1
|
Rogers JP, Mastellari T, Berry AJ, Kumar K, Burchill E, David AS, Lewis G, Lees A, Zandi MS. Encephalitis lethargica: clinical features and aetiology. Brain Commun 2024; 6:fcae347. [PMID: 39440299 PMCID: PMC11495101 DOI: 10.1093/braincomms/fcae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/08/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Encephalitis lethargica, an epidemic neurological illness, typically involved a severe sleep disorder and progressive parkinsonism. A century later, our understanding relies on seminal descriptions, more recent historical research and the study of small numbers of possible sporadic cases. Theories around infection, environmental toxins, catatonia and autoimmune encephalitis have been proposed. We aimed to describe the presentation of encephalitis lethargica and test these diagnostic and aetiological theories. Subjects with encephalitis lethargica were identified in the archives of the National Hospital for Neurology and Neurosurgery, UK between 1918 and 1946. Case notes were examined to establish illness temporality, clinical features and cerebrospinal fluid results. Controls from the archives were identified for 10% of cases, matching on discharge year, sex and neurologist. Clinical presentation was compared to modern diagnostic criteria for encephalitis lethargica, catatonia and autoimmune encephalitis. In a case-control design, a multilevel logistic regression was conducted to ascertain whether cases of encephalitis lethargica were associated with febrile illnesses and with environmental exposures. Six hundred and fourteen cases of encephalitis lethargica and 65 controls were identified. Cases had a median age of 29 years (interquartile range 18) and a median time since symptomatic onset of 3.00 years (interquartile range 3.52). Motor features were present in 97.6%, cranial nerve findings in 91.0%, ophthalmological features in 77.4%, sleep disorders in 66.1%, gastrointestinal or nutritional features in 62.1%, speech disorders in 60.8% and psychiatric features in 53.9%. Of the 167 cases who underwent lumbar puncture, 20 (12.0%) had a pleocytosis. The Howard and Lees criteria for encephalitis lethargica had a sensitivity of 28.5% and specificity of 96.9%. Among the cases, 195 (31.8%, 95% confidence interval 28.1-35.6%) had a history of febrile illness within one calendar year prior to illness onset, which was more common than among the controls (odds ratio 2.70, 95% confidence interval 1.02-7.20, P = 0.05), but there was substantial reporting bias. There was no evidence that occupational exposure to solvents or heavy metals was associated with encephalitis lethargica. Two hundred and seventy-six (45.0%) of the cases might meet criteria for possible autoimmune encephalitis, but only 3 (0.5%) might meet criteria for probable NMDA receptor encephalitis. Only 11 cases (1.8%) met criteria for catatonia. Encephalitis lethargica has a distinct identity as a neuropsychiatric condition with a wide range of clinical features. Evidence for a relationship with infectious or occupational exposures was weak. Autoimmune encephalitis may be an explanation, but typical cases were inconsistent with NMDA receptor encephalitis.
Collapse
Affiliation(s)
- Jonathan P Rogers
- Division of Psychiatry, University College London, London W1T 7NF, UK
- Department of Neuropsychiatry, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Tomas Mastellari
- University Lille, Inserm, CHU Lille, U1172—LilNCog—Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Alex J Berry
- Department of Neuropsychiatry, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Kieron Kumar
- South London and Maudsley NHS Foundation Trust, London BR3 3BX, UK
| | - Ella Burchill
- Division of Psychiatry, University College London, London W1T 7NF, UK
| | - Anthony S David
- Institute of Mental Health, University College London, London W1T 7NF, UK
| | - Glyn Lewis
- Division of Psychiatry, University College London, London W1T 7NF, UK
| | - Andrew Lees
- Department of Clinical and Movement Neurosciences, University College London, London WC1N 3BG, UK
| | - Michael S Zandi
- Department of Neuroinflammation, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuroinflammation, University College London, London, WC1N 3BG, UK
| |
Collapse
|
2
|
Szejko N, Robinson S, Hartmann A, Ganos C, Debes NM, Skov L, Haas M, Rizzo R, Stern J, Münchau A, Czernecki V, Dietrich A, Murphy TL, Martino D, Tarnok Z, Hedderly T, Müller-Vahl KR, Cath DC. European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part I: assessment. Eur Child Adolesc Psychiatry 2022; 31:383-402. [PMID: 34661764 PMCID: PMC8521086 DOI: 10.1007/s00787-021-01842-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/30/2021] [Indexed: 11/03/2022]
Abstract
In 2011 a working group of the European Society for the Study of Tourette Syndrome (ESSTS) has developed the first European assessment guidelines for Tourette syndrome (TS). Now, we present an updated version 2.0 of these European clinical guidelines for Tourette syndrome and other tic disorders, part I: assessment. Therefore, the available literature has been thoroughly screened, supplemented with national guidelines across countries and discussions among ESSTS experts. Diagnostic changes between DSM-IV and DSM-5 classifications were taken into account and new information has been added regarding differential diagnoses, with an emphasis on functional movement disorders in both children and adults. Further, recommendations regarding rating scales to evaluate tics, comorbidities, and neuropsychological status are provided. Finally, results from a recently performed survey among ESSTS members on assessment in TS are described. We acknowledge that the Yale Global Tic Severity Scale (YGTSS) is still the gold standard for assessing tics. Recommendations are provided for scales for the assessment of tics and psychiatric comorbidities in patients with TS not only in routine clinical practice, but also in the context of clinical research. Furthermore, assessments supporting the differential diagnosis process are given as well as tests to analyse cognitive abilities, emotional functions and motor skills.
