1
|
Köse AE, Turan T, Kilic E. May high mobility group box protein-1 be a biomarker for major depressive disorder? J Neuroimmunol 2024; 396:578466. [PMID: 39426194 DOI: 10.1016/j.jneuroim.2024.578466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
High Mobility Group Box Protein-1 (HMGB1), which has proinflammatory properties, is known to be involved in psychiatric disorders as far as we know, there are only one clinical studies investigating the role of HMGB1 in major depressive disorder (MDD). In this study, we aimed to investigate the role of HMGB1 in the etiopathogenesis of MDD and whether HMGB1 can be used as a biomarker in MDD by measuring the serum HMGB1 levels of depressed patients in the episode and remission periods. This study included 30 patients diagnosed with MDD in episode, 30 patients in remission and 30 healthy controls. Each group comprised 20 female and 10 male participants. In this study, serum HMGB1 levels were found to be lower in the patient group in the episode compared to the patient group in the remission period and the healthy control group. There was no significant difference between the patient group in remission and the healthy control group in terms of serum HMGB1 levels. The fact that serum HMGB1 levels were lower in the patient group in the episode compared to the patient group in the remission period and the control group may be related to the neuroprotective effects of HMGB1. HMGB1 may be used as a biomarker for MDD.
Collapse
Affiliation(s)
- Ali Emre Köse
- Department of Psychiatry, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| | - Tayfun Turan
- Department of Psychiatry, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| | - Eser Kilic
- Department of Biochemistry, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| |
Collapse
|
2
|
Chen K, Xu B, Qiu S, Long L, Zhao Q, Xu J, Wang H. Inhibition of phosphodiesterase 4 attenuates aquaporin 4 expression and astrocyte swelling following cerebral ischemia/reperfusion injury. Glia 2024; 72:1629-1645. [PMID: 38785370 DOI: 10.1002/glia.24572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
We have previously shown that phosphodiesterase 4 (PDE4) inhibition protects against neuronal injury in rats following middle cerebral artery occlusion/reperfusion (MCAO/R). However, the effects of PDE4 on brain edema and astrocyte swelling are unknown. In this study, we showed that inhibition of PDE4 by Roflumilast (Roflu) reduced brain edema and brain water content in rats subjected to MCAO/R. Roflu decreased the expression of aquaporin 4 (AQP4), while the levels of phosphorylated protein kinase B (Akt) and forkhead box O3a (FoxO3a) were increased. In addition, Roflu reduced cell volume and the expression of AQP4 in primary astrocytes undergoing oxygen and glucose deprivation/reoxygenation (OGD/R). Consistently, PDE4B knockdown showed similar effects as PDE4 inhibition; and PDE4B overexpression rescued the inhibitory role of PDE4B knockdown on AQP4 expression. We then found that the effects of Roflu on the expression of AQP4 and cell volume were blocked by the Akt inhibitor MK2206. Since neuroinflammation and astrocyte activation are the common events that are observed in stroke, we treated primary astrocytes with interleukin-1β (IL-1β). Astrocytes treated with IL-1β showed decreased AQP4 and phosphorylated Akt and FoxO3a. Roflu significantly reduced AQP4 expression, which was accompanied by increased phosphorylation of Akt and FoxO3a. Furthermore, overexpression of FoxO3a partly reversed the effect of Roflu on AQP4 expression. Our findings suggest that PDE4 inhibition limits ischemia-induced brain edema and astrocyte swelling via the Akt/FoxO3a/AQP4 pathway. PDE4 is a promising target for the intervention of brain edema after cerebral ischemia.
Collapse
Affiliation(s)
- Kechun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bingtian Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuqin Qiu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Long
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qian Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
| |
Collapse
|
3
|
Huo D, Liang W, Wang D, Liu Q, Wang H, Wang Y, Zhang C, Cong C, Su X, Tan X, Zhang W, Han L, Zhang D, Wang M, Feng H. Roflupram alleviates autophagy defects and reduces mutant hSOD1-induced motor neuron damage in cell and mouse models of amyotrophic lateral sclerosis. Neuropharmacology 2024; 247:109812. [PMID: 38218579 DOI: 10.1016/j.neuropharm.2023.109812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/15/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable disease involving motor neuron (MN) degeneration and is characterized by ongoing myasthenia and amyotrophia in adults. Most ALS patients die of respiratory muscle paralysis after an average of 3-5 years. Defective autophagy in MNs is considered an important trigger of ALS pathogenesis. Roflupram (ROF) was demonstrated to activate autophagy in microglial cells and exert protective effects against Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, our research aimed to investigate the efficacy and mechanism of ROF in treating ALS both in vivo and in vitro. We found that ROF could delay disease onset and prolong the survival of hSOD1-G93A transgenic mice. Moreover, ROF protected MNs in the anterior horn of the spinal cord, activated the AMPK/ULK1 signaling pathway, increased autophagic flow, and reduced SOD1 aggregation. In an NSC34 cell line stably transfected with hSOD1-G93A, ROF protected against cellular damage caused by hSOD1-G93A. Moreover, we have demonstrated that ROF inhibited gliosis in ALS model mice. Collectively, our study suggested that ROF is neuroprotective in ALS models and the AMPK/ULK1 signaling pathway is a potential therapeutic target in ALS, which increases autophagic flow and reduces SOD1 aggregation.
Collapse
Affiliation(s)
- Di Huo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Weiwei Liang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Di Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Qiaochu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Hongyong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Chunting Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei City, Anhui Province, PR China
| | - Chaohua Cong
- Department of Neurology, Shanghai JiaoTong University School of Medicine, Shanghai No. 9 People's Hospital, Shanghai, PR China
| | - Xiaoli Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Xingli Tan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Wenmo Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ling Han
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Dongmei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ming Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China.
| |
Collapse
|
4
|
Ye XG, She FZ, Yu DN, Wu LQ, Tang Y, Wu BZ, Dong SW, Dai JM, Zhou X, Liu ZG. Increased expression of NLRP3 associated with elevated levels of HMGB1 in children with febrile seizures: a case-control study. BMC Pediatr 2024; 24:44. [PMID: 38218765 PMCID: PMC10787487 DOI: 10.1186/s12887-024-04533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND High mobility group box-1 (HMGB1) is an endogenous danger signal that mediates activation of the innate immune response including NLR pyrin domain containing 3 (NLRP3) inflammasome activation and proinflammatory cytokine release. Although HMGB1 and NLRP3 have been implicated in the pathophysiology of seizures, the correlation between HMGB1 and NLRP3 expression has not been determined in children with febrile seizures (FS). To explore the relationship between extra-cellular HMGB1 and NLRP3 in children with FS, we analyzed serum HMGB1, NLRP3, caspase-1, and proinflammatory cytokines in patients with FS. METHODS Thirty children with FS and thirty age-matched febrile controls were included in this study. Blood was obtained from the children with FS within 1 h of the time of the seizure; subsequently, the serum contents of HMGB1, NLRP3, caspase-1, interleukin (IL)-1β, interleukin (IL)-6, and tumour necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay. The Mann‒Whitney U test was used to compare serum cytokine levels between FS patients and controls. Spearman's rank correlation coefficient was calculated to detect significant correlations between cytokine levels. RESULTS Serum levels of HMGB1, NLRP3, caspase-1, IL-1β, IL-6, and TNF-α were significantly higher in FS patients than in febrile controls (p < 0.05). Serum levels of HMGB1 were significantly correlated with levels of NLRP3 and caspase-1 (both, p < 0.05). Serum levels of caspase-1 were significantly correlated with levels of IL-1β (p < 0.05). Serum levels of IL-1β were significantly correlated with levels of IL-6 and TNF-α (p < 0.05). CONCLUSIONS HMGB1 is up-regulated in the peripheral serum of FS patients, which may be responsible, at least in part, for the increased expression of NLRP3 and Caspase-1. Increased expression of caspase-1 was significantly associated with elevated serum levels of IL-1β. Given that activated Caspase-1 directly regulates the expression of mature IL-1β and positively correlates with activation of the NLRP3 inflammasome, our data suggest that increased levels of peripheral HMGB1 possibly mediate IL-1β secretion through the activation of the NLRP3 inflammasome in children with FS. Thus, both HMGB1 and NLRP3 might be potential targets for preventing or limiting FS.
