1
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
2
|
Wen Q, Zha F, Shan L, Zhang S, Xiao P, Zhang C, Yu H, Wang Y. Electroacupuncture attenuates middle cerebral artery occlusion-induced learning and memory impairment by regulating microglial polarization in hippocampus. Int J Neurosci 2024:1-13. [PMID: 38315119 DOI: 10.1080/00207454.2024.2313664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND As a traditional medical therapy, electroacupuncture (EA) has been demonstrated to have beneficial effects on ischemic stroke-induced cognitive impairment. However, the underlying mechanism is largely unclear. METHODS Adult rats received occlusion of the middle cerebral artery and reperfusion (MCAO/R) to establish the ischemic stroke model. Morris water maze test was performed following EA stimulation at the GV20, PC6, and KI1 acupoints in rats to test the learning and memory ability. Western blot, immunofluorescent staining, and enzyme-linked immunosorbent assay were conducted to assess the cellular and molecular mechanisms. RESULTS EA stimulation attenuated neurological deficits. In the Morris water maze test, EA treatment ameliorated the MCAO/R-induced learning and memory impairment. Moreover, we observed that MCAO/R induced microglial activation and polarization in the ischemic hippocampus, whereas, EA treatment dampened microglial activation and inhibited M1 microglial polarization but enhanced M2 microglial polarization. EA treatment inhibited the increased expression of proinflammatory cytokines and enhanced the increased expression of anti-inflammatory cytokines. Finally, we found that EA treatment dampened microglial p38 mitogen-activated protein kinase (MAPK) phosphorylation. CONCLUSION Collectively, our data suggested that EA treatment ameliorated cognitive impairment induced by MCAO/R and the underlying mechanism may be p38-mediated microglia polarization and neuroinflammation.
Collapse
Affiliation(s)
- Qiong Wen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Fubing Zha
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Linlin Shan
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shaohua Zhang
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Peng Xiao
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Chunxia Zhang
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Haibo Yu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yulong Wang
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
3
|
Xiong Y, Cui MY, Li ZL, Fu YQ, Zheng Y, Yu Y, Zhang C, Huang XY, Chen BH. ULK1 confers neuroprotection by regulating microglial/macrophages activation after ischemic stroke. Int Immunopharmacol 2024; 127:111379. [PMID: 38141409 DOI: 10.1016/j.intimp.2023.111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Microglial activation and autophagy play a critical role in the progression of ischemic stroke and contribute to the regulation of neuroinflammation. Unc-51-like kinase 1 (ULK1) is the primary autophagy kinase involved in autophagosome formation. However, the impact of ULK1 on neuroprotection and microglial activation after ischemic stroke remains unclear. In this study, we established a photothrombotic stroke model, and administered SBI-0206965 (SBI), an ULK1 inhibitor, and LYN-1604 hydrochloride (LYN), an ULK1 agonist, to modulate ULK1 activity in vivo. We assessed sensorimotor deficits, neuronal apoptosis, and microglial/macrophage activation to evaluate the neurofunctional outcome. Immunofluorescence results revealed ULK1 was primarily localized in the microglia of the infarct area following ischemia. Upregulating ULK1 through LYN treatment significantly reduced infarct volume, improved motor function, promoted the increase of anti-inflammatory microglia. In conclusion, ULK1 facilitated neuronal repair and promoted the formation of anti-inflammatory microglia pathway after ischemic injury.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mai Yin Cui
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Department of Rehabilitation and Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310051, Zhejiang, China
| | - Zhuo Li Li
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yan Qiong Fu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yu Zheng
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yi Yu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chan Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xin Yi Huang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
4
|
García-Yagüe ÁJ, Cuadrado A. Mechanisms of NURR1 Regulation: Consequences for Its Biological Activity and Involvement in Pathology. Int J Mol Sci 2023; 24:12280. [PMID: 37569656 PMCID: PMC10419244 DOI: 10.3390/ijms241512280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
NURR1 (Nuclear receptor-related 1 protein or NR4A2) is a nuclear protein receptor transcription factor with an essential role in the development, regulation, and maintenance of dopaminergic neurons and mediates the response to stressful stimuli during the perinatal period in mammalian brain development. The dysregulation of NURR1 activity may play a role in various diseases, including the onset and progression of neurodegenerative diseases, and several other pathologies. NURR1 is regulated by multiple mechanisms, among which phosphorylation by kinases or SUMOylation are the best characterized. Both post-translational modifications can regulate the activity of NURR1, affecting its stability and transcriptional activity. Other non-post-translational regulatory mechanisms include changes in its subcellular distribution or interaction with other protein partners by heterodimerization, also affecting its transcription activity. Here, we summarize the currently known regulatory mechanisms of NURR1 and provide a brief overview of its participation in pathological alterations.
Collapse
Affiliation(s)
- Ángel Juan García-Yagüe
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28027 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-CIBERNED), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta, 28029 Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28027 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-CIBERNED), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta, 28029 Madrid, Spain
| |
Collapse
|
5
|
Loppi SH, Tavera-Garcia MA, Becktel DA, Maiyo BK, Johnson KE, Nguyen TVV, Schnellmann RG, Doyle KP. Increased fatty acid metabolism and decreased glycolysis are hallmarks of metabolic reprogramming within microglia in degenerating white matter during recovery from experimental stroke. J Cereb Blood Flow Metab 2023; 43:1099-1114. [PMID: 36772984 PMCID: PMC10291449 DOI: 10.1177/0271678x231157298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
The goal of this study was to evaluate changes in metabolic homeostasis during the first 12 weeks of recovery in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we compared the brain metabolomes of ipsilateral and contralateral hemispheres from aged male mice up to 12 weeks after stroke to that of age-matched naïve and sham mice. There were 707 biochemicals detected in each sample by liquid chromatography-mass spectroscopy (LC-MS). Mitochondrial fatty acid β-oxidation, indicated by acyl carnitine levels, was increased in stroked tissue at 1 day and 4 weeks following stroke. Glucose and several glycolytic intermediates were elevated in the ipsilateral hemisphere for 12 weeks compared to the aged naïve controls, but pyruvate was decreased. Additionally, itaconate, a glycolysis inhibitor associated with activation of anti-inflammatory mechanisms in myeloid cells, was higher in the same comparisons. Spatial transcriptomics and RNA in situ hybridization localized these alterations to microglia within the area of axonal degeneration. These results indicate that chronic metabolic differences exist between stroked and control brains, including alterations in fatty acid metabolism and glycolysis within microglia in areas of degenerating white matter for at least 12 weeks after stroke.
