1
|
Roy S, Chakrabarti M, Mondal T, Das TK, Sarkar T, Datta S, Kundu M, Banerjee M, Kulkarni OP. Effect of an Autotaxin Inhibitor, 2-(4-Chlorophenyl)-7-methyl-8-pentylimidazo[1,2- a] Pyrimidin-5(8 H)-one (CBT-295), on Bile Duct Ligation-Induced Chronic Liver Disease and Associated Hepatic Encephalopathy in Rats. ACS Pharmacol Transl Sci 2024; 7:2662-2676. [PMID: 39296254 PMCID: PMC11406694 DOI: 10.1021/acsptsci.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/21/2024]
Abstract
The role of autotaxin (ATX)-lysophosphatidic acid (LPA) is yet to be explored in the context of liver cirrhosis and associated encephalopathy. Our objective of this study was to evaluate the role of an ATX inhibitor in biliary cirrhosis and associated hepatic encephalopathy in rats. The preliminary investigation revealed significant impairment in liver function, which eventually led to the development of hepatic encephalopathy. Interestingly, LPA levels were significantly increased in the plasma, liver, and brain of rats following bile duct ligation. Subsequently, we tested the efficacy of an ATX inhibitor, CBT-295, in bile duct-induced biliary cirrhosis and neuropsychiatric symptoms associated with hepatic encephalopathy. CBT-295 showed good oral bioavailability and favorable pharmacokinetic properties. CBT-295 exhibited a significant reduction in inflammatory cytokines like TGF-β, TNF-α, and IL-6 levels, also reduced bile duct proliferation marker CK-19, and lowered liver fibrosis, as evident from reduced collagen deposition. The reversal of liver fibrosis with CBT-295 led to a reduction in blood and brain ammonia levels. Furthermore, CBT-295 also reduced neuroinflammation induced by ammonia, which is characterized by a significant reduction in brain cytokine levels. It improved neuropsychiatric symptoms such as locomotor activities, cognitive impairment, and clinical grading scores associated with hepatic encephalopathy. The improvement in hepatic encephalopathy observed with the ATX inhibitor could be the result of its hepatoprotective action and its ability to attenuate neuroinflammation. Therefore, inhibition of ATX-LPA signaling can be a multifactorial approach for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Subhasis Roy
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Monali Chakrabarti
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Trisha Mondal
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Tapas Kumar Das
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Tonmoy Sarkar
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Sebak Datta
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Mrinalkanti Kundu
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Manish Banerjee
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Onkar Prakash Kulkarni
- Metabolic Disorders and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
2
|
Nikpour F, Salimi A, Saghazadeh A, Rezaei N. Blood and CSF levels of brain-derived neurotrophic factor in patients with encephalopathy/encephalitis: a systematic review and meta-analysis. Acta Neurol Belg 2024; 124:533-542. [PMID: 38267724 DOI: 10.1007/s13760-023-02442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is critical for enhancing the survival and growth of neurons and modulating the synaptic plasticity. BDNF levels have been demonstrated to be changed in plasma and cerebrospinal fluid (CSF) following brain insults such as inflammation or ischemia or infection in several studies. Currently, there is no systematic review regarding BDNF levels in encephalitis or encephalopathy patients. Considering inconsistency between studies, we aimed to pool the data from existing studies to determine whether blood or CSF levels of BDNF are different in patients with encephalopathy/encephalitis. METHODS We comprehensively searched Web of Science, PubMed, Scopus, and Embase databases to identify eligible studies. The last search occurred in December 2022. RESULTS 12 studies met our inclusion criteria and ten studies including 283 patients and 323 healthy controls were enrolled in this meta-analysis. In comparison to controls, patients with encephalitis/encephalopathy had higher levels of BDNF in their CSF [standardized mean difference (SMD) = 1.48, 95% CI 0.18-2.77; P = 0.03)], while their blood levels of BDNF did not differ significantly [standardized mean difference (SMD) = 0.27, 95% CI = - 0.71 to 1.25; P = 0.58)]. Moreover, regarding the heterogeneity among studies reporting BDNF blood levels, we performed two subgroup analyses based on the disease etiology and the specimen (plasma and serum); none of them indicated statistically significant difference in BDNF levels between the subgroups (P = 0.41 and 0.20, respectively). CONCLUSION Meta-analysis provides evidence that patients with encephalopathy/encephalitis have higher CSF levels of BDNF compared to controls.
Collapse
Affiliation(s)
- Fatemeh Nikpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir Salimi
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
El-Mansoury B, Smimih K, El Khiat A, Draoui A, Aimrane A, Chatoui R, Ferssiwi A, Bitar A, Gamrani H, Jayakumar AR, El Hiba O. Short Working Memory Impairment Associated with Hippocampal Microglia Activation in Chronic Hepatic Encephalopathy. Metabolites 2024; 14:193. [PMID: 38668321 PMCID: PMC11052478 DOI: 10.3390/metabo14040193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatic encephalopathy (HE) is a major neuropsychological condition that occursas a result of impaired liver function. It is frequently observed in patients with advanced liver disease or cirrhosis. Memory impairment is among the symptoms of HE; the pathophysiologic mechanism for this enervating condition remains unclear. However, it is possible that neuroinflammation may be involved, as recent studies have emphasized such phenomena. Therefore, the aim of the present study is to assess short working memory (SWM) and examine the involvement of microglia in a chronic model of HE. The study was carried out with male Wistar rats that were induced by repeated thioacetamide (TAA) administration (100 mg/kg i.p injection for 10 days). SWM function was assessed through Y-maze, T-Maze, and novel object recognition (NOR) tests, together with an immunofluorescence study of microglia activation within the hippocampal areas. Our data showed impaired SWM in TAA-treated rats that was associated with microglial activation in the three hippocampal regions, and which contributed to cognitive impairment.
Collapse
Affiliation(s)
- Bilal El-Mansoury
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Kamal Smimih
- Laboratory of Genie-Biology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (K.S.); (R.C.)
| | - Abdelaati El Khiat
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
- Higher Institute of Nursing Professions and Health Techniques, Ministry of Health, Ouarzazate 45000, Morocco
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Ahmed Draoui
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.D.); (H.G.)
| | - Abdelmohcine Aimrane
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Redouane Chatoui
- Laboratory of Genie-Biology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (K.S.); (R.C.)
| | - Abdesslam Ferssiwi
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Abdelali Bitar
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Halima Gamrani
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.D.); (H.G.)
