1
|
Eiff B, Bullmore ET, Clatworthy MR, Fryer TD, Pariante CM, Mondelli V, Maccioni L, Hadjikhani N, Loggia ML, Moskowitz MA, Bruner E, Veronese M, Turkheimer FE, Schubert JJ. Extra-axial inflammatory signal and its relationship to peripheral and central immunity in depression. Brain 2024:awae343. [PMID: 39657983 DOI: 10.1093/brain/awae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/13/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024] Open
Abstract
Although both central and peripheral inflammation have been observed consistently in depression, the relationship between the two remains obscure. Extra-axial immune cells may play a role in mediating the connection between central and peripheral immunity. This study investigates the potential roles of calvarial bone marrow and parameningeal spaces in mediating interactions between central and peripheral immunity in depression. PET was used to measure regional TSPO expression in the skull and parameninges as a marker of inflammatory activity. This measure was correlated with brain TSPO expression and peripheral cytokine concentrations in a cohort enriched for heightened peripheral and central immunity comprising 51 individuals with depression and 25 healthy controls. The findings reveal a complex relationship between regional skull TSPO expression and both peripheral and central immunity. Facial and parietal skull bone TSPO expression showed significant associations with both peripheral and central immunity. TSPO expression in the confluence of sinuses was also linked to both central and peripheral immune markers. Group-dependent elevations in TSPO expression within the occipital skull bone marrow were also found to be significantly associated with central inflammation. Significant associations between immune activity within the skull, parameninges, parenchyma and periphery highlight the role of the skull bone marrow and venous sinuses as pivotal sites for peripheral and central immune interactions.
Collapse
Affiliation(s)
- Brandi Eiff
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Lucia Maccioni
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Nouchine Hadjikhani
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael A Moskowitz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Emiliano Bruner
- Department of Paleobiology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
- Alzheimer Center Reina Sofía, CIEN Foundation, ISCIII, 28031 Madrid, Spain
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Julia J Schubert
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| |
Collapse
|
2
|
Chiarpenello C, Brodmann K. What can the psychoneuroimmunology of yoga teach us about depression's psychopathology? Brain Behav Immun Health 2024; 42:100877. [PMID: 39430877 PMCID: PMC11489066 DOI: 10.1016/j.bbih.2024.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
Depression, the most prevailing mental health condition, remains untreated in over 30% of patients. This cluster presents with sub-clinical inflammation. Investigations trialling anti-inflammatory medications had mixed results. The lack of results may result from inflammation's complexity and targeting only a few of depression's abnormal pathways. Mind-body therapies' biological and neuro-imaging studies offer valuable insights into depression psychopathology. Interestingly, mind-body therapies, like yoga, reverse the aberrant pathways in depression. These aberrant pathways include decreased cognitive function, interoception, neuroplasticity, salience and default mode networks connectivity, parasympathetic tone, increased hypothalamic-pituitary-adrenal (HPA) axis activity, and metabolic hyper/hypofunction. Abundant evidence found yogic techniques improving self-reported depressive symptoms across various populations. Yoga may be more effective in treating depression in conjunction with pharmacological and cognitive therapies. Yoga's psychoneuroimmunology teaches us that reducing allostatic load is crucial in improving depressive symptoms. Mind-body therapies promote parasympathetic tone, downregulate the HPA axis, reduce inflammation and boost immunity. The reduced inflammation promotes neuroplasticity and, subsequently, neurogenesis. Improving interoception resolves the metabolic needs prediction error and restores homeostasis. Additionally, by improving functional connectivity within the salience network, they restore the dynamic switching between the default mode and central executive networks, reducing rumination and mind-wandering. Future investigations should engineer therapies targeting the mechanisms mentioned above. The creation of multi-disciplinary health teams offering a combination of pharmacological, gene, neurofeedback, behavioural, mind-body and psychological therapies may treat treatment-resistant depression.
Collapse
Affiliation(s)
- Carola Chiarpenello
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, United Kingdom
| | - Katja Brodmann
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, United Kingdom
| |
Collapse
|
3
|
Sforzini L, Marizzoni M, Bottanelli C, Kunšteková V, Zonca V, Saleri S, Kose M, Lombardo G, Mariani N, Nettis MA, Nikkheslat N, Worrell C, Zajkowska Z, Pointon L, Cowen PJ, Cavanagh J, Harrison NA, Riva MA, Mondelli V, Bullmore ET, Cattaneo A, Pariante CM. Transcriptomic profiles in major depressive disorder: the role of immunometabolic and cell-cycle-related pathways in depression with different levels of inflammation. Mol Psychiatry 2024:10.1038/s41380-024-02736-w. [PMID: 39271754 DOI: 10.1038/s41380-024-02736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Transcriptomic profiles are important indicators for molecular mechanisms and pathways involved in major depressive disorder (MDD) and its different phenotypes, such as immunometabolic depression. We performed whole-transcriptome and pathway analyses on 139 individuals from the observational, case-control, BIOmarkers in DEPression (BIODEP) study, 105 with MDD and 34 controls. We divided MDD participants based on levels of inflammation, as measured by serum high-sensitivity C-reactive protein (CRP), in n = 39 'not inflamed' (CRP < 1 mg/L), n = 31 with 'elevated CRP' (1-3 mg/L), and n = 35 with 'low-grade inflammation' (>3 mg/L). We performed whole-blood RNA sequencing using Illumina NextSeq 550 and statistical analyses with the Deseq2 package for R statistics (RUV-corrected) and subsequent pathway analyses with Ingenuity Pathway Analysis. Immunometabolic pathways were activated in individuals with CRP > 1 mg/L, although surprisingly the CRP 1-3 group showed stronger immune activation than the CRP > 3 group. The main pathways identified in the comparison between CRP < 1 group and controls were cell-cycle-related, which may be protective against immunometabolic abnormalities in this 'non-inflamed' depressed group. We further divided MDD participants based on exposure and response to antidepressants (n = 47 non-responders, n = 37 responders, and n = 22 unmedicated), and identified specific immunomodulatory and neuroprotective pathways in responders (especially vs. non-responders), which could be relevant to treatment response. In further subgroup analyses, we found that the specific transcriptional profile of responders is independent of CRP levels, and that the inhibition of cell-cycle-related pathways in MDD with CRP < 1 mg/L is present only in those who are currently depressed, and not in the responders. The present study demonstrates immunometabolic and cell-cycle-related transcriptomic pathways associated with MDD and different (CRP-based and treatment-based) MDD phenotypes, while shedding light on potential molecular mechanisms that could prevent or facilitate an individual's trajectory toward immunometabolic depression and/or treatment-non-responsive depression. The recognition and integration of these mechanisms will facilitate a precision-medicine approach in MDD.
