1
|
Sun W, Cao H, Liu D, Baranova A, Zhang F, Zhang X. Genetic association and drug target exploration of inflammation-related proteins with risk of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111165. [PMID: 39383931 DOI: 10.1016/j.pnpbp.2024.111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND In numerous observational studies, circulating inflammation-related proteins have been linked with major depressive disorder (MDD), yet the precise causal direction of this relationship remains unclear. This study aims to investigate the potential causal link between inflammation-related proteins and the risk of developing MDD. METHODS We utilized summary data from a genome-wide association study (GWAS) of 91 circulating inflammation-associated proteins in 14,824 individuals of European descent. Additionally, we incorporated findings from a substantial GWAS on MDD, which included 294,322 cases and 741,438 controls. Our analysis employed a two-sample bidirectional Mendelian randomization (MR) approach, with inverse variance weighting (IVW) as the primary method. We augmented this with two supplementary techniques (MR-Egger and weighted median approaches) to detect and address potential pleiotropy. Furthermore, to identify and evaluate possible drug targets, we conducted a thorough search within the Drug-Gene Interaction Database (DGIdb). RESULTS Analysis using MR unveiled significant and causative associations between genetically determined CASP-8 (odds ratio (OR): 0.97), CD40 (OR: 0.96), IL-18 (OR: 0.98), SLAMF1 (OR: 0.97), and uPA (OR: 0.98) with MDD. Conversely, reverse MR analysis indicated causal associations between MDD and CCL19 (OR: 1.15), HGF (OR: 1.15), IL-8 (OR: 1.10), IL-18 (OR: 1.11), IL20RA (OR: 1.12), TGFA (OR: 1.12) and TNFSF14 (OR: 1.16). Notably, a significant bidirectional causal link was observed between IL-18 and MDD. Gene-drug analysis identified CD40, HGF, IL-8, IL-18, SLAMF1, and TGFA as potential therapeutic targets. CONCLUSIONS We've pinpointed causal links between inflammation-related proteins and MDD, offering compelling and innovative evidence to enhance our understanding of the inflammatory mechanisms involved in MDD and to investigate potential targets for anti-MDD medications.
Collapse
Affiliation(s)
- Wenxi Sun
- Suzhou Medical College of Soochow University, Suzhou 215031, Jiangsu, China; Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing 210008, China; Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, USA; Research Centre for Medical Genetics, Moscow, Russia
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Xiaobin Zhang
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China.
| |
Collapse
|
2
|
Zhang Y, Zhang H, Zheng X, Hou Y, Chang X, Zhang L, Wang Y, Chen S. Identification of differentially expressed genes in the medial prefrontal cortex of rats subjected to chronic unpredictable mild stress and treated with electroacupuncture. Genomics 2024; 116:110901. [PMID: 39047876 DOI: 10.1016/j.ygeno.2024.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Major depressive disorder is a chronic mental health condition that seriously impacts afflicted individuals. Although electroacupuncture has proven to be an effective therapy for depression, its underlying biological mechanism remains largely unknown. In this study, we aimed to investigate the effects of electroacupuncture on depression-like behavior and to identify potential target genes related to those effects. To achieve this, we subjected rats to chronic unpredictable mild stress (CUMS) and used sucrose preference, forced swimming, and open-field tests to determine their depression-like behavior in the absence or after receipt of electroacupuncture treatment. RNA sequencing technology was then used to reveal the differentially expressed genes associated with depression and electroacupuncture treatment effects in the medial prefrontal cortex (mPFC). Repeated electroacupuncture treatments at the Baihui (GV20) and Taichong (LR3) acupoints significantly alleviated depression-like behavioral defects in the animals. Genomic RNA sequencing revealed several significant changes in the mPFC transcriptome of rats that received treatment. Through differential gene expression analysis, we found that electroacupuncture reversed the CUMS-induced downregulation of 46 genes and upregulation of 13 genes. Among the differentially expressed genes, Casr, Bdkrb2, Gnb3, and Ccl1 were found to be associated with depression and electroacupuncture treatment effects. In conclusion, we verified that electroacupuncture treatment has an effective antidepressant effect, and the underlying mechanism involves multiple systems and targets.
