1
|
Bonkhoff AK, Coughlan G, Perosa V, Alhadid K, Schirmer MD, Regenhardt RW, van Veluw S, Buckley R, Fox MD, Rost NS. Sex differences in age-associated neurological diseases-A roadmap for reliable and high-yield research. SCIENCE ADVANCES 2025; 11:eadt9243. [PMID: 40043111 PMCID: PMC11881909 DOI: 10.1126/sciadv.adt9243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025]
Abstract
Once taken into consideration, sex differences in neurological diseases emerge in abundance: (i) Stroke severity is significantly higher in females than in males, (ii) Alzheimer's disease (AD) pathology is more pronounced in females, and (iii) conspicuous links with hormonal cycles led to female-specific diagnoses, such as catamenial migraines and epilepsy. While these differences receive increasing attention in isolation, they likely link to similar processes in the brain. Hence, this review aims to present an overview of the influences of sex chromosomes, hormones, and aging on male and female brains across health and disease, with a particular focus on AD and stroke. The focus here on advancements across several fields holds promise to fuel future research and to lead to an enriched understanding of the brain and more effective personalized neurologic care for all.
Collapse
Affiliation(s)
- Anna K. Bonkhoff
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Gillian Coughlan
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Valentina Perosa
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Kenda Alhadid
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Markus D. Schirmer
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Robert W. Regenhardt
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Susanne van Veluw
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rachel Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Michael D. Fox
- Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Natalia S. Rost
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
El Hamamy A, Iqbal Z, Le NM, Ranjan A, Zhang Y, Lin HW, Tan C, Sumani D, Patrizz A, McCullough LD, Li J. Targeted TGF-βR2 Silencing in the Retrotrapezoid Nucleus Mitigates Respiratory Dysfunction and Cognitive Decline in a Mouse Model of Cerebral Amyloid Angiopathy with and without Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01306-0. [PMID: 39543011 DOI: 10.1007/s12975-024-01306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid-beta peptides within cerebral blood vessels, leading to neurovascular complications. Ischemic strokes result from acute disruptions in cerebral blood flow, triggering metabolic disturbances and neurodegeneration. Both conditions often co-occur and are associated with respiratory dysfunctions. The retrotrapezoid nucleus (RTN), which is crucial for CO2 sensing and breathing regulation in the brainstem, may play a key role in breathing disorders seen in these conditions. This study aims to investigate the role of Transforming Growth Factor Beta (TGF-β) signaling in the RTN on respiratory and cognitive functions in CAA, both with and without concurrent ischemic stroke. Adult male Tg-SwDI (CAA model) mice and C57BL/6 wild-type controls underwent stereotaxic injections of lentivirus targeting TGF-βR2 in the RTN. Stroke was induced by middle cerebral artery occlusion using a monofilament. Respiratory functions were assessed using whole-body plethysmography, while cognitive functions were evaluated through the Barnes Maze and Novel Object Recognition Test (NORT). Immunohistochemical analysis was conducted to measure TGF-βR2 and GFAP expressions in the RTN. CAA mice exhibited significant respiratory dysfunctions, including reduced respiratory rates and increased apnea frequency, as well as impaired cognitive performance. TGF-βR2 silencing in the RTN improved respiratory functions and cognitive outcomes in CAA mice. In CAA mice with concurrent stroke, TGF-βR2 silencing similarly enhanced respiratory and cognitive functions. Immunohistochemistry confirmed reduced TGF-βR2 and GFAP expressions in the RTN following silencing. Our findings demonstrate that increased TGF-β signaling and gliosis in the RTN contribute to respiratory and cognitive dysfunctions in CAA and CAA with stroke. Targeting TGF-βR2 signaling in the RTN offers a promising therapeutic strategy to mitigate these impairments. This study is the first to report a causal link between brainstem gliosis and both respiratory and cognitive dysfunctions in CAA and stroke models.