Collapse
Affiliation(s)
- Luca Sforzini
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK.
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| | - Moira Marizzoni
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Chiara Bottanelli
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, 20133, Italy
| | - Veronika Kunšteková
- Institute of Biology, Faculty of Medicine, Slovak Medical University, Limbova 14, 833 03, Bratislava, Slovakia
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Valentina Zonca
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, 20133, Italy
| | - Samantha Saleri
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Melisa Kose
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Giulia Lombardo
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Nicole Mariani
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Maria A Nettis
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Naghmeh Nikkheslat
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Courtney Worrell
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Zuzanna Zajkowska
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Linda Pointon
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Philip J Cowen
- University of Oxford Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Jonathan Cavanagh
- Centre for Immunobiology, School of Infection & Immunity, University of Glasgow, Glasgow, G12 8TF, UK
| | - Neil A Harrison
- School of Medicine, School of Psychology, Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Marco A Riva
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, 20133, Italy
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, 20133, Italy
| | - Carmine M Pariante
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
4
|
Maccioni L, Michelle CM, Brusaferri L, Silvestri E, Bertoldo A, Schubert JJ, Nettis MA, Mondelli V, Howes O, Turkheimer FE, Bottlaender M, Bodini B, Stankoff B, Loggia ML, Veronese M. A blood-free modeling approach for the quantification of the blood-to-brain tracer exchange in TSPO PET imaging. Front Neurosci 2024; 18:1395769. [PMID: 39104610 PMCID: PMC11299498 DOI: 10.3389/fnins.2024.1395769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Recent evidence suggests the blood-to-brain influx rate (K1 ) in TSPO PET imaging as a promising biomarker of blood-brain barrier (BBB) permeability alterations commonly associated with peripheral inflammation and heightened immune activity in the brain. However, standard compartmental modeling quantification is limited by the requirement of invasive and laborious procedures for extracting an arterial blood input function. In this study, we validate a simplified blood-free methodologic framework for K1 estimation by fitting the early phase tracer dynamics using a single irreversible compartment model and an image-derived input function (1T1K-IDIF). Methods The method is tested on a multi-site dataset containing 177 PET studies from two TSPO tracers ([11C]PBR28 and [18F]DPA714). Firstly, 1T1K-IDIF K1 estimates were compared in terms of both bias and correlation with standard kinetic methodology. Then, the method was tested on an independent sample of [11C]PBR28 scans before and after inflammatory interferon-α challenge, and on test-retest dataset of [18F]DPA714 scans. Results Comparison with standard kinetic methodology showed good-to-excellent intra-subject correlation for regional 1T1K-IDIF-K1 (ρintra = 0.93 ± 0.08), although the bias was variable depending on IDIF ability to approximate blood input functions (0.03-0.39 mL/cm3/min). 1T1K-IDIF-K1 unveiled a significant reduction of BBB permeability after inflammatory interferon-α challenge, replicating results from standard quantification. High intra-subject correlation (ρ = 0.97 ± 0.01) was reported between K1 estimates of test and retest scans. Discussion This evidence supports 1T1K-IDIF as blood-free alternative to assess TSPO tracers' unidirectional blood brain clearance. K1 investigation could complement more traditional measures in TSPO studies, and even allow further mechanistic insight in the interpretation of TSPO signal.
Collapse
Affiliation(s)
- Lucia Maccioni
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Carranza Mellana Michelle
- Department of Information Engineering, University of Padova, Padova, Italy
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Ludovica Brusaferri
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Computer Science and Informatics, School of Engineering, London South Bank University, London, United Kingdom
| | - Erica Silvestri
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Julia J. Schubert
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Maria A. Nettis
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Federico E. Turkheimer
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Michel Bottlaender
- BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS Inserm, Université Paris-Saclay, Orsay, France
| | - Benedetta Bodini
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Bruno Stankoff
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Mattia Veronese
- Department of Information Engineering, University of Padova, Padova, Italy
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| |
Collapse
|
5
|
Wertman E. Essential New Complexity-Based Themes for Patient-Centered Diagnosis and Treatment of Dementia and Predementia in Older People: Multimorbidity and Multilevel Phenomenology. J Clin Med 2024; 13:4202. [PMID: 39064242 PMCID: PMC11277671 DOI: 10.3390/jcm13144202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a highly prevalent condition with devastating clinical and socioeconomic sequela. It is expected to triple in prevalence by 2050. No treatment is currently known to be effective. Symptomatic late-onset dementia and predementia (SLODP) affects 95% of patients with the syndrome. In contrast to trials of pharmacological prevention, no treatment is suggested to remediate or cure these symptomatic patients. SLODP but not young onset dementia is intensely associated with multimorbidity (MUM), including brain-perturbating conditions (BPCs). Recent studies showed that MUM/BPCs have a major role in the pathogenesis of SLODP. Fortunately, most MUM/BPCs are medically treatable, and thus, their treatment may modify and improve SLODP, relieving suffering and reducing its clinical and socioeconomic threats. Regrettably, the complex system features of SLODP impede the diagnosis and treatment of the potentially remediable conditions (PRCs) associated with them, mainly due to failure of pattern recognition and a flawed diagnostic workup. We suggest incorporating two SLODP-specific conceptual themes into the diagnostic workup: MUM/BPC and multilevel phenomenological themes. By doing so, we were able to improve the diagnostic accuracy of SLODP components and optimize detecting and favorably treating PRCs. These revolutionary concepts and their implications for remediability and other parameters are discussed in the paper.