| | | | - Omar El Hiba
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| |
Collapse
|
4
|
Jiang R, Wu J, Rosenblatt M, Dai W, Rodriguez RX, Sui J, Qi S, Liang Q, Xu B, Meng Q, Calhoun VD, Scheinost D. Elevated C-reactive protein mediates the liver-brain axis: a preliminary study. EBioMedicine 2023; 93:104679. [PMID: 37356206 PMCID: PMC10320521 DOI: 10.1016/j.ebiom.2023.104679] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Chronic liver diseases of all etiologies exist along a spectrum with varying degrees of hepatic fibrosis. Despite accumulating evidence implying associations between liver fibrosis and cognitive functioning, there is limited research exploring the underlying neurobiological factors and the possible mediating role of inflammation on the liver-brain axis. METHODS Using data from the UK Biobank, we examined the cross-sectional association of liver fibrosis (as measured by Fibrosis-4 score) with cognitive functioning and regional grey matter volumes (GMVs) while adjusting for numerous covariates and multiple comparisons. We further performed post-hoc preliminary analysis to investigate the mediating effect of C-reactive protein (CRP) on the association between liver fibrosis and both cognitive functioning and GMVs. FINDINGS We analysed behaviour from up to 447,626 participants (N ranged from 45,055 to 447,533 per specific cognitive metric) 37 years and older. 38,244 participants (age range 44-82 years) had GMV data collected at a median 9-year follow-up. Liver fibrosis showed significant associations with cognitive performance in reasoning, working memory, visual memory, prospective memory, executive function, and processing speed. Subgroup analysis indicated larger effects sizes for symbol digital substitution but smaller effect sizes for trail making in middle-aged people than their old counterparts. Neuroimaging analyses revealed significant associations between liver fibrosis and reduced regional GMVs, primarily in the hippocampus, thalamus, ventral striatum, parahippocampal gyrus, brain stem, and cerebellum. CRP levels were significantly higher in adults with advanced liver fibrosis than those without, indicating an elevated systemic inflammation. Moreover, the serum CRP significantly mediated the effect of liver fibrosis on most cognitive measures and regional GMVs in the hippocampus and brain stem. INTERPRETATION This study provides a well-powered characterization of associations between liver fibrosis, cognitive impairment, and grey matter atrophy. It also highlights the possibly mediating role of systemic inflammation on the liver-brain axis. Early surveillance and prevention of liver diseases may reduce cognitive decline and brain GMV loss. FUNDING National Science Foundation, and National Institutes of Health.
Collapse
Affiliation(s)
- Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Jing Wu
- Second Department of Liver Disease Center, Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Wei Dai
- Department of Biostatistics, Yale University, New Haven, CT 06520, USA
| | - Raimundo X Rodriguez
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100088, China
| | - Shile Qi
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Qinghao Liang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Bin Xu
- Second Department of Liver Disease Center, Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Qinghua Meng
- Department of Medical Oncology, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, China
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, 100 College Street, New Haven, CT 06510, USA.
| |
Collapse
|
5
|
Giuli L, Maestri M, Santopaolo F, Pompili M, Ponziani FR. Gut Microbiota and Neuroinflammation in Acute Liver Failure and Chronic Liver Disease. Metabolites 2023; 13:772. [PMID: 37367929 DOI: 10.3390/metabo13060772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Acute liver failure and chronic liver disease are associated with a wide spectrum of neurological changes, of which the best known is hepatic encephalopathy (HE). Historically, hyperammonemia, causing astrocyte swelling and cerebral oedema, was considered the main etiological factor in the pathogenesis of cerebral dysfunction in patients with acute and/or chronic liver disease. However, recent studies demonstrated a key role of neuroinflammation in the development of neurological complications in this setting. Neuroinflammation is characterized by activation of microglial cells and brain secretion of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, which alter neurotransmission, leading to cognitive and motor dysfunction. Changes in the gut microbiota resulting from liver disease play a crucial role in the pathogenesis of neuroinflammation. Dysbiosis and altered intestinal permeability, resulting in bacterial translocation and endotoxemia, are responsible for systemic inflammation, which can spread to brain tissue and trigger neuroinflammation. In addition, metabolites derived from the gut microbiota can act on the central nervous system and facilitate the development of neurological complications, exacerbating clinical manifestations. Thus, strategies aimed at modulating the gut microbiota may be effective therapeutic weapons. In this review, we summarize the current knowledge on the role of the gut-liver-brain axis in the pathogenesis of neurological dysfunction associated with liver disease, with a particular focus on neuroinflammation. In addition, we highlight emerging therapeutic approaches targeting the gut microbiota and inflammation in this clinical setting.
Collapse
Affiliation(s)
- Lucia Giuli
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marta Maestri
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
6
|
Essam RM, Saadawy MA, Gamal M, Abdelsalam RM, El-Sahar AE. Lactoferrin averts neurological and behavioral impairments of thioacetamide-induced hepatic encephalopathy in rats via modulating HGMB1/TLR-4/MyD88/Nrf2 pathway. Neuropharmacology 2023; 236:109575. [PMID: 37201650 DOI: 10.1016/j.neuropharm.2023.109575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Hepatic encephalopathy (HE) is a life-threatening disease caused by acute or chronic liver failure manifested by aberrant CNS changes. In the present study, we aimed to explore the neuroprotective effect of lactoferrin (LF) against thioacetamide (TAA)-induced HE in rats. Animals were divided into four groups, control, LF control, TAA-induced HE, and LF treatment, where LF was administered (300 mg/kg, p.o.) for 15 days in groups 2 and 4 meanwhile, TAA (200 mg/kg, i.p.) was given as two injections on days 13 and 15 for the 3rd and 4th groups. Pretreatment with LF significantly improved liver function observed as a marked decline in serum AST, ALT, and ammonia, together with lowering brain ammonia and enhancing motor coordination as well as cognitive performance. Restoration of brain oxidative status was also noted in the LF-treated group, where lipid peroxidation was hampered, and antioxidant parameters, Nrf2, HO-1, and GSH, were increased. Additionally, LF downregulated HMGB1, TLR-4, MyD88, and NF-κB signaling pathways, together with reducing inflammatory cytokine, TNF-α, and enhancing brain BDNF levels. Moreover, the histopathology of brain and liver tissues revealed that LF alleviated TAA-induced liver and brain deficits. In conclusion, the promising results of LF in attenuating HMGB1/TLR-4/MyD88 signaling highlight its neuroprotective role against HE associated with acute liver injury via ameliorating neuroinflammation, oxidative stress, and stimulating neurogenesis.