Collapse
Affiliation(s)
- Sanna H Loppi
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Marco A Tavera-Garcia
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Danielle A Becktel
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Boaz K Maiyo
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Kristos E Johnson
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Thuy-Vi V Nguyen
- Department of Neurology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Kristian P Doyle
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Neurology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Arizona Center on Aging, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Psychology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
6
|
Shao Y, Wang Y, Xu J, Yuan Y, Xing D. Growth differentiation factor 11: A new hope for the treatment of cardiovascular diseases. Cytokine Growth Factor Rev 2023; 71-72:82-93. [PMID: 37414617 DOI: 10.1016/j.cytogfr.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β superfamily that has garnered significant attention due to its anti-cardiac aging properties. Many studies have revealed that GDF11 plays an indispensable role in the onset of cardiovascular diseases (CVDs). Consequently, it has emerged as a potential target and novel therapeutic agent for CVD treatment. However, currently, no literature reviews comprehensively summarize the research on GDF11 in the context of CVDs. Therefore, herein, we comprehensively described GDF11's structure, function, and signaling in various tissues. Furthermore, we focused on the latest findings concerning its involvement in CVD development and its potential for clinical translation as a CVD treatment. We aim to provide a theoretical basis for the prospects and future research directions of the GDF11 application regarding CVDs.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yang Yuan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Lefterov I, Fitz NF, Lu Y, Koldamova R. APOEε4 and risk of Alzheimer's disease - time to move forward. Front Neurosci 2023; 17:1195724. [PMID: 37274212 PMCID: PMC10235508 DOI: 10.3389/fnins.2023.1195724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
The inheritance of Apolipoprotein E4 (APOEε4) brings the highest genetic risk of Alzheimer's disease (AD), arguably the highest genetic risk in human pathology. Since the discovery of the association, APOE protein isoforms have been at the center of tens of thousands of studies and reports. While, without a doubt, our knowledge about the normal physiological function of APOE isoforms in the brain has increased tremendously, the questions of how the inheritance of the APOEε4 allele translates into a risk of AD, and the risk is materialized, remain unanswered. Moreover, the knowledge about the risk associated with APOEε4 has not helped design a meaningful preventative or therapeutic strategy. Animal models with targeted replacement of Apoe have been generated and, thanks to the recent NIH/NIA/Alzheimer's disease Association initiative, are now freely available to AD researchers. While helpful in many aspects, none of the available models recapitulates normal physiological transcriptional regulation of the human APOE gene cluster. Changes in epigenetic regulation of APOE alleles in animal models in response to external insults have rarely been if ever, addressed. However, these animal models provide a useful tool to handle questions and investigate protein-protein interactions with proteins expressed by other recently discovered genes and gene variants considered genetic risk factors of AD, like Triggering Receptor expressed on Myeloid cells 2 (TREM2). In this review, we discuss genetic and epigenetic regulatory mechanisms controlling and influencing APOE expression and focus on interactions of APOE and TREM2 in the context of microglia and astrocytes' role in AD-like pathology in animal models.
Collapse
|
8
|
Xiong Y, Fu Y, Li Z, Zheng Y, Cui M, Zhang C, Huang XY, Jian Y, Chen BH. Laquinimod Inhibits Microglial Activation, Astrogliosis, BBB Damage, and Infarction and Improves Neurological Damage after Ischemic Stroke. ACS Chem Neurosci 2023. [PMID: 37161270 DOI: 10.1021/acschemneuro.2c00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Glial activation is involved in neuroinflammation and blood-brain barrier (BBB) damage, which plays a key role in ischemic stroke-induced neuronal damage; therefore, regulating glial activation is an important way to inhibit ischemic brain injury. Effects of laquinimod (LAQ) include inhibiting axonal damage and neuroinflammation in multiple neuronal injury diseases. However, whether laquinimod can exert neuroprotective effects after ischemic stroke remains unknown. In this study, we investigated the effect of LAQ on glial activation, BBB damage, and neuronal damage in an ischemic stroke model. Adult ICR mice were used to create a photothrombotic stroke (PT) model. LAQ was administered orally at 30 min after ischemic injury. Neurobehavioral tests, Evans Blue, immunofluorescence, TUNEL, Nissl staining, and western blot were performed to evaluate the neurofunctional outcome. Quantification of immunofluorescence was evaluated by unbiased stereology. LAQ post-treatment significantly reduced infarction and improved forepaw function at 5 days after PT. Interestingly, LAQ treatment significantly promoted anti-inflammatory microglial activation. Moreover, LAQ treatment reduced astrocyte activation, glial scar formation, and BBB breakdown in ischemic brains. Therefore, this study demonstrated that LAQ post-treatment restricted microglial polarization, astrogliosis, and glial scar and improved BBB damage and behavioral function. LAQ may serve as a novel target to develop new therapeutic agents for ischemic stroke.
Collapse
Affiliation(s)
- Ye Xiong
- The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yanqiong Fu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Zhuoli Li
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yu Zheng
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Maiyin Cui
- Department of Rehabilitation and Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, P. R. China
| | - Chan Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Xin Yi Huang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yong Jian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, P. R. China
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
9
|
Korvenlaita N, Gómez‐Budia M, Scoyni F, Pistono C, Giudice L, Eamen S, Loppi S, de Sande AH, Huremagic B, Bouvy‐Liivrand M, Heinäniemi M, Kaikkonen MU, Cheng L, Hill AF, Kanninen KM, Jenster GW, van Royen ME, Ramiro L, Montaner J, Batkova T, Mikulik R, Giugno R, Jolkkonen J, Korhonen P, Malm T. Dynamic release of neuronal extracellular vesicles containing miR-21a-5p is induced by hypoxia. J Extracell Vesicles 2023; 12:e12297. [PMID: 36594832 PMCID: PMC9809533 DOI: 10.1002/jev2.12297] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hypoxia induces changes in the secretion of extracellular vesicles (EVs) in several non-neuronal cells and pathological conditions. EVs are packed with biomolecules, such as microRNA(miR)-21-5p, which respond to hypoxia. However, the true EV association of miR-21-5p, and its functional or biomarker relevance, are inadequately characterised. Neurons are extremely sensitive cells, and it is not known whether the secretion of neuronal EVs and miR-21-5p are altered upon hypoxia. Here, we characterised the temporal EV secretion profile and cell viability of neurons under hypoxia. Hypoxia induced a rapid increase of miR-21a-5p secretion in the EVs, which preceded the elevation of hypoxia-induced tissue or cellular miR-21a-5p. Prolonged hypoxia induced cell death and the release of morphologically distinct EVs. The EVs protected miR-21a-5p from enzymatic degradation but a remarkable fraction of miR-21a-5p remained fragile and non-EV associated. The increase in miR-21a-5p secretion may have biomarker potential, as high blood levels of miR-21-5p in stroke patients were associated with significant disability at hospital discharge. Our data provides an understanding of the dynamic regulation of EV secretion from neurons under hypoxia and provides a candidate for the prediction of recovery from ischemic stroke.