Collapse
Affiliation(s)
- Xing-Guang Ye
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Feng-Zhi She
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Dong-Ni Yu
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Li-Qian Wu
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Yan Tang
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Ben-Ze Wu
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Shi-Wei Dong
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Jie-Min Dai
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Xing Zhou
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Foshan Women and Children Hospital, Foshan, 528000, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Zhou C, Chen Y, Xue S, Shi Q, Guo L, Yu H, Xue F, Cai M, Wang H, Peng Z. rTMS ameliorates depressive-like behaviors and regulates the gut microbiome and medium- and long-chain fatty acids in mice exposed to chronic unpredictable mild stress. CNS Neurosci Ther 2023; 29:3549-3566. [PMID: 37269082 PMCID: PMC10580350 DOI: 10.1111/cns.14287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) is a clinically useful therapy for depression. However, the effects of rTMS on the metabolism of fatty acids (FAs) and the composition of gut microbiota in depression are not well established. METHODS Mice received rTMS (15 Hz, 1.26 T) for seven consecutive days after exposure to chronic unpredictable mild stress (CUMS). The subsequent depressive-like behaviors, the composition of gut microbiota of stool samples, as well as medium- and long-chain fatty acids (MLCFAs) in the plasma, prefrontal cortex (PFC), and hippocampus (HPC) were evaluated. RESULTS CUMS induced remarkable changes in gut microbiotas and fatty acids, specifically in community diversity of gut microbiotas and PUFAs in the brain. 15 Hz rTMS treatment alleviates depressive-like behaviors and partially normalized CUMS induced alterations of microbiotas and MLCFAs, especially the abundance of Cyanobacteria, Actinobacteriota, and levels of polyunsaturated fatty acids (PUFAs) in the hippocampus and PFC. CONCLUSION These findings revealed that the modulation of gut microbiotas and PUFAs metabolism might partly contribute to the antidepressant effect of rTMS.
Collapse
Affiliation(s)
- Cui‐Hong Zhou
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Yi‐Huan Chen
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Shan‐Shan Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Qing‐Qing Shi
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Lin Guo
- Department of PsychiatryChang'an HospitalXi'anChina
| | - Huan Yu
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Fen Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Min Cai
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Hua‐Ning Wang
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Zheng‐Wu Peng
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
6
|
Cong YF, Liu FW, Xu L, Song SS, Shen XR, Liu D, Hou XQ, Zhang HT. Rolipram Ameliorates Memory Deficits and Depression-Like Behavior in APP/PS1/tau Triple Transgenic Mice: Involvement of Neuroinflammation and Apoptosis via cAMP Signaling. Int J Neuropsychopharmacol 2023; 26:585-598. [PMID: 37490542 PMCID: PMC10519811 DOI: 10.1093/ijnp/pyad042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Alzheimer disease (AD) and depression often cooccur, and inhibition of phosphodiesterase-4 (PDE4) has been shown to ameliorate neurodegenerative illness. Therefore, we explored whether PDE4 inhibitor rolipram might also improve the symptoms of comorbid AD and depression. METHODS APP/PS1/tau mice (10 months old) were treated with or without daily i.p. injections of rolipram for 10 days. The animal groups were compared in behavioral tests related to learning, memory, anxiety, and depression. Neurochemical measures were conducted to explore the underlying mechanism of rolipram. RESULTS Rolipram attenuated cognitive decline as well as anxiety- and depression-like behaviors. These benefits were attributed at least partly to the downregulation of amyloid-β, Amyloid precursor protein (APP), and Presenilin 1 (PS1); lower tau phosphorylation; greater neuronal survival; and normalized glial cell function following rolipram treatment. In addition, rolipram upregulated B-cell lymphoma-2 (Bcl-2) and downregulated Bcl-2-associated X protein (Bax) to reduce apoptosis; it also downregulated interleukin-1β, interleukin-6, and tumor necrosis factor-α to restrain neuroinflammation. Furthermore, rolipram increased cAMP, PKA, 26S proteasome, EPAC2, and phosphorylation of ERK1/2 while decreasing EPAC1. CONCLUSIONS Rolipram may mitigate cognitive deficits and depression-like behavior by reducing amyloid-β pathology, tau phosphorylation, neuroinflammation, and apoptosis. These effects may be mediated by stimulating cAMP/PKA/26S and cAMP/exchange protein directly activated by cAMP (EPAC)/ERK signaling pathways. This study suggests that PDE4 inhibitor rolipram can be an effective target for treatment of comorbid AD and depression.
Collapse
Affiliation(s)
- Yi-Fan Cong
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong, P.R. China
| | - Fu-Wang Liu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong, P.R. China
| | - Li Xu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong, P.R. China
| | - Shuang-Shuang Song
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong, P.R. China
| | - Xu-Ri Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong, P.R. China
| | - Dong Liu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong, P.R. China
| | - Xue-Qin Hou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong, P.R. China
| | - Han-Ting Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
7
|
Huang X, Wang B, Yang J, Lian YJ, Yu HZ, Wang YX. HMGB1 in depression: An overview of microglial HMBG1 in the pathogenesis of depression. Brain Behav Immun Health 2023; 30:100641. [PMID: 37288063 PMCID: PMC10242493 DOI: 10.1016/j.bbih.2023.100641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Depression is a prevalent psychiatric disorder with elusive pathogenesis. Studies have proposed that enhancement and persistence of aseptic inflammation in the central nervous system (CNS) may be closely associated with the development of depressive disorder. High mobility group box 1 (HMGB1) has obtained significant attention as an evoking and regulating factor in various inflammation-related diseases. It is a non-histone DNA-binding protein that can be released as a pro-inflammatory cytokine by glial cells and neurons in the CNS. Microglia, as the immune cell of the brain, interacts with HMGB1 and induces neuroinflammation and neurodegeneration in the CNS. Therefore, in the current review, we aim to investigate the role of microglial HMGB1 in the pathogenetic process of depression.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Bo Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Yang
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Yong-Jie Lian
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Hong-Zhang Yu
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Yun-Xia Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
8
|
Li M, Sun X, Wang Z, Li Y. Caspase-1 affects chronic restraint stress-induced depression-like behaviors by modifying GABAergic dysfunction in the hippocampus. Transl Psychiatry 2023; 13:229. [PMID: 37369673 DOI: 10.1038/s41398-023-02527-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Major depression disorder (MDD) is one of the most common psychiatric disorders and one of the leading causes of disability in worldwide. Both inflammation and GABAergic dysfunction have been implicated in the pathophysiology of MDD. Caspase-1, a classic inflammatory caspase, regulates AMPARs-mediated glutamatergic neurotransmission. However, the role of caspase-1 in chronic stress-induced GABAergic dysfunction remains largely unknown. In this study, we found that serum and hippocampal caspase-1-IL-1β levels increased significantly in chronic restraint stress (CRS) mice, and a significant negative correlation occurred between levels of caspase-1 and depression-like behaviors. Furthermore, CRS significantly decreased GAD67 mRNA levels and GABAergic neurotransmission accompanied by the reduction of GABA concentration, reduced the amplitude and frequency of mIPSCs inhibitory postsynaptic currents (mIPSCs) and the decreased surface expression of GABAARs γ2 subunit in the hippocampus. Genetic deficiency of caspase-1 not only blocked CRS-induced depression-like behaviors, but also alleviated CRS-induced impairments in GABAergic neurotransmission. Finally, reexpression of caspase-1 in the hippocampus of Caspase-1-/- mice increased susceptibility to stress-induced anxiety- and depression-like behaviors through inhibiting GAD67 expression and GABAARs-mediated synaptic transmission. Our study suggests that CRS dysregulates GABAergic neurotransmission via increasing the levels of caspase-1-mediated neuroinflammation in the hippocampus, ultimately leading to depression-like behaviors. This work illustrates that targeting caspase-1 may provide potential therapeutic benefits to stress-related GABAergic dysfunction in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Mingxing Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430012, China.
