1
|
Mathias K, Machado RS, Cardoso T, Tiscoski ADB, Kursancew ACDS, Prophiro JS, Generoso J, Petronilho F. Innate lymphoid cells in the brain: Focus on ischemic stroke. Microvasc Res 2025; 157:104755. [PMID: 39427988 DOI: 10.1016/j.mvr.2024.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The innate immune system consists of a diverse set of immune cells, including innate lymphoid cells (ILCs), which are grouped into subsets based on their transcription factors and cytokine profiles. Among these are natural killer (NK) cells, group 1 ILCs, group 2 ILCs, group 3 ILCs, and lymphoid tissue inducers (LTi). Unlike T and B cells, ILCs do not express the diverse antigen receptors typically found on those cells. Although ILCs function in various systems, further research is needed to understand their role in the brain and their involvement in neurological diseases such as stroke. This review explores the general immunological aspects of ILCs, with a particular focus on their role in the central nervous system and the pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Taise Cardoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Amanda Christine da Silva Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
2
|
Li L, Ren L, Li B, Liu C. Therapeutic effects of exercise on depression: The role of microglia. Brain Res 2025; 1846:149279. [PMID: 39406315 DOI: 10.1016/j.brainres.2024.149279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Major depressive disorderadversely affects mental health. Traditional therapeutic approaches, including medication, psychological intervention, and physical therapy, exert beneficial effects on depression. However, these approaches are associated with some limitations, such as high cost, adverse reactions, recurrent episodes, and low patient adherence. Previous studies have demonstrated that exercise therapy can effectively mitigate depressive symptoms, although the underlying mechanism has not been elucidated. Recent studies have suggested that depression is a microglial disease. Microglia regulate the inflammatory response, synaptic plasticity, neurogenesis, kynurenine pathway and the activation of hypothalamic-pituitary-adrenal axis, all of which affect depression. Exercise therapy is reported to shift the balance of microglial M1/M2 polarization in the hippocampus, frontal lobe, and striatum, suppressing the release of pro-inflammatory factors and consequently alleviating behavioral deficits in animal models of depression. Further studies are needed to examine the specific effects of different exercise regimens on microglia to identify the exercise regimen with the best therapeutic effect.
Collapse
Affiliation(s)
- Li Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li Ren
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Bing Li
- Hebei Provincial Mental Health Center, Baoding, China; Hebei Key Laboratory of Major Mental and Behavioral Disorders, Baoding, China; The Sixth Clinical Medical College of Hebei University, Baoding, China.
| | - Chaomeng Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Kong D, Zou W. Association between atherogenic index of plasma and post-stroke depression: a cross-sectional study. Eur J Psychotraumatol 2024; 15:2429266. [PMID: 39648850 PMCID: PMC11632925 DOI: 10.1080/20008066.2024.2429266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 12/10/2024] Open
Abstract
Background: Few studies have established a link between the atherogenic index of plasma (AIP) and post-stroke depression (PSD). This study aims to further investigate the potential relationship between the AIP and PSD, and to provide references for the prevention and prognosis management of patients with PSD.Methods: A cross-sectional study was conducted using data from participants in the National Health and Nutrition Examination Survey from 2005 to 2018. Inclusion criteria required complete data on the AIP, stroke history, and depression status. Weighted logistic regression models and restricted cubic splines (RCS) were employed to examine the association between the AIP and PSD. By subgroup and interaction analyses, the stability associated with AIP and PSD was assessed between different subgroups.Results: Among the 32,364 participants ultimately enrolled in the study, 482 were diagnosed with PSD. In the weighted multivariate logistic regression adjustment model 3, AIP, as a continuous variable, was positively associated with the risk of PSD [odds ratio (OR) = 1.85, 95% confidence interval (CI): 1.18, 2.91; P = 0.007]. After the quartile classification of AIP, the adjusted model 3 showed that the risk of PSD in group Q4 was significantly higher than that in group Q1 (OR = 1.61, 95%CI:1.10, 2.34; P = 0.006). In the RCS linearity test, AIP was positively associated with the risk of PSD (Pnon-linear = 0.357). The interaction test demonstrated that AIP only had an interaction with gender (Pinteraction = 0.031) and not with other variables (Pinteraction > 0.05).Conclusion: AIP was positively associated with the prevalence of PSD, suggesting that AIP may be a promising predictor of the risk of developing PSD. In addition, the interaction of AIP and gender differences combined to influence the incidence of PSD.
Collapse
Affiliation(s)
- Demin Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Wei Zou
- Acupuncture Department, First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| |
Collapse
|
4
|
Xu B, Li H, Zheng H, Gao Z, Miao Z, Xu X, Yang H, Yang Y. Interleukin-18 interacts with NKCC1 to mediate brain injury after intracerebral hemorrhage. Brain Behav Immun Health 2024; 42:100890. [PMID: 39507306 PMCID: PMC11538613 DOI: 10.1016/j.bbih.2024.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/13/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
Interleukin 18 (IL-18), a proinflammatory cytokine, has been implicated in various neurological disorders, including cerebrovascular disease and psychiatric disorders. In a previous study, IL-18 was observed to activate microglia and enhance the inflammatory response following intracranial hemorrhage (ICH). However, the underlying mechanism remains unclear. In the present study, we found that IL-18 and IL-18 receptor (IL-18 R) are primarily secreted by neurons during the early stages after ICH, with microglia becoming the predominant source at 12-24 h after ICH. Meanwhile, the expression level of IL-18 R increased following ICH, along with an augmentation in the binding affinity of IL-18 R to IL-18. Subsequently, the deficiency of IL-18 R mitigated neurological impairment and subsequent activation of inflammatory pathways in mice post-ICH. Moreover, our findings suggest that IL-18-induced neurological injury after ICH may be mediated by the interaction between IL18R and NKCC1. Significantly, the NKCC1 inhibitor rescued the neurologic injury after ICH. In conclusion, our study suggests that targeting the IL-18/IL-18R/NKCC1 pathway could be an effective therapeutic strategy to attenuate secondary brain injury after ICH.
Collapse
Affiliation(s)
- Beibei Xu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Departments of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - He Zheng
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhongyu Gao
- Computer Science and Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Xingshun Xu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Hao Yang
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yi Yang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Javidi Aghdam K, Baradaran B, Rahmani S, Manafzadeh F, Noor Azar SG, Aghayan S, Shayannia A, Ghafouri-Fard S. Expression pattern of long non-coding RNAs in treatment-naïve and medicated schizophrenia patients. Sci Rep 2024; 14:27654. [PMID: 39532914 PMCID: PMC11557838 DOI: 10.1038/s41598-024-78220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Schizophrenia is a disabling mental disorder that affects 1% of people over their lifetime. The etiology and mechanism of schizophrenia are very complex, and many genes are involved in many different signaling pathways in the etiology of this disease. According to recent studies, one of the important mechanisms altered in this disorder is the regulation of immune system and the inflammation mechanism. In the present study, we evaluated the peripheral blood expression pattern of four lncRNAs and three protein-coding genes in the treatment- naïve patients, and medicated patients compared with sex and age-matched controls. In the medicated-patients, expression levels of IFNG, IL18RAP, AC007278.2 were significantly up-regulated (P < 0.05); and the expression level of IFNG-AS1-001 was significantly down-regulated compared to healthy controls (P < 0.05). However, levels of IL18R1, AC007278.3 and IFNG-AS1-003 were not different between these groups. In the treatment-naïve patients, IFNG, IL18R1, IL18RAP, IFNG-AS1-001, AC007278.2, and AC007278.3 were significantly up-regulated compared to controls. On the other hand, IFNG-AS1-003 was significantly down-regulated in the treatment-naïve patients compared to controls. Based on the Spearman correlation matrix, there was a significant correlation between genes in the treatment-naïve patients. We also showed the high sensitivity and specificity of IFNG-AS1-003, IFNG, IL18R1, and AC007278.3 in the identification of treatment-naïve patients from controls. The current study contributes further evidence to the understanding of the role of lncRNAs in the pathogenesis of schizophrenia. Future research is necessary to establish the validity of lncRNAs as peripheral markers for this condition.
Collapse
Affiliation(s)
- Kamran Javidi Aghdam
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shima Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Manafzadeh
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyed Gholamreza Noor Azar
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrokh Aghayan
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Asghar Shayannia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Xiong B, Li Z, Zhang S, Wang Z, Xie Y, Zhang M, Zhang G, Wen J, Tian Y, Li Q. Association between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and the risk of post-stroke depression: A cross-sectional study. J Stroke Cerebrovasc Dis 2024; 33:107991. [PMID: 39227001 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Limited observational research has explored the relationship between the non-high-density lipoprotein cholesterol (non-HDL-C) to high-density lipoprotein cholesterol (HDL-C) ratio (NHHR) and the risk of post-stroke depression (PSD). This study aims to investigate the potential associations between NHHR and PSD. METHODS A cross-sectional study was conducted using data from stroke participants aged 20 and older, sourced from the National Health and Nutrition Examination Survey (NHANES) spanning 2005 to 2018. Depression was assessed using the PHQ-9 questionnaire. The association between NHHR and PSD risk was evaluated through weighted multivariate logistic regression and restricted cubic spline (RCS) models. Subgroup and sensitivity analyses were performed to validate the findings. RESULTS In the continuous model, the NHHR value for the PSD group (3.23±1.84) was significantly higher than that of the non-PSD group (2.79±1.40, p=0.015). Logistic regression analysis in the fully adjusted model revealed a positive association between NHHR and PSD (OR 1.16, 95 % CI 1.03-1.30, p=0.016). Interaction tests showed no significant differences across strata (p > 0.05 for interaction). Restricted cubic spline results indicated a linear dose-response relationship between NHHR and PSD risk (P for non-linearity = 0.6). This association persisted in various subgroup analyses. CONCLUSION NHHR was significantly correlated with an increased risk of PSD among U.S. adults. Further re-search on NHHR could contribute to the prevention and treatment of PSD.