Collapse
Affiliation(s)
- Eli Wertman
- Department of Neurology, Hadassah University Hospital, The Hebrew University, Jerusalem 9190500, Israel;
- Section of Neuropsychology, Department of Psychology, The Hebrew University, Jerusalem 9190500, Israel
- Or’ad: Organization for Cognitive and Behavioral Changes in the Elderly, Jerusalem 9458118, Israel
- Merhav Neuropsychogeriatric Clinics, Nehalim 4995000, Israel
| |
Collapse
|
6
|
Zagaria A, Fiori V, Vacca M, Lombardo C, Pariante CM, Ballesio A. Inflammation as a mediator between adverse childhood experiences and adult depression: A meta-analytic structural equation model. J Affect Disord 2024; 357:85-96. [PMID: 38677656 DOI: 10.1016/j.jad.2024.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Exposure to adverse childhood experiences (ACEs) confers a higher risk of developing depression in adulthood, yet the mediation of inflammation remains under debate. To test this model, we conducted a systematic review and two-stage structural equation modelling meta-analysis of studies reporting correlations between ACEs before age 18, inflammatory markers and depression severity in adulthood. Scopus, Pubmed, Medline, PsycInfo, and CINAHL were searched up to 2 October 2023. Twenty-two studies reporting data on C-reactive protein (CRP, n = 12,935), interleukin-6 (IL-6, n = 4108), tumour necrosis factor-α (TNF-α, n = 2256) and composite measures of inflammation (n = 1674) were included. Unadjusted models revealed that CRP (β = 0.003, 95 % LBCI 0.0002 to 0.0068), IL-6 (β = 0.003, 95 % LBCI 0.001 to 0.006), and composite inflammation (β = 0.009, 95 % LBCI 0.004 to 0.018) significantly mediated the association between ACEs and adult depression. The mediation effects no longer survived after adjusting for BMI; however, a serial mediation model revealed that BMI and IL-6 sequentially mediated the association between ACEs and depression (β = 0.002, 95 % LBCI 0.0005 to 0.0046), accounting for 14.59 % and 9.94 % of the variance of IL-6 and depressive symptoms, respectively. Due to the cross-sectional nature of assessment of inflammation and depression findings should be approached with caution; however, results suggest that complex interactions of psychoneuroimmunological and metabolic factors underlie the association between ACEs and adulthood depression.
Collapse
Affiliation(s)
- Andrea Zagaria
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Valeria Fiori
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Mariacarolina Vacca
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Caterina Lombardo
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andrea Ballesio
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy.
| |
Collapse
|
7
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
8
|
Placzek M, Wilton DK, Weïwer M, Manter MA, Reid SE, Meyer CJ, Campbell AJ, Bajrami B, Bigot A, Bricault S, Fayet A, Frouin A, Gergits F, Gupta M, Jiang W, Melanson M, Romano CD, Riley MM, Wang JM, Wey HY, Wagner FF, Stevens B, Hooker JM. A Fast-Binding, Functionally Reversible, COX-2 Radiotracer for CNS PET Imaging. ACS CENTRAL SCIENCE 2024; 10:1105-1114. [PMID: 38799654 PMCID: PMC11117721 DOI: 10.1021/acscentsci.3c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
Cyclooxygenase-2 (COX-2) is an enzyme that plays a pivotal role in peripheral inflammation and pain via the prostaglandin pathway. In the central nervous system (CNS), COX-2 is implicated in neurodegenerative and psychiatric disorders as a potential therapeutic target and biomarker. However, clinical studies with COX-2 have yielded inconsistent results, partly due to limited mechanistic understanding of how COX-2 activity relates to CNS pathology. Therefore, developing COX-2 positron emission tomography (PET) radiotracers for human neuroimaging is of interest. This study introduces [11C]BRD1158, which is a potent and uniquely fast-binding, selective COX-2 PET radiotracer. [11C]BRD1158 was developed by prioritizing potency at COX-2, isoform selectivity over COX-1, fast binding kinetics, and free fraction in the brain. Evaluated through in vivo PET neuroimaging in rodent models with human COX-2 overexpression, [11C]BRD1158 demonstrated high brain uptake, fast target-engagement, functional reversibility, and excellent specific binding, which is advantageous for human imaging applications. Lastly, post-mortem samples from Huntington's disease (HD) patients and preclinical HD mouse models showed that COX-2 levels were elevated specifically in disease-affected brain regions, primarily from increased expression in microglia. These findings indicate that COX-2 holds promise as a novel clinical marker of HD onset and progression, one of many potential applications of [11C]BRD1158 human PET.