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, 430012, China.
| | - Xuejiao Sun
- Department of Rehabilitation Medicine, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zongqin Wang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430012, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, 430012, China
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430012, China.
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, 430012, China.
| |
Collapse
|
9
|
Afridi R, Suk K. Microglial Responses to Stress-Induced Depression: Causes and Consequences. Cells 2023; 12:1521. [PMID: 37296642 PMCID: PMC10252665 DOI: 10.3390/cells12111521] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic stress is a major risk factor for various psychiatric diseases, including depression; it triggers various cellular and structural changes, resulting in the alteration of neurocircuitry and subsequent development of depression. Accumulating evidence suggests that microglial cells orchestrate stress-induced depression. Preclinical studies of stress-induced depression revealed microglial inflammatory activation in regions of the brain that regulate mood. Although studies have identified several molecules that trigger inflammatory responses in microglia, the pathways that regulate stress-induced microglial activation remain unclear. Understanding the exact triggers that induce microglial inflammatory activation can help find therapeutic targets in order to treat depression. In the current review, we summarize the recent literature on possible sources of microglial inflammatory activation in animal models of chronic stress-induced depression. In addition, we describe how microglial inflammatory signaling affects neuronal health and causes depressive-like behavior in animal models. Finally, we propose ways to target the microglial inflammatory cascade to treat depressive disorders.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
10
|
Golub A, Ordak M, Nasierowski T, Bujalska-Zadrozny M. Advanced Biomarkers of Hepatotoxicity in Psychiatry: A Narrative Review and Recommendations for New Psychoactive Substances. Int J Mol Sci 2023; 24:ijms24119413. [PMID: 37298365 DOI: 10.3390/ijms24119413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
One of the factors that increase the effectiveness of the pharmacotherapy used in patients abusing various types of new psychoactive substances (NPSs) is the proper functioning of the liver. However, the articles published to date on NPS hepatotoxicity only address non-specific hepatic parameters. The aim of this manuscript was to review three advanced markers of hepatotoxicity in psychiatry, namely, osteopontin (OPN), high-mobility group box 1 protein (HMGB1) and glutathione dehydrogenase (GDH, GLDH), and, on this basis, to identify recommendations that should be included in future studies in patients abusing NPSs. This will make it possible to determine whether NPSs do indeed have a hepatotoxic effect or whether other factors, such as additional substances taken or hepatitis C virus (HCV) infection, are responsible. NPS abusers are at particular risk of HCV infection, and for this reason, it is all the more important to determine what factors actually show a hepatotoxic effect in them.
Collapse
Affiliation(s)
- Aniela Golub
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Michal Ordak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Tadeusz Nasierowski
- Department of Psychiatry, Faculty of Pharmacy, Medical University of Warsaw, Nowowiejska 27 Str., 00-665 Warsaw, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| |
Collapse
|
11
|
Huang L, Ma Z, Ze X, Zhao X, Zhang M, Lv X, Zheng Y, Liu H. Gut microbiota decreased inflammation induced by chronic unpredictable mild stress through affecting NLRP3 inflammasome. Front Cell Infect Microbiol 2023; 13:1189008. [PMID: 37293210 PMCID: PMC10244772 DOI: 10.3389/fcimb.2023.1189008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Dysbiosis of the gut microbiota is associated with the development of depression, but the underlying mechanism remains unclear. The aim of this study was to determine the relationship between microbiota and NLRP3 inflammasome induced by chronic unpredictable mild stress (CUMS). Fecal transplantation (FMT) experiment was conducted to elucidate the potential mechanism. Levels of NLRP3 inflammasome, microbiota, inflammatory factors and tight junction proteins were measured. CUMS stimulation significantly increased the levels of NLRP3, Caspase-1 and ASC in brain and colon(p<0.05), decreased the levels of tight junction proteins Occludin and ZO-1 (p<0.05). Interestingly, increased NLRP3 inflammasome and inflammatory cytokines and decreased tight junction proteins were found in antibiotic-treated (Abx) rats received CUMS rat fecal microbiota transplantation. Furthermore, fecal microbiota transplantation altered the microbiota in Abx rats, which partially overlapped with that of the donor rats. Importantly, probiotic administration amended the alteration of microbiota induced by CUMS treatment, then reduced the levels of NLRP3 inflammasome and inflammatory factors. In conclusion, these findings suggested that depression-like behaviors induced by CUMS stimulation were related to altered gut microbiota, broke the intestinal barrier, promoted the expression of NLRP3 inflammasome and elevated inflammation. Therefore, improving the composition of microbiota via probiotic can attenuate inflammation by amending the microbiota and suppressing the activation of NLRP3 inflammasome, which is considered as a novel therapeutic strategy for depression.
