel T Nigg
- Oregon Health and Science University, United States of America
| | - Elinor L Sullivan
- University of Oregon, United States of America; Oregon Health and Science University, United States of America; Oregon National Primate Research Center, United States of America.
| |
Collapse
|
22
|
Strain differences in the susceptibility to the gut-brain axis and neurobehavioural alterations induced by maternal immune activation in mice. Behav Pharmacol 2019; 29:181-198. [PMID: 29462110 DOI: 10.1097/fbp.0000000000000374] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There is a growing realization that the severity of the core symptoms of autism spectrum disorders and schizophrenia is associated with gastrointestinal dysfunction. Nonetheless, the mechanisms underlying such comorbidities remain unknown. Several genetic and environmental factors have been linked to a higher susceptibility to neurodevelopmental abnormalities. The maternal immune activation (MIA) rodent model is a valuable tool for elucidating the basis of this interaction. We induced MIA with polyinosinic-polycytidylic acid (poly I:C) at gestational day 12.5 and assessed behavioural, physiological and molecular aspects relevant to the gut-brain axis in the offspring of an outbred (NIH Swiss) and an inbred (C57BL6/J) mouse strain. Our results showed that the specific MIA protocol employed induces social deficits in both strains. However, alterations in anxiety and depression-like behaviours were more pronounced in NIH Swiss mice. These strain-specific behavioural effects in the NIH Swiss mice were associated with marked changes in important components of gut-brain axis communication: the endocrine response to stress and gut permeability. In addition, MIA-induced changes in vasopressin receptor 1a mRNA expression in the hypothalamus were observed in NIH Swiss mice only. Taken together, these data suggest that genetic background is a critical factor in susceptibility to the gut-brain axis effects induced by MIA.
Collapse
|
23
|
Jyonouchi H, Geng L, Rose S, Bennuri SC, Frye RE. Variations in Mitochondrial Respiration Differ in IL-1ß/IL-10 Ratio Based Subgroups in Autism Spectrum Disorders. Front Psychiatry 2019; 10:71. [PMID: 30842746 PMCID: PMC6391925 DOI: 10.3389/fpsyt.2019.00071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorder (ASD)7 is associated with multiple physiological abnormalities, including immune dysregulation, and mitochondrial dysfunction. However, an association between these two commonly reported abnormalities in ASD has not been studied in depth. This study assessed the association between previously identified alterations in cytokine profiles by ASD peripheral blood monocytes (PBMo) and mitochondrial dysfunction. In 112 ASD and 38 non-ASD subjects, cytokine production was assessed by culturing purified PBMo overnight with stimuli of innate immunity. Parameters of mitochondrial respiration including proton-leak respiration (PLR), ATP-linked respiration (ALR), maximal respiratory capacity (MRC), and reserve capacity (RC) were measured in peripheral blood mononuclear cells (PBMCs). The ASD samples were analyzed by subgrouping them into high, normal, and low IL-1ß/IL-10 ratio groups, which was previously shown to be associated with changes in behaviors and PBMo miRNA expression. MRC, RC, and RC/PLR, a marker of electron transport chain (ETC) efficiency, were higher in ASD PBMCs than controls. The expected positive associations between PLR and ALR were found in control non-ASD PBMCs, but not in ASD PBMCs. Higher MRC, RC, RC/PLR in ASD PBMCs were secondary to higher levels of these parameters in the high and normal IL-1ß/IL-10 ratio ASD subgroups than controls. Associations between mitochondrial parameters and monocyte cytokine profiles differed markedly across the IL-1ß/IL-10 ratio based ASD subgroups, rendering such associations less evident when ASD samples as a whole were compared to non-ASD controls. Our results indicate for the first time, an association between PBMC mitochondrial function and PBMo cytokine profiles in ASD subjects. This relationship differs across the IL-1ß/IL-10 ratio based ASD subgroups. Changes in mitochondrial function are likely due to adaptive changes or mitochondrial dysfunction, resulting from chronic oxidative stress. These results may indicate alteration in molecular pathways affecting both the immune system and mitochondrial function in some ASD subjects.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, United States.,Robert Wood Johnson Medical School-Rutgers, New Brunswick, NJ, United States
| | - Lee Geng
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, United States
| | - Shannon Rose
- Arkansas Children's Research Institute, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas of Medical Sciences, Little Rock, AR, United States
| | - Sirish C Bennuri
- Arkansas Children's Research Institute, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas of Medical Sciences, Little Rock, AR, United States