Collapse
Affiliation(s)
- Ahmad El Hamamy
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zahid Iqbal
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ngoc Mai Le
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arya Ranjan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - YuXing Zhang
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hung Wen Lin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Destiny Sumani
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anthony Patrizz
- Department of Neurological Surgery and Brain Repair, University of South Florida at Tampa, Tampa, FL, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jun Li
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Childs R, Karamacoska D, Lim CK, Steiner-Lim GZ. "Let's talk about sex, inflammaging, and cognition, baby": A meta-analysis and meta-regression of 106 case-control studies on mild cognitive impairment and Alzheimer's disease. Brain Behav Immun Health 2024; 40:100819. [PMID: 39161876 PMCID: PMC11331696 DOI: 10.1016/j.bbih.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 08/21/2024] Open
Abstract
Background Chronic inflammation is recognised as an important component of Alzheimer's disease (AD), yet its relationship with cognitive decline, sex-differences, and age is not well understood. This study investigated the relationship between inflammatory markers, cognition, sex, and age in individuals with mild cognitive impairment (MCI) and AD. Methods A systematic review was performed to identify case-control studies which measured cognitive function and inflammatory markers in serum, plasma, and cerebrospinal fluid in individuals with MCI or AD compared with healthy control (HC) participants. Meta-analysis was performed with Hedges' g calculated in a random effects model. Meta-regression was conducted using age, sex, and mini-mental status exam (MMSE) values. Results A total of 106 studies without a high risk of bias were included in the meta-analysis including 18,145 individuals: 5625 AD participants, 3907 MCI participants, and 8613 HC participants. Combined serum and plasma meta-analysis found that IL1β, IL6, IL8, IL18, CRP, and hsCRP were significantly raised in individuals with AD compared to HC. In CSF, YKL40, and MCP-1 were raised in AD compared to HC. YKL40 was also raised in MCI compared to HC. Meta-regression analysis highlighted several novel findings: MMSE was negatively correlated with IL6 and positively correlated with IL1α in AD, while in MCI studies, MMSE was negatively correlated with IL8 and TNFα. Meta-regression also revealed sex-specific differences in levels of IL1α, IL4, IL6, IL18, hsCRP, MCP-1, and YKL-40 across AD and MCI studies, and age was found to account for heterogeneity of CRP, MCP-1, and IL4 in MCI and AD. Conclusion Elevated levels of IL6 and YKL40 may reflect microglial inflammatory activity in both MCI and AD. Systemic inflammation may interact with the central nervous system, as poor cognitive function in individuals with AD and MCI was associated with higher levels of serum and plasma proinflammatory cytokines IL6 and TNFα. Moreover, variations of systemic inflammation between males and females may be modulated by sex-specific hormonal changes, such as declining oestrogen levels in females throughout the menopause transition. Longitudinal studies sampling a range of biospecimen types are needed to elucidate the nuances of the relationship between inflammation and cognition in individuals with MCI and AD, and understand how systemic and central inflammation differentially impact cognitive function.
Collapse
Affiliation(s)
- Ryan Childs
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Diana Karamacoska
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Chai K. Lim
- Faculty of Medicine, Health, and Human Sciences, Macquarie University, Macquarie Park NSW, 2190, Australia
| | | |
Collapse
|
4
|
Zeineddine HA, Hong SH, Peesh P, Dienel A, Torres K, Pandit PT, Matsumura K, Huang S, Li W, Chauhan A, Hagan J, Marrelli SP, McCullough LD, Blackburn SL, Aronowski J, McBride DW. Neutrophils and Neutrophil Extracellular Traps Cause Vascular Occlusion and Delayed Cerebral Ischemia After Subarachnoid Hemorrhage in Mice. Arterioscler Thromb Vasc Biol 2024; 44:635-652. [PMID: 38299355 PMCID: PMC10923061 DOI: 10.1161/atvbaha.123.320224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND After subarachnoid hemorrhage (SAH), neutrophils are deleterious and contribute to poor outcomes. Neutrophils can produce neutrophil extracellular traps (NETs) after ischemic stroke. Our hypothesis was that, after SAH, neutrophils contribute to delayed cerebral ischemia (DCI) and worse outcomes via cerebrovascular occlusion by NETs. METHODS SAH was induced via endovascular perforation, and SAH mice were given either a neutrophil-depleting antibody, a PAD4 (peptidylarginine deiminase 4) inhibitor (to prevent NETosis), DNAse-I (to degrade NETs), or a vehicle control. Mice underwent daily neurological assessment until day 7 and then euthanized for quantification of intravascular brain NETs (iNETs). Subsets of mice were used to quantify neutrophil infiltration, NETosis potential, iNETs, cerebral perfusion, and infarction. In addition, NET markers were assessed in the blood of aneurysmal SAH patients. RESULTS In mice, SAH led to brain neutrophil infiltration within 24 hours, induced a pro-NETosis phenotype selectively in skull neutrophils, and caused a significant increase in iNETs by day 1, which persisted until at least day 7. Neutrophil depletion significantly reduced iNETs, improving cerebral perfusion, leading to less neurological deficits and less incidence of DCI (16% versus 51.9%). Similarly, PAD4 inhibition reduced iNETs, improved neurological outcome, and reduced incidence of DCI (5% versus 30%), whereas degrading NETs marginally improved outcomes. Patients with aneurysmal SAH who developed DCI had elevated markers of NETs compared with non-DCI patients. CONCLUSIONS After SAH, skull-derived neutrophils are primed for NETosis, and there are persistent brain iNETs, which correlated with delayed deficits. The findings from this study suggest that, after SAH, neutrophils and NETosis are therapeutic targets, which can prevent vascular occlusion by NETs in the brain, thereby lessening the risk of DCI. Finally, NET markers may be biomarkers, which can predict which patients with aneurysmal SAH are at risk for developing DCI.