Collapse
Affiliation(s)
- Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
- Department of Bioethics, Medical University of Warsaw, Warsaw, Poland
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, USA
| | - Sally Robinson
- Tic and Neurodevelopmental Movements Service (TANDeM), Children's Neurosciences Centre, Evelina London Children's Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
| | | | - Christos Ganos
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nanette M Debes
- Paediatric Department, Herlev University Hospital, Herlev, Denmark
| | - Liselotte Skov
- Paediatric Department, Herlev University Hospital, Herlev, Denmark
| | - Martina Haas
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Renata Rizzo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Jeremy Stern
- Department of Neurology, St George's Hospital, St George's University of London, London, UK
| | | | | | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tara L Murphy
- Tic Disorder Clinic, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Davide Martino
- Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | | | - Tammy Hedderly
- Tic and Neurodevelopmental Movements Service (TANDeM), Children's Neurosciences Centre, Evelina London Children's Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Kirsten R Müller-Vahl
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen, Rijks Universiteit Groningen, GGZ Drenthe Mental Health Institution, Hanzeplein 1, Assen, 9713, Groningen, The Netherlands.
| |
Collapse
|
3
|
Abstract
Tic disorders and Tourette syndrome are the most common movement disorders in children and are characterized by movements or vocalizations. Clinically, Tourette syndrome is frequently associated with comorbid psychiatric symptoms. Although dysfunction of cortical–striatal–thalamic–cortical circuits with aberrant neurotransmitter function has been considered the proximate cause of tics, the mechanism underlying this association is unclear. Recently, many studies have been conducted to elucidate the epidemiology, clinical course, comorbid symptoms, and pathophysiology of tic disorders by using laboratory studies, neuroimaging, electrophysiological testing, environmental exposure, and genetic testing. In addition, many researchers have focused on treatment for tics, including behavioral therapy, pharmacological treatment, and surgical treatment. Here, we provide an overview of recent progress on Tourette syndrome.
Collapse
Affiliation(s)
- Keisuke Ueda
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin J Black
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
4
|
Giannoccaro MP, Gastaldi M, Rizzo G, Jacobson L, Vacchiano V, Perini G, Capellari S, Franciotta D, Costa A, Liguori R, Vincent A. Antibodies to neuronal surface antigens in patients with a clinical diagnosis of neurodegenerative disorder. Brain Behav Immun 2021; 96:106-112. [PMID: 34022370 DOI: 10.1016/j.bbi.2021.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Autoimmune encephalitis due to antibodies against neuronal surface antigens (NSA-Ab) frequently presents with cognitive impairment, often as the first and prevalent manifestation, but few studies have systematically assessed the frequency of NSA-Ab in consecutive patients with established neurodegenerative disorders. METHODS We studied sera of 93 patients (41F, 52 M), aged 69.2 ± 9.4 years, with neurodegenerative conditions, and of 50 population controls aged over 60 years. Specific NSA-Abs were investigated by antigen-specific cell-based assays (CBAs). After testing, we evaluated the association between the NSA-Abs and clinical, CSF and radiological features. RESULTS The patients included 13/93 (13.8%) who had specific antibodies to neuronal surface antigens: 6 GlyR, 3 GABAAR (1 also positive for AMPAR), 2 LGI1, 1 CASPR2 and 1 GABABR. One of the 50 controls (2%) was positive for NMDAR antibody and the others were negative on all tests (P = 0.020). No difference was observed in antibody frequency between patients presenting with parkinsonism and those presenting with dementia (P = 0.55); however, NSA-Ab were more frequent in those with unclassified forms of dementia (5/13, 38.5%) than in those with unclassified parkinsonism (2/9, 22.2%) or with classified forms of dementia (4/43, 9.3%) or parkinsonism (2/28, 7.1%) (P = 0.03). A logistic regression analysis demonstrated that an unclassified diagnosis (P = 0.02) and an irregular progression (P = 0.024) were predictors of seropositive status. CONCLUSIONS NSA-Abs are relatively frequent in patients with neurodegenerative disorders, particularly in those with an irregular disease progression of atypical clinical features, inconsistent with a recognized diagnosis. The significance of these antibodies and their possible primary or secondary roles need to be investigated in prospective studies.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Italy.