Collapse
Affiliation(s)
- Nea Korvenlaita
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Mireia Gómez‐Budia
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Flavia Scoyni
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Cristiana Pistono
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Luca Giudice
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland,Department of Computer ScienceUniversity of VeronaVeronaVenetoItaly
| | - Shaila Eamen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Sanna Loppi
- Department of ImmunologyUniversity of ArizonaTucsonArizonaUSA
| | - Ana Hernández de Sande
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Benjamin Huremagic
- Department of Computer ScienceUniversity of VeronaVeronaVenetoItaly,Department of Human GeneticsKU LeuvenLeuvenFlandersBelgium
| | | | | | - Minna U. Kaikkonen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Lesley Cheng
- Department of Biochemistry and ChemistrySchool of Agriculture Biomedicine & EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| | - Andrew F. Hill
- Department of Biochemistry and ChemistrySchool of Agriculture Biomedicine & EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia,La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia,Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
| | - Katja M. Kanninen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Guido W. Jenster
- Department of UrologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Martin E. van Royen
- Department of PathologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Laura Ramiro
- Neurovascular Research LaboratoryVall d'Hebron Institute of Research (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Joan Montaner
- Neurovascular Research LaboratoryVall d'Hebron Institute of Research (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain,Institute de Biomedicine of SevilleIBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville & Department of NeurologyHospital Universitario Virgen MacarenaSevilleAndalucíaSpain
| | - Tereza Batkova
- BioVendor‐laboratorni medicina a.s.BrnoCzech Republic,International Clinical Research CenterNeurological DepartmentSt. Anne's University Hospital and Masaryk UniversityBrnoCzech Republic
| | - Robert Mikulik
- International Clinical Research CenterNeurological DepartmentSt. Anne's University Hospital and Masaryk UniversityBrnoCzech Republic
| | - Rosalba Giugno
- Department of Computer ScienceUniversity of VeronaVeronaVenetoItaly
| | - Jukka Jolkkonen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Paula Korhonen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Tarja Malm
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| |
Collapse
|
10
|
Advances in NURR1-Regulated Neuroinflammation Associated with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms232416184. [PMID: 36555826 PMCID: PMC9788636 DOI: 10.3390/ijms232416184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neuroinflammation plays a crucial role in the progression of neurodegenerative disorders, particularly Parkinson's disease (PD). Glial cell activation and subsequent adaptive immune involvement are neuroinflammatory features in familial and idiopathic PD, resulting in the death of dopaminergic neuron cells. An oxidative stress response, inflammatory mediator production, and immune cell recruitment and activation are all hallmarks of this activation, leading to chronic neuroinflammation and progressive neurodegeneration. Several studies in PD patients' cerebrospinal fluid and peripheral blood revealed alterations in inflammatory markers and immune cell populations that may lead to or exacerbate neuroinflammation and perpetuate the neurodegenerative process. Most of the genes causing PD are also expressed in astrocytes and microglia, converting their neuroprotective role into a pathogenic one and contributing to disease onset and progression. Nuclear receptor-related transcription factor 1 (NURR1) regulates gene expression linked to dopaminergic neuron genesis and functional maintenance. In addition to playing a key role in developing and maintaining neurotransmitter phenotypes in dopaminergic neurons, NURR1 agonists have been shown to reverse behavioral and histological abnormalities in animal PD models. NURR1 protects dopaminergic neurons from inflammation-induced degeneration, specifically attenuating neuronal death by suppressing the expression of inflammatory genes in microglia and astrocytes. This narrative review highlights the inflammatory changes in PD and the advances in NURR1-regulated neuroinflammation associated with PD. Further, we present new evidence that targeting this inflammation with a variety of potential NURR1 target therapy medications can effectively slow the progression of chronic neuroinflammation-induced PD.
Collapse
|
11
|
Tao YW, Yang L, Chen SY, Zhang Y, Zeng Y, Wu JS, Meng XL. Pivotal regulatory roles of traditional Chinese medicine in ischemic stroke via inhibition of NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115316. [PMID: 35513214 DOI: 10.1016/j.jep.2022.115316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many studies have demonstrated the powerful neuroprotection abilities of multiple traditional Chinese medicines (TCMs) against NLRP3 inflammasome-mediated ischemic cerebral injury. These TCMs may be in the form of TCM prescriptions, Chinese herbal medicines and their extracts, and TCM monomers. AIM OF THE STUDY This review aimed to analyze and summarize the existing knowledge on the assembly and activation of the NLRP3 inflammasome and its role in the pathogenesis of ischemic stroke (IS). We also summarized the mechanism of action of the various TCMs on the NLRP3 inflammasome, which may provide new insights for the management of IS. MATERIALS AND METHODS We reviewed recently published articles by setting the keywords "NLRP3 inflammasome" and "traditional Chinese medicines" along with "ischemic stroke"; "NLRP3 inflammasome" and "ischemic stroke" along with "natural products" and so on in Pubmed and GeenMedical. RESULTS According to recent studies, 16 TCM prescriptions (officially authorized products and clinically effective TCM prescriptions), 7 Chinese herbal extracts, and 29 TCM monomers show protective effects against IS through anti-inflammatory, anti-oxidative stress, anti-apoptotic, and anti-mitochondrial autophagy effects. CONCLUSIONS In this review, we analyzed studies on the involvement of NLRP3 in IS therapy. Further, we comprehensively and systematically summarized the current knowledge to provide a reference for the further application of TCMs in the treatment of IS.
Collapse
Affiliation(s)
- Yi-Wen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shi-Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yong Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jia-Si Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xian-Li Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
12
|
The role of NURR1 in metabolic abnormalities of Parkinson's disease. Mol Neurodegener 2022; 17:46. [PMID: 35761385 PMCID: PMC9235236 DOI: 10.1186/s13024-022-00544-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/21/2022] [Indexed: 11/30/2022] Open
Abstract
A constant metabolism and energy supply are crucial to all organs, particularly the brain. Age-dependent neurodegenerative diseases, such as Parkinson’s disease (PD), are associated with alterations in cellular metabolism. These changes have been recognized as a novel hot topic that may provide new insights to help identify risk in the pre-symptomatic phase of the disease, understand disease pathogenesis, track disease progression, and determine critical endpoints. Nuclear receptor-related factor 1 (NURR1), an orphan member of the nuclear receptor superfamily of transcription factors, is a major risk factor in the pathogenesis of PD, and changes in NURR1 expression can have a detrimental effect on cellular metabolism. In this review, we discuss recent evidence that suggests a vital role of NURR1 in dopaminergic (DAergic) neuron development and the pathogenesis of PD. The association between NURR1 and cellular metabolic abnormalities and its implications for PD therapy have been further highlighted.