Collapse
Affiliation(s)
- Reham M Essam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mariam A Saadawy
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Mahitab Gamal
- Clinical Pharmacy Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rania M Abdelsalam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ayman E El-Sahar
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Sepehrinezhad A, Shahbazi A, Sahab Negah S, Stolze Larsen F. New Insight Into Mechanisms of Hepatic Encephalopathy: An Integrative Analysis Approach to Identify Molecular Markers and Therapeutic Targets. Bioinform Biol Insights 2023; 17:11779322231155068. [PMID: 36814683 PMCID: PMC9940182 DOI: 10.1177/11779322231155068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatic encephalopathy (HE) is a set of complex neurological complications that arise from advanced liver disease. The precise molecular and cellular mechanism of HE is not fully understood. Differentially expressed genes (DEGs) from microarray technologies are powerful approaches to obtain new insight into the pathophysiology of HE. We analyzed microarray data sets of cirrhotic patients with HE from Gene Expression Omnibus to identify DEGs in postmortem cerebral tissues. Consequently, we uploaded significant DEGs into the STRING to specify protein-protein interactions. Cytoscape was used to reconstruct the genetic network and identify hub genes. Target genes were uploaded to different databases to perform comprehensive enrichment analysis and repurpose new therapeutic options for HE. A total of 457 DEGs were identified in 2 data sets totally from 12 cirrhotic patients with HE compared with 12 healthy subjects. We found that 274 genes were upregulated and 183 genes were downregulated. Network analyses on significant DEGs indicated 12 hub genes associated with HE. Enrichment analysis identified fatty acid beta-oxidation, cerebral organic acidurias, and regulation of actin cytoskeleton as main involved pathways associated with upregulated genes; serotonin receptor 2 and ELK-SRF/GATA4 signaling, GPCRs, class A rhodopsin-like, and p38 MAPK signaling pathway were related to downregulated genes. Finally, we predicted 39 probable effective drugs/agents for HE. This study not only confirms main important involved mechanisms of HE but also reveals some yet unknown activated molecular and cellular pathways in human HE. In addition, new targets were identified that could be of value in the future study of HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fin Stolze Larsen
- Department of Hepatology CA-3163, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
8
|
Tahamtan M, Aghaei I, Shabani M, Nazari A, Pooladvand V, Razavinasab M. Peroxisome proliferator-activated receptor-γ doesn't modify altered electrophysiological properties of the CA1 pyramidal neurons in a rat model of hepatic cirrhosis. Metab Brain Dis 2022; 37:2687-2697. [PMID: 35943675 DOI: 10.1007/s11011-022-01057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
Regarding the low quality of life due to the cognitive complications in the patients with hepatic cirrhosis (HC), the goal of this study was to examine the possible neuroprotective effect of pioglitazone (PIO) on the electrophysiological alterations of hippocampus, a major area of cognition, in the experimental model of bile duct ligation (BDL). We used adult male Wistar rats in the present study to perform BDL or sham surgery. Pioglitazone was administered in BDL rats two weeks after the surgery for the next continuous four weeks. The effects of pioglitazone on BDL-induced electrophysiological alterations of the CA1 pyramidal neurons in the hippocampus were evaluated by whole-cell patch clamp recordings. Our findings demonstrated that chronic administration of PIO could not reverse the electrophysiological changes in the CA1 pyramidal neurons of the hippocampus in BDL rats but could improve the hepatic dysfunction.Together, the results of this study suggest that PIO administration cannot counteract altered intrinsic properties of the hippocampal neurons which has been shown recently as an involved mechanism of the cognitive impairments in hepatic encephalopathy (HE).
Collapse
Affiliation(s)
- Mahshid Tahamtan
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iraj Aghaei
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, 76198-13159, Kerman, Iran.
| | - Abbas Nazari
- Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Vahid Pooladvand
- Biochemical Department, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, 76198-13159, Kerman, Iran.
| |
Collapse
|
9
|
Yang B, Sun T, Chen Y, Xiang H, Xiong J, Bao S. The Role of Gut Microbiota in Mice With Bile Duct Ligation-Evoked Cholestatic Liver Disease-Related Cognitive Dysfunction. Front Microbiol 2022; 13:909461. [PMID: 35620109 PMCID: PMC9127770 DOI: 10.3389/fmicb.2022.909461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of Hepatic Encephalopathy (HE) is complex and multifactorial. The development of metagenomics sequencing technology led to show the significant role of gut microbiota in the pathogenesis of cognitive dysfunction, which paved the way for further research in this field. However, it is unknown whether gut microbiota plays a role in bile duct ligation (BDL)-evoked cholestatic liver disease-related cognitive dysfunction. The aim of this investigation is to assess BDL mice induced cognitive dysfunction and meanwhile to delineate the alteration of gut microbiota in cognitive dysfunction mice, which may underline the role of gut microbiota in BDL mice induced cognitive dysfunction. Our study was carried out in male C57BL/6 J mice with bile duct ligation. The liver functions were assessed via different biochemical markers [alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), and total bile acid (TBA)] and a histopathological examination of the liver tissue. We used the novel object recognition test (NORT) to assess cognitive dysfunction. And BDL mice were divided into BDL with cognitive dysfunction (BDL-CD) or BDL without cognitive dysfunction (BDL-NCD groups) by the result of hierarchical cluster analysis of NORT. Then, 16S ribosomal RNA (rRNA) gene sequencing was used to compare the gut bacterial composition between BDL-CD and BDL-NCD groups. According to our results, we concluded that bile duct ligation can significantly change the gut microbiota composition, and Bacteroides fragilis, Bacteroides ovatus V975, and Bacteroides thetaiotaomicron play a vital role in BDL-evoked cholestatic liver disease-related cognitive dysfunction.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianning Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingle Chen
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiting Bao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
10
|
Hussien YA, Mansour DF, Nada SA, Abd El-Rahman SS, Abdelsalam RM, Attia AS, El-Tanbouly DM. Linagliptin attenuates thioacetamide-induced hepatic encephalopathy in rats: Modulation of C/EBP-β and CX3CL1/Fractalkine, neuro-inflammation, oxidative stress and behavioral defects. Life Sci 2022; 295:120378. [DOI: 10.1016/j.lfs.2022.120378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022]
|
11
|
DeMorrow S, Cudalbu C, Davies N, Jayakumar AR, Rose CF. 2021 ISHEN guidelines on animal models of hepatic encephalopathy. Liver Int 2021; 41:1474-1488. [PMID: 33900013 PMCID: PMC9812338 DOI: 10.1111/liv.14911] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
This working group of the International Society of Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) was commissioned to summarize and update current efforts in the development and characterization of animal models of hepatic encephalopathy (HE). As defined in humans, HE in animal models is based on the underlying degree and severity of liver pathology. Although hyperammonemia remains the key focus in the pathogenesis of HE, other factors associated with HE have been identified, together with recommended animal models, to help explore the pathogenesis and pathophysiological mechanisms of HE. While numerous methods to induce liver failure and disease exist, less have been characterized with neurological and neurobehavioural impairments. Moreover, there still remains a paucity of adequate animal models of Type C HE induced by alcohol, viruses and non-alcoholic fatty liver disease; the most common etiologies of chronic liver disease.