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Leslie Jacobson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Veria Vacchiano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Italy
| | - Giulia Perini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Italy
| | | | - Alfredo Costa
- Unit of Behavioral Neurology, IRCCS Fondazione Mondino, and Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Italy
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Lamothe H, Tamouza R, Hartmann A, Mallet L. Immunity and Gilles de la Tourette syndrome: A systematic review and meta-analysis of evidence for immune implications in Tourette syndrome. Eur J Neurol 2021; 28:3187-3200. [PMID: 34133837 DOI: 10.1111/ene.14983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE The neurobiology of Gilles de la Tourette syndrome (GTS) is known to involve corticostriatal loops possibly under genetic control. Less is known about possible environmental triggers of GTS. Specifically, immune-related events following possible environmental inducers have been evoked, but important controversies still exist. In this systematic review and meta-analysis, we looked for evidence in favor of such possibilities. METHODS We performed a systematic review and meta-analysis of all immunological data in PubMed. RESULTS We found large discrepancies concerning immune dysfunctions in GTS, and meta-analyzing cytokines data did not allow us to conclude there is an involvement of specific cytokines in GTS neurobiology. When looking specifically at pediatric autoimmune neuropsychiatric disorder associated with streptococcus/pediatric acute onset neuropsychiatric syndrome, we found some important evidence of a possible infectious involvement but in a limited number of studies. Our meta-analysis found an increased level of anti-streptolysin O antibodies in GTS patients, but the level of anti-DNase B antibodies was not increased. CONCLUSIONS Too many questions still exist to allow us to definitively reach the conclusion that there is an infectious and immunological etiology in GTS. Much work is still needed to elucidate the possible role of immunology in GTS neurobiology and to favor immunological treatment rather than classical treatment.
Collapse
Affiliation(s)
- Hugues Lamothe
- Assistance Publique-Hôpitaux de Paris, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Paris-East Créteil University, Créteil, France.,Institut du Cerveau et de la Moelle Épinière, INSERM U1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Ryad Tamouza
- Assistance Publique-Hôpitaux de Paris, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Paris-East Créteil University, Créteil, France.,Institut Mondor de Recherche Biomédical, Paris-East Créteil University, Team "Psychiatrie Translationnelle, INSERM U955, Créteil, France
| | - Andreas Hartmann
- Institut du Cerveau et de la Moelle Épinière, INSERM U1127, CNRS UMR 7225, Sorbonne University, Paris, France.,Centre Hospitalo-Universitaire de la Pitié Salpétrière, Paris, France
| | - Luc Mallet
- Assistance Publique-Hôpitaux de Paris, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Paris-East Créteil University, Créteil, France.,Institut du Cerveau et de la Moelle Épinière, INSERM U1127, CNRS UMR 7225, Sorbonne University, Paris, France.,Department of Mental Health and Psychiatry, Global Health Institute, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Ueda K, Black KJ. A Comprehensive Review of Tic Disorders in Children. J Clin Med 2021; 10:2479. [PMID: 34204991 PMCID: PMC8199885 DOI: 10.3390/jcm10112479] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/13/2023] Open
Abstract
Tics are characterized by sudden, rapid, recurrent, nonrhythmic movement or vocalization, and are the most common movement disorders in children. Their onset is usually in childhood and tics often will diminish within one year. However, some of the tics can persist and cause various problems such as social embarrassment, physical discomfort, or emotional impairments, which could interfere with daily activities and school performance. Furthermore, tic disorders are frequently associated with comorbid neuropsychiatric symptoms, which can become more problematic than tic symptoms. Unfortunately, misunderstanding and misconceptions of tic disorders still exist among the general population. Understanding tic disorders and their comorbidities is important to deliver appropriate care to patients with tics. Several studies have been conducted to elucidate the clinical course, epidemiology, and pathophysiology of tics, but they are still not well understood. This article aims to provide an overview about tics and tic disorders, and recent findings on tic disorders including history, definition, diagnosis, epidemiology, etiology, diagnostic approach, comorbidities, treatment and management, and differential diagnosis.