Collapse
Affiliation(s)
- Michael
S. Placzek
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Daniel K. Wilton
- Department
of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michel Weïwer
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Mariah A. Manter
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Lurie
Center for Autism, 1
Maguire Road, Lexington, Massachusetts 02421, United States
- Massachusetts
General Hospital, 55
Fruit St., Boston, Massachusetts 02114, United States
| | - Sarah E. Reid
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Christopher J. Meyer
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Arthur J. Campbell
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Besnik Bajrami
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Antoine Bigot
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Sarah Bricault
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Agathe Fayet
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Arnaud Frouin
- Department
of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Frederick Gergits
- Department
of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mehak Gupta
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Wei Jiang
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Michelle Melanson
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Chiara D. Romano
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Misha M. Riley
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jessica M. Wang
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Hsiao-Ying Wey
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Florence F. Wagner
- Center
for the Development of Therapeutics, Broad
Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Beth Stevens
- Department
of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Stanley
Center for Psychiatric Research, Broad Institute
of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, United
- Howard
Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jacob M. Hooker
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Lurie
Center for Autism, 1
Maguire Road, Lexington, Massachusetts 02421, United States
- Massachusetts
General Hospital, 55
Fruit St., Boston, Massachusetts 02114, United States
| |
Collapse
|
9
|
Bagarić T, Mihaljević-Peleš A, Skočić Hanžek M, Živković M, Kozmar A, Rogić D. Serum Levels of Zinc, Albumin, Interleukin-6 and CRP in Patients with Unipolar and Bipolar Depression: Cross Sectional Study. Curr Issues Mol Biol 2024; 46:4533-4550. [PMID: 38785543 PMCID: PMC11119144 DOI: 10.3390/cimb46050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Unipolar (UD) and bipolar depression (BDD) show a high degree of similarity in clinical presentations, which complicates the differential diagnosis of these disorders. The aim of this study was to investigate the serum levels of interleukin 6 (IL-6), C-reactive protein (CRP), albumin (Alb), and zinc (Zn) in patients with UD, BDD, and healthy controls (HC). A total of 211 samples were collected: 131 patient samples (65 UD and 68 BDD) and 80 HC. The Montgomery-Asberg Depression Rating Scale (MADRS), along with the Hamilton Depression Rating Scale (HAMD-17), were administered to patient groups to evaluate symptoms. A cross-sectional study was performed to analyse the serum levels of IL-6, CRP, albumin, and zinc. The concentration of CRP was determined using the immunoturbidimetry method, zinc using the colorimetric method, and albumin using the colorimetric method with bromocresol green on the Alinity c device. IL-6 cytokine concentration in serum samples was ascertained using a commercial enzyme immunoassay, ELISA. We found no significant differences in serum concentrations of zinc, albumin, CRP, and IL-6 between the groups of patients with unipolar and bipolar depression. There was a significant statistical difference (p < 0.001) between serum levels of all investigated parameters in both groups of depressed patients in comparison with HC. Furthermore, correlations with specific items on HAMD-17; (namely, hypochondrias, work and activities, somatic symptoms-general, and weight loss) and on MADRS (concentration difficulties, lassitude) were observed in both patient groups. These findings confirm the presence of low-grade inflammation in depression, thus adding better insight into the inflammation hypothesis directed to explain the aetiology of depressive disorders. Our results do not indicate potential biomarkers for distinguishing between unipolar and bipolar depression.
Collapse
Affiliation(s)
- Tihana Bagarić
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Alma Mihaljević-Peleš
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Milena Skočić Hanžek
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Maja Živković
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Kozmar
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Dunja Rogić
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Suneson K, Söderberg Veibäck G, Lindahl J, Tjernberg J, Ståhl D, Ventorp S, Ängeby F, Lundblad K, Wolkowitz OM, Lindqvist D. Omega-3 fatty acids for inflamed depression - A match/mismatch study. Brain Behav Immun 2024; 118:192-201. [PMID: 38432599 DOI: 10.1016/j.bbi.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Despite decades of research on the pathophysiology of depression, the development of new therapeutic interventions has been slow, and no biomarkers of treatment response have been clinically implemented. Several lines of evidence suggest that the clinical and biological heterogeneity among patients with major depressive disorder (MDD) has hampered progress in this field. MDD with low-grade inflammation - "inflamed depression" - is a subtype of depression that may be associated with a superior antidepressant treatment response to anti-inflammatory compounds. Omega-3 fatty acid eicosapentaenoic acid (EPA) has anti-inflammatory properties, and preliminary data suggest that it may be particularly efficacious in inflamed depression. In this study we tested the hypothesis that add-on EPA has greater antidepressant efficacy in MDD patients with high baseline high-sensitivity C-reactive protein (hs-CRP) compared to MDD patients with low hs-CRP. All subjects received 2.2 g EPA, 400 mg docosahexaenoic acid and 800 mg of other fatty acids daily for 8 weeks, added to stable ongoing antidepressant treatment. The primary outcome was change in the 17-item Hamilton Depression Rating Scale (HAMD-17). Patients and raters were blind to baseline hs-CRP status. In an intention-to-treat analysis including all subjects with at least one post baseline visit (n = 101), ahs-CRPcut-off of ≥1 mg/L, but not ≥3 mg/L, was associated with a greater improvement in HAMD-17 total score. In addition to a general antidepressant effect among patients with hs-CRP ≥ 1 mg/L, adjuvant EPA treatment improved symptoms putatively related to inflamed depression such as fatigue and sleep difficulties. This adds to the mounting evidence that delineation of MDD subgroups based on inflammation may be clinically relevant to predict treatment response to anti-inflammatory interventions.