Collapse
Affiliation(s)
- Yujiao Zhang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Haiyan Zhang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Xinjie Zheng
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Yi Hou
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoli Chang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Lili Zhang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Ying Wang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China.
| | - Shaozong Chen
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China.
| |
Collapse
|
3
|
Sun L, Apweiler M, Normann C, Grathwol CW, Hurrle T, Gräßle S, Jung N, Bräse S, Fiebich BL. Anti-Inflammatory Effects of GPR55 Agonists and Antagonists in LPS-Treated BV2 Microglial Cells. Pharmaceuticals (Basel) 2024; 17:674. [PMID: 38931342 PMCID: PMC11206594 DOI: 10.3390/ph17060674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic inflammation is driven by proinflammatory cytokines such as interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and chemokines, such as c-c motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 2 (CXCL2), and CXCL10. Inflammatory processes of the central nervous system (CNS) play an important role in the pathogenesis of various neurological and psychiatric disorders like Alzheimer's disease, Parkinson's disease, and depression. Therefore, identifying novel anti-inflammatory drugs may be beneficial for treating disorders with a neuroinflammatory background. The G-protein-coupled receptor 55 (GPR55) gained interest due to its role in inflammatory processes and possible involvement in different disorders. This study aims to identify the anti-inflammatory effects of the coumarin-based compound KIT C, acting as an antagonist with inverse agonistic activity at GPR55, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells in comparison to the commercial GPR55 agonist O-1602 and antagonist ML-193. All compounds significantly suppressed IL-6, TNF-α, CCL2, CCL3, CXCL2, and CXCL10 expression and release in LPS-treated BV2 microglial cells. The anti-inflammatory effects of the compounds are partially explained by modulation of the phosphorylation of p38 mitogen-activated protein kinase (MAPK), p42/44 MAPK (ERK 1/2), protein kinase C (PKC) pathways, and the transcription factor nuclear factor (NF)-κB, respectively. Due to its potent anti-inflammatory properties, KIT C is a promising compound for further research and potential use in inflammatory-related disorders.
Collapse
Affiliation(s)
- Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (L.S.); (M.A.)
| | - Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (L.S.); (M.A.)
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany;
| | - Christoph W. Grathwol
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
| | - Thomas Hurrle
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Simone Gräßle
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
| | - Nicole Jung
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany; (C.W.G.); (T.H.); (S.G.); (N.J.); (S.B.)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (L.S.); (M.A.)
| |
Collapse
|
4
|
Wang Y, Chang X, Zhang H, Hou Y, Zheng X, Zhang Y, Chen S. Hypothalamic Gene Expression in a Rat Model of Chronic Unpredictable Mild Stress Treated with Electroacupuncture. Neurochem Res 2024; 49:1406-1416. [PMID: 38522048 DOI: 10.1007/s11064-024-04124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 03/25/2024]
Abstract
Depression is characterized by the loss of pleasure and a depressed mood, and it is a common mental disorder in the twenty-first century. Multiple gene imbalances, which are considered pathological factors in depression, were detected in the brain. Electroacupuncture is an effective therapeutic approach for depression that has minimal side effects. As a crucial structure in the hypothalamus-pituitary-adrenal, the hypothalamus plays a key role in depression. Our study focused on the transcriptome level in the hypothalamus of depressive rats. After chronic unpredictable mild stress, the rats exhibited depressive-like behaviors, such as decreased sucrose consumption in the SPT, increased time in the central area of the OFT and increased immobility in the FST. Moreover, electroacupuncture alleviated depressive behaviors. Because of the importance of the hypothalamus in depression, we next detected gene expression in the hypothalamus. A total of 510 genes (125 upregulated genes and 385 downregulated genes) were detected in the hypothalamus of depressive rats. 15 of the 125 upregulated genes and 63 of the 385 downregulated genes could be altered by electroacupuncture, which suggests the antidepressant effect of electroacupuncture. Our study also provided the evidence that regulation of transcriptome in the hypothalamus might be a potential mechanism of electroacupuncture treatment.