Collapse
Affiliation(s)
- Keisuke Ueda
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Kevin J. Black
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Hsu CJ, Wong LC, Lee WT. Immunological Dysfunction in Tourette Syndrome and Related Disorders. Int J Mol Sci 2021; 22:ijms22020853. [PMID: 33467014 PMCID: PMC7839977 DOI: 10.3390/ijms22020853] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/28/2022] Open
Abstract
Chronic tic disorder and Tourette syndrome are common childhood-onset neurological diseases. However, the pathophysiology underlying these disorders is unclear, and most studies have focused on the disinhibition of the corticostriatal–thalamocortical circuit. An autoimmune dysfunction has been proposed in the pathogenetic mechanism of Tourette syndrome and related neuropsychiatric disorders such as obsessive–compulsive disorder, autism, and attention-deficit/hyperactivity disorder. This is based on evidence from animal model studies and clinical findings. Herein, we review and give an update on the clinical characteristics, clinical evidence, and genetic studies in vitro as well as animal studies regarding immune dysfunction in Tourette syndrome.
Collapse
Affiliation(s)
- Chia-Jui Hsu
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan;
| | - Lee-Chin Wong
- Department of Pediatrics, Cathay General Hospital, Taipei 106, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Wang-Tso Lee
- Department of Pediatric Neurology, National Taiwan University Children’s Hospital, Taipei 100, Taiwan
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 71545); Fax: +886-2-2314-7450
| |
Collapse
|
8
|
Comparison of N-methyl-D-aspartate receptor antibody assays using live or fixed substrates. J Neurol 2021; 268:1818-1826. [PMID: 33389029 DOI: 10.1007/s00415-020-10329-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022]
Abstract
The diagnostic criteria for N-methyl-D-aspartate receptor antibody (NMDAR-Ab) encephalitis require the presence of CSF antibodies against the NMDAR, whereas serum antibodies are considered specific only if accompanied by CSF antibodies. Current assays include in-house immunochemistry (IHC), or cell-based assays (CBA) which use live (L-CBA) or fixed cells (F-CBA), and commercially available fixed-cells CBA (C-CBA), but these have not been compared in parallel. We compared the L-CBA with F-CBA, C-CBA, and IHC using sera and CSFs archived from > 30,000 received for testing and previously positive by L-CBA. Referring neurologists, if identified, provided "definite" or "unlikely" diagnoses of NMDAR-Ab encephalitis for 31 paired serum-CSF samples and 53 unpaired sera. There was good concordance between paired sera and CSFs, with 13/16 "definite" pairs positive, and 7/8 "unlikely" pairs negative in all in-house assays. In unpaired "definite" sera, L-CBA was most sensitive. However, 19/24 serum samples from "unlikely" patients were positive by L-CBA, with only 5/24 and 1/24 positive by F-CBA and IHC, respectively. In available samples, C-CBA demonstrated high sensitivity for CSF, but surprisingly low sensitivity for serum. Overall, regardless of the technique, CSF results were accurate and easy to interpret, but if CSF is unavailable, negative serum C-CBA results in cases with suspected NMDAR-Ab encephalitis could be repeated by a more sensitive in-house assay. Although these assays are sensitive, particularly for CSF, referral of sera with low pre-test probability should be avoided to reduce clinically-irrelevant "false positive" results.
Collapse
|
9
|
Abstract
This is the sixth yearly article in the Tourette Syndrome Research Highlights series, summarizing research from 2019 relevant to Tourette syndrome and other tic disorders. The highlights from 2020 is being drafted on the Authorea online authoring platform; readers are encouraged to add references or give feedback on our selections comments feature on this page. After the calendar year ends, this article is submitted as the annual update for the Tics collection F1000Research.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Neurology, APHP, Paris, Île-de-France, 75013, France,
| | - Yulia Worbe
- Department of Neurology, APHP, Paris, Île-de-France, 75013, France
| | - Kevin J. Black
- Department of Psychiatry, Neurology, and Radiology,, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
10
|
Addabbo F, Baglioni V, Schrag A, Schwarz MJ, Dietrich A, Hoekstra PJ, Martino D, Buttiglione M. Anti-dopamine D2 receptor antibodies in chronic tic disorders. Dev Med Child Neurol 2020; 62:1205-1212. [PMID: 32644201 DOI: 10.1111/dmcn.14613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
AIM To investigate the association between circulating anti-dopamine D2 receptor (D2R) autoantibodies and the exacerbation of tics in children with chronic tic disorders (CTDs). METHOD One hundred and thirty-seven children with CTDs (108 males, 29 females; mean age [SD] 10y 0mo [2y 7mo], range 4-16y) were recruited over 18 months. Patients were assessed at baseline, at tic exacerbation, and at 2 months after exacerbation. Serum anti-D2R antibodies were evaluated using a cell-based assay and blinded immunofluorescence microscopy scoring was performed by two raters. The association between visit type and presence of anti-D2R antibodies was measured with McNemar's test and repeated-measure logistic regression models, adjusting for potential demographic and clinical confounders. RESULTS At exacerbation, 11 (8%) participants became anti-D2R-positive ('early peri-exacerbation seroconverters'), and nine (6.6%) became anti-D2R-positive at post-exacerbation ('late peri-exacerbation seroconverters'). The anti-D2R antibodies were significantly associated with exacerbations when compared to baseline (McNemar's odds ratio=11, p=0.003) and conditional logistic regression confirmed this association (Z=3.49, p<0.001) after adjustment for demographic and clinical data and use of psychotropic drugs. INTERPRETATION There is a potential association between immune mechanisms and the severity course of tics in adolescents with CTDs.