Collapse
Affiliation(s)
- S DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Texas, USA; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Texas, USA; Research division, Central Texas Veterans Healthcare System, Temple Texas USA.,Correspondance: Sharon DeMorrow, PhD, ; tel: +1-512-495-5779
| | - C Cudalbu
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - N Davies
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - AR Jayakumar
- General Medical Research, Neuropathology Section, R&D Service and South Florida VA Foundation for Research and Education Inc; Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami FL, USA
| | - CF Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| |
Collapse
|
12
|
Zhang Y, Kang JD, Zhao D, Ghosh SS, Wang Y, Tai Y, Gonzalez-Maeso J, Sikaroodi M, Gillevet PM, Lippman HR, Hylemon PB, Zhou H, Bajaj JS. Hepatic Branch Vagotomy Modulates the Gut-Liver-Brain Axis in Murine Cirrhosis. Front Physiol 2021; 12:702646. [PMID: 34248683 PMCID: PMC8268007 DOI: 10.3389/fphys.2021.702646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cirrhosis and hepatic encephalopathy (HE) are linked with an altered gut-liver-brain axis, however, the relative contribution of hepatic vagal innervation is unclear. We aimed to determine the impact of hepatic vagotomy on the gut microbiome, brain, and liver in murine cirrhosis. METHODS 10-15-week-old male C57BL/6 mice with and without hepatic vagotomy underwent carbon tetrachloride (CCl4) gavage for 8 weeks. Frontal cortex [inflammation, glial/microglial activation, BDNF (brain-derived neurotrophic factor)], liver [histology including inflammation and steatosis, fatty acid synthesis (sterol-responsive binding protein-1) SREBP-1, insulin-induced gene-2 (Insig2) and BDNF], and colonic mucosal microbiota (16srRNA microbial sequencing) were evaluated on sacrifice. Conventional mice with and without cirrhosis were compared to vagotomized counterparts. RESULTS Conventional control vs. cirrhosis: Cirrhosis resulted in dysbiosis, hepatic/neuro-inflammation with glial/microglial activation, and low brain BDNF vs. controls. Conventional control vs. vagotomy controls: Vagotomized control mice had a lower colonic dysbiosis than conventional mice but the rest of the hepatic/brain parameters were similar. Conventional cirrhosis vs. vagotomized cirrhosis: After vagotomy + cirrhosis, we found lower dysbiosis but continuing neuroinflammation in the absence of glial/microglial activation vs. conventional cirrhosis. Vagotomy + Cirrhosis groups showed higher hepatic steatosis due to higher SREBP1 and low Insig2 protein and altered activation of key genes involved in hepatic lipid metabolism and inflammation. BDNF levels in the brain were higher but low in the liver in vagotomy + cirrhosis, likely a protective mechanism. CONCLUSIONS Hepatic vagal innervation affects the gut microbial composition, hepatic inflammation and steatosis, and cortical inflammation and BDNF expression and could be a critical modulator of the gut-liver-brain axis with consequences for HE development.
Collapse
Affiliation(s)
- Yuan Zhang
- Division of Microbiology and Immunology, Central Virginia Veterans Health Care System, Virginia Commonwealth University, Richmond, VA, United States
| | - Jason D. Kang
- Division of Microbiology and Immunology, Central Virginia Veterans Health Care System, Virginia Commonwealth University, Richmond, VA, United States
| | - Derrick Zhao
- Division of Microbiology and Immunology, Central Virginia Veterans Health Care System, Virginia Commonwealth University, Richmond, VA, United States
| | - Siddartha S. Ghosh
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA, United States
| | - Yanyan Wang
- Division of Microbiology and Immunology, Central Virginia Veterans Health Care System, Virginia Commonwealth University, Richmond, VA, United States
| | - Yunling Tai
- Division of Microbiology and Immunology, Central Virginia Veterans Health Care System, Virginia Commonwealth University, Richmond, VA, United States
| | - Javier Gonzalez-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, VA, United States
| | - Patrick M. Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, VA, United States
| | - H. Robert Lippman
- Department of Pathology, Central Virginia Veterans Health Care System, Richmond, VA, United States
| | - Phillip B. Hylemon
- Division of Microbiology and Immunology, Central Virginia Veterans Health Care System, Virginia Commonwealth University, Richmond, VA, United States
| | - Huiping Zhou
- Division of Microbiology and Immunology, Central Virginia Veterans Health Care System, Virginia Commonwealth University, Richmond, VA, United States
| | - Jasmohan S. Bajaj
- Division of Gastroenterology, Hepatology, and Nutrition, Central Virginia Veterans Health Care System, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
13
|
Ochoa-Sanchez R, Tamnanloo F, Rose CF. Hepatic Encephalopathy: From Metabolic to Neurodegenerative. Neurochem Res 2021; 46:2612-2625. [PMID: 34129161 DOI: 10.1007/s11064-021-03372-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome of both acute and chronic liver disease. As a metabolic disorder, HE is considered to be reversible and therefore is expected to resolve following the replacement of the diseased liver with a healthy liver. However, persisting neurological complications are observed in up to 47% of transplanted patients. Several retrospective studies have shown that patients with a history of HE, particularly overt-HE, had persistent neurological complications even after liver transplantation (LT). These enduring neurological conditions significantly affect patient's quality of life and continue to add to the economic burden of chronic liver disease on health care systems. This review discusses the journey of the brain through the progression of liver disease, entering the invasive surgical procedure of LT and the conditions associated with the post-transplant period. In particular, it will discuss the vulnerability of the HE brain to peri-operative factors and post-LT conditions which may explain non-resolved neurological impairment following LT. In addition, the review will provide evidence; (i) supporting overt-HE impacts on neurological complications post-LT; (ii) that overt-HE leads to permanent neuronal injury and (iii) the pathophysiological role of ammonia toxicity on astrocyte and neuronal injury/damage. Together, these findings will provide new insights on the underlying mechanisms leading to neurological complications post-LT.
Collapse
Affiliation(s)
- Rafael Ochoa-Sanchez
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, 900, rue Saint-Denis Pavillon R, R08.422, Montreal, QC, H2X-0A9, Canada
| | - Farzaneh Tamnanloo
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, 900, rue Saint-Denis Pavillon R, R08.422, Montreal, QC, H2X-0A9, Canada
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, 900, rue Saint-Denis Pavillon R, R08.422, Montreal, QC, H2X-0A9, Canada.
| |
Collapse
|
14
|
Brain-derived neurotrophic factor as a potential diagnostic marker in minimal hepatic encephalopathy. Clin Exp Hepatol 2021; 7:117-124. [PMID: 34027124 PMCID: PMC8122095 DOI: 10.5114/ceh.2021.103242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Minimal hepatic encephalopathy (MHE) is a common complication of liver cirrhosis not only leading to a decrease in the quality of life, but also predicting development of overt encephalopathy. The diagnosis of MHE usually relies on a combination of neuropsychological tests, while robust serum biomarkers are lacking. We aimed to assess serum concentrations of brain-derived neurotrophic factor (BDNF) in MHE patients. Material and methods Serum BDNF was assessed in 78 patients with liver cirrhosis (53 male, median age 55 years) and 40 healthy individuals. 43 subjects underwent extensive evaluation for MHE by psychometric hepatic encephalopathy score (PHES) and inhibitory control test (ICT) or critical flicker frequency (CFF). Results Serum BDNF was twofold lower in liver cirrhosis compared to healthy subjects [13.6 (7.8-22.6) vs. 33.0 (24.1-40.7) ng/ml, p < 0.001] and its decrease reflected a degree of liver insufficiency assessed by model for end-stage liver disease (MELD). BDNF showed a negative correlation with bilirubin (R = –0.35, p = 0.005) and international normalized ratio (INR) (R = –0.37, p = 0.003), and positive with platelets (PLT) (R = 0.36, p = 0.004), while no associations with age, sex, body mass index (BMI), waist-hip ratio (WHR), creatinine and ammonia were noted. Importantly, subjects with a diagnosis of MHE by at least two modalities showed the lowest levels of BDNF [10.9 (2.5-14.4) vs. 19.9 (9.3-29.4) ng/ml, p < 0.01]. Patients with self-reported sleep disturbances had significantly lower serum BDNF [13.0 (2.5-23.4) vs. 20.0 (8.4-31.3) ng/ml, p = 0.04]. Conclusions The lowest serum BDNF concentration was noted in patients with MHE and sleep disturbances, which suggests a role in pathophysiology of hepatic encephalopathy but also as a potential biomarker.