Collapse
Affiliation(s)
- Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Zewei Ma
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition & Health, Science City, Guangzhou, China
| | - Xinrui Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Meilin Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Xia Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Yunqin Zheng
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
12
|
Guo YX, Xia CY, Yan Y, Han Y, Shi R, He J, Wang YM, Wang ZX, Zhang WK, Xu JK. Loganin improves chronic unpredictable mild stress-induced depressive-like behaviors and neurochemical dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116288. [PMID: 36809822 DOI: 10.1016/j.jep.2023.116288] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis Sieb. et Zucc., is a valuable herb commonly used in Chinese medicine clinics. Loganin is a major iridoid glycoside obtained from the traditional Chinese herb Corni Fructus. Loganin, which has been shown to improve depression-like behavior in mice exposed to acute stress, is probably a potential antidepressant candidate. AIM OF THE STUDY Loganin was evaluated for its effect on chronic unpredictable mild stress (CUMS) induced depressive-like mice, and its action mechanisms were explored. MATERIALS AND METHODS ICR mice were subjected to the CUMS stimulation method to induce depression. The therapeutic effect of loganin on depressive-like behavior was evaluated by a series of behavioral tests such as sucrose preference test (SPT), forced swim test (FST), tail suspension test (TST) and open-field test (OFT). In addition, the serum levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured using ELISA. The levels of monoamine neurotransmitters were detected by high performance liquid chromatography-electrochemical detection (HPLC-ECD). The levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were measured using western blot analysis. RESULTS The results showed that CUMS induced depressive-like behaviors in mice, as indicated by behavioral tests. Administration of loganin increased the sucrose preference in SPT, as well as decreased the immobility time in FST and TST. Loganin could also improve food intake, and increased crossing times in the OFT. In mechanism, loganin restored the secretion of monoamine neurotransmitters, ACTH and CORT to normal levels. In addition, loganin elevated the expression of BDNF in the hippocampus. In conclusion, loganin exerts antidepressant-like effects in CUMS model mice through modulating monoamine neurotransmitters, ACTH, CORT and BDNF. CONCLUSION Loganin effectively ameliorated depressive-like symptoms in CUMS-exposed mice by increasing 5-hydroxytryptamine (5-HT) and dopamine (DA) levels, alleviating hypothalamic-pituitary-adrenal (HPA) axis dysfunction, and increasing BDNF expression. In conclusion, the findings of the current study extensive evidence for the application of loganin in stress-associated disorders, specifically targeting depression.
Collapse
Affiliation(s)
- Yu-Xuan Guo
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yan Han
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Rui Shi
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu-Ming Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Ze-Xing Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
13
|
Han C, Zhai L, Shen H, Wang J, Guan Q. Advanced Glycation End-Products (AGEs) Promote Endothelial Cell Pyroptosis Under Cerebral Ischemia and Hypoxia via HIF-1α-RAGE-NLRP3. Mol Neurobiol 2023; 60:2355-2366. [PMID: 36652049 DOI: 10.1007/s12035-023-03228-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
This work mainly aimed to explore the role and mechanism of advanced glycation end-products (AGEs) in inducing cerebrovascular endothelial cell pyroptosis under oxygen glucose deprivation (OGD) condition. The mouse cerebral microvascular endothelial cells (BMECs and bEnd.3) were used as the objects to construct the OGD model in vitro. Then, cells were pretreated with AGE-modified human serum albumin (AGE-HSA). Thereafter, CCK-8 assay was conducted to detect cell viability, and flow cytometry (FCM) was performed to measure cell pyroptosis level. Meanwhile, the expression of inflammatory factors was detected by enzyme-linked immunosorbent assay (ELISA). The expression of HIF-α, NLRP3, and RAGE was detected by fluorescence staining. The opening status of cell membrane pore was observed under the electron microscope, and the expression levels of FL-GSDMD, NT-GSDMD, and caspase-1 were measured through Western Blot (WB) assay. Moreover, bEnd.3 cells were treated with siRAN-silenced NLRP3 and HIF-α inhibitor, so as to observe the effect of AGEs on cell pyroptosis level. In the mouse model, the middle cerebral artery occlusion (MCAO) model was constructed by the suture-occluded method. After intraperitoneal injection of AGEs, the pathological changes in mouse brain tissues were detected; the expression levels of NLRP3, ZO-1, and CD31 were determined by histochemical staining, and the levels of inflammatory factors and pyroptosis-related proteins were also detected. Under OGD condition, AGEs induced the pyroptosis of bEnd.3 cells, and the cell pyroptosis rate increased, higher than that of the OGD group. Meanwhile, the levels of inflammatory factors were up-regulated; the expression of HIF-α, NLRP3, and RAGE in cells increased; and the levels of NT-GSDMD and caspase-1 were markedly higher than those of the control and OGD groups. siRNA-NLRP3 or HIF-α inhibitor treatment suppressed pyroptosis and reduced the inflammatory factor levels. In mouse experiments, AGE injection aggravated brain injury in the MCAO mouse model, decreased the expression of ZO-1 and CD31, and elevated the levels of NLRP3 and inflammatory factors. Under cerebral ischemia condition, AGEs can induce endothelial cell pyroptosis via HIF-α-RAGE-NLRP3, thereby further aggravating brain injury.
Collapse
Affiliation(s)
- Chenyang Han
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Liping Zhai
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Heping Shen
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jin Wang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiaobing Guan
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
14
|
Desouky MA, George MY, Michel HE, Elsherbiny DA. Roflumilast escalates α-synuclein aggregate degradation in rotenone-induced Parkinson's disease in rats: Modulation of the ubiquitin-proteasome system and endoplasmic reticulum stress. Chem Biol Interact 2023; 379:110491. [PMID: 37105514 DOI: 10.1016/j.cbi.2023.110491] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Perturbation of the protein homeostasis circuit is one of the principal attributes associated with many neurodegenerative disorders, such as Parkinson's disease (PD). This study aimed to explore the neuroprotective effect of roflumilast (ROF), a phosphodiesterase-4 inhibitor, in a rotenone-induced rat model of PD and investigate the potential underlying mechanisms. Interestingly, ROF (1 mg/kg, p.o.) attenuated motor impairment, prevented brain lesions, and rescued the dopaminergic neurons in rotenone-treated rats. Furthermore, it reduced misfolded α-synuclein burden. ROF also promoted the midbrain cyclic adenosine monophosphate level, which subsequently enhanced the 26S proteasome activity and the expression of the 20S proteasome. ROF counteracted rotenone-induced endoplasmic reticulum stress, which was demonstrated by its impact on activating transcription factor 6, glucose-regulated protein 78, and C/EBP homologous protein levels. Moreover, ROF averted rotenone-induced oxidative stress, as evidenced by its effects on the levels of nuclear factor erythroid 2-related factor 2, heme oxygenase-1, reduced glutathione, and lipid peroxides with a significant anti-apoptotic activity. Collectively, this study implies repurposing of ROF as a novel neuroprotective drug owning to its ability to restore normal protein homeostasis.
Collapse
Affiliation(s)
- Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| |
Collapse
|
15
|
Sadeghi MA, Nassireslami E, Yousefi Zoshk M, Hosseini Y, Abbasian K, Chamanara M. Phosphodiesterase inhibitors in psychiatric disorders. Psychopharmacology (Berl) 2023; 240:1201-1219. [PMID: 37060470 DOI: 10.1007/s00213-023-06361-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
RATIONALE Challenges in drug development for psychiatric disorders have left much room for the introduction of novel treatments with better therapeutic efficacies and indices. As a result, intense research has focused on identifying new targets for developing such pharmacotherapies. One of these targets may be the phosphodiesterase (PDE) class of enzymes, which play important roles in intracellular signaling. Due to their critical roles in cellular pathways, these enzymes affect diverse neurobiological functions from learning and memory formation to neuroinflammation. OBJECTIVES In this paper, we reviewed studies on the use of PDE inhibitors (PDEIs) in preclinical models and clinical trials of psychiatric disorders including depression, anxiety, schizophrenia, post-traumatic stress disorder (PTSD), bipolar disorder (BP), sexual dysfunction, and feeding disorders. RESULTS PDEIs are able to improve symptoms of psychiatric disorders in preclinical models through activating the cAMP-PKA-CREB and cGMP-PKG pathways, attenuating neuroinflammation and oxidative stress, and stimulating neural plasticity. The most promising therapeutic candidates to emerge from these preclinical studies are PDE2 and PDE4 inhibitors for depression and anxiety and PDE1 and PDE10 inhibitors for schizophrenia. Furthermore, PDE3 and 4 inhibitors have shown promising results in clinical trials in patients with depression and schizophrenia. CONCLUSIONS Larger and better designed clinical studies of PDEIs in schizophrenia, depression, and anxiety are warranted to facilitate their translation into the clinic. Regarding the other conditions discussed in this review (most notably PTSD and BP), better characterization of the effects of PDEIs in preclinical models is required before clinical studies.