Collapse
|
13
|
Li L, Ho PWL, Liu H, Pang SYY, Chang EES, Choi ZYK, Malki Y, Kung MHW, Ramsden DB, Ho SL. Transcriptional Regulation of the Synaptic Vesicle Protein Synaptogyrin-3 (SYNGR3) Gene: The Effects of NURR1 on Its Expression. Int J Mol Sci 2022; 23:ijms23073646. [PMID: 35409005 PMCID: PMC8998927 DOI: 10.3390/ijms23073646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Synaptogyrin-3 (SYNGR3) is a synaptic vesicular membrane protein. Amongst four homologues (SYNGR1 to 4), SYNGR1 and 3 are especially abundant in the brain. SYNGR3 interacts with the dopamine transporter (DAT) to facilitate dopamine (DA) uptake and synaptic DA turnover in dopaminergic transmission. Perturbed SYNGR3 expression is observed in Parkinson’s disease (PD). The regulatory elements which affect SYNGR3 expression are unknown. Nuclear-receptor-related-1 protein (NURR1) can regulate dopaminergic neuronal differentiation and maintenance via binding to NGFI-B response elements (NBRE). We explored whether NURR1 can regulate SYNGR3 expression using an in silico analysis of the 5′-flanking region of the human SYNGR3 gene, reporter gene activity and an electrophoretic mobility shift assay (EMSA) of potential cis-acting sites. In silico analysis of two genomic DNA segments (1870 bp 5′-flanking region and 1870 + 159 bp of first exon) revealed one X Core Promoter Element 1 (XCPE1), two SP1, and three potential non-canonical NBRE response elements (ncNBRE) but no CAAT or TATA box. The longer segment exhibited gene promoter activity in luciferase reporter assays. Site-directed mutagenesis of XCPE1 decreased promoter activity in human neuroblastoma SH-SY5Y (↓43.2%) and human embryonic kidney HEK293 cells (↓39.7%). EMSA demonstrated NURR1 binding to these three ncNBRE. Site-directed mutagenesis of these ncNBRE reduced promoter activity by 11–17% in SH-SY5Y (neuronal) but not in HEK293 (non-neuronal) cells. C-DIM12 (Nurr1 activator) increased SYNGR3 protein expression in SH-SY5Y cells and its promoter activity using a real-time luciferase assay. As perturbed vesicular function is a feature of major neurodegenerative diseases, inducing SYNGR3 expression by NURR1 activators may be a potential therapeutic target to attenuate synaptic dysfunction in PD.
Collapse
Affiliation(s)
- Lingfei Li
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Eunice Eun-Seo Chang
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Zoe Yuen-Kiu Choi
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Yasine Malki
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Michelle Hiu-Wai Kung
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (D.B.R.); (S.-L.H.)
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
- Correspondence: (D.B.R.); (S.-L.H.)
| |
Collapse
|
14
|
Sharma S, Shen T, Chitranshi N, Gupta V, Basavarajappa D, Mirzaei M, You Y, Krezel W, Graham SL, Gupta V. Retinoid X Receptor: Cellular and Biochemical Roles of Nuclear Receptor with a Focus on Neuropathological Involvement. Mol Neurobiol 2022; 59:2027-2050. [PMID: 35015251 PMCID: PMC9015987 DOI: 10.1007/s12035-021-02709-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Retinoid X receptors (RXRs) present a subgroup of the nuclear receptor superfamily with particularly high evolutionary conservation of ligand binding domain. The receptor exists in α, β, and γ isotypes that form homo-/heterodimeric complexes with other permissive and non-permissive receptors. While research has identified the biochemical roles of several nuclear receptor family members, the roles of RXRs in various neurological disorders remain relatively under-investigated. RXR acts as ligand-regulated transcription factor, modulating the expression of genes that plays a critical role in mediating several developmental, metabolic, and biochemical processes. Cumulative evidence indicates that abnormal RXR signalling affects neuronal stress and neuroinflammatory networks in several neuropathological conditions. Protective effects of targeting RXRs through pharmacological ligands have been established in various cell and animal models of neuronal injury including Alzheimer disease, Parkinson disease, glaucoma, multiple sclerosis, and stroke. This review summarises the existing knowledge about the roles of RXR, its interacting partners, and ligands in CNS disorders. Future research will determine the importance of structural and functional heterogeneity amongst various RXR isotypes as well as elucidate functional links between RXR homo- or heterodimers and specific physiological conditions to increase drug targeting efficiency in pathological conditions.
Collapse
Affiliation(s)
- Samridhi Sharma
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Ting Shen
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Wojciech Krezel
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire, INSERM U1258, CNRS UMR 7104, Unistra, 67404, Illkirch-Graffenstaden, France
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
15
|
Katsuki H. Nuclear receptors of NR1 and NR4 subfamilies in the regulation of microglial functions and pathology. Pharmacol Res Perspect 2021; 9:e00766. [PMID: 34676987 PMCID: PMC8532137 DOI: 10.1002/prp2.766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
This review provides an overview of researches on the NR1 and NR4 nuclear receptors involved in the regulation of microglial functions. Nuclear receptors are attractive candidates for drug targets in the therapies of the central nervous system disorders, because the activation of these receptors is expected to regulate the functions and the phenotypes of microglia, by controlling the expression of specific gene subsets and also by regulating the cellular signaling mechanisms in a nongenomic manner. Several members of NR1 nuclear receptor subfamily have been examined for their ability to regulate microglial functions. For example, stimulation of vitamin D receptor inhibits the production of pro-inflammatory factors and increases the production of anti-inflammatory cytokines. Similar regulatory actions of nuclear receptor ligands on inflammation-related genes have also been reported for other NR1 members such as retinoic acid receptors, peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). In addition, stimulation of PPARγ and LXRs may also result in increased phagocytic activities of microglia. Consistent with these actions, the agonists at nuclear receptors of NR1 subfamily are shown to produce therapeutic effects on animal models of various neurological disorders such as experimental allergic encephalomyelitis, Alzheimer's disease, Parkinson's disease, and ischemic/hemorrhagic stroke. On the other hand, increasing lines of evidence suggest that the stimulation of NR4 subfamily members of nuclear receptors such as Nur77 and Nurr1 also regulates microglial functions and alleviates neuropathological events in several disease models. Further advancement of these research fields may prove novel therapeutic opportunities.