Collapse
Affiliation(s)
- Benbo Xiong
- Department of The Second Clinical Medical School, Anhui Medical University, Hefei 230601, Anhui, PR China
| | - Zhiming Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, PR China
| | - Shanyu Zhang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, PR China
| | - Zijie Wang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, PR China
| | - Yanfang Xie
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, PR China
| | - Mengqiu Zhang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, PR China
| | - Gaocai Zhang
- Department of Neurology, The Kaifeng Central Hospital, Kaifeng 475000, Henan, PR China
| | - Jianshang Wen
- Department of Neurology, Shucheng People's Hospital, Lu'an 231300, Anhui, PR China
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, PR China
| | - Qi Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, PR China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
7
|
Sun W, Cao H, Liu D, Baranova A, Zhang F, Zhang X. Genetic association and drug target exploration of inflammation-related proteins with risk of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111165. [PMID: 39383931 DOI: 10.1016/j.pnpbp.2024.111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND In numerous observational studies, circulating inflammation-related proteins have been linked with major depressive disorder (MDD), yet the precise causal direction of this relationship remains unclear. This study aims to investigate the potential causal link between inflammation-related proteins and the risk of developing MDD. METHODS We utilized summary data from a genome-wide association study (GWAS) of 91 circulating inflammation-associated proteins in 14,824 individuals of European descent. Additionally, we incorporated findings from a substantial GWAS on MDD, which included 294,322 cases and 741,438 controls. Our analysis employed a two-sample bidirectional Mendelian randomization (MR) approach, with inverse variance weighting (IVW) as the primary method. We augmented this with two supplementary techniques (MR-Egger and weighted median approaches) to detect and address potential pleiotropy. Furthermore, to identify and evaluate possible drug targets, we conducted a thorough search within the Drug-Gene Interaction Database (DGIdb). RESULTS Analysis using MR unveiled significant and causative associations between genetically determined CASP-8 (odds ratio (OR): 0.97), CD40 (OR: 0.96), IL-18 (OR: 0.98), SLAMF1 (OR: 0.97), and uPA (OR: 0.98) with MDD. Conversely, reverse MR analysis indicated causal associations between MDD and CCL19 (OR: 1.15), HGF (OR: 1.15), IL-8 (OR: 1.10), IL-18 (OR: 1.11), IL20RA (OR: 1.12), TGFA (OR: 1.12) and TNFSF14 (OR: 1.16). Notably, a significant bidirectional causal link was observed between IL-18 and MDD. Gene-drug analysis identified CD40, HGF, IL-8, IL-18, SLAMF1, and TGFA as potential therapeutic targets. CONCLUSIONS We've pinpointed causal links between inflammation-related proteins and MDD, offering compelling and innovative evidence to enhance our understanding of the inflammatory mechanisms involved in MDD and to investigate potential targets for anti-MDD medications.
Collapse
Affiliation(s)
- Wenxi Sun
- Suzhou Medical College of Soochow University, Suzhou 215031, Jiangsu, China; Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing 210008, China; Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, USA; Research Centre for Medical Genetics, Moscow, Russia
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Xiaobin Zhang
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China.
| |
Collapse
|
8
|
Lv Z, Zhao C, Wu X, Chen Y, Zheng C, Zhang X, Xu Y, Zhu L, Wang H, Xie G, Zheng W. Facile engineered macrophages-derived exosomes-functionalized PLGA nanocarrier for targeted delivery of dual drug formulation against neuroinflammation by modulation of microglial polarization in a post-stroke depression rat model. Biomed Pharmacother 2024; 179:117263. [PMID: 39243431 DOI: 10.1016/j.biopha.2024.117263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024] Open
Abstract
Post-stroke depression (POSD) is a common difficulty and most predominant emotional syndrome after stroke often consequences in poor outcomes. In the present investigation, we have designed and studied the neurologically active celastrol/minocycline encapsulated with macrophages-derived exosomes functionalized PLGA nanoformulations (CMC-EXPL) to achieve enhanced anti-inflammatory behaviour and anti-depressant like activity in a Rat model of POSD. The animal model of POSD was established through stimulating process with chronic unpredictable mild stress (CUM) stimulations after procedure of middle cerebral artery occlusion (MCAO). Neuronal functions and Anti-inflammation behaviours were observed by histopathological (H&E) examination and Elisa analyses, respectively. The anti-depressive activity of the nanoformulations treated Rat models were evaluated by open-field and sucrose preference test methods. Microglial polarization was evaluated via flow-cytometry and qRT-PCR observations. The observed results exhibited that prepared nanoformulations reduced the POSD-stimulated depressive-like activities in rat models as well alleviated the neuronal damages and inflammatory responses in the cerebral hippocampus. Importantly, prepared CMC-EXPL nanoformulation effectively prevented the M1 pro-inflammatory polarization and indorsed M2 anti-inflammatory polarization, which indicates iNOS and CD86 levels significantly decreased and upsurged Arg-1 and CD206 levels. CMC-EXPL nanoformulation suggestively augmented anti-depressive activities and functional capability and also alleviated brain inflammation in POSD rats, demonstrating its therapeutic potential for POSD therapy.
Collapse
Affiliation(s)
- Zhongyue Lv
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Cui Zhao
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Xiping Wu
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yinqi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Cheng Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoling Zhang
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yifei Xu
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Lujia Zhu
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Haifeng Wang
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China.
| | - Guomin Xie
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China.
| | - Wu Zheng
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China.
| |
Collapse
|
9
|
Mușat MI, Cătălin B, Hadjiargyrou M, Popa-Wagner A, Greșiță A. Advancing Post-Stroke Depression Research: Insights from Murine Models and Behavioral Analyses. Life (Basel) 2024; 14:1110. [PMID: 39337894 PMCID: PMC11433193 DOI: 10.3390/life14091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Post-stroke depression (PSD) represents a significant neuropsychiatric complication that affects between 39% and 52% of stroke survivors, leading to impaired recovery, decreased quality of life, and increased mortality. This comprehensive review synthesizes our current knowledge of PSD, encompassing its epidemiology, risk factors, underlying neurochemical mechanisms, and the existing tools for preclinical investigation, including animal models and behavioral analyses. Despite the high prevalence and severe impact of PSD, challenges persist in accurately modeling its complex symptomatology in preclinical settings, underscoring the need for robust and valid animal models to better understand and treat PSD. This review also highlights the multidimensional nature of PSD, where both biological and psychosocial factors interplay to influence its onset and course. Further, we examine the efficacy and limitations of the current animal models in mimicking the human PSD condition, along with behavioral tests used to evaluate depressive-like behaviors in rodents. This review also sets a new precedent by integrating the latest findings across multidisciplinary studies, thereby offering a unique and comprehensive perspective of existing knowledge. Finally, the development of more sophisticated models that closely replicate the clinical features of PSD is crucial in order to advance translational research and facilitate the discovery of future effective therapies.
Collapse
Affiliation(s)
- Mădălina Iuliana Mușat
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Aurel Popa-Wagner
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Neurology, Vascular Neurology and Dementia, University of Medicine Essen, 45122 Essen, Germany
| | - Andrei Greșiță
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
10
|
Dong T, Yu C, Mao Q, Han F, Yang Z, Yang Z, Pires N, Wei X, Jing W, Lin Q, Hu F, Hu X, Zhao L, Jiang Z. Advances in biosensors for major depressive disorder diagnostic biomarkers. Biosens Bioelectron 2024; 258:116291. [PMID: 38735080 DOI: 10.1016/j.bios.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Depression is one of the most common mental disorders and is mainly characterized by low mood or lack of interest and pleasure. It can be accompanied by varying degrees of cognitive and behavioral changes and may lead to suicide risk in severe cases. Due to the subjectivity of diagnostic methods and the complexity of patients' conditions, the diagnosis of major depressive disorder (MDD) has always been a difficult problem in psychiatry. With the discovery of more diagnostic biomarkers associated with MDD in recent years, especially emerging non-coding RNAs (ncRNAs), it is possible to quantify the condition of patients with mental illness based on biomarker levels. Point-of-care biosensors have emerged due to their advantages of convenient sampling, rapid detection, miniaturization, and portability. After summarizing the pathogenesis of MDD, representative biomarkers, including proteins, hormones, and RNAs, are discussed. Furthermore, we analyzed recent advances in biosensors for detecting various types of biomarkers of MDD, highlighting representative electrochemical sensors. Future trends in terms of new biomarkers, new sample processing methods, and new detection modalities are expected to provide a complete reference for psychiatrists and biomedical engineers.
Collapse
Affiliation(s)
- Tao Dong
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Qi Mao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Han
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenwei Yang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Pires
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Hu
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Hu
- Engineering Research Center of Ministry of Education for Smart Justice, School of Criminal Investigation, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Libo Zhao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
11
|
Kumari S, Dhapola R, Sharma P, Nagar P, Medhi B, HariKrishnaReddy D. The impact of cytokines in neuroinflammation-mediated stroke. Cytokine Growth Factor Rev 2024; 78:105-119. [PMID: 39004599 DOI: 10.1016/j.cytogfr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Cerebral stroke is ranked as the third most common contributor to global mortality and disability. The involvement of inflammatory mechanisms, both peripherally and within the CNS, holds significance in the pathophysiological cascades following the initiation of stroke. After the onset of acute stroke, predominantly ischemic, a subsequent phase of neuroinflammation ensues. It is a dual-effect process that not only exacerbates injury, leading to cell death, but paradoxically, it also serves a shielding role in facilitating recovery. Cytokines serve as pivotal mediators within the inflammatory cascade, actively contributing to the progression of ischemic damage. Stroke is followed by increased expression of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, etc. leading to the recruitment and stimulation of glial cells and peripheral leukocytes at the site of injury, promoting neuroinflammation. Cytokines can directly induce neuronal injury and death through various mechanisms, including excitotoxicity, oxidative stress, HPA-axis activation, secretion of matrix metalloproteinase and apoptosis. They can also amplify the inflammatory response, leading to further neuronal damage. Therapeutic strategies aimed at modulating cytokine release, immune response and cytokine signalling or activity are being explored as potential interventions to mitigate neuroinflammation and its detrimental effects in stroke. In this review, we have given a concise summary of our current knowledge of the function of various cytokines, brain inflammation and various signalling and molecular pathways including JAK/STAT3, TGF-β/Smad, MAPK, HMGB1/TLR and NF-κB modulated cytokines regulation in stroke. Therapeutic agents such as MCC950, genistein, edaravone, minocycline, etc. targeting various cytokines-associated signalling pathways have shown efficacy in preclinical and clinical trials reducing the pathophysiology of the illness were also addressed in this study.
Collapse
Affiliation(s)
- Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pushank Nagar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
12
|
Jiang ST, Sun YH, Li Y, Wang MQ, Wang XY, Dong YF. Gut microbiota is necessary for pair-housing to protect against post-stroke depression in mice. Exp Neurol 2024; 378:114834. [PMID: 38789022 DOI: 10.1016/j.expneurol.2024.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The goal of this study is to investigate the role of microbiota-gut-brain axis involved in the protective effect of pair-housing on post-stroke depression (PSD). PSD model was induced by occluding the middle cerebral artery (MCAO) plus restraint stress for four weeks. At three days after MCAO, the mice were restrained 2 h per day. For pair-housing (PH), each mouse was pair housed with a healthy isosexual cohabitor for four weeks. While in the other PH group, their drinking water was replaced with antibiotic water. On day 35 to day 40, anxiety- and depression-like behaviors (sucrose consumption, open field test, forced swim test, and tail-suspension test) were conducted. Results showed pair-housed mice had better performance on anxiety- and depression-like behaviors than the PSD mice, and the richness and diversity of intestinal flora were also improved. However, drinking antibiotic water reversed the effects of pair-housing. Furthermore, pair-housing had an obvious improvement in gut barrier disorder and inflammation caused by PSD. Particularly, they showed significant decreases in CD8 lymphocytes and mRNA levels of pro-inflammatory cytokines (TNF-a, IL-1β and IL-6), while IL-10 mRNA was upregulated. In addition, pair-housing significantly reduced activated microglia and increased Nissl's body in the hippocampus of PSD mice. However, all these improvements were worse in the pair-housed mice administrated with antibiotic water. We conclude that pair-housing significantly improves PSD in association with enhanced functions of microbiota-gut-brain axis, and homeostasis of gut microbiota is indispensable for the protective effect of pair-housing on PSD.