Collapse
Affiliation(s)
- Klara Suneson
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University; Department of Adult Psychiatry, Office for Psychiatry, Habilitation and Technical Aids, Malmö, Sweden
| | - Gustav Söderberg Veibäck
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University; Department of Gastroenterology and Nutrition, Department of Clinical Sciences, Skåne University Hospital, Malmö, Sweden
| | - Jesper Lindahl
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University; Department of Adult Psychiatry, Office for Psychiatry, Habilitation and Technical Aids, Lund, Sweden
| | - Johanna Tjernberg
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University; Psychiatry Research Skåne, Office for Psychiatry, Habilitation and Technical Aids, Lund, Sweden
| | - Darya Ståhl
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University
| | - Simon Ventorp
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University
| | - Filip Ängeby
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University; Department of Adult Psychiatry, Office for Psychiatry, Habilitation and Technical Aids, Lund, Sweden
| | - Karl Lundblad
- Department of Adult Psychiatry, Office for Psychiatry, Habilitation and Technical Aids, Lund, Sweden; Office for Psychiatry, Norra Stockholm Psykiatri, Region Stockholm, Sweden
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University; Psychiatry Research Skåne, Office for Psychiatry, Habilitation and Technical Aids, Lund, Sweden.
| |
Collapse
|
11
|
Estevez I, Buckley BD, Panzera N, Lindman M, Chou TW, McCourt M, Vaglio BJ, Atkins C, Firestein BL, Daniels BP. RIPK3 promotes neuronal survival by suppressing excitatory neurotransmission during CNS viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591333. [PMID: 38712188 PMCID: PMC11071512 DOI: 10.1101/2024.04.26.591333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
While recent work has identified roles for immune mediators in the regulation of neural activity, the capacity for cell intrinsic innate immune signaling within neurons to influence neurotransmission remains poorly understood. However, the existing evidence linking immune signaling with neuronal function suggests that modulation of neurotransmission may serve previously undefined roles in host protection during infection of the central nervous system. Here, we identify a specialized function for RIPK3, a kinase traditionally associated with necroptotic cell death, in preserving neuronal survival during neurotropic flavivirus infection through the suppression of excitatory neurotransmission. We show that RIPK3 coordinates transcriptomic changes in neurons that suppress neuronal glutamate signaling, thereby desensitizing neurons to excitotoxic cell death. These effects occur independently of the traditional functions of RIPK3 in promoting necroptosis and inflammatory transcription. Instead, RIPK3 promotes phosphorylation of the key neuronal regulatory kinase CaMKII, which in turn activates the transcription factor CREB to drive a neuroprotective transcriptional program and suppress deleterious glutamatergic signaling. These findings identify an unexpected function for a canonical cell death protein in promoting neuronal survival during viral infection through the modulation of neuronal activity, highlighting new mechanisms of neuroimmune crosstalk.
Collapse
Affiliation(s)
- Irving Estevez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Benjamin D. Buckley
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicholas Panzera
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brandon J. Vaglio
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Lead Contact
| |
Collapse
|
12
|
Ballesio A, Micheli F, Baccini F, Zagaria A, Del Forno A, Fiori V, Palombelli G, Scalamonti S, Ruffa A, Magiotta A, Di Nardo G, Lombardo C. Inflammation as an aetiological trigger for depressive symptoms in a prospective cohort of patients with inflammatory bowel disease. J Psychosom Res 2024; 177:111592. [PMID: 38217896 DOI: 10.1016/j.jpsychores.2024.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
OBJECTIVE Inflammatory bowel disease (IBD) is often comorbid with mood disorders and depressive symptoms. The aetiology of depressive symptoms in IBD, however, remains largely unknown. Consistent with the inflammatory hypothesis of depression, the aim of this study was to explore the prospective associations between inflammatory biomarkers and depressive symptoms in a cohort of IBD patients with and without a previous clinical diagnosis of mood disorder. METHOD IBD clinical activity was determined using the Harvey-Bradshaw Index for CD and the Partial Mayo score for UC; serum C-reactive protein (CRP) and faecal calprotectin (fCAL) were used as biomarkers of systemic and intestinal inflammation, respectively. Participants were administered the Hospital Anxiety and Depression Scale-depression (HADS-D) at baseline and 1-year follow-up. RESULTS Eighty-four participants (50 ± 16 years; 75% UC and 25% CD) were included in the main analyses. Longitudinal moderated regression models showed that baseline CRP significantly predicted follow-up HADS-D scores among individuals with a previous mood disorder diagnosis (β = 0.843, p < .001), but not among individuals without (β = -0.013, p = .896), after controlling for baseline HADS-D scores, body mass index, IBD phenotype, sex, and perceived stress. Likely due to lower power, results on FCAL (n = 31) were not statistically significant. CONCLUSION This study suggests that IBD patients with previous diagnosis of mood disorder may be at higher risk of inflammation-related depressive symptoms.
Collapse
Affiliation(s)
- Andrea Ballesio
- Department of Psychology, Sapienza University of Rome, Italy.
| | - Federica Micheli
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | - Flavia Baccini
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | - Andrea Zagaria
- Department of Psychology, Sapienza University of Rome, Italy
| | - Alessandro Del Forno
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | - Valeria Fiori
- Department of Psychology, Sapienza University of Rome, Italy
| | | | - Silvia Scalamonti
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | - Andrea Ruffa
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | - Ambra Magiotta
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | - Giovanni Di Nardo
- NESMOS Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea University Hospital, Italy
| | | |
Collapse
|
13
|
Murck H, Fava M, Cusin C, Fatt CC, Trivedi M. Brain ventricle and choroid plexus morphology as predictor of treatment response in major depression: Findings from the EMBARC study. Brain Behav Immun Health 2024; 35:100717. [PMID: 38186634 PMCID: PMC10767278 DOI: 10.1016/j.bbih.2023.100717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
Recent observations suggest a role of the volume of the cerebral ventricle volume, corpus callosum (CC) segment volume, in particular that of the central-anterior part, and choroid plexus (CP) volume for treatment resistance of major depressive disorder (MDD). An increased CP volume has been associated with increased inflammatory activity and changes in the structure of the ventricles and corpus callosum. We attempt to replicate and confirm that these imaging markers are associated with clinical outcome in subjects from the EMBARC study, as implied by a recent pilot study. The EMBARC study is a placebo controlled randomized study comparing sertraline vs. placebo in patients with MDD to identify biological markers of therapy resistance. Association of baseline volumes of the lateral ventricles (LVV), choroid plexus volume (CPV) and volume of segments of the CC with treatment response after 4 weeks treatment was evaluated. 171 subjects (61 male, 110 female) completed the 4 week assessments; gender and age were taken into account for this analyses. As previously reported, no treatment effect of sertraline vs. placebo was observed, therefore the study characterized prognostic markers of response in the pooled population. Change in depression severity was identified by the ratio of the Hamilton-Depression rating scale 17 (HAMD-17) at week 4 divided by the HAMD-17 at baseline (HAMD-17 ratio). Volumes of the lateral ventricles and choroid plexi were positively correlated with the HAMD-17 ratio, indication worse outcome with larger ventricles and choroid plexus volumes, whereas the volume of the central-anterior corpus callosum was negatively correlated with the HAMD-17 ratio. Responders (n = 54) had significantly smaller volumes of the lateral ventricles and CP compared to non-responders (n = 117), whereas the volume of mid-anterior CC was significantly larger compared to non-responders (n = 117), confirming our previous findings. In an exploratory way associations between enlarged LVV and CPV and signs of lipid dysregulation were observed. In conclusion, we confirmed that volumes of lateral ventricles, choroid plexi and the mid-anterior corpus callosum are associated with clinical improvement of depression and may be indicators of metabolic/inflammatory activity.