Collapse
Affiliation(s)
- Hiroshi Katsuki
- Department of Chemico‐Pharmacological SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
16
|
Kärkkäinen O, Kokla M, Lehtonen M, Auriola S, Martiskainen M, Tiihonen J, Karhunen PJ, Hanhineva K, Kok E. Changes in the metabolic profile of human male postmortem frontal cortex and cerebrospinal fluid samples associated with heavy alcohol use. Addict Biol 2021; 26:e13035. [PMID: 33745230 DOI: 10.1111/adb.13035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
Heavy alcohol use is one of the top causes of disease and death in the world. The brain is a key organ affected by heavy alcohol use. Here, our aim was to measure changes caused by heavy alcohol use in the human brain metabolic profile. We analyzed human postmortem frontal cortex and cerebrospinal fluid (CSF) samples from males with a history of heavy alcohol use (n = 74) and controls (n = 74) of the Tampere Sudden Death Series cohort. We used a nontargeted liquid chromatography mass spectrometry-based metabolomics method. We observed differences between the study groups in the metabolite levels of both frontal cortex and CSF samples, for example, in amino acids and derivatives, and acylcarnitines. There were more significant alterations in the metabolites of frontal cortex than in CSF. In the frontal cortex, significant alterations were seen in the levels of neurotransmitters (e.g., decreased levels of GABA and acetylcholine), acylcarnitines (e.g., increased levels of acylcarnitine 4:0), and in some metabolites associated with alcohol metabolizing enzymes (e.g., increased levels of 2-piperidone). Some of these changes were also significant in the CSF samples (e.g., elevated 2-piperidone levels). Overall, these results show the metabolites associated with neurotransmitters, energy metabolism and alcohol metabolism, were altered in human postmortem frontal cortex and CSF samples of persons with a history of heavy alcohol use.
Collapse
Affiliation(s)
- Olli Kärkkäinen
- School of Pharmacy University of Eastern Finland Kuopio Finland
| | - Marietta Kokla
- Institute of Public Health and Clinical Nutrition University of Eastern Finland Kuopio Finland
| | - Marko Lehtonen
- School of Pharmacy University of Eastern Finland Kuopio Finland
| | - Seppo Auriola
- School of Pharmacy University of Eastern Finland Kuopio Finland
| | - Mika Martiskainen
- Faculty of Medicine and Health Technology Tampere University and Fimlab Laboratories Ltd, Tampere University Hospital Region Kuopio Finland
- Finnish Institute for Health and Welfare Finland
| | - Jari Tiihonen
- Department of Forensic Psychiatry University of Eastern Finland, Niuvanniemi Hospital Helsinki Finland
- Department of Clinical Neuroscience Karolinska Institutet and Center for Psychiatry Research, Stockholm City Council Stockholm Sweden
| | - Pekka J. Karhunen
- Faculty of Medicine and Health Technology Tampere University and Fimlab Laboratories Ltd, Tampere University Hospital Region Kuopio Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition University of Eastern Finland Kuopio Finland
- Department of Biochemistry, Food chemistry and food development unit University of Turku Turku Finland
| | - Eloise Kok
- Faculty of Medicine and Health Technology Tampere University and Fimlab Laboratories Ltd, Tampere University Hospital Region Kuopio Finland
| |
Collapse
|
17
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
18
|
Kwon O, Song J, Yang Y, Kim S, Kim JY, Seok M, Hwang I, Yu J, Karmacharya J, Maeng H, Kim J, Jho E, Ko SY, Son H, Chang M, Lee S. SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Mol Med 2021; 13:e13076. [PMID: 33646633 PMCID: PMC8033538 DOI: 10.15252/emmm.202013076] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Astrocytes and microglia are brain-resident glia that can establish harmful inflammatory environments in disease contexts and thereby contribute to the progression of neuronal loss in neurodegenerative disorders. Correcting the diseased properties of glia is therefore an appealing strategy for treating brain diseases. Previous studies have shown that serum/ glucocorticoid related kinase 1 (SGK1) is upregulated in the brains of patients with various neurodegenerative disorders, suggesting its involvement in the pathogenesis of those diseases. In this study, we show that inhibiting glial SGK1 corrects the pro-inflammatory properties of glia by suppressing the intracellular NFκB-, NLRP3-inflammasome-, and CGAS-STING-mediated inflammatory pathways. Furthermore, SGK1 inhibition potentiated glial activity to scavenge glutamate toxicity and prevented glial cell senescence and mitochondrial damage, which have recently been reported as critical pathologic features of and therapeutic targets in Parkinson disease (PD) and Alzheimer disease (AD). Along with those anti-inflammatory/neurotrophic functions, silencing and pharmacological inhibition of SGK1 protected midbrain dopamine neurons from degeneration and cured pathologic synuclein alpha (SNCA) aggregation and PD-associated behavioral deficits in multiple in vitro and in vivo PD models. Collectively, these findings suggest that SGK1 inhibition could be a useful strategy for treating PD and other neurodegenerative disorders that share the common pathology of glia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Oh‐Chan Kwon
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Jae‐Jin Song
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
| | - Yunseon Yang
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Seong‐Hoon Kim
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Ji Young Kim
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Min‐Jong Seok
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Inhwa Hwang
- Korea Department of Microbiology and ImmunologyInstitute for Immunology and Immunological DiseasesBrain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulSouth Korea
| | - Je‐Wook Yu
- Korea Department of Microbiology and ImmunologyInstitute for Immunology and Immunological DiseasesBrain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulSouth Korea
| | | | | | - Jiyoung Kim
- Department of Life ScienceUniversity of SeoulSeoulKorea
| | - Eek‐hoon Jho
- Department of Life ScienceUniversity of SeoulSeoulKorea
| | - Seung Yeon Ko
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Hyeon Son
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Mi‐Yoon Chang
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
| | - Sang‐Hun Lee
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| |
Collapse
|
19
|
Mi Y, Jiao K, Xu JK, Wei K, Liu JY, Meng QQ, Guo TT, Zhang XN, Zhou D, Qing DG, Sun Y, Li N, Hou Y. Kellerin from Ferula sinkiangensis exerts neuroprotective effects after focal cerebral ischemia in rats by inhibiting microglia-mediated inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113718. [PMID: 33352239 DOI: 10.1016/j.jep.2020.113718] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferula sinkiangensis K. M. Shen is a traditional Chinese medicine that has a variety of pharmacological properties relevant to neurological disorders and inflammations. Kellerin, a novel compound extracted from Ferula sinkiangensis, exerts a strong anti-neuroinflammatory effect by inhibiting microglial activation. Microglial activation plays a vital role in ischemia-induced brain injury. However, the potential therapeutic effect of kellerin on focal cerebral ischemia is still unknown. AIM OF THE STUDY To explore the effect of kellerin on cerebral ischemia and clarify its possible mechanisms, we applied the middle cerebral artery occlusion (MCAO) model and the LPS-activated microglia model in our study. MATERIALS AND METHODS Neurological outcome was examined according to a 4-tiered grading system. Brain infarct size was measured using TTC staining. Brain edema was calculated using the wet weight minus dry weight method. Neuron damage and microglial activation were observed by immunofluorescence in MCAO model in rats. In in vitro studies, microglial activation was examined by flow cytometry and the viability of neuronal cells cultured in microglia-conditioned medium was measured using MTT assay. The levels of pro-inflammatory cytokines were measured by qRT-PCR and ELISA. The proteins involved in NF-κB signaling pathway were determined by western blot. Intracellular ROS was examined using DCFH-DA method and NADPH oxidase activity was measured using the NBT assay. RESULTS We found that kellerin improved neurological outcome, reduced brain infarct size and decreased brain edema in MCAO model in rats. Under the pathologic conditions of focal cerebral ischemia, kellerin alleviated neuron damage and inhibited microglial activation. Moreover, in in vitro studies of LPS-stimulated BV2 cells kellerin protected neuronal cells from being damaged by inhibiting microglial activation. Kellerin also reduced the levels of pro-inflammatory cytokines, suppressed the NF-κB signaling pathway, and decreased ROS generation and NADPH oxidase activity. CONCLUSIONS Our discoveries reveal that the neuroprotective effects of kellerin may largely depend on its inhibitory effect on microglial activation. This suggests that kellerin could serve as a novel anti-inflammatory agent which may have therapeutic effects in ischemic stroke.