Collapse
Affiliation(s)
- Ying Wang
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Xiaoli Chang
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Haiyan Zhang
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Yi Hou
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Xinjie Zheng
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Yujiao Zhang
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| | - Shaozong Chen
- Innovative Institute of Chinese Medicine and Phamacy, Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
5
|
Sun L, Wilke Saliba S, Apweiler M, Akmermer K, Herlan C, Grathwol C, de Oliveira ACP, Normann C, Jung N, Bräse S, Fiebich BL. Anti-Neuroinflammatory Effects of a Macrocyclic Peptide-Peptoid Hybrid in Lipopolysaccharide-Stimulated BV2 Microglial Cells. Int J Mol Sci 2024; 25:4462. [PMID: 38674048 PMCID: PMC11049839 DOI: 10.3390/ijms25084462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammation processes of the central nervous system (CNS) play a vital role in the pathogenesis of several neurological and psychiatric disorders like depression. These processes are characterized by the activation of glia cells, such as microglia. Clinical studies showed a decrease in symptoms associated with the mentioned diseases after the treatment with anti-inflammatory drugs. Therefore, the investigation of novel anti-inflammatory drugs could hold substantial potential in the treatment of disorders with a neuroinflammatory background. In this in vitro study, we report the anti-inflammatory effects of a novel hexacyclic peptide-peptoid hybrid in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The macrocyclic compound X15856 significantly suppressed Interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), c-c motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 2 (CXCL2), and CXCL10 expression and release in LPS-treated BV2 microglial cells. The anti-inflammatory effects of the compound are partially explained by the modulation of the phosphorylation of p38 mitogen-activated protein kinases (MAPK), p42/44 MAPK (ERK 1/2), protein kinase C (PKC), and the nuclear factor (NF)-κB, respectively. Due to its remarkable anti-inflammatory properties, this compound emerges as an encouraging option for additional research and potential utilization in disorders influenced by inflammation, such as depression.
Collapse
Affiliation(s)
- Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Kamil Akmermer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
| | - Claudine Herlan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Christoph Grathwol
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | | | - Claus Normann
- Mechanisms of Depression Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
6
|
Arčan IŠ, Kouter K, Zupanc T, Paska AV. Epigenetics and suicide: investigating altered H3K14ac unveiled differential expression in ADORA2A, B4GALT2 and MMP14. Epigenomics 2024; 16:701-714. [PMID: 38545853 PMCID: PMC11318710 DOI: 10.2217/epi-2023-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Background: Environmental factors make an important contribution to suicide. Histone tails are prone to different modifications, leading to changes of chromatin (de)condensation and consequently gene expression. Materials & methods: Level of H3K14ac was studied with chromatin immunoprecipitation followed by high-throughput DNA sequencing. Genes were further validated with RT-qPCR; using hippocampal tissue. Results: We showed lowered H3K14ac levels in individuals who died by suicide. The genes ADORA2A, B4GALT2 and MMP14 showed differential expression in individuals who died by suicide. Identified genetic and protein interactions among genes show interactions with suicide-related genes. Conclusion: Further investigations of histone modifications in association with DNA methylation and miRNA are needed to expand our knowledge of the genes that could significantly contribute to suicide.