Collapse
Affiliation(s)
- Su-Ting Jiang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao-Huan Sun
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ya Li
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Meng-Qing Wang
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xu-Yang Wang
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Yin-Feng Dong
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
13
|
Feng XY, Shen TT, Wu QC, Wang J, Ni P, Liu J, Zhou XP, Hu H, Luo WF. A novel approach to treating post-stroke depression: administration of Botulinum Toxin A via local facial injection. Front Neurol 2024; 15:1372547. [PMID: 38957350 PMCID: PMC11217355 DOI: 10.3389/fneur.2024.1372547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024] Open
Abstract
Background Post-stroke depression (PSD) is a frequent complication following a stroke, characterized by prolonged feelings of sadness and loss of interest, which can significantly impede stroke rehabilitation, increase disability, and raise mortality rates. Traditional antidepressants often have significant side effects and poor patient adherence, necessitating the exploration of more suitable treatments for PSD. Previous researchers and our research team have discovered that Botulinum Toxin A (BoNT-A) exhibits antidepressant effects. Therefore, our objective was to assess the efficacy and side effects of BoNT-A treatment in patients with PSD. Methods A total of 71 stroke patients meeting the inclusion criteria were allocated to the two group. 2 cases were excluded due to severe neurological dysfunction that prevented cooperation and 4 cases were lost follow-up. Ultimately, number of participants in the BoNT-A group (n = 32) and Sertraline group (n = 33). Treatment efficacy was evaluated 1, 2, 4, 8 and 12 weeks post-treatment. Results There were no significant differences in baseline characteristics between the two groups (p > 0.05). Both groups exhibited comparable treatment efficacy, with fewer side effects observed in the BoNT-A group compared to the Sertraline group. BoNT-A therapy demonstrated significant effects as early as the first week (p < 0.05), and by the 12th week, there was a notable decrease in neuropsychological scores, significantly lower than the baseline level. The analysis revealed significant differences in measurements of the Hamilton Depression Scale (HAMD) (F(770) = 12.547, p = 0.000), Hamilton Anxiety Scale (HAMA) (F(951) = 10.422, p = 0.000), Self-Rating Depression Scale (SDS) (F(1385) = 10.607, p = 0.000), and Self-Rating Anxiety Scale (SAS) (F(1482) = 11.491, p = 0.000). Conclusion BoNT-A treatment effectively reduces depression symptoms in patients with PSD on a continuous basis.
Collapse
Affiliation(s)
- Xiao-Yan Feng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Ting-Ting Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian-Chang Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Ni
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xu-Ping Zhou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei-Feng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Deng Q, Parker E, Wu C, Zhu L, Liu TCY, Duan R, Yang L. Repurposing Ketamine in the Therapy of Depression and Depression-Related Disorders: Recent Advances and Future Potential. Aging Dis 2024:AD.2024.0239. [PMID: 38916735 DOI: 10.14336/ad.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Depression represents a prevalent and enduring mental disorder of significant concern within the clinical domain. Extensive research indicates that depression is very complex, with many interconnected pathways involved. Most research related to depression focuses on monoamines, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, tryptophan metabolism, energy metabolism, mitochondrial function, the gut-brain axis, glial cell-mediated inflammation, myelination, homeostasis, and brain neural networks. However, recently, Ketamine, an ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist, has been discovered to have rapid antidepressant effects in patients, leading to novel and successful treatment approaches for mood disorders. This review aims to summarize the latest findings and insights into various signaling pathways and systems observed in depression patients and animal models, providing a more comprehensive view of the neurobiology of anxious-depressive-like behavior. Specifically, it highlights the key mechanisms of ketamine as a rapid-acting antidepressant, aiming to enhance the treatment of neuropsychiatric disorders. Moreover, we discuss the potential of ketamine as a prophylactic or therapeutic intervention for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Ling Zhu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| |
Collapse
|
15
|
Kong D, Li Y, Zou W. Efficacy and safety of acupuncture treatment for post-stroke depression: A protocol for systematic review and meta-analysis. PLoS One 2024; 19:e0300769. [PMID: 38709750 PMCID: PMC11073698 DOI: 10.1371/journal.pone.0300769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Post-stroke depression is a common complication of stroke, with a high incidence rate and low recognition rate. Many patients do not receive effective intervention at the onset, which affects subsequent treatment outcomes. Post-stroke depression not only impacts the patient's mental well-being but also increases the risk of stroke recurrence and poor prognosis. Therefore, it has become a significant public health concern. Acupuncture has gained significant popularity in the treatment of post-stroke depression. However, there are inconsistent clinical research results regarding its efficacy and safety. This systematic review aims to gather and critically assess all available evidence regarding the effectiveness and safety of acupuncture in the treatment of post-stroke depression in patients. METHODS We will conduct thorough searches for relevant studies in multiple electronic databases (PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, VIP Database, Wan-fang Data and China Biomedical Database). Our search scope will encompass studies published from the inception of each database until September 2023. To evaluate the potential bias in all the included studies, we will adhere to the guidelines offered in the Cochrane Handbook. The total effective rate will be the primary outcome. To conduct a systematic review, we will employ RevMan 5.4 software. RESULTS This study will obtain efficacy and safety of acupuncture for the treatment of post-stroke depression. CONCLUSIONS The conclusions of this study will provide evidence-based perspectives that can guide clinical decision-making regarding the practicality and recommended timing of using acupuncture to treat post-stroke depression. Furthermore, this study will help advance the clinical application of acupuncture treatment for post-stroke depression and enhance its efficacy while ensuring patient safety.
Collapse
Affiliation(s)
- Demin Kong
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yangyang Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
16
|
Cai M, Zhang JL, Wang XJ, Cai KR, Li SY, Du XL, Wang LY, Yang RY, Han J, Hu JY, Lyu J. Clinical application of repetitive transcranial magnetic stimulation in improving functional impairments post-stroke: review of the current evidence and potential challenges. Neurol Sci 2024; 45:1419-1428. [PMID: 38102519 DOI: 10.1007/s10072-023-07217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
In recent years, the stroke incidence has been increasing year by year, and the related sequelae after stroke, such as cognitive impairment, motor dysfunction, and post-stroke depression, seriously affect the patient's rehabilitation and daily activities. Repetitive transcranial magnetic stimulation (rTMS), as a safe, non-invasive, and effective new rehabilitation method, has been widely recognized in clinical practice. This article reviews the application and research progress of rTMS in treating different functional impairments (cognitive impairment, motor dysfunction, unilateral spatial neglect, depression) after stroke in recent years, and preliminary summarized the possible mechanisms. It has been found that the key parameters that determine the effectiveness of rTMS in improving post-stroke functional impairments include pulse number, stimulated brain areas, stimulation intensity and frequency, as well as duration. Generally, high-frequency stimulation is used to excite the ipsilateral cerebral cortex, while low-frequency stimulation is used to inhibit the contralateral cerebral cortex, thus achieving a balance of excitability between the two hemispheres. However, the specific mechanisms and the optimal stimulation mode for different functional impairments have not yet reached a consistent conclusion, and more research is needed to explore and clarify the best way to use rTMS. Furthermore, we will identify the issues and challenges in the current research, explore possible mechanisms to deepen understanding of rTMS, propose future research directions, and offer insightful insights for better clinical applications.
Collapse
Affiliation(s)
- Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jia-Ling Zhang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiao-Jun Wang
- Medical Research and Education Department, Shanghai Health Rehabilitation Hospital, Shanghai, 201615, China
| | - Ke-Ren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shu-Yao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xin-Lin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li-Yan Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Ruo-Yu Yang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jing-Yun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Jie Lyu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
17
|
Lu W, Wen J. Neuroinflammation and Post-Stroke Depression: Focus on the Microglia and Astrocytes. Aging Dis 2024:AD.2024.0214-1. [PMID: 38421829 DOI: 10.14336/ad.2024.0214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Post-stroke depression (PSD), a frequent and disabling complication of stroke, has a strong impact on almost thirty percent of stroke survivors. The pathogenesis of PSD is not completely clear so far. Neuroinflammation following stroke is one of underlying mechanisms that involves in the pathophysiology of PSD and plays an important function in the development of depression and is regarded as a sign of depression. During the neuroinflammation after ischemic stroke onset, both astrocytes and microglia undergo a series of morphological and functional changes and play pro-inflammatory or anti-inflammatory effect in the pathological process of stroke. Importantly, astrocytes and microglia exert dual roles in the pathological process of PSD due to the phenotypic transformation. We summarize the latest evidence of neuroinflammation involving in PSD in this review, focus on the phenotypic transformation of microglia and astrocytes following ischemic stroke and reveal the dual roles of both microglia and astrocytes in the PSD via modulating the neuroinflammation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Zhang Y, Yang Y, Li H, Feng Q, Ge W, Xu X. Investigating the Potential Mechanisms and Therapeutic Targets of Inflammatory Cytokines in Post-stroke Depression. Mol Neurobiol 2024; 61:132-147. [PMID: 37592185 DOI: 10.1007/s12035-023-03563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Post-stroke depression (PSD) affects approximately one-third of stroke survivors, severely impacting general recovery and quality of life. Despite extensive studies, the exact mechanisms underlying PSD remain elusive. However, emerging evidence implicates proinflammatory cytokines, including interleukin-1β, interleukin-6, tumor necrosis factor-alpha, and interleukin-18, play critical roles in PSD development. These cytokines contribute to PSD through various mechanisms, including hypothalamic-pituitary-adrenal (HPA) axis dysfunction, neurotransmitter alterations, neurotrophic factor changes, gut microbiota imbalances, and genetic predispositions. This review is aimed at exploring the role of cytokines in stroke and PSD while identifying their potential as specific therapeutic targets for managing PSD. A more profound understanding of the mechanisms regulating inflammatory cytokine expression and anti-inflammatory cytokines like interleukin-10 in PSD may facilitate the development of innovative interventions to improve outcomes for stroke survivors experiencing depression.