Collapse
Affiliation(s)
- Mohammad Amin Sadeghi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi Zoshk
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, AJA University of Medical Sciences, Tehran, Iran
| | - Yasaman Hosseini
- Cognitive Neuroscience Center, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Kourosh Abbasian
- Management and Health Economics Department, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Kong A, Liu T, Deng S, Xu S, Luo Y, Li J, Du Z, Wang L, Xu X, Fan X. Novel antidepressant-like properties of the fullerenol in an LPS-induced depressive mouse model. Int Immunopharmacol 2023; 116:109792. [PMID: 36738679 DOI: 10.1016/j.intimp.2023.109792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Depression is a common mental disease and is highly prevalent in populations. Dysregulated neuroinflammation and concomitant-activated microglia are involved in the pathogenesis of depression. Experimental evidence has indicated that fullerenol exerts anti-neuroinflammation and protective effects against neurological diseases. Here, we evaluated fullerenol's effects against lipopolysaccharide (LPS)-induced mouse depressive-like behaviors. Fullerenol treatment produced an antidepressant-like effect, as indicated by preventing the LPS-induced reduction in the sucrose preference and shortening the immobility durations in both the tail suspension test and the forced swim test. We found that fullerenol treatment mitigated LPS-induced hippocampal microglia activation and released proinflammatory cytokines. Meanwhile, fullerenol promoted hippocampus neurogenesis, evidenced by increased DCX-positive cells in LPS-treated mice. Hippocampal RNA-Seq analysis revealed proinflammatory cytokine and neurogenesis involved in fullerenol's antidepressant-like effects. Our data indicate that fullerenol exerts antidepressant effects, which might be due to beneficial functions in reducing neuroinflammatory processes and promoting neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Anqi Kong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China; Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Shilong Deng
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Shiyao Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China; Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jianghui Li
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zhulin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Liuyongwei Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Xingshun Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China; Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
17
|
Xia CY, Guo YX, Lian WW, Yan Y, Ma BZ, Cheng YC, Xu JK, He J, Zhang WK. The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacol Res 2023; 187:106625. [PMID: 36563870 DOI: 10.1016/j.phrs.2022.106625] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests that the failure of clinical antidepressants may be related with neuroinflammation. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is an intracellular multiprotein complex, and has been considered as a key contributor to the development of neuroinflammation. Inhibition of NLRP3 inflammasome is an effective method for depression treatment. In this review, we summarized current researches highlighting the role of NLRP3 inflammasome in the pathology of depression. Firstly, we discussed NLRP3 inflammasome activation in patients with depression and animal models. Secondly, we outlined the possible mechanisms driving the activation of NLRP3 inflammasome. Thirdly, we discussed the pathogenetic role of NLRP3 inflammasome in depression. Finally, we overviewed the current and potential antidepressants targeting the NLRP3 inflammasome. Overall, the inhibition of NLRP3 inflammasome activation may be a potential therapeutic strategy for inflammation-related depression.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu-Xuan Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Bing-Zhi Ma
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yung-Chi Cheng
- School of Medicine, Yale University, New Haven, CT, United States
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| |
Collapse
|
18
|
Wu M, Zhao L, Wang Y, Guo Q, An Q, Geng J, Zhang C, Guo Z. Ketamine Regulates the Autophagy Flux and Polarization of Microglia through the HMGB1-RAGE Axis and Exerts Antidepressant Effects in Mice. J Neuropathol Exp Neurol 2022; 81:931-942. [PMID: 35582883 DOI: 10.1093/jnen/nlac035] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Depression is a leading cause of disability worldwide. Here, we explored the role of the HMGB1-RAGE pathway in lipopolysaccharide (LPS)-induced depression-like behavior and microglial autophagy flux, neuroinflammation, and polarization in a mouse model. Male C57BL/6 mice were infused with LPS in the abdominal cavity to induce a depression model. They then underwent testing to assess behavior and cognition. Real-time fluorescent quantitative polymerase chain reaction was used to detect the expression of the M1/M2 microglia polarization markers, HMGB1, and RAGE. Microglial activation and phenotypic transformation in the hippocampus were identified. mRFP-GFP-LC3 and Western blotting were used to detect autophagy flux in each treatment group. Finally, an LPS-induced BV2 cell model was developed to verify the involvement of the HMGB1-RAGE pathway, autophagy flux, and polarization. Ketamine improved LPS-induced depression-like behavior, inhibited the LPS-induced upregulation of HMGB1 and RAGE and the nuclear translocation of HMGB1. Moreover, ketamine reversed the blocked autophagy flux of microglia caused by LPS and regulated microglial autophagy flux through the HMGB1-RAGE pathway and microglial polarization. These results suggest that ketamine may reduce HMGB1 and RAGE accumulation in patients with depression, thereby providing a new therapeutic target for preventing and treating this disease.
Collapse
Affiliation(s)
- Meng Wu
- From the Department of Anesthesiology, Peking University Shougang Hospital, Beijing, China
| | - Lin Zhao
- From the Department of Anesthesiology, Peking University Shougang Hospital, Beijing, China
| | - Ye Wang
- From the Department of Anesthesiology, Peking University Shougang Hospital, Beijing, China
| | - Qianqian Guo
- From the Department of Anesthesiology, Peking University Shougang Hospital, Beijing, China
| | - Qi An
- From the Department of Anesthesiology, Peking University Shougang Hospital, Beijing, China
| | | | - Changsheng Zhang
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhenggang Guo
- From the Department of Anesthesiology, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
19
|
Sun T, Xie R, He H, Xie Q, Zhao X, Kang G, Cheng C, Yin W, Cong J, Li J, Wang X. Kynurenic acid ameliorates NLRP3 inflammasome activation by blocking calcium mobilization via GPR35. Front Immunol 2022; 13:1019365. [PMID: 36311752 PMCID: PMC9606686 DOI: 10.3389/fimmu.2022.1019365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2023] Open
Abstract
The inflammasome has been linked to diverse inflammatory and metabolic diseases, and tight control of inflammasome activation is necessary to avoid excessive inflammation. Kynurenic acid (KA) is a tryptophan metabolite in the kynurenine pathway. However, the roles and mechanisms of the regulation of inflammasome activation by KA have not yet been fully elucidated. Here, we found that KA suppressed caspase-1 activation and IL-1β production in macrophages by specifically inhibiting canonical and noncanonical activation of the NLRP3 inflammasome. Mechanistically, KA reduced calcium mobilization through G-protein receptor 35 (GPR35), resulting in reduced mitochondrial damage and decreased mtROS production, thus blocking NLRP3 inflammasome assembly and activation. Importantly, KA prevented lipopolysaccharide-induced systemic inflammation, monosodium urate-induced peritoneal inflammation, and high-fat diet-induced metabolic disorder. Thus, KA ameliorated inflammation and metabolic disorders by blocking calcium mobilization-mediated NLRP3 inflammasome activation via GPR35. Our data reveal a novel mechanism for KA in the modulation of inflammasome activation and suggest that GPR35 might be a promising target for improving NLRP3 inflammasome-associated diseases by regulating calcium mobilization.