Collapse
Affiliation(s)
- Iris Šalamon Arčan
- Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Kouter
- Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Microbiology & Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Kong CH, Park K, Kim DY, Kim JY, Kang WC, Jeon M, Min JW, Lee WH, Jung SY, Ryu JH. Effects of oleanolic acid and ursolic acid on depression-like behaviors induced by maternal separation in mice. Eur J Pharmacol 2023; 956:175954. [PMID: 37541369 DOI: 10.1016/j.ejphar.2023.175954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Oleanolic acid (OA) and ursolic acid (UA) are structural isomeric triterpenoids. Both triterpenoids have been reported to be able to improve depression. However, no studies have compared their effects in the same system. Whether OA or UA could ameliorate depression-like behaviors in maternal separation (MS)-induced depression-like model was investigated. MS model is a well-accepted mouse model that can reflect the phenotype and pathogenesis of depression. Depression is a mental illness caused by neuroinflammation or changes in neuroplasticity in certain brain regions, such as the prefrontal cortex and hippocampus. Depression-like behaviors were measured using splash test or forced swimming test. In addition, anxiety-like behaviors were also measured using the open field test or elevated plus-maze test. MS-treated female mice showed greater depression-like behaviors than male mice, and that OA improved several depression-like behaviors, whereas UA only relieved anxiety-like behavior of MS-treated mice. Microglial activation, expression levels of TNF-α, and mRNA levels of IDO1 were increased in the hippocampi of MS-treated female mice. However, OA and UA treatments attenuated such increases. In addition, expression levels of synaptophysin and PSD-95 were decreased in the hippocampi of MS-treated female mice. These decreased expression levels of synaptophysin were reversed by both OA and UA treatments, although decreased PSD-95 expression levels were only reversed by OA treatment. Our findings suggest that MS cause depression-like behaviors through female-specific neuroinflammation, changes of tryptophan metabolism, and alterations of synaptic plasticity. Our findings also suggest that OA could reverse MS-induced depression-like behaviors more effectively than UA.
Collapse
Affiliation(s)
- Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Youn Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Won Hyung Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
8
|
Heyburn L, Batuure A, Wilder D, Long J, Sajja VS. Neuroinflammation Profiling of Brain Cytokines Following Repeated Blast Exposure. Int J Mol Sci 2023; 24:12564. [PMID: 37628746 PMCID: PMC10454588 DOI: 10.3390/ijms241612564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Due to use of explosive devices and heavy weapons systems in modern conflicts, the effect of BW on the brain and body is of increasing concern. These exposures have been commonly linked with neurodegenerative diseases and psychiatric disorders in veteran populations. A likely neurobiological link between exposure to blasts and the development of neurobehavioral disorders, such as depression and PTSD, could be neuroinflammation triggered by the blast wave. In this study, we exposed rats to single or repeated BW (up to four exposures-one per day) at varied intensities (13, 16, and 19 psi) to mimic the types of blast exposures that service members may experience in training and combat. We then measured a panel of neuroinflammatory markers in the brain tissue with a multiplex cytokine/chemokine assay to understand the pathophysiological process(es) associated with single and repeated blast exposures. We found that single and repeated blast exposures promoted neuroinflammatory changes in the brain that are similar to those characterized in several neurological disorders; these effects were most robust after 13 and 16 psi single and repeated blast exposures, and they exceeded those recorded after 19 psi repeated blast exposures. Tumor necrosis factor-alpha and IL-10 were changed by 13 and 16 psi single and repeated blast exposures. In conclusion, based upon the growing prominence of negative psychological health outcomes in veterans and soldiers with a history of blast exposures, identifying the molecular etiology of these disorders, such as blast-induced neuroinflammation, is necessary for rationally establishing countermeasures and treatment regimens.
Collapse
|
9
|
González-Castro TB, Genis-Mendoza AD, López-Narváez ML, Juárez-Rojop IE, Ramos-Méndez MA, Tovilla-Zárate CA, Nicolini H. Gene Expression Analysis in Postmortem Brains from Individuals Who Died by Suicide: A Systematic Review. Brain Sci 2023; 13:906. [PMID: 37371384 DOI: 10.3390/brainsci13060906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Around the world, more the 700,000 individuals die by suicide every year. It is necessary to understand the mechanisms associated with suicidal behavior. Recently, an increase in gene expression studies has been in development. Through a systematic review, we aimed to find a candidate gene in gene expression studies on postmortem brains of suicide completers. Databases were systematically searched for published studies. We performed an online search using PubMed, Scopus and Web of Science databases to search studies up until May 2023. The terms included were "gene expression", "expressed genes", "microarray", "qRT-PCR", "brain samples" and "suicide". Our systematic review included 59 studies covering the analysis of 1450 brain tissues from individuals who died by suicide. The majority of gene expression profiles were obtained of the prefrontal cortex, anterior cingulate cortex, dorsolateral prefrontal cortex, ventral prefrontal cortex and orbital frontal cortex area. The most studied mRNAs came of genes in glutamate, γ-amino-butyric acid and polyamine systems. mRNAs of genes in the brain-derived neurotrophic factor, tropomyosin-related kinase B (TrkB), HPA axis and chemokine family were also studied. On the other hand, psychiatric comorbidities indicate that suicide by violent death can alter the profile of mRNA expression.