Collapse
Affiliation(s)
- Yutong Zhang
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yuehua Yang
- Department of Neurology, Suzhou Yongding Hospital, Suzhou, 215028, China
| | - Hao Li
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Qian Feng
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wei Ge
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221600, China.
| | - Xingshun Xu
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
19
|
Zhan Q, Kong F. Mechanisms associated with post-stroke depression and pharmacologic therapy. Front Neurol 2023; 14:1274709. [PMID: 38020612 PMCID: PMC10651767 DOI: 10.3389/fneur.2023.1274709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Stroke is one of the most common cerebrovascular diseases, which is the cause of long-term mental illness and physical disability, Post-stroke depression (PSD) is the most common neuropsychiatric complication after stroke, and its mechanisms are characterized by complexity, plurality, and diversity, which seriously affects the quality of survival and prognosis of patients. Studies have focused on and recognized neurotransmitter-based mechanisms and selective serotonin-reuptake inhibitors (SSRIs) can be used to treat PSD. Neuroinflammation, neuroendocrinology, neurotrophic factors, and the site of the stroke lesion may affect neurotransmitters. Thus the mechanisms of PSD have been increasingly studied. Pharmacological treatment mainly includes SSRIs, noradrenergic and specific serotonergic antidepressant (NaSSA), anti-inflammatory drugs, vitamin D, ect, which have been confirmed to have better efficacy by clinical studies. Currently, there is an increasing number of studies related to the mechanisms of PSD. However, the mechanisms and pharmacologic treatment of PSD is still unclear. In the future, in-depth research on the mechanisms and treatment of PSD is needed to provide a reference for the prevention and treatment of clinical PSD.
Collapse
Affiliation(s)
- Qingyang Zhan
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fanyi Kong
- Neurosurgery, Affiliated First Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Zhu X, Zhao Y, Li L, Liu J, Huang Q, Wang S, Shu Y. Association of non-HDL-C and depression: a cross-sectional analysis of the NHANES data. Front Psychiatry 2023; 14:1274648. [PMID: 37928909 PMCID: PMC10623352 DOI: 10.3389/fpsyt.2023.1274648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Objectives Non-high-density lipoprotein cholesterol (non-HDL-C) has attracted attention because it is associated with a variety of diseases and is easy to measure. However, the relationship between non-HDL-C and depression is still unclear. Our aim was to assess the relationship between non-HDL-C and depression using the cross-sectional NHANES survey from 2005 to 2018. Methods We examined the association between non-HDL-C and depression using weighted multivariable logistic regression models and subgroup analysis. Sensitivity analysis demonstrated the robustness of the results. Results There were 42,143 participants in this study and 8.6% had depression (weighted 7.53%). Non-HDL-C was higher in participants with depression compared to those without depression (weighted mean 3.64 vs. 3.73, p < 0.01). There was a positive association between non-HDL-C and depression with a 95% OR of 1.22 adjusted for multifactorial (95% CI,1.03-1.45). In subgroup analyses, non-HDL-C was positively associated with depression in men (OR, 1.31; 95% CI, 1.01-1.70), normal BMI (OR: 0.93; 95% CI: 0.66-1.32) and in participants without hypertension (OR, 1.29; 95% CI, 1.01-1.66). Conclusion Non-HDL-C positively correlated with depression, and further research may be better for clinical service.
Collapse
Affiliation(s)
- Xianlin Zhu
- Department of Clinical Psychology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yiwen Zhao
- Department of Psychiatry, Linhai Kangning Hospital, Linhai, China
| | - Lu Li
- Department of Psychiatry, Linhai Kangning Hospital, Linhai, China
| | - Jiaoying Liu
- Graduate School of Zunyi Medical University, Zunyi Medical University, Zunyi, China
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guivang, China
| | - Qiankun Huang
- Department of Psychology, Yichang Mental Health Center, Yichang, China
| | - Suhong Wang
- Department of Clinical Psychology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yanping Shu
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guivang, China
| |
Collapse
|
21
|
Cui F, Zhao L, Lu M, Liu R, Lv Q, Lin D, Li K, Zhang Y, Wang Y, Wang Y, Wang L, Tan Z, Tu Y, Zou Y. Functional and structural brain reorganization in patients with ischemic stroke: a multimodality MRI fusion study. Cereb Cortex 2023; 33:10453-10462. [PMID: 37566914 DOI: 10.1093/cercor/bhad295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Understanding how structural and functional reorganization occurs is crucial for stroke diagnosis and prognosis. Previous magnetic resonance imaging (MRI) studies focused on the analyses of a single modality and demonstrated abnormalities in both lesion regions and their associated distal regions. However, the relationships of multimodality alterations and their associations with poststroke motor deficits are still unclear. In this study, 71 hemiplegia patients and 41 matched healthy controls (HCs) were recruited and underwent MRI examination at baseline and at 2-week follow-up sessions. A multimodal fusion approach (multimodal canonical correlation analysis + joint independent component analysis), with amplitude of low-frequency fluctuation (ALFF) and gray matter volume (GMV) as features, was used to extract the co-altered patterns of brain structure and function. Then compared the changes in patients' brain structure and function between baseline and follow-up sessions. Compared with HCs, the brain structure and function of stroke patients decreased synchronously in the local lesions and their associated distal regions. Damage to structure and function in the local lesion regions was associated with motor function. After 2 weeks, ALFF in the local lesion regions was increased, while GMV did not improve. Taken together, the brain structure and function in the local lesions and their associated distal regions were damaged synchronously after ischemic stroke, while during motor recovery, the 2 modalities were changed separately.
Collapse
Affiliation(s)
- Fangyuan Cui
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Lei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No.16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Mengxin Lu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
- Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, No.8 South Gongti Road, Chaoyang District, Beijing 100020, China
| | - Ruoyi Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, Hebei 061000, China
| | - Qiuyi Lv
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Dan Lin
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Kuangshi Li
- 5Department of Rehabilitation, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Yong Zhang
- 5Department of Rehabilitation, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Yahui Wang
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, No.168 Litang Road, Changping District, Beijing 102218, China
| | - Yue Wang
- Department of Protology, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Liping Wang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Zhongjian Tan
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Yiheng Tu
- Department of Psychology, University of Chinese Academy of Sciences, No.19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yihuai Zou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| |
Collapse
|
22
|
Li B, Zhou X, Zhen L, Zhang W, Lu J, Zhou J, Tang H, Wang H. Catapol reduced the cognitive and mood dysfunctions in post-stroke depression mice via promoting PI3K-mediated adult neurogenesis. Aging (Albany NY) 2023; 15:8433-8443. [PMID: 37647020 PMCID: PMC10496983 DOI: 10.18632/aging.204979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 09/01/2023]
Abstract
Adult hippocampal neurogenesis provides a regenerative resource for neural tissue and enhances neural plasticity, which is beneficial for brain functional rehabilitation post stroke. Recently, an increasing number of metabolic drugs have been reported to attenuate behavioral symptoms in neurodegeneration or psychiatric disorders via promoting adult hippocampal neurogenesis. Bioeffects of catapol show its potential as an antidiabetic though it has been previously widely indicated to perform the neuroprotective functions. However, the systematic evidence to support the behavioral effects of catapol to PSD model and what is the role of adult neurogenesis in such effects remains unexplored. In current study, we created the PSD model by combining MCAO procedure and CORT feeding. The treatment of catapol strikingly reduced the depressive/anxiety behavior in PSD model. Moreover, treatment of catapol also improved the cognitive functions. Immunofluorescence indicates that catapol could promote adult hippocampal neurogenesis in PSD model, and TMZ treatment further confirmed the role of the hippocampal neurogenesis in catapol's therapeutic effects to PSD. Cultural neurons also indicates that PI3K is the key signal in regulating catapol mediated neurogenesis. By administrating the PI3K specific inhibitor, we found that PI3K is the key to mediate the behavioral effects of catapol to PSD. In conclusion, catapol could perform as the effective drug to treat PSD via the PI3K mediated adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bo Li
- Department of Neurosurgery, General Hospital of Taiyuan Iron and Steel Co, Taiyuan, China
| | - Xin Zhou
- Medical Laboratory, Shanxi Province Pediatric Hospital, Taiyuan, China
| | - Lu Zhen
- Department of Endocrinology, General Hospital of Taiyuan Iron and Steel Co, Taiyuan, China
| | - Weiwei Zhang
- Department of Anesthesiology, Shanxi Bethune Hospital, Taiyuan, China
| | - Jian Lu
- Department of Neurosurgery, General Hospital of Taiyuan Iron and Steel Co, Taiyuan, China
| | - Jie Zhou
- Department of Neurosurgery, General Hospital of Taiyuan Iron and Steel Co, Taiyuan, China
| | - Huoquan Tang
- Department of Neurosurgery, General Hospital of Taiyuan Iron and Steel Co, Taiyuan, China
| | - Huangsuo Wang
- Department of Neurosurgery, General Hospital of Taiyuan Iron and Steel Co, Taiyuan, China
| |
Collapse
|
23
|
Hassamal S. Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories. Front Psychiatry 2023; 14:1130989. [PMID: 37252156 PMCID: PMC10213648 DOI: 10.3389/fpsyt.2023.1130989] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
In a subset of patients, chronic exposure to stress is an etiological risk factor for neuroinflammation and depression. Neuroinflammation affects up to 27% of patients with MDD and is associated with a more severe, chronic, and treatment-resistant trajectory. Inflammation is not unique to depression and has transdiagnostic effects suggesting a shared etiological risk factor underlying psychopathologies and metabolic disorders. Research supports an association but not necessarily a causation with depression. Putative mechanisms link chronic stress to dysregulation of the HPA axis and immune cell glucocorticoid resistance resulting in hyperactivation of the peripheral immune system. The chronic extracellular release of DAMPs and immune cell DAMP-PRR signaling creates a feed forward loop that accelerates peripheral and central inflammation. Higher plasma levels of inflammatory cytokines, most consistently interleukin IL-1β, IL-6, and TNF-α, are correlated with greater depressive symptomatology. Cytokines sensitize the HPA axis, disrupt the negative feedback loop, and further propagate inflammatory reactions. Peripheral inflammation exacerbates central inflammation (neuroinflammation) through several mechanisms including disruption of the blood-brain barrier, immune cellular trafficking, and activation of glial cells. Activated glial cells release cytokines, chemokines, and reactive oxygen and nitrogen species into the extra-synaptic space dysregulating neurotransmitter systems, imbalancing the excitatory to inhibitory ratio, and disrupting neural circuitry plasticity and adaptation. In particular, microglial activation and toxicity plays a central role in the pathophysiology of neuroinflammation. Magnetic resonance imaging (MRI) studies most consistently show reduced hippocampal volumes. Neural circuitry dysfunction such as hypoactivation between the ventral striatum and the ventromedial prefrontal cortex underlies the melancholic phenotype of depression. Chronic administration of monoamine-based antidepressants counters the inflammatory response, but with a delayed therapeutic onset. Therapeutics targeting cell mediated immunity, generalized and specific inflammatory signaling pathways, and nitro-oxidative stress have enormous potential to advance the treatment landscape. Future clinical trials will need to include immune system perturbations as biomarker outcome measures to facilitate novel antidepressant development. In this overview, we explore the inflammatory correlates of depression and elucidate pathomechanisms to facilitate the development of novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Sameer Hassamal
- California University of Sciences and Medicine, Colton, CA, United States
- Clinicaltriallink, Los Angeles, CA, United States
- California Neuropsychiatric Institute, Ontario, CA, United States
| |
Collapse
|
24
|
Pinho AG, Monteiro A, Fernandes S, de Sousa N, Salgado AJ, Silva NA, Monteiro S. The Central Nervous System Source Modulates Microglia Function and Morphology In Vitro. Int J Mol Sci 2023; 24:ijms24097685. [PMID: 37175391 PMCID: PMC10177862 DOI: 10.3390/ijms24097685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The regional heterogeneity of microglia was first described a century ago by Pio del Rio Hortega. Currently, new information on microglia heterogeneity throughout central nervous system (CNS) regions is being revealed by high-throughput techniques. It remains unclear whether these spatial specificities translate into different microglial behaviors in vitro. We cultured microglia isolated from the cortex and spinal cord and analyzed the effect of the CNS spatial source on behavior in vitro by applying the same experimental protocol and culture conditions. We analyzed the microglial cell numbers, function, and morphology and found a distinctive in vitro phenotype. We found that microglia were present in higher numbers in the spinal-cord-derived glial cultures, presenting different expressions of inflammatory genes and a lower phagocytosis rate under basal conditions or after activation with LPS and IFN-γ. Morphologically, the cortical microglial cells were more complex and presented longer ramifications, which were also observed in vivo in CX3CR1+/GFP transgenic reporter mice. Collectively, our data demonstrated that microglial behavior in vitro is defined according to specific spatial characteristics acquired by the tissue. Thus, our study highlights the importance of microglia as a source of CNS for in vitro studies.