Collapse
|
15
|
Girard M, Carrier P, Loustaud-Ratti V, Nubukpo P. BDNF levels and liver stiffness in subjects with alcohol use disorder: Evaluation after alcohol withdrawal. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2020; 47:191-198. [PMID: 33176105 DOI: 10.1080/00952990.2020.1833211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Brain-derived neurotrophic factor (BDNF) plays a key role in the processes of withdrawal and addiction in alcohol use disorder (AUD), and is also involved in liver homeostasis. The role of BDNF in liver damage and its link with liver stiffness are not known. We hypothesize that serum BDNF levels are linked to changes in hepatic elasticity, both of which depend on variations in alcohol consumption.Objectives: We aimed to study the evolution of BDNF levels and changes in the liver stiffness (LS) of AUD subjects, within two months following withdrawal.Methods: We measured LS by FibroScan® (as an indicator of the degree of liver fibrosis), gamma glutamyl transferase (GGT) levels (as a nonspecific but sensitive marker of liver status) and serum BDNF levels of 62 alcohol-dependent subjects without previously identified liver complications. Measures were obtained at the time of withdrawal (M0) and two months later (M2). Results: BDNF levels increased after alcohol withdrawal and small variations of LS were observed. BDNF values increased significantly according to fibrosis stages measured by LS (p = .028 at M0), and were predicted by GGT levels in a regression model (p = .007 at M0 and p = .003 at M2).Conclusion: In AUD, BDNF levels were associated with measured LS when divided into fibrosis risk categories. Changes in LS and BDNF levels after alcohol withdrawal may be related to changes in homeostatic mechanisms, in addition to those of liver status.
Collapse
Affiliation(s)
- Murielle Girard
- Unité de Recherche et de Neurostimulation, Centre Hospitalier Esquirol, Limoges, France.,NSERM U1094, Neuroépidémiologie Tropicale, Limoges, France
| | - Paul Carrier
- Centre Hospitalier Esquirol, Pôle Universitaire d'Addictologie, Limoges, France.,Centre Hospitalier Universitaire Dupuytren, Fédération d'Hépatologie, Service d'Hépato-Gastroentérologie, Limoges, France
| | - Véronique Loustaud-Ratti
- Centre Hospitalier Universitaire Dupuytren, Fédération d'Hépatologie, Service d'Hépato-Gastroentérologie, Limoges, France.,Faculté de Médecine, UMR/INSERM 1248, Limoges, France
| | - Philippe Nubukpo
- Unité de Recherche et de Neurostimulation, Centre Hospitalier Esquirol, Limoges, France.,NSERM U1094, Neuroépidémiologie Tropicale, Limoges, France.,Centre Hospitalier Esquirol, Pôle Universitaire d'Addictologie, Limoges, France
| |
Collapse
|
16
|
Hachisu M, Hashizume M, Kawai H, Hirano H, Kojima M, Fujiwara Y, Obuchi S, Kogo M, Ohbayashi M, Koyama N, Takenaka M, Ihara K. Finding prodromal frailty in a community-dwelling healthy older cohort by survey of BDNF or hand grip strength classified by BMI. ACTA ACUST UNITED AC 2020. [DOI: 10.31491/apt.2020.09.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Wang L, Ren B, Hui Y, Chu C, Zhao Z, Zhang Y, Zhao B, Shi R, Ren J, Dai X, Liu Z, Liu X. Methionine Restriction Regulates Cognitive Function in High-Fat Diet-Fed Mice: Roles of Diurnal Rhythms of SCFAs Producing- and Inflammation-Related Microbes. Mol Nutr Food Res 2020; 64:e2000190. [PMID: 32729963 DOI: 10.1002/mnfr.202000190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/15/2020] [Indexed: 12/11/2022]
Abstract
SCOPE Methionine restriction (MR) is known to potently alleviate inflammation and improve gut microbiome in obese mice. The gut microbiome exhibits diurnal rhythmicity in composition and function, and this, in turn, drives oscillations in host metabolism. High-fat diet (HFD) strongly altered microbiome diurnal rhythmicity, however, the role of microbiome diurnal rhythmicity in mediating the improvement effects of MR on obesity-related metabolic disorders remains unclear. METHODS AND RESULTS 10-week-old male C57BL/6J mice are fed a low-fat diet or HFD for 4 weeks, followed with a full diet (0.86% methionine, w/w) or a methionine-restricted diet (0.17% methionine, w/w) for 8 weeks. Analyzing microbiome diurnal rhythmicity at six time points, the results show that HFD disrupts the cyclical fluctuations of the gut microbiome in mice. MR partially restores these cyclical fluctuations, which lead to time-specifically enhance the abundance of short-chain fatty acids producing bacteria, increases the acetate and butyric, and dampens the oscillation of inflammation-related Desulfovibrionales and Staphylococcaceae over the course of 1 day. Notably, MR, which protects against systemic inflammation, influences brain function and synaptic plasticity. CONCLUSION MR could serve as a potential nutritional intervention for attenuating obesity-induced cognitive impairments by balancing the circadian rhythm in microbiome-gut-brain homeostasis.
Collapse
Affiliation(s)
- Luanfeng Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Hui
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China.,Department of Food Science, University of Copenhagen, Copenhagen, 1958, Denmark
| | - Chuanqi Chu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenting Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Renjie Shi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junli Ren
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
18
|
Bobermin LD, Roppa RHA, Gonçalves CA, Quincozes-Santos A. Ammonia-Induced Glial-Inflammaging. Mol Neurobiol 2020; 57:3552-3567. [DOI: 10.1007/s12035-020-01985-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
19
|
Fan L, Xiang B, Xiong J, He Z, Xiang H. Use of viruses for interrogating viscera-specific projections in central nervous system. J Neurosci Methods 2020; 341:108757. [PMID: 32371062 DOI: 10.1016/j.jneumeth.2020.108757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Each internal organ may perform many different functions under central regulation, yet how these processes are coordinated is poorly understood. The last three decades have witnessed a renaissance in tract tracing with genetically engineered strains of viruses that rapidly interrogate viscera-specific projections in the CNS. The application of novel methods to study cell type-specific projections through trans-synaptically transmitted virus 'label' highlights projections exclusively originating from neurons expressing a very specific molecular phenotype. This has opened the door to neuroanatomical studies interrogating organ-specific projections in the CNS at an unprecedented scale. In this contribution to the Special Issue we present an overview of the present state and of future opportunities in charting viscera-brain specific connectivity and in linking brain circuits to internal organ function.