Collapse
Affiliation(s)
- Harald Murck
- Dept. of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Cusin
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cherise Chin Fatt
- The University of Texas Southwestern Medical Center, Department of Psychiatry, Center for Depression Research and Clinical Care, Dallas, USA
| | - Madhukar Trivedi
- The University of Texas Southwestern Medical Center, Department of Psychiatry, Center for Depression Research and Clinical Care, Dallas, USA
| |
Collapse
|
14
|
Ren J, Zhang Y, Pan H, Shi R, Zhu H, Yang R, Zhang L, Chen B, Zhu T, Lu X, Huang C. Mobilization of the innate immune response by a specific immunostimulant β-glucan confers resistance to chronic stress-induced depression-like behavior by preventing neuroinflammatory responses. Int Immunopharmacol 2024; 127:111405. [PMID: 38118316 DOI: 10.1016/j.intimp.2023.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
Pre-stimulation of the innate immune response is an effective strategy to prevent depression-like phenotypes in animals. However, the use of conventional immunostimulants may cause adverse effects. Therefore, the search for agents that stimulate the innate immune response but do not induce a pro-inflammatory response could be a new research direction for the prevention of depression. β-glucan is a polysaccharide from Saccharomyces cerevisiae with unique immunomodulatory activity in microglia without eliciting a pro-inflammatory response that could lead to tissue damage. This suggests that β-glucan may be a suitable drug that can be used to prevent depression-like phenotypes. Our results showed that a single injection of β-glucan 1 day before stress exposure at a dose of 10 or 20 mg/kg, but notat a dose of 5 mg/kg, prevented depression-like behavior in mice treated with chronic unpredictable stress (CUS). This effect of β-glucan disappeared when the time interval between β-glucan and stress was extended from 1 day or 5 days to 10 days, which was rescued by a second injection 10 days after the first injection or by a repeated injection (4×, once daily) 10 days before stress exposure. A single β-glucan injection (20 mg/kg) 1 day before stress exposure prevented the CUS-induced increase in brain pro-inflammatory cytokines, and inhibition of the innate immune response by minocycline (40 mg/kg) abolished the preventive effect of β-glucan on CUS-induced depression-like behaviors and neuroinflammatory responses. These results suggest that β-glucan may prevent chronic stress-induced depression-like phenotypes and neuroinflammatory responses by stimulating the innate immune response.
Collapse
Affiliation(s)
- Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yi Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Hainan Pan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Ruiting Shi
- Faculty of Humanities and Social Sciences, City University of Macau, Av. Parde Tomas Pereira, Taipa 999078, Macau
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Lin Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Pharmacy, Affiliated Maternal and Child Health Hospital of Nantong University, #399 Shiji Dadao, Nantong 226007, Jiangsu, China
| | - Bingran Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Tao Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
15
|
Fabrazzo M, Cipolla S, Pisaturo M, Camerlengo A, Bucci P, Pezzella P, Coppola N, Galderisi S. Bidirectional Relationship between HIV/HBV Infection and Comorbid Depression and/or Anxiety: A Systematic Review on Shared Biological Mechanisms. J Pers Med 2023; 13:1689. [PMID: 38138916 PMCID: PMC10744606 DOI: 10.3390/jpm13121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Mental disorders that are comorbid with chronic infectious diseases may worsen clinical outcomes and patients' quality of life. We hypothesized that depression and/or anxiety syndromes or symptoms comorbid with human immunodeficiency virus (HIV) or hepatitis B virus (HBV) infection might stem from shared biological mechanisms. METHODS We conducted a systematic review applying the PRISMA statement by searching into the PubMed, APA PsycInfo, and Scopus databases. We examined the literature on HIV/HBV infection comorbid with depression and/or anxiety in adults ≥18 years. RESULTS Thirty-one studies on HIV and three on HBV were analyzed. The Tat protein contributed to HIV-associated mood disorders due to the protein's ability to cause neurodegeneration and induce hypothalamic-pituitary-adrenal (HPA) axis dysregulation in response to natural stressors. The decreased brain-derived neurotrophic factor (BDNF) levels also emerged as a mechanism involved in HIV neuropathogenesis and the associated mood symptoms. Neuroinflammation was implicated in depression and/or anxiety onset in patients with HIV/HBV infections. Microglial activation and release of cytokines, in particular, appeared as potential pathogenetic mechanisms. Furthermore, an altered balance between quinolinic acid and kynurenic acid production emerged in HIV patients with comorbid depression, indicating a glutamatergic dysfunction. Inflammatory cytokine production and the downregulation of cellular immune responses contributed to persisting inflammation, delayed healing, and functional decline in patients with chronic hepatitis B (CHB) infection. A shift in type 1-type 2 cytokine balance might be implicated in HBV-related immune pathogenesis, and depression and anxiety might be considered immunomodulatory factors. Cytokines also caused HPA axis hyperactivity, frequently observed in HIV/HBV patients with comorbid depression/anxiety. CONCLUSIONS The present systematic review showed, for the first time, that HIV/HBV and depression and/or anxiety might have several biological mechanisms as common denominators. The longitudinal course of the highlighted biological mechanisms should be explored to establish the causative interrelationship among the involved mechanisms. In addition, future research should investigate the possibility that a patient's clinical outcome might improve using pharmacological treatments acting on the biological mechanisms we described as common denominators of chronic inflammatory infective diseases and depression/anxiety.