| | - Richard E Frye
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
24
|
Jyonouchi H, Geng L, Toruner GA, Rose S, Bennuri SC, Frye RE. Serum microRNAs in ASD: Association With Monocyte Cytokine Profiles and Mitochondrial Respiration. Front Psychiatry 2019; 10:614. [PMID: 31551826 PMCID: PMC6748029 DOI: 10.3389/fpsyt.2019.00614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Our previous research has shown that purified peripheral blood monocytes (PRMo) from individuals who are diagnosed with autism spectrum disorders (ASDs) and have innate immune abnormalities reveal altered interleukin-1ß (IL-1ß)/IL-10 ratios. We also found, in separate studies, that microRNA (miRNA) expression in PBMo and mitochondrial respiration in peripheral blood mononuclear cells (PBMCs) differed in the IL-1ß/IL-10-based ASD subgroups. This study explored whether serum miRNAs are associated with both altered innate immune responses and changes in mitochondrial respiration as a link of regulatory mechanisms for these two common abnormalities in ASD subjects. Serum miRNA levels were examined by high-throughput deep sequencing in ASD and non-ASD control sera with concurrent measurement of PBMo cytokine production and mitochondrial respiration by PBMCs. ASD samples were examined as a whole group and with respect to the previously defined IL-1ß/IL-10-based ASD subgroups (high, normal, and low groups). Serum miRNA levels differed between the overall ASD sera (N = 116) and non-ASD control sera (N = 35) and also differed across the IL-1ß/IL-10-based ASD subgroups. Specifically, miRNA levels were increased and decreased in eight and nine miRNAs, respectively, in the high-ratio ASD subgroup (N = 48). In contrast, the low- (N = 25) and normal- (N = 43) ratio ASD subgroups only showed decreased miRNAs levels (18 and 10 miRNAs, respectively). Gene targets of the altered miRNAs in the high and/or low IL-1β/IL-10 ratio ASD subgroups were enriched in pathways critical for monocyte functions and metabolic regulation. Gene targets of the altered miRNAs in all the ASD subgroups were enriched in pathways of neuronal development and synaptic plasticity, along with cell proliferation/differentiation. ASD subgroup-specific associations were observed between serum miRNA expression and IL-1ß/IL-10 ratios, mitochondrial respiration, and monocyte cytokine profiles (IL-10, CCL2, and TNF-α). In summary, our results indicate that serum levels of select miRNAs may serve as promising biomarkers for screening and monitoring changes in innate immunity and mitochondrial respiration in ASD.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), New Brunswick, NJ, United States
| | - Lee Geng
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), New Brunswick, NJ, United States
| | - Gokce A Toruner
- Clinical Cytogenetics, Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Shannon Rose
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, AR, United States
| | - Sirish C Bennuri
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, AR, United States
| | - Richard E Frye
- Department of Pediatrics, Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
25
|
Adverse neuropsychiatric development following perinatal brain injury: from a preclinical perspective. Pediatr Res 2019; 85:198-215. [PMID: 30367160 DOI: 10.1038/s41390-018-0222-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Perinatal brain injury is a leading cause of death and disability in young children. Recent advances in obstetrics, reproductive medicine and neonatal intensive care have resulted in significantly higher survival rates of preterm or sick born neonates, at the price of increased prevalence of neurological, behavioural and psychiatric problems in later life. Therefore, the current focus of experimental research shifts from immediate injury processes to the consequences for brain function in later life. The aetiology of perinatal brain injury is multi-factorial involving maternal and also labour-associated factors, including not only placental insufficiency and hypoxia-ischaemia but also exposure to high oxygen concentrations, maternal infection yielding excess inflammation, genetic factors and stress as important players, all of them associated with adverse long-term neurological outcome. Several animal models addressing these noxious stimuli have been established in the past to unravel the underlying molecular and cellular mechanisms of altered brain development. In spite of substantial efforts to investigate short-term consequences, preclinical evaluation of the long-term sequelae for the development of cognitive and neuropsychiatric disorders have rarely been addressed. This review will summarise and discuss not only current evidence but also requirements for experimental research providing a causal link between insults to the developing brain and long-lasting neurodevelopmental disorders.