Collapse
Affiliation(s)
- Li Fan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Boqi Xiang
- University of California-Davis, Davis, CA 95616, USA
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Zhigang He
- Department of Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, PR China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, PR China.
| |
Collapse
|
20
|
Celikbilek A, Celikbilek M. Cognitive impairment in patients with nonalcoholic fatty liver disease with liver fibrosis. Liver Int 2020; 40:1239. [PMID: 31677320 DOI: 10.1111/liv.14288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Asuman Celikbilek
- Department of Neurology, Kudret International Hospital, Ankara, Turkey
| | | |
Collapse
|
21
|
Jefferson B, Ali M, Grant S, Frampton G, Ploof M, Andry S, DeMorrow S, McMillin M. Thrombospondin-1 Exacerbates Acute Liver Failure and Hepatic Encephalopathy Pathology in Mice by Activating Transforming Growth Factor β1. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:347-357. [PMID: 31734229 PMCID: PMC7013272 DOI: 10.1016/j.ajpath.2019.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022]
Abstract
Severe hepatic insults can lead to acute liver failure and hepatic encephalopathy (HE). Transforming growth factor β1 (TGFβ1) has been shown to contribute to HE during acute liver failure; however, TGFβ1 must be activated to bind its receptor and generate downstream effects. One protein that can activate TGFβ1 is thrombospondin-1 (TSP-1). Therefore, the aim of this study was to assess TSP-1 during acute liver failure and HE pathogenesis. C57Bl/6 or TSP-1 knockout (TSP-1-/-) mice were injected with azoxymethane (AOM) to induce acute liver failure and HE. Liver damage, neurologic decline, and molecular analyses of TSP-1 and TGFβ1 signaling were performed. AOM-treated mice had increased TSP-1 and TGFβ1 mRNA and protein expression in the liver. TSP-1-/- mice administered AOM had reduced liver injury as assessed by histology and serum transaminase levels compared with C57Bl/6 AOM-treated mice. TSP-1-/- mice treated with AOM had reduced TGFβ1 signaling that was associated with less hepatic cell death as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and cleaved caspase 3 expression. TSP-1-/- AOM-treated mice had a reduced rate of neurologic decline, less cerebral edema, and a decrease in microglia activation in comparison with C57Bl/6 mice treated with AOM. Taken together, TSP-1 is an activator of TGFβ1 signaling during AOM-induced acute liver failure and contributes to both liver pathology and HE progression.
Collapse
Affiliation(s)
| | - Malaika Ali
- Central Texas Veterans Health Care System, Austin, Texas
| | - Stephanie Grant
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, Texas; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Gabriel Frampton
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, Texas; Department of Internal Medicine, The University of Texas at Austin Dell Medical School, Austin, Texas
| | - Michaela Ploof
- Central Texas Veterans Health Care System, Austin, Texas
| | - Sarah Andry
- Department of Internal Medicine, Baylor Scott & White Health, Temple, Texas
| | - Sharon DeMorrow
- Central Texas Veterans Health Care System, Austin, Texas; Department of Medical Physiology, Texas A&M University Health Science Center, Temple, Texas; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas; Department of Internal Medicine, The University of Texas at Austin Dell Medical School, Austin, Texas
| | - Matthew McMillin
- Central Texas Veterans Health Care System, Austin, Texas; Department of Internal Medicine, The University of Texas at Austin Dell Medical School, Austin, Texas.
| |
Collapse
|
22
|
Wang K, Chen Q, Wu N, Li Y, Zhang R, Wang J, Gong D, Zou X, Liu C, Chen J. Berberine Ameliorates Spatial Learning Memory Impairment and Modulates Cholinergic Anti-Inflammatory Pathway in Diabetic Rats. Front Pharmacol 2019; 10:1003. [PMID: 31551793 PMCID: PMC6743342 DOI: 10.3389/fphar.2019.01003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Cognitive impairment caused by diabetes has been recognized. Berberine is well known for its resistance to peripheral lesions, but it is rarely used for the treatment of spatial learning and memory caused by diabetes. This study explored the mechanism of berberine to alleviate cognitive impairment via the cholinergic anti-inflammatory and insulin signaling pathways. Methods: Morris water maze was used to appraise spatial learning and memory. Positron-emission tomography (PET) imaging was adopted to detect the transport of glucose, and blood/cerebrospinal fluid (CSF) glucose was checked using commercial blood glucose meter. Insulin level was measured by ELISA kit and β-Amyloid (Aβ) formation was observed by Congo red staining. Western-blot was performed to appraise protein expression. Results: We found that berberine rectified some aberrant changes in signal molecules concerning inflammation, and cholinergic and insulin signaling pathways in the hippocampus. Furthermore, CSF/blood glucose, inflammatory response or acetyl cholinesterase enzyme (AChE) activity were reduced by berberine. Additionally, acetylcholine levels were enhanced after berberine treatment in diabetic rats. Finally, Aβ formation in diabetic hippocampus was inhibited and spatial learning memory was ameliorated by berberine. Discussion: In conclusion, berberine clears Aβ deposit and consequently ameliorates spatial learning memory impairment via the activation of the cholinergic anti-inflammatory and insulin signaling pathways in diabetic rats.