Collapse
Affiliation(s)
- Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86205, Mexico
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
- Servicio de Atención Psiquiátrica, Hospital Psiquiátrico Infantil Dr. Juan N. Navarro, Ciudad de México 14080, Mexico
| | - María Lilia López-Narváez
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco 86650, Mexico
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico
| | - Miguel Angel Ramos-Méndez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico
| | | | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| |
Collapse
|
10
|
Sun D, Deng J, Wang Y, Xie J, Li X, Li X, Wang X, Zhou F, Qin S, Liu X. SAG, a sonic hedgehog signaling agonist, alleviates anxiety behavior in high-fat diet-fed mice. Brain Res Bull 2023; 195:25-36. [PMID: 36736922 DOI: 10.1016/j.brainresbull.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Anxiety is a prevalent and disabling psychiatric disorder. Mitochondrial dysfunction due to the high-fat diet (HFD) was regarded as a risk factor in the pathogenesis of anxiety. The Sonic hedgehog (SHH) pathway was known to improve mitochondrial dysfunction through antioxidant and anti-apoptotic effects on some neurological diseases. Nonetheless, its effect on anxiety has not been well studied. In this study, we aimed to explore whether SHH signaling pathway plays a protective role in anxiety by regulating mitochondrial homeostasis. SAG, a typical SHH signaling agonist, was administered intraperitoneally in HFD-fed mice. HFD-induced anxiety-like behavior in mice was confirmed using the open field and elevated plus maze tests. Immunofluorescence staining and Western blotting assays showed that the SHH signaling was downregulated in the prefrontal cortex neurons from HFD-fed mice. Electron microscopy results showed the mitochondria in the prefrontal cortex of HFD-fed mice were fragmented, which appeared small and spherical, and the area, perimeter and circularity of mitochondria were decreased. Mitofusin2 (Mfn2) and dynamin-related protein 1 (Drp1) were the key proteins involved in mitochondrial division and fusion. SAG treatment could rectify the imbalanced expression of Mfn2 and Drp1 in the prefrontal cortex of the HFD-fed mice, and alleviate the mitochondrial fragmentation. Furthermore, SAG decreased anxiety-like behavior in the HFD-fed mice. These findings suggested that SHH signal was neuroprotective in obesity and SAG relieved anxiety-like behavior through reducing mitochondrial fragmentation.