Collapse
Affiliation(s)
- Andreia G Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Sara Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Nídia de Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
25
|
Zhi L, Zhang F, Liu H, Jiang X, Zhang Y, Yang Q, Zhang X, Liu M, Zhang Z, Song J. CRS induces depression-like behavior after MCAO in rats possibly by activating p38 MAPK. Behav Brain Res 2023; 437:114104. [PMID: 36100011 DOI: 10.1016/j.bbr.2022.114104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Post-stroke depression (PSD) is a common neuropsychiatric complication of stroke, which seriously affects the quality of life and prognosis of patients. Nevertheless, the pathogenesis of PSD remains unclear. In our study, a PSD rat model was established by chronic restraint stress (CRS) combined with middle cerebral artery occlusion (MCAO). Depressive and anxiety-like behaviors were tested, as well as Neuronal loss and Apoptosis. The expression of synapse and p38 MAPK signaling pathway -relevant proteins was detected. Our data indicated that CRS combined with MCAO could induce depression-like and anxiety-like behaviors, which led to neuronal damage, apoptosis, and cellular loss in the left parietal cortex and left hippocampus. Furthermore, CRS combined with MCAO decreased synaptic plasticity in the parietal cortex and left hippocampus. We found that CRS combined with MCAO had activated the p38 MAPK signaling pathway, and decreased the expression of pathway-related proteins MKK6 and MKK3. These results suggested that CRS combined with MCAO could lead to depression-like behavior via neuronal damage, apoptosis and reduced synaptic plasticity, which might be related to the activation of the p38 MAPK pathway. Therefore, it provides novel ideas for the research on the intervention and prevention mechanisms of PSD.
Collapse
MESH Headings
- Animals
- Rats
- Depression/etiology
- Depression/metabolism
- Depression/psychology
- Disease Models, Animal
- Infarction, Middle Cerebral Artery/etiology
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/psychology
- p38 Mitogen-Activated Protein Kinases/metabolism
- Quality of Life
- Rats, Sprague-Dawley
- Stroke/etiology
- Stroke/metabolism
- Stroke/psychology
- Arterial Occlusive Diseases/etiology
- Arterial Occlusive Diseases/metabolism
- Synapses/metabolism
- Signal Transduction
- Restraint, Physical/adverse effects
- Restraint, Physical/physiology
- Restraint, Physical/psychology
- Chronic Disease
- Stress, Psychological/etiology
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
- Apoptosis
- Anxiety/etiology
- Anxiety/metabolism
- Anxiety/psychology
- Cerebral Cortex/metabolism
- Cerebral Cortex/pathology
- Hippocampus/metabolism
- Hippocampus/pathology
- Neurons/metabolism
- Neurons/pathology
- Mitogen-Activated Protein Kinase Kinases/metabolism
Collapse
Affiliation(s)
- Lingyun Zhi
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), China; The First Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry, Henan International Joint Laboratory of Psychiatry and Neuroscience, Xinxiang Medical University, China
| | - Fuping Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), China; Henan Key Lab of Biological Psychiatry, Henan International Joint Laboratory of Psychiatry and Neuroscience, Xinxiang Medical University, China
| | - Huanhuan Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), China; Henan Key Lab of Biological Psychiatry, Henan International Joint Laboratory of Psychiatry and Neuroscience, Xinxiang Medical University, China
| | - Xinhui Jiang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), China; Henan Key Lab of Biological Psychiatry, Henan International Joint Laboratory of Psychiatry and Neuroscience, Xinxiang Medical University, China
| | - Yunfei Zhang
- The First Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry, Henan International Joint Laboratory of Psychiatry and Neuroscience, Xinxiang Medical University, China
| | - Qianling Yang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), China; Henan Key Lab of Biological Psychiatry, Henan International Joint Laboratory of Psychiatry and Neuroscience, Xinxiang Medical University, China
| | - Xinyue Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), China; Henan Key Lab of Biological Psychiatry, Henan International Joint Laboratory of Psychiatry and Neuroscience, Xinxiang Medical University, China
| | - Mengke Liu
- The First Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry, Henan International Joint Laboratory of Psychiatry and Neuroscience, Xinxiang Medical University, China
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, China.
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), China; Henan Key Lab of Biological Psychiatry, Henan International Joint Laboratory of Psychiatry and Neuroscience, Xinxiang Medical University, China.
| |
Collapse
|
26
|
Zhang LM, Wu ZY, Liu JZ, Li Y, Lv JM, Wang LY, Shan YD, Song RX, Miao HT, Zhang W, Zhang DX. Subanesthetic dose of S-ketamine improved cognitive dysfunction via the inhibition of hippocampal astrocytosis in a mouse model of post-stroke chronic stress. J Psychiatr Res 2023; 158:1-14. [PMID: 36542981 DOI: 10.1016/j.jpsychires.2022.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Post-stroke chronic stress (PSCS) is generally associated with the poorer recovery and more pronounced cognitive dysfunction. Recent evidence has implied that S-ketamine can reduce suicidal ideation in treatment-resistant depression. In this current study, we aimed to investigate whether the administration of S-ketamine ameliorated cognitive deficits under PSCS conditions, which was established by a model combining middle cerebral artery occlusion (MCAO) and chronic restraint stress. Our data suggested that mice exposed to PSCS exhibited depression-like behavior and cognitive impairment, which coincided with astrocytosis as indicated by increased GFAP-positive cells and impairment of long-time potentiation (LTP) in the hippocampal CA1. Subanesthetic doses (10 mg/kg) of S-ketamine have significantly mitigated depression-like behaviors, cognitive deficits and LTP impairment, reduced astrocytosis, excessive GABA, and inflammatory factors, including NLRP3 and IL-18 in astrocytes in the CA1. Besides, neuroprotective effects induced by S-ketamine administration were found in vitro but could be partially reversed by an agonist of the NLRP3 nigericin. Our current data also suggests that the subanesthetic doses of S-ketamine improved cognitive dysfunction via the inhibition of hippocampal astrocytosis in a mouse model of PSCS.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Zhi-You Wu
- Graduated School, Hebei Medical University, Shijiazhuang, China.
| | - Ji-Zhen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Jin-Meng Lv
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Lu-Ying Wang
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Yu-Dong Shan
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Rong-Xin Song
- Graduated School, Hebei Medical University, Shijiazhuang, China.
| | - Hui-Tao Miao
- Graduated School, Hebei Medical University, Shijiazhuang, China.
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China.
| |
Collapse
|
27
|
Xia CY, Guo YX, Lian WW, Yan Y, Ma BZ, Cheng YC, Xu JK, He J, Zhang WK. The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacol Res 2023; 187:106625. [PMID: 36563870 DOI: 10.1016/j.phrs.2022.106625] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests that the failure of clinical antidepressants may be related with neuroinflammation. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is an intracellular multiprotein complex, and has been considered as a key contributor to the development of neuroinflammation. Inhibition of NLRP3 inflammasome is an effective method for depression treatment. In this review, we summarized current researches highlighting the role of NLRP3 inflammasome in the pathology of depression. Firstly, we discussed NLRP3 inflammasome activation in patients with depression and animal models. Secondly, we outlined the possible mechanisms driving the activation of NLRP3 inflammasome. Thirdly, we discussed the pathogenetic role of NLRP3 inflammasome in depression. Finally, we overviewed the current and potential antidepressants targeting the NLRP3 inflammasome. Overall, the inhibition of NLRP3 inflammasome activation may be a potential therapeutic strategy for inflammation-related depression.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu-Xuan Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Bing-Zhi Ma
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yung-Chi Cheng
- School of Medicine, Yale University, New Haven, CT, United States
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| |
Collapse
|
28
|
Acute stress induces severe neural inflammation and overactivation of glucocorticoid signaling in interleukin-18-deficient mice. Transl Psychiatry 2022; 12:404. [PMID: 36151082 PMCID: PMC9508168 DOI: 10.1038/s41398-022-02175-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
Interleukin-18 (IL18) is an inflammatory cytokine that is related to psychiatric disorders such as depression and cognitive impairment. We previously found that IL18 deficiency may cause hippocampal impairment, resulting in depression-like behavioral changes. However, the potential role of IL18 in stressful conditions remains uncertain. In the present study, we examined the effect of IL18 on neural inflammation and stress tolerance during acute stress. Littermate Il18+/+ and Il18-/- mice were exposed to a single restraint stress for 6 h, and all assessments were performed 18 h after the mice were released from the restraint. In Il18-/- mice exposed to acute stress, the immobility times in both the forced swim test and tail suspension test were decreased, although no difference was observed in Il18+/+ mice. Il1β, Il6, and Tnfα expression levels in the hippocampus of stressed Il18-/- mice were significantly higher than those in the other groups. Moreover, the numbers of astrocytes and microglia, including those in the active form, were also increased compared with those in other groups. Regarding the molecular mechanism, the HSF5 and TTR genes were specifically expressed in stressed Il18-/- mice. As a potential treatment, intracerebral administration of IL18 to Il18-/- mice resulted in partial recovery of changes in behavioral assessments. Our results revealed that IL18-deficient mice were more sensitive and had a longer response to acute stress than that in normal mice. In addition, neural inflammation and augmentation of glucocorticoid signals caused by stress were more intense and remained longer in Il18-/- mice, resulting in behavioral changes. In conclusion, IL18 might be an indispensable factor that modulates the stress response and maintains balance between neural inflammation and glucocorticoid signaling.