Collapse
Affiliation(s)
- Tianyin Sun
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Ruiqian Xie
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Hongbin He
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qianqian Xie
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xueqin Zhao
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Guijie Kang
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Chen Cheng
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Wenwei Yin
- Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jingjing Cong
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jing Li
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Xuefu Wang
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Brief Maternal Separation Promotes Resilience to Anxiety-like and Depressive-like Behaviors in Female C57BL/6J Offspring with Imiquimod-Induced Psoriasis. Brain Sci 2022; 12:brainsci12091250. [PMID: 36138986 PMCID: PMC9497052 DOI: 10.3390/brainsci12091250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Psoriasis is a common chronic inflammatory skin disease that often causes depression. Early life experience affects brain development and relates to depression. Whether the effect of different MS protocols in early life on anxiety-like and depressive-like behaviors in female offspring with imiquimod (IMQ)-induced psoriasis is unknown. Methods: C57BL/6J mice were subjected to no separation (NMS), brief MS (15 min/day, MS15) or long MS (180 min/day, MS180) from postpartum days (PPD) 1 to PPD21. Then, 5% imiquimod cream was applied for 8 days in adults. Behavioral tests, skin lesions and hippocampal protein expression were also assessed. Results: We found significant psoriasis-like skin lesions in female mice following IMQ application, and mice showed anxiety-like and depressive-like behaviors. Further, increased microglial activation and decreased expression of neuroplasticity were detected in mice following IMQ application. However, after MS15 in early life, mice showed decreased anxiety-like and depressive-like behaviors, indicating resilience. Further, inhibited hippocampal neuroinflammation and increased neuroplasticity were detected. Conclusions: Collectively, this study confirms that brief MS confers resilience to the behavior deficits in female offspring with IMQ-induced psoriasis and reverses the activation of neuroinflammation and the damage of neuroplasticity injury.
Collapse
|
21
|
Zhang Y, Dong Y, Zhu Y, Sun D, Wang S, Weng J, Zhu Y, Peng W, Yu B, Jiang Y. Microglia-specific transcriptional repression of interferon-regulated genes after prolonged stress in mice. Neurobiol Stress 2022; 21:100495. [DOI: 10.1016/j.ynstr.2022.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
|
22
|
Polydatin Prevents Neuroinflammation and Relieves Depression via Regulating Sirt1/HMGB1/NF-κB Signaling in Mice. Neurotox Res 2022; 40:1393-1404. [PMID: 35986876 DOI: 10.1007/s12640-022-00553-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 12/21/2022]
|
23
|
Serna-Rodríguez MF, Bernal-Vega S, de la Barquera JAOS, Camacho-Morales A, Pérez-Maya AA. The role of damage associated molecular pattern molecules (DAMPs) and permeability of the blood-brain barrier in depression and neuroinflammation. J Neuroimmunol 2022; 371:577951. [PMID: 35994946 DOI: 10.1016/j.jneuroim.2022.577951] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
Depression is a heterogeneous mental disorder characterized by feelings of sadness and loss of interest that render the subject unable to handle basic daily activities such as sleeping, eating, or working. Neurobiological traits leading to depression include genetic background, early life abuse, life stressors, and systemic and central inflammatory profiles. Several clinical and preclinical reports documented that depression shows an increase in pro-inflammatory markers such as interleukin (IL-)1β, IL-6, IL-12, tumor necrosis factor (TNF), and interferon (IFN)-γ; and a decrease in anti-inflammatory IL-4, IL-10, and transforming growth factor (TGF)-β species. Inflammatory activation may trigger and maintain depression. Dynamic crosstalk between the peripheral immune system and the central nervous system (CNS) such as activated endothelial cells, monocytes, monocyte-derived dendritic cells, macrophages, T cells, and microglia has been proposed as a leading cause of neuroinflammation. Notably, pro-inflammatory cytokines disrupt the hypothalamic-pituitary-adrenal (HPA) axis and serotonergic, noradrenergic, dopaminergic, and glutamatergic neurotransmission. While still under investigation, peripheral cytokines can engage brain pathways and affect the central synthesis of HPA hormones and neurotransmitters through several mechanisms such as activation of the vagus nerve, increasing the permeability of the blood-brain barrier (BBB), altered cytokines transport systems, and engaging toll-like receptors (TLRs) by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). However, physiological mechanisms that favor time-dependent central inflammation before or during illness are not totally understood. This review will provide preclinical and clinical evidence of DAMPs and the BBB permeability as contributors to depression and neuroinflammation. We will also discuss pharmacologic approaches that could potentially modulate DAMPs and BBB permeability for future interventions against major depression.
Collapse
Affiliation(s)
- María Fernanda Serna-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico
| | - Sofía Bernal-Vega
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico
| | | | - Alberto Camacho-Morales
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico.
| | - Antonio Alí Pérez-Maya
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular. Monterrey CP. 64460, Nuevo Leon, Mexico.
| |
Collapse
|
24
|
Wan T, Li X, Fu M, Gao X, Li P, Guo W. NLRP3-Dependent Pyroptosis: A Candidate Therapeutic Target for Depression. Front Cell Neurosci 2022; 16:863426. [PMID: 35722622 PMCID: PMC9204297 DOI: 10.3389/fncel.2022.863426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023] Open
Abstract
Depression, a major public health problem, imposes a significant economic burden on society. Recent studies have gradually unveiled the important role of neuroinflammation in the pathogenesis of depression. Pyroptosis, a programmed cell death mediated by Gasdermins (GSDMs), is also considered to be an inflammatory cell death with links to inflammation. Pyroptosis has emerged as an important pathological mechanism in several neurological diseases and has been found to be involved in several neuroinflammatory-related diseases. A variety of chemical agents and natural products have been found to be capable of exerting therapeutic effects by modulating pyroptosis. Studies have shown that depression is closely associated with pyroptosis and the induced neuroinflammation of relevant brain regions, such as the hippocampus, amygdala, prefrontal cortex neurons, etc., in which the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome plays a crucial role. This article provides a timely review of recent findings on the activation and regulation of pyroptosis in relation to depression.