Collapse
Affiliation(s)
- Michele Fabrazzo
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.C.); (M.P.); (A.C.); (P.B.); (P.P.); (N.C.); (S.G.)
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mittli D. Inflammatory processes in the prefrontal cortex induced by systemic immune challenge: Focusing on neurons. Brain Behav Immun Health 2023; 34:100703. [PMID: 38033612 PMCID: PMC10682838 DOI: 10.1016/j.bbih.2023.100703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Peripheral immune challenge induces neurobiological alterations in the brain and related neuropsychiatric symptoms both in humans and other mammals. One of the best known physiological effects of systemic inflammation is sickness behavior. However, in addition to this depression-like state, there are other cognitive outcomes of peripherally induced neuroinflammation that can be linked to the dysfunction of higher-order cortical areas, such as the prefrontal cortex (PFC). As the physiological activity of the PFC is largely based on the balanced interplay of excitatory pyramidal cells and inhibitory interneurons, it may be hypothesized that neuroinflammatory processes result in a shift of excitatory/inhibitory balance, which is a common hallmark of several neuropsychiatric conditions. Indeed, many data suggest that peripherally induced neuroinflammation is strongly associated with molecular and functional changes in PFC neurons leading to disturbances in their synaptic networks. Different experimental approaches may cause some incongruence in the reviewed data. However, it is commonly agreed that acute systemic inflammation leads to changes in the excitatory/inhibitory balance in the PFC by proinflammatory signaling at the brain borders and in the brain parenchyma. These cellular changes result in altered local and brain-wide network activity inducing disturbances in the top-down control of goal-directed behavior and cognition regulated by the PFC. Lipopolysaccharide (LPS)-treated rodents are the most widely used experimental models of peripherally induced neuroinflammation, so the majority of the reviewed data come from studies utilizing the LPS model. This may limit their general interpretation regarding the neuronal effects of peripheral immune activation. In addition, several biological variables (e.g., sex, age) can influence the PFC effects of systemic immune challenge, not only the nature and severity of immune activation. Therefore, it would be desirable to investigate inflammation-related neuronal changes in the PFC using other models of systemic inflammation as well, and to focus on the targeted fine-tuning of the affected cell types via common molecular mechanisms of the immune and nervous systems.
Collapse
Affiliation(s)
- Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- InnoScience Ltd., Mátranovák, Hungary
| |
Collapse
|
17
|
Ballesio A. Where does inflammation in insomnia come from? and does it matter for comorbidity? Sleep 2023; 46:zsad223. [PMID: 37625028 DOI: 10.1093/sleep/zsad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Indexed: 08/27/2023] Open
Affiliation(s)
- Andrea Ballesio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Kim KY, Shin KY, Chang KA. Potential Inflammatory Biomarkers for Major Depressive Disorder Related to Suicidal Behaviors: A Systematic Review. Int J Mol Sci 2023; 24:13907. [PMID: 37762207 PMCID: PMC10531013 DOI: 10.3390/ijms241813907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric condition affecting an estimated 280 million individuals globally. Despite the occurrence of suicidal behaviors across various psychiatric conditions, MDD is distinctly associated with the highest risk of suicide attempts and death within this population. In this study, we focused on MDD to identify potential inflammatory biomarkers associated with suicidal risk, given the relationship between depressive states and suicidal ideation. Articles published before June 2023 were searched in PubMed, Embase, Web of Science, and the Cochrane Library to identify all relevant studies reporting blood inflammatory biomarkers in patients with MDD with suicide-related behaviors. Of 571 articles, 24 were included in this study. Overall, 43 significant biomarkers associated with MDD and suicide-related behaviors were identified. Our study provided compelling evidence of significant alterations in peripheral inflammatory factors in MDD patients with suicide-related behaviors, demonstrating the potential roles of interleukin (IL)-1β, IL-6, C-reactive protein, C-C motif chemokine ligand 2, and tumor necrosis factor-α as biomarkers. These findings underscore the intricate relationship between the inflammatory processes of these biomarkers and their interactions in MDD with suicidal risk.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
19
|
Madison AA, Andridge R, Kantaras AH, Renna ME, Bennett JM, Alfano CM, Povoski SP, Agnese DM, Lustberg M, Wesolowski R, Carson WE, Williams NO, Reinbolt RE, Sardesai SD, Noonan AM, Stover DG, Cherian MA, Malarkey WB, Kiecolt-Glaser JK. Depression, Inflammation, and Intestinal Permeability: Associations with Subjective and Objective Cognitive Functioning throughout Breast Cancer Survivorship. Cancers (Basel) 2023; 15:4414. [PMID: 37686689 PMCID: PMC10487080 DOI: 10.3390/cancers15174414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
About one-in-three breast cancer survivors have lingering cognitive complaints and objective cognitive impairment. Chronic inflammation and intestinal permeability (i.e., leaky gut), two risk factors for cognitive decline, can also fuel depression-another vulnerability for cognitive decline. The current study tested whether depression accompanied by high levels of inflammation or intestinal permeability predicted lower subjective and objective cognitive function in breast cancer survivors. We combined data from four breast cancer survivor studies (n = 613); some had repeated measurements for a total of 1015 study visits. All participants had a blood draw to obtain baseline measures of lipopolysaccharide binding protein-a measure of intestinal permeability, as well as three inflammatory markers that were incorporated into an inflammatory index: C-reactive protein, interleukin-6, and tumor necrosis factor-α. They reported depressive symptoms on the Center for Epidemiological Studies depression scale (CES-D), and a binary variable indicated clinically significant depressive symptoms (CES-D ≥ 16). The Kohli (749 observations) and the Breast Cancer Prevention Trial (591 observations) scales assessed subjective cognitive function. Objective cognitive function tests