Collapse
|
29
|
Xia W, Xu Y, Gong Y, Cheng X, Yu T, Yu G. Microglia Involves in the Immune Inflammatory Response of Poststroke Depression: A Review of Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2049371. [PMID: 35958023 PMCID: PMC9363171 DOI: 10.1155/2022/2049371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022]
Abstract
Poststroke depression (PSD) does not exist before and occurs after the stroke. PSD can appear shortly after the onset of stroke or be observed in the weeks and months after the acute or subacute phase of stroke. The pathogenesis of PSD is unclear, resulting in poor treatment effects. With research advancement, immunoactive cells in the central nervous system, particularly microglia, play a role in the occurrence and development of PSD. Microglia affects the homeostasis of the central nervous system through various factors, leading to the occurrence of depression. The research progress of microglia in PSD has been summarized to review the evidence regarding the pathogenesis and treatment target of PSD in the future.
Collapse
Affiliation(s)
- Weili Xia
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Yong Xu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Yuandong Gong
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Xiaojing Cheng
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Tiangui Yu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Gongchang Yu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| |
Collapse
|
30
|
Liang L, Wang H, Hu Y, Bian H, Xiao L, Wang G. Oridonin relieves depressive-like behaviors by inhibiting neuroinflammation and autophagy impairment in rats subjected to chronic unpredictable mild stress. Phytother Res 2022; 36:3335-3351. [PMID: 35686337 DOI: 10.1002/ptr.7518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
Major depressive disorder (MDD) is a severe life-threatening disorder with increasing prevalence. However, the mechanistic interplay between depression, neuroinflammation, and autophagy is yet to be demonstrated. This study investigated the effect of Oridonin on CUMS-induced depression, neuroinflammation, and autophagy impairment. Male 4-week-old Sprague-Dawley rats were subjected to chronic unpredictable mild stress (CUMS), some of which were injected with Oridonin, fluoxetine (FLX), or their combination at different durations of CUMS. CUMS significantly increased the levels of cytokines (IL-1β, IL-18, and caspase-1), reduced autophagy-related protein levels (Beclin-1, p62, Atg5, and LC3B), and caused microglia cells activation. Oridonin prevented and reversed the depressive-like behavior. Furthermore, it has a stronger and longer-lasting antidepressant effect than FLX. And the antidepressant effect of Oridonin in combination with fluoxetine was greater than that of high-dose fluoxetine alone. In addition, Oridonin significantly normalized autophagy-related protein levels, and reduced levels of cytokines by blocking the interaction between NLRP3 and NEK7. Similarly, Oridonin abolished levels of cytokines and reversed autophagy impairment in LPS-activated BV2 cells. All these results supported our hypothesis that Oridonin possesses potent anti-depressive action, which might be mediated via inhibition of neuroinflammation and autophagy impairment by blocking the interaction between NLRP3 and NEK7.
Collapse
Affiliation(s)
- Liang Liang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Psychology, The Fourth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hui Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Hu
- Department of Psychology, The Fourth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hetao Bian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Li H, Tian J, Yin Y, Diao S, Zhang X, Zuo T, Miao Z, Yang Y. Interleukin-18 mediated inflammatory brain injury after intracerebral hemorrhage in male mice. J Neurosci Res 2022; 100:1359-1369. [PMID: 35316547 DOI: 10.1002/jnr.25044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
Interleukin-18 (IL-18), a pro-inflammatory cytokine, is thought to be associated with inflammation in many neurological diseases such as ischemic stroke and poststroke depression, but the role of IL-18 in inflammatory injury after intracerebral hemorrhage (ICH) remains unclear. In this study, we established the ICH model in male mice and found that IL-18 expression including protein and mRNA levels was significantly increased in brain tissues after ICH. Meanwhile, exogenous IL-18 exacerbated cerebral hematoma and neurological deficits following ICH. In the IL-18 knockout group, the size of hematoma and neurological functions after ICH was decreased compared with the wild-type group, suggesting the critical role of IL-18 on the modulation of brain injury after ICH. Importantly, exogenous IL-18 increased microglial activation in brain tissues after ICH. Furthermore, IL-18 knockout resulted in the reduction of activated microglia after ICH. These results indicated that IL-18 may regulate the inflammatory response after ICH through the activation of microglia. Thus, IL-18 is expected to be a promising therapeutic target for secondary brain injury after ICH.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingluan Tian
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yin Yin
- Laboratory Animal Center, Soochow University, Suzhou, China
| | - Shanshan Diao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ximeng Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Zuo
- Department of Orthopedics, Xuzhou Medical University Affiliated Hospital, Xuzhou City, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Yi Yang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
32
|
Tao X, Wu S, Tang W, Li L, Huang L, Mo D, Liu C, Song T, Wang S, Wang J, He J. Alleviative effects of foraging exercise on depressive-like behaviors in chronic mild stress-induced ischemic rat model. Brain Inj 2022; 36:127-136. [PMID: 35138197 DOI: 10.1080/02699052.2022.2034949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Poststroke depression (PSD) is a common complication that seriously affects the functional recovery and prognosis of an individual. As some patients with PSD fail to respond to drug therapy, it is urgent to find a viable alternative treatment. METHODS An active exercise program known as foraging exercise (FE), using food as bait, was designed. First, focal ischemia and chronic unpredictable mild stress (CUMS) were used to establish a PSD model in rats. FE was then performed for 4 weeks. Body weight and behavioral assessments were conducted at the end of the 4th and 8th weeks. RESULTS After 8 weeks, the results revealed that, compared with the PSD group, the behavioral scores of the rats in the PSD/FE group were significantly improved, the expression of Iba-1 in the affected frontal lobe and striatum was decreased, and serum levels of IL-6 and the IL-6/IL-10 ratio were downregulated. However, the ratio of residual brain volume in rats that had experienced CUMS was significantly less than that in the stroke group. CONCLUSION FE can alleviate the behavioral scores of PSD rats, and its mechanism may be related to a modulation of the immune-inflammation response of microglia. Furthermore, chronic, persistent stress may increase the volume of cerebral infarction after stroke.
Collapse
Affiliation(s)
- Xi Tao
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Siyuan Wu
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Wenjing Tang
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Lu Li
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Lijun Huang
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Danheng Mo
- Department of Neurology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Chujuan Liu
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Tao Song
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Shuling Wang
- Hunan Provincial Institute of Geriatrics, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan Province, China
| | - Jia Wang
- Department of Scientific Research, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Juan He
- Department of Neurosurgery, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
33
|
Stress induced microglial activation contributes to depression. Pharmacol Res 2022; 179:106145. [DOI: 10.1016/j.phrs.2022.106145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
|
34
|
Qinlin F, Qi X, Qiong C, Lexing X, Peixia S, Linlin H, Yupu D, Lijun Y, Qingwu Y. Differential expression analysis of microRNAs and mRNAs in the mouse hippocampus of post-stroke depression (PSD) based on transcriptome sequencing. Bioengineered 2022; 13:3582-3596. [PMID: 35100085 PMCID: PMC8973717 DOI: 10.1080/21655979.2022.2027061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
To clarify the differential expressions of microRNAs and mRNAs in a PSD model, this study employed PSD mice for model construction by injecting vasoconstrictor ET-1 (angioendothelin-1) into the medial prefrontal cortex (mPFC) of mice. The animals underwent elevated plus maze test, open field test, tail suspension test, and forced swimming test subsequently. Transcriptome sequencing was performed to analyze the differentially expressed mRNAs and microRNAs. The results showed that open arm entries and time of PSD mice were markedly decreased. Times of the entry to center for mice in the model group were apparently decreased. The climbing time of mice in the model group was greatly decreased. The behavior of PSD mice indicated a marked change, and several indicators of the behavioral tests were significantly lower than those of the control group. Transcriptome sequencing analysis demonstrated that expressions of 1 206 genes and 21 microRNAs were markedly upregulated in model group, whereas expressions of 2 113 genes and 32 microRNAs were markedly downregulated. GO analysis revealed that the differentially expressed genes were mainly involved in regulatory pathways of single-multicellular organism process, developmental process, cell periphery, plasma membrane, and neuron projection. Meanwhile, KEGG analysis results indicated that the differentially expressed genes mostly participated in signaling pathways of neuroactive ligand-receptor interaction, calcium signaling pathway, and cytokine-cytokine receptor interaction. In conclusion, differentially expressed microRNAs and mRNAs were screened, which offers a theoretical foundation for further investigation of molecular mechanisms and novel insight for the early identification, prevention, and treatment of PSD.