Collapse
Affiliation(s)
- Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Teng Wan
| | - Xiaoyu Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Weiming Guo
| |
Collapse
|
25
|
Collongues N, Becker G, Jolivel V, Ayme-Dietrich E, de Seze J, Binamé F, Patte-Mensah C, Monassier L, Mensah-Nyagan AG. A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurol Ther 2022; 11:981-1042. [PMID: 35610531 PMCID: PMC9338208 DOI: 10.1007/s40120-022-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,Center for Clinical Investigation, INSERM U1434, Strasbourg, France. .,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France. .,University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.
| | - Guillaume Becker
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Jolivel
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Estelle Ayme-Dietrich
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,Center for Clinical Investigation, INSERM U1434, Strasbourg, France.,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Fabien Binamé
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Laurent Monassier
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Ayikoé Guy Mensah-Nyagan
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| |
Collapse
|
26
|
Jiang Q, Li C, Zeng W, Xu H, Li J, Zhang T, Deng G, Wang Y. Inhibition of Connexin 36 attenuates HMGB1-mediated depressive-like behaviors induced by chronic unpredictable mild stress. Brain Behav 2022; 12:e2470. [PMID: 35089644 PMCID: PMC8865165 DOI: 10.1002/brb3.2470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1) released by neurons and microglia was demonstrated to be an important mediator in depressive-like behaviors induced by chronic unpredictable mild stress (CUMS), which could lead to the imbalance of two different metabolic approaches in kynurenine pathway (KP), thus enhancing glutamate transmission and exacerbating depressive-like behaviors. Evidence showed that HMGB1 signaling might be regulated by Connexin (Cx) 36 in inflammatory diseases of central nervous system (CNS). Our study aimed to further explore the role of Cx36 in depressive-like behaviors and its relationship with HMGB1. METHODS After 4-week chronic stress, behavioral tests were conducted to evaluate depressive-like behaviors, including sucrose preference test (SPT), tail suspension test (TST), forced swimming test (FST), and open field test (OFT). Western blot analysis and immunofluorescence staining were used to observe the expression and location of Cx36. Enzyme-linked immunosorbent assay (ELISA) was adopted to detect the concentrations of inflammatory cytokines. And the excitability and inward currents of hippocampal neurons were recorded by whole-cell patch clamping. RESULTS The expression of Cx36 was significantly increased in hippocampal neurons of mice exposed to CUMS, while treatment with glycyrrhizinic acid (GZA) or quinine could both down-regulate Cx36 and alleviate depressive-like behaviors. The proinflammatory cytokines like HMGB1, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) were all elevated by CUMS, and application of GZA and quinine could decrease them. In addition, the enhanced excitability and inward currents of hippocampal neurons induced by lipopolysaccharide (LPS) could be reduced by either GZA or quinine. CONCLUSIONS Inhibition of Cx36 in hippocampal neurons might attenuates HMGB1-mediated depressive-like behaviors induced by CUMS through down-regulation of the proinflammatory cytokines and reduction of the excitability and intracellular ion overload.
Collapse
Affiliation(s)
- Qian Jiang
- Department of PsychiatryFaculty of PsychologySecond Military Medical UniversityShanghaiP. R. China
| | - Chao‐Ran Li
- Department of Nautical PsychologyFaculty of PsychologySecond Military Medical UniversityShanghaiP. R. China
| | - Wen‐Feng Zeng
- Department of Nautical PsychologyFaculty of PsychologySecond Military Medical UniversityShanghaiP. R. China
| | - Hui‐Jing Xu
- Department of PsychiatryFaculty of PsychologySecond Military Medical UniversityShanghaiP. R. China
| | - Jia‐Mei Li
- Department of Stress MedicineFaculty of PsychologySecond Military Medical UniversityShanghaiP. R. China
| | - Ting Zhang
- Department of Nautical PsychologyFaculty of PsychologySecond Military Medical UniversityShanghaiP. R. China
| | - Guang‐Hui Deng
- Department of PsychiatryFaculty of PsychologySecond Military Medical UniversityShanghaiP. R. China
| | - Yun‐Xia Wang
- Department of Nautical PsychologyFaculty of PsychologySecond Military Medical UniversityShanghaiP. R. China
| |
Collapse
|
27
|
Dong WL, Zhong JH, Chen YQ, Xie JF, Qin YY, Xu JP, Cai NB, Li MF, Liu L, Wang HT. Roflupram protects against rotenone-induced neurotoxicity and facilitates α-synuclein degradation in Parkinson's disease models. Acta Pharmacol Sin 2021; 42:1991-2003. [PMID: 34531546 PMCID: PMC8632895 DOI: 10.1038/s41401-021-00768-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023] Open
Abstract
We have previously shown that roflupram (ROF) protects against MPP+-induced neuronal damage in models of Parkinson's disease (PD). Since impaired degradation of α-synuclein (α-syn) is one of the key factors that lead to PD, here we investigated whether and how ROF affects the degradation of α-syn in rotenone (ROT)-induced PD models in vivo and in vitro. We showed that pretreatment with ROF (10 μM) significantly attenuated cell apoptosis and reduced the level of α-syn in ROT-treated SH-SY5Y cells. Furthermore, ROF significantly enhanced the lysosomal function, as evidenced by the increased levels of mature cathepsin D (CTSD) and lysosomal-associated membrane protein 1 (LAMP1) through increasing NAD+/NADH and the expression of sirtuin 1 (SIRT1). Pretreatment with an SIRT1 inhibitor selisistat (SELI, 10 μM) attenuated the neuroprotection of ROF, ROF-reduced expression of α-syn, and ROF-increased expression levels of LAMP1 and mature CTSD. Moreover, inhibition of CTSD by pepstatin A (20 μM) attenuated ROF-reduced expression of α-syn. In vivo study was conducted in mice exposed to ROT (10 mg·kg-1·d-1, i.g.) for 6 weeks; then, ROT-treated mice received ROF (0.5, 1, or 2 mg·kg-1·d-1; i.g.) for four weeks. ROF significantly ameliorated motor deficits, which was accompanied by increased expression levels of tyrosine hydroxylase, SIRT1, mature CTSD, and LAMP1, and a reduced level of α-syn in the substantia nigra pars compacta. Taken together, these results demonstrate that ROF exerts a neuroprotective action and reduces the α-syn level in PD models. The mechanisms underlying ROF neuroprotective effects appear to be associated with NAD+/SIRT1-dependent activation of lysosomal function.
Collapse
Affiliation(s)
- Wen-Li Dong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Hong Zhong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Qing Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jin-Feng Xie
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Yun-Yun Qin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiang-Ping Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
| | - Ning-Bo Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Meng-Fan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hai-Tao Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Dhar R, Rana MN, Zhang L, Li Y, Li N, Hu Z, Yan C, Wang X, Zheng X, Liu H, Cui H, Li Z, Tang H. Phosphodiesterase 4B is required for NLRP3 inflammasome activation by positive feedback with Nrf2 in the early phase of LPS- induced acute lung injury. Free Radic Biol Med 2021; 176:378-391. [PMID: 34644617 DOI: 10.1016/j.freeradbiomed.2021.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022]
Abstract
Acute lung injury (ALI) is associated with overproduction of inflammatory mediators in lung tissue. Previous studies have revealed that inflammation induces activation of phosphodiesterase 4B (PDE4B) accompanied by the production of inflammatory mediators, but the detailed mechanism remains unclear. Here, we focused on the NOD-, LRR- and pyrin domain-containing protein 3(NLRP3) inflammasome complexes to study the crosstalk between PDE4B and NF-E2-related factor 2 (Nrf2). We used global knockout PDE4B or Nrf2 mice to prepare LPS induced acute lung injury model by intratracheally administration, and LPS primed bone marrow-derived macrophages (BMDMs), following overexpression of PDE4B or Nrf2, luciferase activity analysis, and chIP-qPCR analyses. We found that deficiency of PDE4B could potently attenuate the lung histopathological changes, suppress the secretion of pro-inflammatory mediators such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, IL-18, and cleaved caspase-1, 8, and GSDMD accompanied with defective activation of the ROS/Nrf2/NLRP3. Meanwhile deficiency of Nrf2 showed the similar results. Furtherly, overexpression by PDE4B or Nrf2 plasmid transfection in MH-S cells could enhance the Nrf2 or PDE4B expression. Luciferase analysis suggested that Nrf2 activated PDE4B promoter activity, while PDE4B could increase Nrf2 substrate ARE activity in MH-S cells in dose dependent manners. ChIP-qPCR analyses showed that Nrf2 bound to the PDE4B promoter region at ̴ 1532 to ̴1199 position in macrophages. Altogether, deficiency of PDE4B inhibit the inflammasome activation and pyroptosis in LPS stimulated lung injury model and macrophages by regulating ROS/Nrf2/NLRP3 activation. The study provides new insight that PDE4B is required for NLRP3 inflammasome activation by positive feedback with Nrf2.