Collapse
Affiliation(s)
- Dexu Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Human Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiaxin Deng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yifan Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinyu Xie
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaotian Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Feng Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
11
|
Siddarth P, Abikenari M, Grzenda A, Cappelletti M, Oughli H, Liu C, Millillo MM, Lavretsky H. Inflammatory Markers of Geriatric Depression Response to Tai Chi or Health Education Adjunct Interventions. Am J Geriatr Psychiatry 2023; 31:22-32. [PMID: 36175271 PMCID: PMC10865899 DOI: 10.1016/j.jagp.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Underlying inflammation is associated with an increased risk of depression in older adults. In this study, we examined the role of inflammatory biomarkers in antidepressant response in depressed older adults undergoing adjunct Tai Chi Chih (TCC) or Health education interventions. METHODS Older adults aged 60 years and above with a diagnosis of major depression were randomized to 12 weeks of TCC versus Health and Wellness Education (HEW) as an adjunct therapy to their stable antidepressant treatment regimen. A panel of 19 cytokine/chemokines was measured at baseline and 12 weeks. Five factors were derived using factor analysis. General linear models were estimated to examine the change in factor scores and the association of these changes on depression remission rates, controlling for age, sex, and body mass index. RESULTS Of the 170 randomized participants (TCC: n = 85 and HEW: n = 85), 55 TCC and 58 HEW completed the 3-month assessment. The groups did not differ at baseline in any measure. At follow-up, neither the changes in cytokine/chemokines scores nor the depression remission rate differed significantly between TCC and HEW. However, remitters and non-remitters differed significantly in changes in a factor composed of growth-regulated oncogene protein-alpha (GRO-alpha), epidermal growth factor (EGF), and soluble CD40 ligand (sCD40L). GRO-alpha and EGF levels (in both groups) were significantly increased in remitters compared to non-remitters. CONCLUSION Changes in certain cytokines/chemokines may accompany improvement in depressive symptoms in older adults. Future studies will need to explore the role of these molecules in remission of late-life depression.
Collapse
Affiliation(s)
- Prabha Siddarth
- Semel Institute for Neuroscience and Human Behavior, UCLA (PS, MA, AG, HO, CL, MM, HL), Los Angeles, CA
| | - Matthew Abikenari
- Semel Institute for Neuroscience and Human Behavior, UCLA (PS, MA, AG, HO, CL, MM, HL), Los Angeles, CA
| | - Adrienne Grzenda
- Semel Institute for Neuroscience and Human Behavior, UCLA (PS, MA, AG, HO, CL, MM, HL), Los Angeles, CA
| | - Monica Cappelletti
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center (MC), Los Angeles, CA
| | - Hanadi Oughli
- Semel Institute for Neuroscience and Human Behavior, UCLA (PS, MA, AG, HO, CL, MM, HL), Los Angeles, CA
| | - Claire Liu
- Semel Institute for Neuroscience and Human Behavior, UCLA (PS, MA, AG, HO, CL, MM, HL), Los Angeles, CA
| | - Michaela M Millillo
- Semel Institute for Neuroscience and Human Behavior, UCLA (PS, MA, AG, HO, CL, MM, HL), Los Angeles, CA
| | - Helen Lavretsky
- Semel Institute for Neuroscience and Human Behavior, UCLA (PS, MA, AG, HO, CL, MM, HL), Los Angeles, CA.
| |
Collapse
|
12
|
Yao PA, Sun HJ, Li XY. Identification of key genes in late-onset major depressive disorder through a co-expression network module. Front Genet 2022; 13:1048761. [PMID: 36561317 PMCID: PMC9763307 DOI: 10.3389/fgene.2022.1048761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Late-onset major depressive disorder (LOD) increases the risk of disability and suicide in elderly patients. However, the complex pathological mechanism of LOD still remains unclear. We selected 10 LOD patients and 12 healthy control samples from the GSE76826 dataset for statistical analysis. Under the screening criteria, 811 differentially expressed genes (DEGs) were screened. We obtained a total of two most clinically significant modules through the weighted gene co-expression network analysis (WGCNA). Functional analysis of the genes in the most clinically significant modules was performed to explore the potential mechanism of LOD, followed by protein-protein interaction (PPI) analysis and hub gene identification in the core area of the PPI network. Furthermore, we identified immune infiltrating cells using the cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm between healthy subjects and LOD patients with the GSE98793 dataset. Next, six hub genes (CD27, IL7R, CXCL1, CCR7, IGLL5, and CD79A) were obtained by intersecting hub genes with DEGs, followed by verifying the diagnostic accuracy with the receiver operating characteristic curve (ROC). In addition, we constructed the least absolute shrinkage and selection operator (LASSO) regression model for hub gene cross-validation. Finally, we found that CD27 and IGLL5 were good diagnostic indicators of LOD, and CD27 may be the key gene of immune function change in LOD. In conclusion, our research shows that the changes in the immune function may be an important mechanism in the development of LOD, which can provide some guidance for the related research of LOD in the future.