Collapse
|
26
|
Kentner AC, Bilbo SD, Brown AS, Hsiao EY, McAllister AK, Meyer U, Pearce BD, Pletnikov MV, Yolken RH, Bauman MD. Maternal immune activation: reporting guidelines to improve the rigor, reproducibility, and transparency of the model. Neuropsychopharmacology 2019; 44:245-258. [PMID: 30188509 PMCID: PMC6300528 DOI: 10.1038/s41386-018-0185-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 08/02/2018] [Indexed: 01/16/2023]
Abstract
The 2017 American College of Neuropychopharmacology (ACNP) conference hosted a Study Group on 4 December 2017, Establishing best practice guidelines to improve the rigor, reproducibility, and transparency of the maternal immune activation (MIA) animal model of neurodevelopmental abnormalities. The goals of this session were to (a) evaluate the current literature and establish a consensus on best practices to be implemented in MIA studies, (b) identify remaining research gaps warranting additional data collection and lend to the development of evidence-based best practice design, and (c) inform the MIA research community of these findings. During this session, there was a detailed discussion on the importance of validating immunogen doses and standardizing the general design (e.g., species, immunogenic compound used, housing) of our MIA models both within and across laboratories. The consensus of the study group was that data does not currently exist to support specific evidence-based model selection or methodological recommendations due to lack of consistency in reporting, and that this issue extends to other inflammatory models of neurodevelopmental abnormalities. This launched a call to establish a reporting checklist focusing on validation, implementation, and transparency modeled on the ARRIVE Guidelines and CONSORT (scientific reporting guidelines for animal and clinical research, respectively). Here we provide a summary of the discussions in addition to a suggested checklist of reporting guidelines needed to improve the rigor and reproducibility of this valuable translational model, which can be adapted and applied to other animal models as well.
Collapse
Affiliation(s)
- Amanda C. Kentner
- 0000 0001 0021 3995grid.416498.6School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA USA
| | - Staci D. Bilbo
- 000000041936754Xgrid.38142.3cDepartment of Pediatrics, Harvard Medical School, Boston, MA USA ,0000 0004 0386 9924grid.32224.35Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA USA
| | - Alan S. Brown
- 0000000419368729grid.21729.3fDepartment of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY USA ,0000 0000 8499 1112grid.413734.6New York State Psychiatric Institute, New York, NY USA
| | - Elaine Y. Hsiao
- 0000 0000 9632 6718grid.19006.3eDepartment of Integrative Biology and Physiology, University of California, Los Angeles, USA
| | - A. Kimberley McAllister
- 0000 0004 1936 9684grid.27860.3bCenter for Neuroscience, University of California Davis, Davis, CA USA
| | - Urs Meyer
- 0000 0004 1937 0650grid.7400.3Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse, Zurich, Switzerland ,0000 0004 1937 0650grid.7400.3Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Brad D. Pearce
- 0000 0001 0941 6502grid.189967.8Department of Epidemiology, Rollins School of Public Health, and Graduate Division of Biological and Biomedical Sciences, Neuroscience Program, Emory University, Atlanta, GA USA
| | - Mikhail V. Pletnikov
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry and Behavioral Sciences, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Robert H. Yolken
- 0000 0001 2171 9311grid.21107.35Department of Pediatrics, Stanley Division of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Melissa D. Bauman
- 0000 0004 1936 9684grid.27860.3bThe UC Davis MIND Institute, Department of Psychiatry and Behavioral Sciences, California National Primate Research Center, University of California, Davis, USA
| |
Collapse
|
27
|
Minakova E, Warner BB. Maternal immune activation, central nervous system development and behavioral phenotypes. Birth Defects Res 2018; 110:1539-1550. [PMID: 30430765 DOI: 10.1002/bdr2.1416] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Maternal immune activation (MIA) refers to a maternal immune system triggered by infectious or infectious-like stimuli. A cascade of cytokines and immunologic alterations are transmitted to the fetus, resulting in adverse phenotypes most notably in the central nervous system. Epidemiologic studies implicate maternal infections in a variety of neuropsychiatric disorders, most commonly autism spectrum disorders and schizophrenia. In animal models, MIA causes neurochemical and anatomic changes in the brain that correspond to those found in humans with the disorders. As our understanding of the interactions between environment, genetics, and immune system grows, the role of alternative, noninfectious risk factors, such as prenatal stress, obesity, and the gut microbiome also becomes clearer. This review considers how infectious and noninfectious etiologies activate the maternal immune system. Their impact on fetal programming and neuropsychiatric disorders in offspring is examined in the context of human and animal studies.