Collapse
Affiliation(s)
- Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Kun Jiao
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Ji-Kai Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Kun Wei
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Jing-Yu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing-Qi Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ting-Ting Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xue-Ni Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - De-Gang Qing
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China.
| |
Collapse
|
20
|
Leal AS, Reich LA, Moerland JA, Zhang D, Liby KT. Potential therapeutic uses of rexinoids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:141-183. [PMID: 34099107 DOI: 10.1016/bs.apha.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of nuclear receptors, particularly retinoid X receptors (RXR), and their involvement in numerous pathways related to development sparked interest in their immunomodulatory properties. Genetic models using deletion or overexpression of RXR and the subsequent development of several small molecules that are agonists or antagonists of this receptor support a promising therapeutic role for these receptors in immunology. Bexarotene was approved in 1999 for the treatment of cutaneous T cell lymphoma. Several other small molecule RXR agonists have since been synthesized with limited preclinical development, but none have yet achieved FDA approval. Cancer treatment has recently been revolutionized with the introduction of immune checkpoint inhibitors, but their success has been restricted to a minority of patients. This review showcases the emerging immunomodulatory effects of RXR and the potential of small molecules that target this receptor as therapies for cancer and other diseases. Here we describe the essential roles that RXR and partner receptors play in T cells, dendritic cells, macrophages and epithelial cells, especially within the tumor microenvironment. Most of these effects are site and cancer type dependent but skew immune cells toward an anti-inflammatory and anti-tumor effect. This beneficial effect on immune cells supports the promise of combining rexinoids with approved checkpoint blockade therapies in order to enhance efficacy of the latter and to delay or potentially eliminate drug resistance. The data compiled in this review strongly suggest that targeting RXR nuclear receptors is a promising new avenue in immunomodulation for cancer and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lyndsey A Reich
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jessica A Moerland
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Di Zhang
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Karen T Liby
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
21
|
Activation of Nurr1 with Amodiaquine Protected Neuron and Alleviated Neuroinflammation after Subarachnoid Hemorrhage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/6669787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background. Nurr1, a member of the nuclear receptor 4A family (NR4A), played a role in neuron protection, anti-inflammation, and antioxidative stress in multidiseases. We explored the role of Nurr1 on subarachnoid hemorrhage (SAH) progression and investigated the feasibility of its agonist (amodiaquine, AQ) as a treatment for SAH. Methods. SAH rat models were constructed by the endovascular perforation technique. AQ was administered intraperitoneally at 2 hours after SAH induction. SAH grade, mortality, weight loss, neurological performance tests, brain water content, western blot, immunofluorescence, Nissl staining, and qPCR were assessed post-SAH. In vitro, hemin was introduced into HT22 cells to develop a model of SAH. Results. Stimulation of Nurr1 with AQ improved the outcomes and attenuated brain edema. Nurr1 was mainly expressed in neuron, and administration of AQ alleviated neuron injury in vivo and enhanced the neuron viability and inhibited neuron apoptosis and necrosis in vitro. Besides, AQ reduced the amount of IL-1β+Iba-1+ cells and inhibited the mRNA level of proinflammatory cytokines (IL-1β and TNF-α) and the M1-like phenotype markers (CD68 and CD86). AQ inhibited the expression of MMP9 in HT22 cells. Furthermore, AQ reduced the expression of nuclear NF-κB and Nurr1 while increased cytoplasmic Nurr1 in vivo and in vitro. Conclusion. Pharmacological activation of Nurr1 with AQ alleviated the neuron injury and neuroinflammation. The mechanism of antineuroinflammation may be associated with the Nurr1/NF-κB/MMP9 pathway in the neuron. The data supported that AQ might be a promising treatment strategy for SAH.
Collapse
|
22
|
Wang D, Liu F, Zhu L, Lin P, Han F, Wang X, Tan X, Lin L, Xiong Y. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. J Neuroinflammation 2020; 17:257. [PMID: 32867781 PMCID: PMC7457364 DOI: 10.1186/s12974-020-01921-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022] Open
Abstract
Background Resident microglia and macrophages are the predominant contributors to neuroinflammation and immune reactions, which play a critical role in the pathogenesis of ischemic brain injury. Controlling inflammatory responses is considered a promising therapeutic approach for stroke. Recombinant human fibroblast growth factor 21 (rhFGF21) presents anti-inflammatory properties by modulating microglia and macrophages; however, our knowledge of the inflammatory modulation of rhFGF21 in focal cerebral ischemia is lacking. Therefore, we investigated whether rhFGF21 improves ischemic outcomes in experimental stroke by targeting microglia and macrophages. Methods C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) and randomly divided into groups that received intraperitoneal rhFGF21 or vehicle daily starting at 6 h after reperfusion. Behavior assessments were monitored for 14 days after MCAO, and the gene expression levels of inflammatory cytokines were analyzed via qRT-PCR. The phenotypic variation of microglia/macrophages and the presence of infiltrated immune cells were examined by flow cytometry and immunostaining. Additionally, magnetic cell sorting (MACS) in combination with fluorescence-activated cell sorting (FACS) was used to purify microglia and macrophages. Results rhFGF21 administration ameliorated neurological deficits in behavioral tests by regulating the secretion of pro-inflammatory and anti-inflammatory cytokines. rhFGF21 also attenuated the polarization of microglia/macrophages toward the M1 phenotype and the accumulation of peripheral immune cells after stroke, accompanied by a temporal evolution of the phenotype of microglia/macrophages and infiltration of peripheral immune cells. Furthermore, rhFGF21 treatment inhibited M1 polarization of microglia and pro-inflammatory cytokine expression through its actions on FGF receptor 1 (FGFR1) by suppressing nuclear factor-kappa B (NF-κB) and upregulating peroxisome proliferator-activated receptor-γ (PPAR-γ). Conclusions rhFGF21 treatment promoted functional recovery in experimental stroke by modulating microglia/macrophage-mediated neuroinflammation via the NF-κB and PPAR-γ signaling pathways, making it a potential anti-inflammatory agent for stroke treatment.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fei Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Liyun Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ping Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fanyi Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xianxi Tan
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Li Lin
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Ye Xiong
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
23
|
Shin TH, Lee DY, Basith S, Manavalan B, Paik MJ, Rybinnik I, Mouradian MM, Ahn JH, Lee G. Metabolome Changes in Cerebral Ischemia. Cells 2020; 9:E1630. [PMID: 32645907 PMCID: PMC7407387 DOI: 10.3390/cells9071630] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
Cerebral ischemia is caused by perturbations in blood flow to the brain that trigger sequential and complex metabolic and cellular pathologies. This leads to brain tissue damage, including neuronal cell death and cerebral infarction, manifesting clinically as ischemic stroke, which is the cause of considerable morbidity and mortality worldwide. To analyze the underlying biological mechanisms and identify potential biomarkers of ischemic stroke, various in vitro and in vivo experimental models have been established investigating different molecular aspects, such as genes, microRNAs, and proteins. Yet, the metabolic and cellular pathologies of ischemic brain injury remain not fully elucidated, and the relationships among various pathological mechanisms are difficult to establish due to the heterogeneity and complexity of the disease. Metabolome-based techniques can provide clues about the cellular pathologic status of a condition as metabolic disturbances can represent an endpoint in biological phenomena. A number of investigations have analyzed metabolic changes in samples from cerebral ischemia patients and from various in vivo and in vitro models. We previously analyzed levels of amino acids and organic acids, as well as polyamine distribution in an in vivo rat model, and identified relationships between metabolic changes and cellular functions through bioinformatics tools. This review focuses on the metabolic and cellular changes in cerebral ischemia that offer a deeper understanding of the pathology underlying ischemic strokes and contribute to the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (S.B.); (B.M.)