Collapse
Affiliation(s)
- Ping-An Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China,Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Hai-Ju Sun
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiao-Yu Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China,The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Xiao-Yu Li,
| |
Collapse
|
13
|
Jackson NA, Jabbi MM. Integrating biobehavioral information to predict mood disorder suicide risk. Brain Behav Immun Health 2022; 24:100495. [PMID: 35990401 PMCID: PMC9388879 DOI: 10.1016/j.bbih.2022.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
The will to live and the ability to maintain one's well-being are crucial for survival. Yet, almost a million people die by suicide globally each year (Aleman and Denys, 2014), making premature deaths due to suicide a significant public health problem (Saxena et al., 2013). The expression of suicidal behaviors is a complex phenotype with documented biological, psychological, clinical, and sociocultural risk factors (Turecki et al., 2019). From a brain disease perspective, suicide is associated with neuroanatomical, neurophysiological, and neurochemical dysregulations of brain networks involved in integrating and contextualizing cognitive and emotional regulatory behaviors. From a symptom perspective, diagnostic measures of dysregulated mood states like major depressive symptoms are associated with over sixty percent of suicide deaths worldwide (Saxena et al., 2013). This paper reviews the neurobiological and clinical phenotypic correlates for mood dysregulations and suicidal phenotypes. We further propose machine learning approaches to integrate neurobiological measures with dysregulated mood symptoms to elucidate the role of inflammatory processes as neurobiological risk factors for suicide.
Collapse
Affiliation(s)
- Nicholas A. Jackson
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, USA
- Institute for Neuroscience, The University of Texas at Austin, USA
| | - Mbemba M. Jabbi
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, USA
- Mulva Clinics for the Neurosciences
- Institute for Neuroscience, The University of Texas at Austin, USA
- Department of Psychology, The University of Texas at Austin, USA
- Center for Learning and Memory, The University of Texas at Austin, USA
| |
Collapse
|
14
|
Depression in breast cancer patients: Immunopathogenesis and immunotherapy. Cancer Lett 2022; 536:215648. [DOI: 10.1016/j.canlet.2022.215648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023]
|
15
|
Korbecki J, Gąssowska-Dobrowolska M, Wójcik J, Szatkowska I, Barczak K, Chlubek M, Baranowska-Bosiacka I. The Importance of CXCL1 in Physiology and Noncancerous Diseases of Bone, Bone Marrow, Muscle and the Nervous System. Int J Mol Sci 2022; 23:ijms23084205. [PMID: 35457023 PMCID: PMC9024980 DOI: 10.3390/ijms23084205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
This review describes the role of CXCL1, a chemokine crucial in inflammation as a chemoattractant for neutrophils, in physiology and in selected major non-cancer diseases. Due to the vast amount of available information, we focus on the role CXCL1 plays in the physiology of bones, bone marrow, muscle and the nervous system. For this reason, we describe its effects on hematopoietic stem cells, myoblasts, oligodendrocyte progenitors and osteoclast precursors. We also present the involvement of CXCL1 in diseases of selected tissues and organs including Alzheimer’s disease, epilepsy, herpes simplex virus type 1 (HSV-1) encephalitis, ischemic stroke, major depression, multiple sclerosis, neuromyelitis optica, neuropathic pain, osteoporosis, prion diseases, rheumatoid arthritis, tick-borne encephalitis (TBE), traumatic spinal cord injury and West Nile fever.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Jerzy Wójcik
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Mikołaj Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
16
|
Madeshiya AK, Whitehead C, Tripathi A, Pillai A. C1q deletion exacerbates stress-induced learned helplessness behavior and induces neuroinflammation in mice. Transl Psychiatry 2022; 12:50. [PMID: 35105860 PMCID: PMC8807734 DOI: 10.1038/s41398-022-01794-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Increased levels of pro-inflammatory cytokines have been reported in postmortem brain samples and in the blood of depressed subjects. However, the inflammatory pathways that lead to depressive-like symptoms are not well understood. Using the learned helplessness (LH) model of depression, we examined the role of C1q, the initiator of classical complement pathway in mediating stress-induced depressive-like behavior in mice. We observed no significant changes in social behavior, despair behavior, spatial memory, and aggressive behavior between the wild type (WT) and C1q knockout (KO) mice. However, C1q deletion exacerbated the inescapable electric foot shock-induced learned helplessness behavior in mice. We found significant reductions in C1q mRNA levels in the prefrontal cortex (PFC) of WT helpless mice as compared to the naïve mice. Increased levels of pro-inflammatory cytokines were found in the PFC of C1q KO mice. These findings suggest that classical complement pathway-mediated learned helplessness behavior is accompanied by neuroinflammatory changes under stressful conditions.