Collapse
Affiliation(s)
- Kaifu Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Ninghua Wu
- Basic Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yong Li
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Jiawen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Di Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Liu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Kumar M, Mahajan A, Sapehia D, Kaur J, Sandhir R. Effects of altered maternal folate and vitamin B 12 on neurobehavioral outcomes in F1 male mice. Brain Res Bull 2019; 153:93-101. [PMID: 31377444 DOI: 10.1016/j.brainresbull.2019.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
Maternal folate and vitamin B12 status during pregnancy may influence development of central nervous system (CNS) in the offspring. Very little attention has been paid to understand the combined effects of both the vitamins during pregnancy. The present study was designed to evaluate the biochemical and behavioral outcomes following alterations in folate and vitamin B12 levels in C57BL/6 mice. The female mice were fed with different combinations of folate and vitamin B12 whereas; males were fed with normal diet for 4 weeks. The mice were mated and the pregnant mice received the same diets as before pregnancy. The F1 male mice were further continued on maternal diet for 6 weeks following neurobehavioral and biochemical assessment. The body weight of the F1 male mice was significantly decreased in the mice that received folate and vitamin B12 deficient diet. Altered cognitive functions were observed in the folate and B12 deficient F1 male mice as assessed by Morris water maze and novel object recognition tests. Spontaneous locomotor activity was decreased in F1 male mice fed with folate and B12 deficient diets. Elevated homocysteine levels and decreased hydrogen sulfide levels were also observed in the brain of F1 male mice on folate and B12 deficient diets. However, GSH and GSSG levels were increased in the brain of the animals supplemented with folate deficient diet with different combinations of B12. The study suggests that exposure of female mice to folate and vitamin B12 deficiency during pregnancy effects in-utero development of fetus, which further leads to behavioral anomalies in adult life and is sufficient to cause impaired cognitive behavior in the subsequent generation. Thus, elucidating the role and importance of maternal dietary folate and B12 ratio during pregnancy.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India
| | - Aatish Mahajan
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Divika Sapehia
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
24
|
Cabrera‐Pastor A, Llansola M, Montoliu C, Malaguarnera M, Balzano T, Taoro‐Gonzalez L, García‐García R, Mangas‐Losada A, Izquierdo‐Altarejos P, Arenas YM, Leone P, Felipo V. Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: Underlying mechanisms and therapeutic implications. Acta Physiol (Oxf) 2019; 226:e13270. [PMID: 30830722 DOI: 10.1111/apha.13270] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Several million patients with liver cirrhosis suffer minimal hepatic encephalopathy (MHE), with mild cognitive and coordination impairments that reduce their quality of life and life span. Hyperammonaemia and peripheral inflammation act synergistically to induce these neurological alterations. We propose that MHE appearance is because of the changes in peripheral immune system, which are transmitted to brain, leading to neuroinflammation that alters neurotransmission leading to cognitive and motor alterations. We summarize studies showing that MHE in cirrhotic patients is associated with alterations in the immune system and that patients died with HE show neuroinflammation in cerebellum, with microglial and astrocytic activation and Purkinje cell loss. We also summarize studies in animal models of MHE on the role of peripheral inflammation in neuroinflammation induction, how neuroinflammation alters neurotransmission and how this leads to cognitive and motor alterations. These studies identify therapeutic targets and treatments that improve cognitive and motor function. Rats with MHE show neuroinflammation in hippocampus and altered NMDA and AMPA receptor membrane expression, which impairs spatial learning and memory. Neuroinflammation in cerebellum is associated with altered GABA transporters and extracellular GABA, which impair motor coordination and learning in a Y maze. These alterations are reversed by treatments that reduce peripheral inflammation (anti-TNFα, ibuprofen), neuroinflammation (sulphoraphane, p38 inhibitors), GABAergic tone (bicuculline, pregnenolone sulphate) or increase extracellular cGMP (sildenafil or cGMP). The mechanisms identified would also occur in other chronic diseases associated with inflammation, aging and some mental and neurodegenerative diseases. Treatments that improve MHE may also be beneficial to treat these pathologies.
Collapse
Affiliation(s)
- Andrea Cabrera‐Pastor
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
- Fundacion Investigacion Hospital Clinico Valencia, INCLIVA Valencia Spain
| | - Marta Llansola
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Carmina Montoliu
- Fundacion Investigacion Hospital Clinico Valencia, INCLIVA Valencia Spain
| | - Michele Malaguarnera
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Lucas Taoro‐Gonzalez
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Raquel García‐García
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Alba Mangas‐Losada
- Fundacion Investigacion Hospital Clinico Valencia, INCLIVA Valencia Spain
| | | | - Yaiza M. Arenas
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Paola Leone
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Vicente Felipo
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| |
Collapse
|
25
|
Willeman MN, Chawla MK, Zempare MA, Biwer LA, Hoang LT, Uprety AR, Fitzhugh MC, De Both M, Coleman PD, Trouard TP, Alexander GE, Mitchell KD, Barnes CA, Hale TM, Huentelman M. Gradual hypertension induction in middle-aged Cyp1a1-Ren2 transgenic rats produces significant impairments in spatial learning. Physiol Rep 2019; 7:e14010. [PMID: 30916484 PMCID: PMC6436186 DOI: 10.14814/phy2.14010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Hypertension is a major health concern in the developed world, and its prevalence increases with advancing age. The impact of hypertension on the function of the renal and cardiovascular systems is well studied; however, its influence on the brain regions important for cognition has garnered less attention. We utilized the Cyp1a1-Ren2 xenobiotic-inducible transgenic rat model to mimic both the age of onset and rate of induction of hypertension observed in humans. Male, 15-month-old transgenic rats were fed 0.15% indole-3-carbinol (I3C) chow to slowly induce renin-dependent hypertension over a 6-week period. Systolic blood pressure significantly increased, eventually reaching 200 mmHg by the end of the study period. In contrast, transgenic rats fed a control diet without I3C did not show significant changes in blood pressure (145 mmHg at the end of study). Hypertension was associated with cardiac, aortic, and renal hypertrophy as well as increased collagen deposition in the left ventricle and kidney of the I3C-treated rats. Additionally, rats with hypertension showed reduced savings from prior spatial memory training when tested on the hippocampus-dependent Morris swim task. Motor and sensory functions were found to be unaffected by induction of hypertension. Taken together, these data indicate a profound effect of hypertension not only on the cardiovascular-renal axis but also on brain systems critically important for learning and memory. Future use of this model and approach may empower a more accurate investigation of the influence of aging on the systems responsible for cardiovascular, renal, and neurological health.