| | - Da Yeon Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (S.B.); (B.M.)
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (S.B.); (B.M.)
| | - Balachandran Manavalan
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (S.B.); (B.M.)
| | - Man Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea;
| | - Igor Rybinnik
- Department of Neurology, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA; (I.R.); (M.M.M.)
| | - M. Maral Mouradian
- Department of Neurology, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA; (I.R.); (M.M.M.)
| | - Jung Hwan Ahn
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon 16499, Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (T.H.S.); (D.Y.L.); (S.B.); (B.M.)
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| |
Collapse
|
24
|
Kolosowska N, Gotkiewicz M, Dhungana H, Giudice L, Giugno R, Box D, Huuskonen MT, Korhonen P, Scoyni F, Kanninen KM, Ylä-Herttuala S, Turunen TA, Turunen MP, Koistinaho J, Malm T. Intracerebral overexpression of miR-669c is protective in mouse ischemic stroke model by targeting MyD88 and inducing alternative microglial/macrophage activation. J Neuroinflammation 2020; 17:194. [PMID: 32560730 PMCID: PMC7304130 DOI: 10.1186/s12974-020-01870-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background Ischemic stroke is a devastating disease without a cure. The available treatments for ischemic stroke, thrombolysis by tissue plasminogen activator, and thrombectomy are suitable only to a fraction of patients and thus novel therapeutic approaches are urgently needed. The neuroinflammatory responses elicited secondary to the ischemic attack further aggravate the stroke-induced neuronal damage. It has been demonstrated that these responses are regulated at the level of non-coding RNAs, especially miRNAs. Methods We utilized lentiviral vectors to overexpress miR-669c in BV2 microglial cells in order to modulate their polarization. To detect whether the modulation of microglial activation by miR-669c provides protection in a mouse model of transient focal ischemic stroke, miR-669c overexpression was driven by a lentiviral vector injected into the striatum prior to induction of ischemic stroke. Results Here, we demonstrate that miR-669c-3p, a member of chromosome 2 miRNA cluster (C2MC), is induced upon hypoxic and excitotoxic conditions in vitro and in two different in vivo models of stroke. Rather than directly regulating the neuronal survival in vitro, miR-669c is capable of attenuating the microglial proinflammatory activation in vitro and inducing the expression of microglial alternative activation markers arginase 1 (Arg1), chitinase-like 3 (Ym1), and peroxisome proliferator-activated receptor gamma (PPAR-γ). Intracerebral overexpression of miR-669c significantly decreased the ischemia-induced cell death and ameliorated the stroke-induced neurological deficits both at 1 and 3 days post injury (dpi). Albeit miR-669c overexpression failed to alter the overall Iba1 protein immunoreactivity, it significantly elevated Arg1 levels in the ischemic brain and increased colocalization of Arg1 and Iba1. Moreover, miR-669c overexpression under cerebral ischemia influenced several morphological characteristics of Iba1 positive cells. We further demonstrate the myeloid differentiation primary response gene 88 (MyD88) transcript as a direct target for miR-669c-3p in vitro and show reduced levels of MyD88 in miR-669c overexpressing ischemic brains in vivo. Conclusions Collectively, our data provide the evidence that miR-669c-3p is protective in a mouse model of ischemic stroke through enhancement of the alternative microglial/macrophage activation and inhibition of MyD88 signaling. Our results accentuate the importance of controlling miRNA-regulated responses for the therapeutic benefit in conditions of stroke and neuroinflammation.
Collapse
Affiliation(s)
- Natalia Kolosowska
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Maria Gotkiewicz
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Hiramani Dhungana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Luca Giudice
- Department of Computer Science, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Daphne Box
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikko T Huuskonen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Paula Korhonen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Flavia Scoyni
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Katja M Kanninen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Tiia A Turunen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikko P Turunen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jari Koistinaho
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, FI-70211, Kuopio, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tarja Malm
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
25
|
Opposite regulation of piRNAs, rRNAs and miRNAs in the blood after subarachnoid hemorrhage. J Mol Med (Berl) 2020; 98:887-896. [PMID: 32424559 PMCID: PMC7297814 DOI: 10.1007/s00109-020-01922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 10/28/2022]
Abstract
Multiple classes of small RNAs (sRNAs) are expressed in the blood and are involved in the regulation of pivotal cellular processes. We aimed to elucidate the expression patterns and functional roles of sRNAs in the systemic response to intracranial aneurysm (IA) rupture. We used next-generation sequencing to analyze the expression of sRNAs in patients in the acute phase of IA rupture (first 72 h), in the chronic phase (3-15 months), and controls. The patterns of alterations in sRNA expression were analyzed in the context of clinically relevant information regarding the biological consequences of IA rupture. We identified 542 differentially expressed sRNAs (108 piRNAs, 99 rRNAs, 90 miRNAs, 43 scRNAs, 36 tRNAs, and 32 snoRNAs) among the studied groups with notable differences in upregulated and downregulated sRNAs between the groups and sRNAs categories. piRNAs and rRNAs showed a substantial decrease in RNA abundance that was sustained after IA rupture, whereas miRNAs were largely upregulated. Downregulated sRNA genes included piR-31080, piR-57947, 5S rRNA, LSU-rRNA, and SSU-rRNA s. Remarkable enrichment in the representation of transcription factor binding sites was revealed in genomic locations of the regulated sRNA. We found strong overrepresentation of glucocorticoid receptor, retinoid x receptor alpha, and estrogen receptor alpha binding sites at the locations of downregulated piRNAs, tRNAs, and rRNAs. This report, although preliminary and largely proof-of-concept, is the first to describe alterations in sRNAs abundance levels in response to IA rupture in humans. The obtained results indicate novel mechanisms that may constitute another level of control of the inflammatory response. KEY MESSAGES: A total of 542 sRNAs were differentially expressed after aneurysmal SAH comparing with controls piRNAs and rRNAs were upregulated and miRNAs were downregulated after IA rupture The regulated sRNA showed an enrichment in the representation of some transcription factor binding sites piRNAs, tRNAs, and rRNAs showed an overrepresentation for GR, RXRA, and ERALPHA binding sites.