Collapse
Affiliation(s)
- Fan Qinlin
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xie Qi
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Chen Qiong
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xie Lexing
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Shi Peixia
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hu Linlin
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Diao Yupu
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yang Lijun
- Chongqing Public Health Medical Treatment Center, Chongqing, China
| | - Yang Qingwu
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
35
|
Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X, Chen J, Qiu S. Interleukins and Ischemic Stroke. Front Immunol 2022; 13:828447. [PMID: 35173738 PMCID: PMC8841354 DOI: 10.3389/fimmu.2022.828447] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke after cerebral artery occlusion is one of the major causes of chronic disability worldwide. Interleukins (ILs) play a bidirectional role in ischemic stroke through information transmission, activation and regulation of immune cells, mediating the activation, multiplication and differentiation of T and B cells and in the inflammatory reaction. Crosstalk between different ILs in different immune cells also impact the outcome of ischemic stroke. This overview is aimed to roughly discuss the multiple roles of ILs after ischemic stroke. The roles of IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-16, IL-17, IL-18, IL-19, IL-21, IL-22, IL-23, IL-32, IL-33, IL-34, IL-37, and IL-38 in ischemic stroke were discussed in this review.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siping Hu
- Department of Anesthesiology, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao Sun
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyao Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junjing Chen
- Department of General Surgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- *Correspondence: Junjing Chen, ; Sheng Qiu,
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- *Correspondence: Junjing Chen, ; Sheng Qiu,
| |
Collapse
|
36
|
Zhang M, Bai X. Shugan Jieyu Capsule in Post-Stroke Depression Treatment: From Molecules to Systems. Front Pharmacol 2022; 13:821270. [PMID: 35140618 PMCID: PMC8818889 DOI: 10.3389/fphar.2022.821270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 01/04/2023] Open
Abstract
Post-stroke depression (PSD) is the most common non-cognitive neuropsychiatric complication after stroke, and about a third of patients with stroke have depression. Although a great deal of effort has been made to treat PSD, the efficacy thereof has not been satisfactory, due to the complex pathological mechanism underlying PSD. In Traditional Chinese Medicine (TCM) theory, PSD is considered to be a combination of “stroke” and “Yu Zheng.” The holistic, multi-drug, and multi-objective nature of TCM is consistent with the treatment concept of systems medicine for PSD. TCM has a very long history of being used to treat depression, and various TCM prescriptions have been clinically proven to be effective in improving depression. Among the numerous prescriptions for treating depression, Shugan Jieyu capsule (SG) is one of the classic prescriptions. Additionally, clinical studies have increasingly confirmed that using SG alone or in combination with Western medicine can significantly improve the psychiatric symptoms of PSD patients. Here, we reviewed the mechanism of antidepressant action of SG and its targets in PSD pathologic systems. This review provides further insights into the pharmacological mechanism, drug interaction, and clinical application of TCM prescriptions, as well as a basis for the development of new drugs to treat PSD.
Collapse
|
37
|
Li Y, Zhang M, Dong C, Xue M, Li J, Wu G. Elevated Red Blood Cell Distribution Width Levels at Admission Predicts Depression After Acute Ischemic Stroke: A 3-Month Follow-Up Study. Neuropsychiatr Dis Treat 2022; 18:695-704. [PMID: 35391945 PMCID: PMC8979940 DOI: 10.2147/ndt.s351136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Red blood cell distribution width (RDW) is closely related to inflammatory-related disease markers. The present study aimed to investigate the association between the red blood cell distribution width (RDW) and post-stroke depression (PSD). PATIENTS AND METHODS A total of 414 patients with acute ischemic stroke (AIS) admitted to our hospital from June 2018 to July 2021 were consecutively enrolled and received 3 months' follow-up. According to the 17-item Hamilton Depression Scale (HAMD) assessment, they were divided into PSD group and non-PSD group. Diagnosis of PSD was made in accordance with DSM-IV. RDW was recorded within 24 hours of admission. RESULTS Among the included 414 patients, 95 (22.95%) patients were diagnosed as having PSD at 3 months after stroke. The results showed significantly higher level of RDW in patients with depression (13.69 (IQR13.24-13.88) vs. 13.56 (IQR 12.67-13.77), P<0.001) at admission than patients without depression. After adjustment for potential confounding factors, the odds ratio of PSD was 5.707 (95% CI, 2.717-11.989) for the highest tertile of RDW compared with the lowest tertile. Moreover, based on the receiver operating characteristic (ROC) curve, the optimal cutoff of RDW levels as an indicator for the prediction of PSD was projected as 13.01, which yielded a sensitivity of 83% and a specificity of 41.0%, with an area under the curve (AUC) of 0.643 (95% CI, 0.585-0.701; P = 0.012). CONCLUSION Higher RDW levels at admission were found to be correlated with PSD 3 months after stroke.
Collapse
Affiliation(s)
- Yaqiang Li
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology, First People's Hospital of Huainan, Huainan, 232001, Anhui, People's Republic of China.,Department of Neurology, People's Hospital of Lixin County, Lixin, 236700, Anhui, People's Republic of China
| | - Mei Zhang
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology, First People's Hospital of Huainan, Huainan, 232001, Anhui, People's Republic of China
| | - Chunhui Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, Anhui, People's Republic of China
| | - Min Xue
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology, First People's Hospital of Huainan, Huainan, 232001, Anhui, People's Republic of China
| | - Jing Li
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology, First People's Hospital of Huainan, Huainan, 232001, Anhui, People's Republic of China
| | - Guixiang Wu
- Department of Neurology, People's Hospital of Lixin County, Lixin, 236700, Anhui, People's Republic of China
| |
Collapse
|
38
|
Li Y, Zhang M, Xue M, Liu D, Sun J. Elevated monocyte-to-HDL cholesterol ratio predicts post-stroke depression. Front Psychiatry 2022; 13:902022. [PMID: 35935403 PMCID: PMC9354071 DOI: 10.3389/fpsyt.2022.902022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Inflammation plays an important role in the development of depression after stroke. Monocyte-to-HDL Cholesterol Ratio (MHR) recently emerged as a novel comprehensive inflammatory indicator in recent years. This study aimed to investigate whether there is a relationship between MHR levels and post-stroke depression (PSD). METHODS From February 2019 to September 2021, patients with acute ischemic stroke (AIS) were recruited within 7 days post-stroke from the two centers and blood samples were collected after admission. The 17-item Hamilton Depression Scale (HAMD-17) was used to measure depressive symptoms at 3 months after stroke. Patients were given the DSM-V criteria for diagnosis of PSD. RESULTS Of the 411 enrolled patients, 92 (22.38%) patients were diagnosed with PSD at 3-months follow-up. The results also showed significantly higher level of MHR in patients with depression [0.81 (IQR 0.67-0.87) vs. 0.61 (IQR 0.44-0.82), P < 0.001] at admission than patients without depression. Multivariate logistic regression revealed that MHR (OR 6.568, 95% CI: 2.123-14.565, P = 0.015) was an independent risk factor for the depression at 3 months after stroke. After adjustment for potential confounding factors, the odds ratio of PSD was 5.018 (95% CI: 1.694-14.867, P = 0.004) for the highest tertile of MHR compared with the lowest tertile. Based on the ROC curve, the optimal cut-off value of MHR as an indicator for prediction of PSD was projected to be 0.55, which yielded a sensitivity of 87% and a specificity of 68.3%, with the area under the curve at 0.660 (95% CI: 0.683-0.781; P = 0.003). CONCLUSION Elevated level of MHR was associated with PSD at 3 months, suggesting that MHR might be a useful Inflammatory markers to predict depression after stroke.
Collapse
Affiliation(s)
- Yaqiang Li
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology, First People's Hospital of Huainan, Huainan, China.,Department of Neurology, People's Hospital of Lixin County, Bozhou, China
| | - Mei Zhang
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology, First People's Hospital of Huainan, Huainan, China
| | - Min Xue
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology, First People's Hospital of Huainan, Huainan, China
| | - Dalei Liu
- Department of Neurology, People's Hospital of Lixin County, Bozhou, China
| | - Jinglong Sun
- Department of Neurology, People's Hospital of Lixin County, Bozhou, China
| |
Collapse
|
39
|
Xu L, Huang H, Liu T, Yang T, Yi X. Exposure to X-rays Causes Depression-like Behaviors in Mice via HMGB1-mediated Pyroptosis. Neuroscience 2021; 481:99-110. [PMID: 34800578 DOI: 10.1016/j.neuroscience.2021.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
The widespread application of ionizing radiation in industrial and medical fields leads to the increased brain exposure to X-rays. Radiation brain injury (RBI) seriously affects health of patients by causing cognitive dysfunction and neuroinflammation. However, the link between X-ray exposure and depressive symptoms and their detailed underlying mechanisms have not been well studied. Herein, we investigated the potential depression-like behaviors in mice exposed to X-rays and then explored the role of HMGB1 in this injury. We found that X-ray stimulation induced the generation of reactive oxygen species (ROS) in the prefrontal cortex in a dose-dependent manner, leading to the occurrence of depression-like behaviors of the mice. Moreover, X-ray exposure increased the expression of HMGB1, activated NLRP3 inflammasome signaling pathway and microglial cells, and then facilitated the release of pro-inflammatory cytokines, resulting in the pyroptosis and neuron loss both in vivo and in vitro. Additionally, glycyrrhizin (Gly), which is a HMGB1 inhibitor, reversed X-ray-induced behavioral changes and neuronal damage. Our findings indicated that HMGB1-mediated pyroptosis was involved in radiation-induced depression.
Collapse
Affiliation(s)
- Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Haiqin Huang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Tao Yang
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
40
|
Li X, Wang H, Li C, Wu J, Lu J, Guo JY, Tu Y. Acupuncture inhibits NLRP3 inflammasome activation in the prefrontal cortex of a chronic stress rat model of depression. Anat Rec (Hoboken) 2021; 304:2470-2479. [PMID: 34636496 DOI: 10.1002/ar.24778] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
The Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-driven inflammatory response plays a key role in the pathophysiology of depression. Mounting evidence suggests that acupuncture is an effective treatment for depression. In this study, we investigated the effects of acupuncture treatment at the acupoints Baihui (GV20) and Yintang (GV29) on NLRP3 inflammasome in the prefrontal cortex (PFC) of an animal model of depression. Rats that underwent chronic unpredictable mild stress (CUMS) for 6 weeks showed depressive-like behaviors, which were confirmed by sucrose preference and locomotor activity in the open field test. The protein levels of NLRP3, apoptotic speck-containing protein with a card (ASC), and cysteinyl aspartate specific proteinase-1 (Caspase-1) in the PFC were detected by Western blot analysis. The mRNA and protein expressions of interleukin-1β (IL-1β) and interleukin-18 (IL-18) in the PFC were measured by the real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that the depressive-like behaviors in stressed rats were reversed by acupuncture treatment. Compared with control rats, the protein expression of NLRP3, ASC, and Caspase-1 and the mRNA and protein expressions of IL-1β and IL-18 in the PFC were markedly increased in CUMS rats. Acupuncture treatment significantly decreased the levels of NLRP3 inflammasome components and inflammatory cytokines in the PFC. Acupuncture treatment also reduced the number of TUNEL-positive cells in the PFC. These results suggested that acupuncture has antidepressant-like effects, and its mechanism appears to be involved in the inhibition of NLRP3 inflammasome activation and apoptosis in the PFC.