included the trail-making test, Hopkins verbal learning test, Conners continuous performance test, n-back test, FAS test, and animal-naming test (239-246 observations). Adjusting for education, age, BMI, cancer treatment type, time since treatment, study visit, and fatigue, women who had clinically elevated depressive symptoms accompanied by heightened inflammation or intestinal permeability reported poorer focus and marginally poorer memory. However, poorer performance across objective cognitive measures was not specific to inflammation-associated depression. Rather, there was some evidence of lower verbal fluency; poorer attention, verbal learning and memory, and working memory; and difficulties with visuospatial search among depressed survivors, regardless of inflammation. By themselves, inflammation and intestinal permeability less consistently predicted subjective or objective cognitive function. Breast cancer survivors with clinically significant depressive symptoms accompanied by either elevated inflammation or intestinal permeability may perceive greater cognitive difficulty, even though depression-related objective cognitive deficits may not be specific to inflammation- or leaky-gut-associated depression.
Collapse
Affiliation(s)
- Annelise A Madison
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Rebecca Andridge
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Anthony H Kantaras
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Megan E Renna
- School of Psychology, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jeanette M Bennett
- Department of Psychological Science, University of North Carolina at Charlotte, Charlotte, NC 28213, USA
| | | | - Stephen P Povoski
- The Ohio State University Comprehensive Cancer Center, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Surgical Oncology, Department of Surgery, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Doreen M Agnese
- The Ohio State University Comprehensive Cancer Center, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Surgical Oncology, Department of Surgery, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Maryam Lustberg
- Center for Breast Cancer, Yale Cancer Center, Yale University, New Haven, CT 06519, USA
| | - Robert Wesolowski
- The Ohio State University Comprehensive Cancer Center, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - William E Carson
- The Ohio State University Comprehensive Cancer Center, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Surgical Oncology, Department of Surgery, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nicole O Williams
- The Ohio State University Comprehensive Cancer Center, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Raquel E Reinbolt
- The Ohio State University Comprehensive Cancer Center, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Sagar D Sardesai
- The Ohio State University Comprehensive Cancer Center, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anne M Noonan
- The Ohio State University Comprehensive Cancer Center, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel G Stover
- The Ohio State University Comprehensive Cancer Center, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mathew A Cherian
- The Ohio State University Comprehensive Cancer Center, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - William B Malarkey
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Janice K Kiecolt-Glaser
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Martín-Hernández D, Muñoz-López M, Tendilla-Beltrán H, Caso JR, García-Bueno B, Menchén L, Leza JC. Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm? Int J Mol Sci 2023; 24:12634. [PMID: 37628815 PMCID: PMC10454107 DOI: 10.3390/ijms241612634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Over the past few decades, extensive research has shed light on immune alterations and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received approval for treating multiple sclerosis, an autoimmune disease of the central nervous system (CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although the precise mechanisms of action are still under investigation, the effectiveness of S1P-based drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This comprehensive review aims to delve into the molecular mechanisms through which S1P modulates the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus on psychiatric diseases, with the primary objective of uncovering the potential of innovative therapies based on S1P signaling.
Collapse
Affiliation(s)
- David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Marina Muñoz-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 72570 Puebla, Mexico;
| | - Javier R. Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Departamento de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (CIBEREHD, ISCIII), 28029 Madrid, Spain
| | - Juan C. Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| |
Collapse
|
21
|
Ballesio A. Inflammatory hypotheses of sleep disturbance - depression link: Update and research agenda. Brain Behav Immun Health 2023; 31:100647. [PMID: 37408788 PMCID: PMC10319168 DOI: 10.1016/j.bbih.2023.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/23/2023] [Accepted: 06/03/2023] [Indexed: 07/07/2023] Open
Abstract
Studies in human and experimental animal models support a role of inflammation in the aetiology of depression, yet the precise role played by sleep disturbance (i.e., difficulties falling or maintaining sleep) is poorly understood. Consistent evidence from prospective epidemiological studies suggests sleep disturbance as a predictor of major depression episodes and depression recurrence. In parallel, up to 20% of individuals with sleep disturbance have low-grade peripheral inflammation (i.e., CRP>3 mg/l), and preliminary longitudinal evidence showed that sleep disturbance may even predict the levels of inflammation. Therefore, it is possible that sleep disturbance may increase inflammation, which in turn may contribute (i.e., mediate) to the onset - or worsening - of depression. Alternatively, sleep disturbance may serve as a vulnerability factor and increase the risk of developing depressive symptoms when facing an immune challenge. The aim of this review was to summarise the state of the science on the role of sleep disturbance in contributing to depression-related inflammation. A research agenda is also proposed to advance the study of sleep disturbance in the psychoneuroimmunology of depression.
Collapse
Affiliation(s)
- Andrea Ballesio
- Department of Psychology, Sapienza University of Rome, Italy
| |
Collapse
|