Collapse
Affiliation(s)
- Rana Dhar
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Mohammad Nasiruddin Rana
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lejun Zhang
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yajun Li
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ning Li
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhengqiang Hu
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chungunag Yan
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Xuefeng Wang
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Xuyang Zheng
- Department of Pediatrics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Hongyun Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huashun Cui
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China.
| | - Zigang Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, China.
| | - Huifang Tang
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
29
|
Yan W, Dong Z, Zhao D, Li J, Zeng T, Mo C, Gao L, Lv Z. Xiaoyaosan Exerts Antidepressant Effect by Downregulating RAGE Expression in Cingulate Gyrus of Depressive-Like Mice. Front Pharmacol 2021; 12:703965. [PMID: 34557092 PMCID: PMC8452939 DOI: 10.3389/fphar.2021.703965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Xiaoyaosan (XYS), as a classic Chinese medicine compound, has been proven to have antidepressant effect in many studies, but its mechanism has not been clarified. In our previous studies, we found that chronic stress can induce depressive-like behavior and lead to emotion-related cingulate gyrus (Cg) dysfunction, as well as the decrease of neurotrophic factors and the increase of inflammatory-related proteins. Therefore, we speculated that XYS may play an antidepressant role by regulating the inflammation-related receptor of advanced glycation protein end product (RAGE) to affect the functional connectivity (FC) signal of the Cg and improve the depressive-like behavior. In order to verify this hypothesis, we analyzed the FC and RAGE expression in the Cg of depressive-like mice induced by chronic unpredictable mild stress (CUMS) and verified it with RAGE knockout mice. At the same time, we detected the effect of XYS on the depressive-like behavior, expression of RAGE, and the FC of the Cg of mice. The results showed that the FC of the Cg of depressive-like mice induced by CUMS was weakened, and the expression of RAGE was upregulated. The antidepressant effect of XYS is similar to that of fluoxetine hydrochloride, which can significantly reduce the depressive-like behavior of mice and inhibit the expression of the RAGE protein and mRNA in the Cg, and increase the FC of the Cg in mice. In conclusion, XYS may play an antidepressant role by downregulating the expression of RAGE in the Cg of depressive-like mice induced by CUMS, thereby affecting the functional signal and improving the depressive-like behavior.
Collapse
Affiliation(s)
- Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoyang Dong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jun Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Zhao F, Guo Z, Hou F, Fan W, Wu B, Qian Z. Magnoflorine Alleviates "M1" Polarized Macrophage-Induced Intervertebral Disc Degeneration Through Repressing the HMGB1/Myd88/NF-κB Pathway and NLRP3 Inflammasome. Front Pharmacol 2021; 12:701087. [PMID: 34366853 PMCID: PMC8343137 DOI: 10.3389/fphar.2021.701087] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is related to the deterioration of nucleus pulposus (NP) cells due to hypertrophic differentiation and calcification. The imbalance of pro-inflammatory (M1 type) and anti-inflammatory (M2 type) macrophages contributes to maintaining tissue integrity. Here, we aimed to probe the effect of Magnoflorine (MAG) on NP cell apoptosis mediated by “M1” polarized macrophages. THP-1 cells were treated with lipopolysaccharide (LPS) to induce “M1” polarized macrophages. Under the treatment with increasing concentrations of MAG, the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, IL-18), high mobility group box protein 1 (HMGB1), as well as myeloid differentiation factor 88 (MyD88), nuclear factor kappa B (NF-κB) and NOD-like receptor 3 (NLRP3) inflammasomes in THP-1 cells were determined. What’s more, human NP cells were treated with the conditioned medium (CM) from THP-1 cells. The NP cell viability and apoptosis were evaluated. Western blot (WB) was adopted to monitor the expression of apoptosis-related proteins (Bax, Caspase3, and Caspase9), catabolic enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5), and extracellular matrix (ECM) compositions (collagen II and aggrecan) in NP cells. As a result, LPS evidently promoted the expression of pro-inflammatory cytokines and HMGB1, the MyD88-NF-κB activation, and the NLRP3 inflammasome profile in THP-1 cells, while MAG obviously inhibited the "M1″ polarization of THP-1 cells. After treatment with “M1” polarized THP-1 cell CM, NP cell viability was decreased, while cell apoptosis, the pro-inflammatory cytokines, apoptosis-related proteins, and catabolic enzymes were distinctly up-regulated, and ECM compositions were reduced. After treatment with MAG, NP cell damages were dramatically eased. Furthermore, MAG dampened the HMGB1 expression and inactivated the MyD88/NF-κB pathway and NLRP3 inflammasome in NP cells. In conclusion, this study confirmed that MAG alleviates “M1” polarized macrophage-mediated NP cell damage by inactivating the HMGB1-MyD88-NF-κB pathway and NLRP3 inflammasome, which provides a new reference for IDD treatment.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhenye Guo
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Fushan Hou
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Wei Fan
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Binqiang Wu
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhonglai Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
31
|
Tang M, Liu T, Jiang P, Dang R. The interaction between autophagy and neuroinflammation in major depressive disorder: From pathophysiology to therapeutic implications. Pharmacol Res 2021; 168:105586. [PMID: 33812005 DOI: 10.1016/j.phrs.2021.105586] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
The past decade has revealed neuroinflammation as an important mechanism of major depressive disorder (MDD). Nod-like receptors family pyrin domain containing 3 (NLRP3) inflammasome is the key regulator interleukin-1β (IL-1β) maturation, whose activation has been reported in MDD patients and various animal models. Function as a dominant driver of neuroinflammation, NLRP3 bridges the gap between immune activation with stress exposure, and further leads to subsequent occurrence of neuropsychiatric disorders such as MDD. Of note, autophagy is a tightly regulated cellular degradation pathway that removes damaged organelles and intracellular pathogens, and maintains cellular homeostasis from varying insults. Serving as a critical cellular monitoring system, normal functioned autophagy signaling prevents excessive NLRP3 inflammasome activation and subsequent release of IL-1 family cytokines. This review will describe the current understanding of how autophagy regulates NLRP3 inflammasome activity and discuss the implications of this regulation on the pathogenesis of MDD. The extensive crosstalk between autophagy pathway and NLRP3 inflammasome is further discussed, as it is critical for developing new therapeutic strategies for MDD aimed at modulating the neuroinflammatory responses.
Collapse
Affiliation(s)
- Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| |
Collapse
|