1
|
Visser K, Ciubotariu D, de Koning ME, Jacobs B, van Faassen M, van der Ley C, Mayer AR, Meier TB, Bourgonje AR, Kema IP, van Goor H, van der Naalt J, van der Horn HJ. Exploring the kynurenine pathway in mild traumatic brain injury: A longitudinal study. J Neurochem 2024; 168:2710-2721. [PMID: 38770668 DOI: 10.1111/jnc.16137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
A potential source of novel biomarkers for mTBI is the kynurenine pathway (KP), a metabolic pathway of tryptophan (Trp), that is up-regulated by neuroinflammation and stress. Considering that metabolites of the KP (kynurenines) are implicated in various neuropsychiatric diseases, exploration of this pathway could potentially bridge the gap between physiological and psychological factors in the recovery process after mTBI. This study, therefore, set out to characterize the KP after mTBI and to examine associations with long-term outcome. Patients were prospectively recruited at the emergency department (ED), and blood samples were obtained in the acute phase (<24 h; N = 256) and at 1-month follow-up (N = 146). A comparison group of healthy controls (HC; N = 32) was studied at both timepoints. Trp, kynurenines, and interleukin (IL)-6 and IL-10 were quantified in plasma. Clinical outcome was measured at six months post-injury. Trp, xanthurenic acid (XA), and picolinic acid (PA) were significantly reduced in patients with mTBI relative to HC, corrected for age and sex. For Trp (d = -0.57 vs. d = -0.29) and XA (d = -0.98 vs. d = -0.32), larger effects sizes were observed during the acute phase compared to one-month follow-up, while for PA (d = -0.49 vs. d = -0.52) effect sizes remained consistent. Findings for other kynurenines (e.g., kynurenine, kynurenic acid, and quinolinic acid) were non-significant after correction for multiple testing. Within the mTBI group, lower acute Trp levels were significantly related to incomplete functional recovery and higher depression scores at 6 months post-injury. No significant relationships were found for Trp, XA, and PA with IL-6 or IL-10 concentrations. In conclusion, our findings indicate that perturbations of the plasma KP in the hyperacute phase of mTBI and 1 month later are limited to the precursor Trp, and glutamate system modulating kynurenines XA and PA. Correlations between acute reductions of Trp and unfavorable outcomes may suggest a potential substrate for pharmacological intervention.
Collapse
Affiliation(s)
- Koen Visser
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Diana Ciubotariu
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Myrthe E de Koning
- Department of Neurology, Medical Spectrum Twente, Enschede, The Netherlands
| | - Bram Jacobs
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Claude van der Ley
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew R Mayer
- The Mind Research Network and LBERI, Albuquerque, New Mexico, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Arno R Bourgonje
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Division of Pathology of the Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harm J van der Horn
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- The Mind Research Network and LBERI, Albuquerque, New Mexico, USA
| |
Collapse
|
2
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
3
|
Corrigan M, O'Rourke A, Moran B, Fletcher J, Harkin A. Inflammation in the pathogenesis of depression: a disorder of neuroimmune origin. Neuronal Signal 2023; 7:NS20220054. [PMID: 37457896 PMCID: PMC10345431 DOI: 10.1042/ns20220054] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
There are several hypotheses concerning the underlying pathophysiological mechanisms of major depression, which centre largely around adaptive changes in neuronal transmission and plasticity, neurogenesis, and circuit and regional connectivity. The immune and endocrine systems are commonly implicated in driving these changes. An intricate interaction of stress hormones, innate immune cells and the actions of soluble mediators of immunity within the nervous system is described as being associated with the symptoms of depression. Bridging endocrine and immune processes to neurotransmission and signalling within key cortical and limbic brain circuits are critical to understanding depression as a disorder of neuroimmune origins. Emergent areas of research include a growing recognition of the adaptive immune system, advances in neuroimaging techniques and mechanistic insights gained from transgenic animals. Elucidation of glial-neuronal interactions is providing additional avenues into promising areas of research, the development of clinically relevant disease models and the discovery of novel therapies. This narrative review focuses on molecular and cellular mechanisms that are influenced by inflammation and stress. The aim of this review is to provide an overview of our current understanding of depression as a disorder of neuroimmune origin, focusing on neuroendocrine and neuroimmune dysregulation in depression pathophysiology. Advances in current understanding lie in pursuit of relevant biomarkers, as the potential of biomarker signatures to improve clinical outcomes is yet to be fully realised. Further investigations to expand biomarker panels including integration with neuroimaging, utilising individual symptoms to stratify patients into more homogenous subpopulations and targeting the immune system for new treatment approaches will help to address current unmet clinical need.