Collapse
Affiliation(s)
- Xiaoyan Li
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hongmei Wang
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Li
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jihong Wu
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Lu
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-You Guo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Ya Tu
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
41
|
Savardi A, Borgogno M, De Vivo M, Cancedda L. Pharmacological tools to target NKCC1 in brain disorders. Trends Pharmacol Sci 2021; 42:1009-1034. [PMID: 34620512 DOI: 10.1016/j.tips.2021.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The chloride importer NKCC1 and the chloride exporter KCC2 are key regulators of neuronal chloride concentration. A defective NKCC1/KCC2 expression ratio is associated with several brain disorders. Preclinical/clinical studies have shown that NKCC1 inhibition by the United States FDA-approved diuretic bumetanide is a potential therapeutic strategy in preclinical/clinical studies of multiple neurological conditions. However, bumetanide has poor brain penetration and causes unwanted diuresis by inhibiting NKCC2 in the kidney. To overcome these issues, a growing number of studies have reported more brain-penetrating and/or selective bumetanide prodrugs, analogs, and new molecular entities. Here, we review the evidence for NKCC1 pharmacological inhibition as an effective strategy to manage neurological disorders. We also discuss the advantages and limitations of bumetanide repurposing and the benefits and risks of new NKCC1 inhibitors as therapeutic agents for brain disorders.
Collapse
Affiliation(s)
- Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy; Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco Borgogno
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy.
| |
Collapse
|
42
|
Yin N, Yan E, Duan W, Mao C, Fei Q, Yang C, Hu Y, Xu X. The role of microglia in chronic pain and depression: innocent bystander or culprit? Psychopharmacology (Berl) 2021; 238:949-958. [PMID: 33544194 DOI: 10.1007/s00213-021-05780-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Clinical evidence shows that chronic pain and depression often accompany each other, but the underlying pathogenesis of comorbid chronic pain and depression remains mostly undetermined. Biotechnology is gradually revealing the phenotype and function of microglia, with great progress regarding microglia's role in neurodegeneration, depression, chronic pain, and other conditions. This article summarizes the role of microglia in chronic pain, depression, and comorbidities, which is conducive to finding new targets to treat chronic pain and depression.
Collapse
Affiliation(s)
- Nan Yin
- Department of Anesthesiology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Enshi Yan
- Department of Anesthesiology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Wenbin Duan
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Changyuan Mao
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Qin Fei
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yimin Hu
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
43
|
Gong Y, Wu M, Shen J, Tang J, Li J, Xu J, Dang B, Chen G. Inhibition of the NKCC1/NF-κB Signaling Pathway Decreases Inflammation and Improves Brain Edema and Nerve Cell Apoptosis in an SBI Rat Model. Front Mol Neurosci 2021; 14:641993. [PMID: 33867933 PMCID: PMC8044300 DOI: 10.3389/fnmol.2021.641993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Surgical brain injury (SBI) triggers microglia to release numerous inflammatory factors, leading to brain edema and neurological dysfunction. Reducing neuroinflammation and protecting the blood-brain barrier (BBB) are key factors to improve the neurological function and prognosis after SBI. Na+-K+-Cl– cotransporter 1 (NKCC1) and nuclear factor κB (NF-κB) have been implicated in the secretion of inflammatory cytokines by microglia in brain injury. This study aimed to establish the role of NKCC1 in inducing inflammation in SBI, as well as to determine whether NKCC1 controls the release of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) via phosphorylation of NF-κB in microglia, thus affecting BBB permeability and neuronal cell apoptosis. Male Sprague-Dawley (SD) rats were used to establish an SBI model. This study revealed that compared with the sham group, the expression levels of p-NKCC1, p-p65-NF-κB, and related inflammatory factor proteins in SBI model group significantly increased. After p-NKCC1 was inhibited, p-p65-NF-κB, IL-6, IL-1β, and TNF-α were downregulated, and nerve cell apoptosis and BBB permeability were significantly reduced. These findings suggest that the SBI-induced increase in p-NKCC1 exacerbates neuroinflammation, brain edema, and nerve function injury, which may be mediated by regulating the activity of p65-NF-κB that in turn influences the release of inflammatory factors.
Collapse
Affiliation(s)
- Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jinchao Shen
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jiafeng Tang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jie Li
- Department of Intensive Care Unit, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jianguo Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
44
|
Wei X, Yu L, Zhang Y, Li X, Wu H, Jiang J, Qing Y, Miao Z, Fang Q. The Role of Tet2-mediated Hydroxymethylation in Poststroke Depression. Neuroscience 2021; 461:118-129. [PMID: 33689862 DOI: 10.1016/j.neuroscience.2021.02.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Poststroke depression (PSD) is a common complication of stroke and has long been a serious threat to human health. PSD greatly affects neurological recovery, quality of life and mortality. Recent studies have shown that 5-hydroxymethylcytosine (5hmC), an important epigenetic modification, is enriched in the brain and associated with many neurological diseases. However, its role in PSD is still unclear. In this study, middle cerebral artery occlusion (MCAO) and spatial restraint stress were used to successfully induce a PSD mouse model and resulted in reduced 5hmC levels, which were caused by Tet2. Furthermore, genome-wide analysis of 5hmC revealed that differentially hydroxymethylated regions (DhMRs) were associated with PSD. DhMRs were enriched among genes involved in the Wnt signaling pathway, neuron development and learning or memory. In particular,DhMRs were strongly enriched in genes with lymphoid enhancer factor 1 (LEF1) binding motifs. Finally, we demonstrated that decreases in TET2 expression in the brain caused PSD by decreasing Wnt/β-catenin/LEF1 pathway signaling to promote inflammatory factor IL-18 expression. In conclusion, our data highlight the potential for 5hmC modification as a therapeutic target for PSD.
Collapse
Affiliation(s)
- Xin Wei
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Liqiang Yu
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Yujuan Zhang
- Experiment Center, Medicine College of Soochow University, Suzhou City, China
| | - Xiaojing Li
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu, China; Department of Neurology, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, China
| | - Hainan Wu
- College of Forestry, Nanjing Forestry University, Nanjing City, Jiangsu, China
| | - Jianhua Jiang
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Yiren Qing
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Qi Fang
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou City, China.
| |
Collapse
|
45
|
Josiah SS, Meor Azlan NF, Zhang J. Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke. Int J Mol Sci 2021; 22:1232. [PMID: 33513812 PMCID: PMC7865768 DOI: 10.3390/ijms22031232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/05/2023] Open
Abstract
Stroke is one of the major culprits responsible for morbidity and mortality worldwide, and the currently available pharmacological strategies to combat this global disease are scanty. Cation-chloride cotransporters (CCCs) are expressed in several tissues (including neurons) and extensively contribute to the maintenance of numerous physiological functions including chloride homeostasis. Previous studies have implicated two CCCs, the Na+-K+-Cl- and K+-Cl- cotransporters (NKCCs and KCCs) in stroke episodes along with their upstream regulators, the with-no-lysine kinase (WNKs) family and STE20/SPS1-related proline/alanine rich kinase (SPAK) or oxidative stress response kinase (OSR1) via a signaling pathway. As the WNK-SPAK/OSR1 pathway reciprocally regulates NKCC and KCC, a growing body of evidence implicates over-activation and altered expression of NKCC1 in stroke pathology whilst stimulation of KCC3 during and even after a stroke event is neuroprotective. Both inhibition of NKCC1 and activation of KCC3 exert neuroprotection through reduction in intracellular chloride levels and thus could be a novel therapeutic strategy. Hence, this review summarizes the current understanding of functional regulations of the CCCs implicated in stroke with particular focus on NKCC1, KCC3, and WNK-SPAK/OSR1 signaling and discusses the current and potential pharmacological treatments for stroke.
Collapse
Affiliation(s)
| | | | - Jinwei Zhang
- Hatherly Laboratories, Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PS, UK; (S.S.J.); (N.F.M.A.)
| |
Collapse
|
46
|
Luo L, Song S, Ezenwukwa CC, Jalali S, Sun B, Sun D. Ion channels and transporters in microglial function in physiology and brain diseases. Neurochem Int 2020; 142:104925. [PMID: 33248207 DOI: 10.1016/j.neuint.2020.104925] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Microglial cells interact with all components of the central nervous system (CNS) and are increasingly recognized to play essential roles during brain development, homeostasis and disease pathologies. Functions of microglia include maintaining tissue integrity, clearing cellular debris and dead neurons through the process of phagocytosis, and providing tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. Changes of microglial ionic homeostasis (Na+, Ca2+, K+, H+, Cl-) are important for microglial activation, including proliferation, migration, cytokine release and reactive oxygen species production, etc. These are mediated by ion channels and ion transporters in microglial cells. Here, we review the current knowledge about the role of major microglial ion channels and transporters, including several types of Ca2+ channels (store-operated Ca2+ entry (SOCE) channels, transient receptor potential (TRP) channels and voltage-gated Ca2+ channels (VGCCs)) and Na+ channels (voltage-gated Na+ channels (Nav) and acid-sensing ion channels (ASICs)), K+ channels (inward rectifier K+ channels (Kir), voltage-gated K+ channels (KV) and calcium-activated K+ channels (KCa)), proton channels (voltage-gated proton channel (Hv1)), and Cl- channels (volume (or swelling)-regulated Cl- channels (VRCCs) and chloride intracellular channels (CLICs)). In addition, ion transporter proteins such as Na+/Ca2+ exchanger (NCX), Na+-K+-Cl- cotransporter (NKCC1), and Na+/H+ exchanger (NHE1) are also involved in microglial function in physiology and brain diseases. We discussed microglial activation and neuroinflammation in relation to the ion channel/transporter stimulation under brain disease conditions and therapeutic aspects of targeting microglial ion channels/transporters for neurodegenerative disease, ischemic stroke, traumatic brain injury and neuropathic pain.
Collapse
Affiliation(s)
- Lanxin Luo
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | - Shayan Jalali
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Baoshan Sun
- Pólo DoisPortos, Instituto National de InvestigaçãoAgrária e Veterinária, I.P., Quinta da Almoinha, DoisPortos, 2565-191, Portugal.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
47
|
Amruta N, Rahman AA, Pinteaux E, Bix G. Neuroinflammation and fibrosis in stroke: The good, the bad and the ugly. J Neuroimmunol 2020; 346:577318. [PMID: 32682140 PMCID: PMC7794086 DOI: 10.1016/j.jneuroim.2020.577318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023]
Abstract
Stroke is the leading cause of death and the main cause of disability in surviving patients. The detrimental interaction between immune cells, glial cells, and matrix components in stroke pathology results in persistent inflammation that progresses to fibrosis. A substantial effort is being directed toward understanding the exact neuroinflammatory events that take place as a result of stroke. The initiation of a potent cytokine response, along with immune cell activation and infiltration in the ischemic core, has massive acute deleterious effects, generally exacerbated by comorbid inflammatory conditions. There is secondary neuroinflammation that promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. This highlights the need for a better understanding of the neuroinflammatory and fibrotic processes, as well as the need to identify new mechanisms and potential modulators. In this review, we summarize several aspects of stroke-induced inflammation, fibrosis, and include a discussion of cytokine inhibitors/inducers, immune cells, and fibro-inflammation signaling inhibitors in order to identify new pharmacological means of intervention.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Abir A Rahman
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Faculty of Biology, Medicine and Health, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|