Collapse
Affiliation(s)
- Elena Minakova
- Department of Pediatrics, School of Medicine, Washington University in St Louis, Saint Louis, Missouri
| | - Barbara B Warner
- Department of Pediatrics, School of Medicine, Washington University in St Louis, Saint Louis, Missouri
| |
Collapse
|
28
|
Maher GM, McCarthy FP, McCarthy CM, Kenny LC, Kearney PM, Khashan AS, O'Keeffe GW. A perspective on pre-eclampsia and neurodevelopmental outcomes in the offspring: Does maternal inflammation play a role? Int J Dev Neurosci 2018; 77:69-76. [PMID: 30391740 DOI: 10.1016/j.ijdevneu.2018.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 10/28/2022] Open
Abstract
Pre-eclampsia is a leading cause of maternal death and maternal and perinatal morbidity. Whilst the clinical manifestations of pre-eclampsia often occur in late pregnancy, the molecular events leading into the onset of this disease are thought to originate in early pregnancy and result in insufficient placentation. Although the causative molecular basis of pre-eclampsia remains poorly understood, maternal inflammation is recognised as a core clinical feature. While the adverse effects of pre-eclampsia on maternal and fetal health in pregnancy is well-recognised, the long-term impact of pre-eclampsia exposure on the risk of autism spectrum disorder (ASD) in exposed offspring is a topic of on-going debate. In particular, a recent systematic review has reported an association between exposure to pre-eclampsia and increased risk of ASD, however the molecular basis of this association is unknown. Here we review recent evidence for; 1) maternal inflammation in pre-eclampsia; 2) epidemiological evidence for alterations in neurodevelopmental outcomes in offspring exposed to pre-eclampsia; 3) long-term changes in the brains of offspring exposed to pre-eclampsia; and 4) how maternal inflammation may lead to altered neurodevelopmental outcomes in pre-eclampsia exposed offspring. Finally, we discuss the implications of this for the development of future studies in this field.
Collapse
Affiliation(s)
- Gillian M Maher
- School of Public Health, Western Gateway Building, University College Cork, Cork, Ireland.,The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital and University College Cork, Cork, Ireland
| | - Fergus P McCarthy
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital and University College Cork, Cork, Ireland.,Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, Ireland
| | - Cathal M McCarthy
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital and University College Cork, Cork, Ireland.,Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Louise C Kenny
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, United Kingdom
| | - Patricia M Kearney
- School of Public Health, Western Gateway Building, University College Cork, Cork, Ireland
| | - Ali S Khashan
- School of Public Health, Western Gateway Building, University College Cork, Cork, Ireland.,The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital and University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience and Cork Neuroscience Centre, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
29
|
Sá-Pereira I, Roodselaar J, Couch Y, Consentino Kronka Sosthenes M, Evans MC, Anthony DC, Stolp HB. Hepatic acute phase response protects the brain from focal inflammation during postnatal window of susceptibility. Brain Behav Immun 2018; 69:486-498. [PMID: 29355821 PMCID: PMC5871396 DOI: 10.1016/j.bbi.2018.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Perinatal inflammation is known to contribute to neurodevelopmental diseases. Animal models of perinatal inflammation have revealed that the inflammatory response within the brain is age dependent, but the regulators of this variation remain unclear. In the adult, the peripheral acute phase response (APR) is known to be pivotal in the downstream recruitment of leukocytes to the injured brain. The relationship between perinatal brain injury and the APR has not been established. Here, we generated focal inflammation in the brain using interleukin (IL)-1β at postnatal day (P)7, P14, P21 and P56 and studied both the central nervous system (CNS) and hepatic inflammatory responses at 4 h. We found that there is a significant window of susceptibility in mice at P14, when compared to mice at P7, P21 and P56. This was reflected in increased neutrophil recruitment to the CNS, as well as an increase in blood-brain barrier permeability. To investigate phenomena underlying this window of susceptibility, we performed a dose response of IL-1β. Whilst induction of endogenous IL-1β or intercellular adhesion molecule (ICAM)-1 in the brain and induction of a hepatic APR were dose dependent, the recruitment of neutrophils and associated blood-brain barrier breakdown was inversely proportional. Furthermore, in contrast to adult animals, an additional peripheral challenge (intravenous IL-1β) reduced the degree of CNS inflammation, rather than exacerbating it. Together these results suggest a unique window of susceptibility to CNS injury, meaning that suppressing systemic inflammation after brain injury may exacerbate the damage caused, in an age-dependent manner.