Collapse
Affiliation(s)
- Amit Kumar Madeshiya
- grid.267308.80000 0000 9206 2401Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX USA ,grid.410427.40000 0001 2284 9329Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Carl Whitehead
- grid.410427.40000 0001 2284 9329Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA USA ,grid.413830.d0000 0004 0419 3970Research and Development, Charlie Norwood VA Medical Center, Augusta, GA USA
| | - Ashutosh Tripathi
- grid.267308.80000 0000 9206 2401Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX USA ,grid.410427.40000 0001 2284 9329Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA. .,Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA, USA. .,Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
17
|
Tamimou R, Lumbroso S, Mouzat K, Lopez-Castroman J. Genetic variations related to inflammation in suicidal ideation and behavior: A systematic review. Front Psychiatry 2022; 13:1003034. [PMID: 36325529 PMCID: PMC9621324 DOI: 10.3389/fpsyt.2022.1003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES Immune-inflammatory changes have been found in all types of suicidal ideation and behavior (SIB), independently of associated mental disorders. Since several Single Nucleotide Polymorphisms (SNPs) affect the function of inflammation-related genes, we searched the literature for genetic variations potentially altering inflammatory processes in SIB. METHODS We included studies that looked for associations between SIB and SNPs in genes related to inflammatory processes. Case reports, literature reviews, and animal studies were excluded. Articles were retrieved from PubMed and PsycINFO databases, Google Scholar and GreySource Index until September 17th, 2022. Quality was assessed using Q-Genie. RESULTS We analyzed 32 studies. SIB has been associated with eighteen SNPs located in genes encoding for interleukin-8 (rs4073), C-reactive protein (rs1130864), tumor necrosis factor α (rs1800629, rs361525, and rs1099724), tumor necrosis factor receptor 2 (rs1061622), transforming growth factor β-1 (rs1982073), acid phosphatase 1 (rs7419262, rs300774), interleukin-10 (rs1800896), interferon γ (rs2430561), amino-carboxy muconate semialdehyde decarboxylase (rs2121337), interleukin 7 (rs10448044, rs10448042), macrophage migration inhibitory factor (rs755622), interleukin 1-α (rs1800587), and interleukin 1-β (rs1143634 and rs16944. A genome-wide association study reported one association at the threshold of significance with the rs300774 SNP, located in the 2p25 region containing ACP1 gene. DISCUSSION The studies included were methodologically and clinically diverse and of moderate quality. Their findings suggest that some inflammation-related SNPs could increase the likelihood of SIB but the evidence to date is insufficient. Further research using gene-gene (GxG) and gene-environment (GxE) approaches is warranted. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk], identifier [CRD42022296310].
Collapse
Affiliation(s)
- Rabah Tamimou
- Department of Psychiatry, Nimes University Hospital, Nimes, France.,Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France.,Institut de Génomique Fonctionnelle, University of Montpellier, CNRS-INSERM, Montpellier, France
| | - Serge Lumbroso
- Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France
| | - Kevin Mouzat
- Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France
| | - Jorge Lopez-Castroman
- Department of Psychiatry, Nimes University Hospital, Nimes, France.,Institut de Génomique Fonctionnelle, University of Montpellier, CNRS-INSERM, Montpellier, France.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| |
Collapse
|