Collapse
|
26
|
Zhang W, Mi Y, Jiao K, Xu J, Guo T, Zhou D, Zhang X, Ni H, Sun Y, Wei K, Li N, Hou Y. Kellerin alleviates cognitive impairment in mice after ischemic stroke by multiple mechanisms. Phytother Res 2020; 34:2258-2274. [DOI: 10.1002/ptr.6676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/25/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wenqiang Zhang
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Kun Jiao
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Jikai Xu
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Tingting Guo
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Di Zhou
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Xueni Zhang
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Hui Ni
- XinJiang Institute of Chinese Materia Medica and Ethnodrug Urumqi China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug Urumqi China
| | - Kun Wei
- School of Chemical Science and Technology Yunnan University Kunming China
| | - Ning Li
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| |
Collapse
|
27
|
Shang W, Liang X, Li S, Li T, Zheng L, Shao W, Wang Y, Liu F, Ma L, Jia J. Orphan nuclear receptor Nurr1 promotes Helicobacter pylori-associated gastric carcinogenesis by directly enhancing CDK4 expression. EBioMedicine 2020; 53:102672. [PMID: 32114387 PMCID: PMC7047206 DOI: 10.1016/j.ebiom.2020.102672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/18/2020] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Abnormal expression of the orphan nuclear receptor Nurr1 is a critical factor in the etiology of multiple cancers. However, its potential role in gastric cancer (GC) remains elusive. In this study, we have demonstrated that the expression of Nurr1 was elevated and had an oncogenic function in GC. METHODS Nurr1 expression was analyzed in clinical specimens and the GEO database. Functions of Nurr1 in GC cells were analyzed using Nurr1 knockdown and overexpression. Various cell and molecular biological methods were used to explore the potential mechanisms of Nurr1 upregulation and its role in promoting GC. FINDINGS Overexpression of Nurr1 was directly related to the poor prognosis of GC patients. What's more, Nurr1 was induced by Helicobacter pylori (H. pylori) via the PI3K/AKT-Sp1 pathway. Sp1 enhanced Nurr1 expression by binding to its promoter to activate the transcription. Upregulated Nurr1 then directly targeted CDK4 by binding to its promoter region to increase its expression, thereby facilitated GC cells proliferation both in vitro and in vivo. INTERPRETATION We identified Nurr1 as a driving oncogenic factor in GC. In addition, Nurr1 could be used as a potential therapeutic target for the diagnosis and treatment of H. pylori-associated GC. FUNDING This work was supported by the National Natural Science Foundation of China (Nos 81801983, 81871620, 81971901, 81772151 and 81571960), and the Department of Science and Technology of Shandong Province (2018CXGC1208).
Collapse
MESH Headings
- Animals
- Carcinogenesis/genetics
- Cell Line, Tumor
- Cyclin-Dependent Kinase 4/genetics
- Cyclin-Dependent Kinase 4/metabolism
- Gene Expression Regulation, Neoplastic
- Helicobacter pylori/pathogenicity
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-akt/metabolism
- Sp1 Transcription Factor/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/microbiology
- Stomach Neoplasms/pathology
- Transcriptional Activation
- Up-Regulation
Collapse
Affiliation(s)
- Wenjing Shang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiuming Liang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Shandong University-Karolinska Institute Collaborative Laboratory for Cancer Research, Jinan, Shandong 250012, PR China
| | - Shuyan Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Tongyu Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Lixin Zheng
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Wei Shao
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Yue Wang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Fen Liu
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Lin Ma
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Qianfoshan Hospital, Jinan, Shandong 250012, PR China.
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Shandong University-Karolinska Institute Collaborative Laboratory for Cancer Research, Jinan, Shandong 250012, PR China.
| |
Collapse
|
28
|
Park JH, Ahn JH, Kim DW, Lee TK, Park CW, Park YE, Lee JC, Lee HA, Yang GE, Won MH, Lee CH. Altered Nurr1 protein expression in the hippocampal CA1 region following transient global cerebral ischemia. Mol Med Rep 2019; 21:107-114. [PMID: 31746417 PMCID: PMC6896304 DOI: 10.3892/mmr.2019.10828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/10/2019] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptor related 1 protein (Nurr1), a member of the nuclear receptor 4 family of orphan nuclear receptors, has been reported to display anti‑inflammatory properties. The present study investigated the alteration of Nurr1 immunoreactivity in the gerbil hippocampus proper following 5 min of transient global cerebral ischemia. In sham operated gerbils, Nurr1 immunoreactivity was observed in pyramidal neurons in all cornu ammonis 1‑3 (CA1‑3) subfields of the hippocampus proper. In ischemia‑operated gerbils, Nurr1 immunoreactivity was altered in the CA1 subfield. Nurr1 immunoreactivity in CA1 pyramidal neurons gradually decreased until 2 days post‑ischemia, and, at 4 days post‑ischemia, Nurr1 immunoreactivity was concentrated in CA1 pyramidal neurons. Additionally, Nurr1 immunoreactivity was newly expressed in microglia in the CA1 subfield at 4 days post‑ischemia. Conversely, in the CA2/3 subfield, time‑dependent alteration of Nurr1 immunoreactivity was not identified at any time following ischemia. These results indicated that the alteration of Nurr1 expression in the CA1 subfield in the hippocampus may be associated with the death of CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyang-Ah Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Go Eun Yang
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon 24289, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam‑do 31116, Republic of Korea
| |
Collapse
|
29
|
Lesuisse D, Malanda A, Peyronel JF, Evanno Y, Lardenois P, De-Peretti D, Abécassis PY, Barnéoud P, Brunel P, Burgevin MC, Cegarra C, Auger F, Dommergue A, Lafon C, Even L, Tsi J, Luc TPH, Almario A, Olivier A, Castel MN, Taupin V, Rooney T, Vigé X. Development of a novel NURR1/NOT agonist from hit to lead and candidate for the potential treatment of Parkinson's disease. Bioorg Med Chem Lett 2019; 29:929-932. [DOI: 10.1016/j.bmcl.2019.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
|