Collapse
Affiliation(s)
- Myles Corrigan
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Transpharmation Ireland, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Aoife M. O'Rourke
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
4
|
Savitz J, Ford BN, Kuplicki R, Khalsa S, Teague TK, Paulus MP. Acute administration of ibuprofen increases serum concentration of the neuroprotective kynurenine pathway metabolite, kynurenic acid: a pilot randomized, placebo-controlled, crossover study. Psychopharmacology (Berl) 2022; 239:3919-3927. [PMID: 36271950 PMCID: PMC10040216 DOI: 10.1007/s00213-022-06263-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022]
Abstract
RATIONALE At least six different types of antidepressant treatments have been shown to either increase the neuroprotective kynurenine pathway (KP) metabolite, kynurenic acid (KynA), or decrease the neurotoxic KP metabolite, quinolinic acid (QA). Nonsteroidal anti-inflammatory drugs (NSAIDs) including ibuprofen have shown some efficacy in the treatment of depression but their effects on the KP have not been studied in humans. OBJECTIVES To evaluate the effect of ibuprofen on circulating KP metabolites. METHODS In a randomized, placebo-controlled, crossover study, 20 healthy adults (10 women) received a single oral dose of 200-mg ibuprofen, 600-mg ibuprofen, or placebo in a counterbalanced order (NCT02507219). Serum samples were drawn in the mid-afternoon, 5 h after ibuprofen/placebo administration. KP metabolites were measured blind to visit by tandem mass spectrometry. Data were analyzed with linear mixed effect models. The primary outcome was KynA/QA and the secondary outcome was KynA. RESULTS After Bonferroni correction, there was a significant effect of treatment on KynA/QA. The effect was driven by an increase in KynA concentration after the 600-mg dose but not the 200-mg dose relative to placebo (Cohen's d = 1.71). In contrast, both the 200-mg (d = 1.03) and 600-mg (d = 2.05) doses of ibuprofen decreased tryptophan concentrations relative to placebo. CONCLUSIONS Given its KynA-elevating effects, ibuprofen could have neuroprotective effects in the context of depression as well as other neuroinflammatory disorders that are characterized by a reduction in KynA.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA.
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA.
| | - Bart N Ford
- Department of Pharmacology & Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | | | - Sahib Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
- Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
5
|
Zheng H, Teague TK, Yeh FC, Burrows K, Figueroa-Hall LK, Aupperle RL, Khalsa SS, Paulus MP, Savitz J. C-Reactive protein and the kynurenic acid to quinolinic acid ratio are independently associated with white matter integrity in major depressive disorder. Brain Behav Immun 2022; 105:180-189. [PMID: 35853557 PMCID: PMC9983279 DOI: 10.1016/j.bbi.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 02/09/2023] Open
Abstract
Kynurenic acid (KynA) and quinolinic acid (QA) are neuroactive kynurenine pathway (KP) metabolites that have neuroprotective and neurotoxic properties, respectively. At least partly as a result of immune activation, the ratio of KynA to QA in the blood is reduced in major depressive disorder (MDD) and has been reported to be positively correlated with gray matter volume in depression. This study examined whether the inflammatory mediator, C-reactive protein (CRP) and the putative neuroprotective index, KynA/QA, were associated with white matter integrity in MDD, and secondly, whether any such associations were independent of each other or whether the effect of CRP was mediated by KynA/QA. One hundred and sixty-six participants in the Tulsa 1000 study with a DSM-V diagnosis of MDD completed diffusion tensor imaging and provided a serum sample for the quantification of CRP, KynA, and QA. Correlational tractography was performed using DSI Studio to map the specific white matter pathways that correlated with CRP and KynA/QA. CRP was negatively related to KynA/QA (standardized beta coefficient, SBC = -0.35 with standard error, Std.E = 0.13, p < 0.01) after controlling for nine possible confounders, i.e., age, sex, body mass index (BMI), medication status, lifetime alcohol use, severity of depression, severity of anxiety, length of illness, and smoking status. Higher concentrations of CRP were associated with decreased white matter integrity (fractional anisotropy, FA) of the bilateral cingulum and fornix after controlling for the nine potential confounders (SBC = -0.43, Std.E = 0.13, p = 0.002). Greater serum KynA/QA was associated with increased white matter integrity of the bilateral fornix, bilateral superior thalamic radiations, corpus callosum, and bilateral cingulum bundles after controlling for the same possible confounders (SBC = 0.26, Std.E = 0.09, p = 0.005). The relationship between CRP and FA was not mediated by KynA/QA. Exploratory analyses also showed that KynA/QA but not CRP was associated with self-reported positive affect, attentiveness, and fatigue measured with the PANASX (SBCs = 0.17-0.23). Taken together, these results are consistent with the hypothesis that within a subgroup of MDD patients, a higher level of systemic inflammation alters the balance of KP metabolism but also raise the possibility that CRP and neuroactive KP metabolites represent independent molecular mechanisms underlying white matter alterations in MDD.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA; Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA.
| |
Collapse
|