Collapse
Affiliation(s)
- Inês Sá-Pereira
- Department of Pharmacology, University of Oxford, United Kingdom
| | - Jay Roodselaar
- Department of Pharmacology, University of Oxford, United Kingdom
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Marcia Consentino Kronka Sosthenes
- Department of Pharmacology, University of Oxford, United Kingdom,Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção, ICB/HUJBB, Belém, Brazil
| | - Matthew C. Evans
- Department of Pharmacology, University of Oxford, United Kingdom
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, United Kingdom,Corresponding author at: Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom.Department of PharmacologyUniversity of OxfordOxfordOX1 3QTUnited Kingdom
| | - Helen B. Stolp
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, St Thomas’ Hospital, King’s College London, United Kingdom,Royal Veterinary College, London, United Kingdom
| |
Collapse
|
30
|
Driscoll DJO', Felice VD, Kenny LC, Boylan GB, O'Keeffe GW. Mild prenatal hypoxia-ischemia leads to social deficits and central and peripheral inflammation in exposed offspring. Brain Behav Immun 2018; 69:418-427. [PMID: 29355822 DOI: 10.1016/j.bbi.2018.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/14/2017] [Accepted: 01/11/2018] [Indexed: 12/16/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) resulting from intrauterine or perinatal hypoxic-ischemia (HI) is a leading cause of long-term neonatal neurodisability. While most studies of long-term outcome have focused on moderate and severe HIE in term infants, recent work has shown that those with mild HIE may have subtle neurological impairments. However, the impact of mild HI on pre-term infants is much less clear given that pre-term birth is itself a risk factor for neurodisability. Here we show that mild HI insult alters behaviour, inflammation and the corticosterone stress response in a rat model of pre-term HIE. Mild HI exposure led to social deficits in exposed offspring at postnatal day 30, without impairments in the novel object recognition test nor in the open field test. This was also accompanied by elevations in circulating adrenocorticotropic hormone and corticosterone indicating an exaggerated stress response. There were also elevations in il-1β and il-6 but not tnf-α mRNA and protein in the brain and blood samples. In summary we find that a mild HI exposure leads to social deficits, central and peripheral inflammation, and an abnormal corticosterone response which are three core features of autism spectrum disorder. This shows that mild HI exposure may be a risk factor for an abnormal neurodevelopmental outcome in pre-term offspring.
Collapse
Affiliation(s)
- David J O ' Driscoll
- Irish Centre for Fetal and Neonatal Translational Research, Cork University Maternity Hospital, Cork, Ireland; Department of Obstetrics & Gynaecology, University College Cork (UCC), Cork, Ireland
| | - Valeria D Felice
- Irish Centre for Fetal and Neonatal Translational Research, Cork University Maternity Hospital, Cork, Ireland; Department of Pharmacology, School of Pharmacy, UCC, Cork, Ireland
| | - Louise C Kenny
- Irish Centre for Fetal and Neonatal Translational Research, Cork University Maternity Hospital, Cork, Ireland; Department of Obstetrics & Gynaecology, University College Cork (UCC), Cork, Ireland
| | - Geraldine B Boylan
- Irish Centre for Fetal and Neonatal Translational Research, Cork University Maternity Hospital, Cork, Ireland; Department of Paediatrics and Child Health, UCC, Cork, Ireland
| | - Gerard W O'Keeffe
- Irish Centre for Fetal and Neonatal Translational Research, Cork University Maternity Hospital, Cork, Ireland; Department of Anatomy and Neuroscience and Cork Neuroscience Centre, UCC, Cork, Ireland.