Collapse
Affiliation(s)
- Mari N. Willeman
- Evelyn F. McKnight Brain InstituteUniversity of ArizonaTucsonArizona
- Neurogenomics DivisionThe Translational Genomics Research Institute (TGen)PhoenixArizona
- Arizona Alzheimer's ConsortiumPhoenixArizona
| | - Monica K. Chawla
- Evelyn F. McKnight Brain InstituteUniversity of ArizonaTucsonArizona
- Arizona Alzheimer's ConsortiumPhoenixArizona
| | - Marc A. Zempare
- Evelyn F. McKnight Brain InstituteUniversity of ArizonaTucsonArizona
- Arizona Alzheimer's ConsortiumPhoenixArizona
| | - Lauren A Biwer
- Department of Basic Medical SciencesUniversity of ArizonaCollege of Medicine – PhoenixPhoenixArizona
| | - Lan T. Hoang
- Evelyn F. McKnight Brain InstituteUniversity of ArizonaTucsonArizona
- Arizona Alzheimer's ConsortiumPhoenixArizona
| | - Ajay R. Uprety
- Evelyn F. McKnight Brain InstituteUniversity of ArizonaTucsonArizona
- Arizona Alzheimer's ConsortiumPhoenixArizona
| | - Megan C. Fitzhugh
- Evelyn F. McKnight Brain InstituteUniversity of ArizonaTucsonArizona
- Arizona Alzheimer's ConsortiumPhoenixArizona
- Department of PsychologyUniversity of ArizonaTucsonArizona
| | - Matthew De Both
- Neurogenomics DivisionThe Translational Genomics Research Institute (TGen)PhoenixArizona
- Arizona Alzheimer's ConsortiumPhoenixArizona
| | - Paul D. Coleman
- Arizona Alzheimer's ConsortiumPhoenixArizona
- Center for Neurodegenerative Disease ResearchBiodesign InstituteArizona State UniversityTempeArizona
| | - Theodore P. Trouard
- Evelyn F. McKnight Brain InstituteUniversity of ArizonaTucsonArizona
- Department of Biomedical Engineering and Medical ImagingUniversity of ArizonaTucsonArizona
| | - Gene E. Alexander
- Evelyn F. McKnight Brain InstituteUniversity of ArizonaTucsonArizona
- Arizona Alzheimer's ConsortiumPhoenixArizona
- Department of PsychologyUniversity of ArizonaTucsonArizona
- Neuroscience and Physiological Sciences Graduate Interdisciplinary ProgramsUniversity of ArizonaTucsonArizona
| | - Kenneth D. Mitchell
- Department of PhysiologyTulane University Health Sciences CenterNew OrleansLos Angeles
| | - Carol A. Barnes
- Evelyn F. McKnight Brain InstituteUniversity of ArizonaTucsonArizona
- Arizona Alzheimer's ConsortiumPhoenixArizona
- Department of PsychologyUniversity of ArizonaTucsonArizona
| | - Taben M. Hale
- Department of Basic Medical SciencesUniversity of ArizonaCollege of Medicine – PhoenixPhoenixArizona
| | - Matthew Huentelman
- Evelyn F. McKnight Brain InstituteUniversity of ArizonaTucsonArizona
- Neurogenomics DivisionThe Translational Genomics Research Institute (TGen)PhoenixArizona
- Arizona Alzheimer's ConsortiumPhoenixArizona
| |
Collapse
|
26
|
Brichacek AL, Brown CM. Alkaline phosphatase: a potential biomarker for stroke and implications for treatment. Metab Brain Dis 2019; 34:3-19. [PMID: 30284677 PMCID: PMC6351214 DOI: 10.1007/s11011-018-0322-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
Abstract
Stroke is the fifth leading cause of death in the U.S., with more than 100,000 deaths annually. There are a multitude of risks associated with stroke, including aging, cardiovascular disease, hypertension, Alzheimer's disease (AD), and immune suppression. One of the many challenges, which has so far proven to be unsuccessful, is the identification of a cost-effective diagnostic or prognostic biomarker for stroke. Alkaline phosphatase (AP), an enzyme first discovered in the 1920s, has been evaluated as a potential biomarker in many disorders, including many of the co-morbidities associated with stroke. This review will examine the basic biology of AP, and its most common isoenzyme, tissue nonspecific alkaline phosphatase (TNAP), with a specific focus on the central nervous system. It examines the preclinical and clinical evidence which supports a potential role for AP in stroke and suggests potential mechanism(s) of action for AP isoenzymes in stroke. Lastly, the review speculates on the clinical utility of AP isoenzymes as potential blood biomarkers for stroke or as AP-targeted treatments for stroke patients.
Collapse
Affiliation(s)
- Allison L Brichacek
- Department of Microbiology, Immunology, and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9177, Morgantown, WV, 26506, USA
- Department of Neuroscience, Emergency Medicine, and Microbiology, Immunology and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9303, Morgantown, WV, 26506, USA
| | - Candice M Brown
- Department of Microbiology, Immunology, and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9177, Morgantown, WV, 26506, USA.
- Department of Neuroscience, Emergency Medicine, and Microbiology, Immunology and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9303, Morgantown, WV, 26506, USA.
| |
Collapse
|
27
|
Fiore NT, Austin PJ. Glial-cytokine-neuronal Adaptations in the Ventral Hippocampus of Rats with Affective Behavioral Changes Following Peripheral Nerve Injury. Neuroscience 2018; 390:119-140. [DOI: 10.1016/j.neuroscience.2018.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
|
28
|
Luo S, Kong X, Wu JR, Wang CY, Tian Y, Zheng G, Su YY, Lu GM, Zhang LJ, Yang GF. Neuroinflammation in acute hepatic encephalopathy rats: imaging and therapeutic effectiveness evaluation using 11C-PK11195 and 18F-DPA-714 micro-positron emission tomography. Metab Brain Dis 2018; 33:1733-1742. [PMID: 29968208 DOI: 10.1007/s11011-018-0282-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
Neuroinflammation has an important influence in pathogenesis of acute hepatic encephalopathy (AHE). 11C-PK11195 and 18F-DPA-714 targeted to translocator protein (TSPO) have potential application in positron emission tomography (PET) as a molecular probe of neuroinflammation. The aim of this study was to compare these two radiotracers and their effectiveness in detecting neuroinflammation for the imaging of AHE rat models. Furthermore, using the new radiotracer 18F-DPA-714, we analyzed the effectiveness of therapeutic treatment for neuroinflammation in AHE. First, we performed a comparative study of 11C-PK1195 and 18F-DPA-714 PET to image neuroinflammation in AHE rats induced by thioacetamide. Twenty-four rats were divided into either control group (n = 12) or AHE group (n = 12). Next, each group was subdivided depending on the radiotracer used during PET imaging (n = 6). Radiotracer uptake values encompassing the whole brain were compared. Lastly, we used the optimized tracer to monitor anti-neuroinflammation effects in AHE-induced rats. Forty-six rats were divided into four groups: [normal saline (NS) group (n = 13), minocycline (MINO) group (n = 11), dexamethasone (DEXA) group (n = 11), MINO+DEXA group (n = 11)]. 18F-DPA-714 PET was performed and the uptake values were calculated. The rotarod test, biochemical indices, and histopathological examinations were quantitatively measured and compared. AHE rats showed reduced motor ability, elevated ammonia levels, and higher liver function indices (all P < 0.05) with unchanged inflammatory factors (all P > 0.05), compared to control group. Both 11C-PK11195 and 18F-DPA-714 PET can detect neuroinflammation of AHE rats. Behavioral studies showed that MINO and/or DEXA improved the motor ability in AHE rats (P < 0.05); however, no differences were found for liver function or inflammatory markers among the four groups (all P > 0.05). The average uptake values of whole brain and multiple brain areas in the MINO+DEXA group were lower compared to all other groups (all P < 0.05), which was demonstrated by CD11b stains of microglia. Our results show that both 11C-PK11195 and 18F-DPA-714 PET can detect neuroinflammation in AHE-induced rat models. Additionally, the combined use of minocycline and dexamethasone can effectively inhibit neuroinflammation in AHE-induced rats, which can be sensitively monitored by 18F-DPA-714 PET.
Collapse
Affiliation(s)
- Song Luo
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xiang Kong
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Jin Rong Wu
- Department of Pathology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Chun Yan Wang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Ying Tian
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Gang Zheng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Yun Yan Su
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| | - Gui Fen Yang
- Department of Nuclear Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|