Collapse
Affiliation(s)
- Francesco Addabbo
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Baglioni
- Department of Human Neurosciences, Sapienza University of Rome, Institute of Child and Adolescent Neurology and Psychiatry, Rome, Italy
| | - Anette Schrag
- Department of Clinical Neurosciences, UCL Institute of Neurology, Royal Free Campus, London, UK
| | - Markus J Schwarz
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Health Sciences Centre, Calgary, AB, Canada
| | - Maura Buttiglione
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
11
|
Giannoccaro MP, Pizza F, Jacobson L, Liguori R, Plazzi G, Vincent A. Neuronal surface antibodies are common in children with narcolepsy and active movement disorders. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-323638. [PMID: 32943584 DOI: 10.1136/jnnp-2020-323638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Maria Pia Giannoccaro
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Emilia-Romagna, Italy
- IRCCS Isituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Emilia-Romagna, Italy
- IRCCS Isituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Leslie Jacobson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Emilia-Romagna, Italy
- IRCCS Isituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Emilia-Romagna, Italy
- IRCCS Isituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
12
|
Martino D, Johnson I, Leckman JF. What Does Immunology Have to Do With Normal Brain Development and the Pathophysiology Underlying Tourette Syndrome and Related Neuropsychiatric Disorders? Front Neurol 2020; 11:567407. [PMID: 33041996 PMCID: PMC7525089 DOI: 10.3389/fneur.2020.567407] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The goal of this article is to review the past decade's literature and provide a critical commentary on the involvement of immunological mechanisms in normal brain development, as well as its role in the pathophysiology of Tourette syndrome, other Chronic tic disorders (CTD), and related neuropsychiatric disorders including Obsessive-compulsive disorder (OCD) and Attention deficit hyperactivity disorder (ADHD). Methods: We conducted a literature search using the Medline/PubMed and EMBASE electronic databases to locate relevant articles and abstracts published between 2009 and 2020, using a comprehensive list of search terms related to immune mechanisms and the diseases of interest, including both clinical and animal model studies. Results: The cellular and molecular processes that constitute our "immune system" are crucial to normal brain development and the formation and maintenance of neural circuits. It is also increasingly evident that innate and adaptive systemic immune pathways, as well as neuroinflammatory mechanisms, play an important role in the pathobiology of at least a subset of individuals with Tourette syndrome and related neuropsychiatric disorders In the conceptual framework of the holobiont theory, emerging evidence points also to the importance of the "microbiota-gut-brain axis" in the pathobiology of these neurodevelopmental disorders. Conclusions: Neural development is an enormously complex and dynamic process. Immunological pathways are implicated in several early neurodevelopmental processes including the formation and refinement of neural circuits. Hyper-reactivity of systemic immune pathways and neuroinflammation may contribute to the natural fluctuations of the core behavioral features of CTD, OCD, and ADHD. There is still limited knowledge of the efficacy of direct and indirect (i.e., through environmental modifications) immune-modulatory interventions in the treatment of these disorders. Future research also needs to focus on the key molecular pathways through which dysbiosis of different tissue microbiota influence neuroimmune interactions in these disorders, and how microbiota modification could modify their natural history. It is also possible that valid biomarkers will emerge that will guide a more personalized approach to the treatment of these disorders.
Collapse
Affiliation(s)
- Davide Martino
- Department of Clinical Neurosciences & Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Isaac Johnson
- Child Study Center, Yale University, New Haven, CT, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - James F. Leckman
- Child Study Center, Yale University, New Haven, CT, United States
- Departments of Psychiatry, Pediatrics and Psychology, Yale University, New Haven, CT, United States
| |
Collapse
|