| |
Collapse
|
31
|
Solek CM, Farooqi N, Verly M, Lim TK, Ruthazer ES. Maternal immune activation in neurodevelopmental disorders. Dev Dyn 2017; 247:588-619. [PMID: 29226543 DOI: 10.1002/dvdy.24612] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Converging lines of evidence from basic science and clinical studies suggest a relationship between maternal immune activation (MIA) and neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. The mechanisms through which MIA increases the risk of neurodevelopmental disorders have become a subject of intensive research. This review aims to describe how dysregulation of microglial function and immune mechanisms may link MIA and neurodevelopmental pathologies. We also summarize the current evidence in animal models of MIA. Developmental Dynamics 247:588-619, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cynthia M Solek
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Nasr Farooqi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Myriam Verly
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Tony K Lim
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Tien LT, Lee YJ, Pang Y, Lu S, Lee JW, Tseng CH, Bhatt AJ, Savich RD, Fan LW. Neuroprotective Effects of Intranasal IGF-1 against Neonatal Lipopolysaccharide-Induced Neurobehavioral Deficits and Neuronal Inflammation in the Substantia Nigra and Locus Coeruleus of Juvenile Rats. Dev Neurosci 2017; 39:443-459. [PMID: 28787734 PMCID: PMC5799046 DOI: 10.1159/000477898] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/30/2017] [Indexed: 01/29/2023] Open
Abstract
Neonatal lipopolysaccharide (LPS) exposure-induced brain inflammation resulted in motor dysfunction and brain dopaminergic neuronal injury, and increased the risks of neurodegenerative disorders in adult rats. Our previous studies showed that intranasal administration of insulin-like growth factor-1 (IGF-1) protects against LPS-induced white matter injury in the developing rat brain. To further examine whether IGF-1 protects against LPS-induced brain neuronal injury and neurobehavioral dysfunction, recombinant human IGF-1 (rhIGF-1) at a dose of 50 µg/pup was administered intranasally 1 h following intracerebral injection of LPS (1 mg/kg) in postnatal day 5 (P5) Sprague-Dawley rat pups. Neurobehavioral tests were carried out from P7 to P21, and brain neuronal injury was examined at P21. Our results showed that LPS exposure resulted in disturbances of motor behaviors in juvenile rats. Moreover, LPS exposure caused injury to central catecholaminergic neurons, as indicated by a reduction of tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra (SN), ventral tegmental area (VTA) and olfactory bulb (OB), and brain noradrenergic neurons, as indicated by a reduction of TH immunoreactivity in the locus coeruleus (LC) of the P21 rat brain. The LPS-induced reduction of TH+ cells was observed at a greater degree in the SN and LC of the P21 rat brain. Intranasal rhIGF-1 treatment attenuated LPS-induced central catecholaminergic neuronal injury and motor behavioral disturbances, including locomotion, beam walking test and gait analysis. Intranasal rhIGF-1 administration also attenuated LPS-induced elevation of IL-1β levels and numbers of activated microglia, and cyclooxygenase-2+ cells, which were double labeled with TH+ cells in the SN, VTA, OB and LC of the P21 rat brain. These results suggest that IGF-1 may provide protection against neonatal LPS exposure-induced central catecholaminergic neuronal injury and motor behavioral disturbances, and that the protective effects are associated with the inhibition of microglia activation and the reduction of neuronal oxidative stress by the suppression of the neuronal cyclooxygenase-2 expression.
Collapse
Affiliation(s)
- Lu-Tai Tien
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City 24205, Taiwan
| | - Yih-Jing Lee
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City 24205, Taiwan
| | - Yi Pang
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Silu Lu
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jonathan W Lee
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Chih-Hsueh Tseng
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City 24205, Taiwan
| | - Abhay J Bhatt
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Renate D Savich
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
33
|
Spencer SJ, Meyer U. Perinatal programming by inflammation. Brain Behav Immun 2017; 63:1-7. [PMID: 28196717 DOI: 10.1016/j.bbi.2017.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/21/2022] Open
Abstract
Since Levine and then Barker's seminal work mid to late last century demonstrating the importance of early life environment, intensive research has revealed the plasticity, vulnerability and resilience of the developing brain to environmental challenges. In particular, early exposure to infectious pathogens and inflammatory stimuli has a lasting impact on brain and behavior. These data establish clear effects on vulnerability to later disease and neuroinflammatory injury, cognitive function and emotionality, and even responses to pain and susceptibility to metabolic disorders. They also highlight the issues with defining rodent models of complex diseases like autism spectrum disorders and schizophrenia, as well as the complexity of experimental design, for instance when deciding the appropriate allocation of subjects to experimental groups when dealing with whole-litter manipulations in rodents. The studies presented in this special issue of Brain Behavior and Immunity are a collection of the very latest advances in the science of perinatal inflammation and its implications for perinatal programming of brain and behavior.
Collapse
Affiliation(s)
- Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|