Collapse
Affiliation(s)
- Hussein A. Zeineddine
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sung-Ha Hong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Pedram Peesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kiara Torres
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peeyush Thankamani Pandit
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kanako Matsumura
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shuning Huang
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA
| | - Wen Li
- Division of Clinical and Translational Sciences, Department of Internal Medicine, The University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anjali Chauhan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - John Hagan
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sean P. Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Spiros L. Blackburn
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Devin W. McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Platholi J, Marongiu R, Park L, Yu F, Sommer G, Weinberger R, Tower W, Milner TA, Glass MJ. Hippocampal glial inflammatory markers are differentially altered in a novel mouse model of perimenopausal cerebral amyloid angiopathy. Front Aging Neurosci 2023; 15:1280218. [PMID: 38035277 PMCID: PMC10684955 DOI: 10.3389/fnagi.2023.1280218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Dementia is often characterized by age-dependent cerebrovascular pathology, neuroinflammation, and cognitive deficits with notable sex differences in risk, disease onset, progression and severity. Women bear a disproportionate burden of dementia, and the onset of menopause (i.e., perimenopause) may be a critical period conferring increased susceptibility. However, the contribution of early ovarian decline to the neuroinflammatory processes associated with cerebrovascular dementia risks, particularly at the initial stages of pathology that may be more amenable to proactive intervention, is unknown. To better understand the influence of early ovarian failure on dementia-associated neuroinflammation we developed a model of perimenopausal cerebral amyloid angiopathy (CAA), an important contributor to dementia. For this, accelerated ovarian failure (AOF) was induced by 4-vinylcyclohexene diepoxide (VCD) treatment to isolate early-stage ovarian failure comparable to human perimenopause (termed "peri-AOF") in transgenic SWDI mice expressing human vasculotropic mutant amyloid beta (Aβ) precursor protein, that were also tested at an early stage of amyloidosis. We found that peri-AOF SWDI mice showed increased astrocyte activation accompanied by elevated Aβ in select regions of the hippocampus, a brain system involved in learning and memory that is severely impacted during dementia. However, although SWDI mice showed signs of increased hippocampal microglial activation and impaired cognitive function, this was not further affected by peri-AOF. In sum, these results suggest that elevated dysfunction of key elements of the neurovascular unit in select hippocampal regions characterizes the brain pathology of mice at early stages of both CAA and AOF. However, neurovascular unit pathology may not yet have passed a threshold that leads to further behavioral compromise at these early periods of cerebral amyloidosis and ovarian failure. These results are consistent with the hypothesis that the hormonal dysregulation associated with perimenopause onset represents a stage of emerging vulnerability to dementia-associated neuropathology, thus providing a selective window of opportunity for therapeutic intervention prior to the development of advanced pathology that has proven difficult to repair or reverse.
Collapse
Affiliation(s)
- Jimcy Platholi
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
- Anesthesiology Department, Weill Cornell Medicine, New York, NY, United States
| | - Roberta Marongiu
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
- Neurological Surgery Department, Weill Cornell Medicine, New York, NY, United States
- Genetic Medicine Department, Weill Cornell Medicine, New York, NY, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Laibaik Park
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Fangmin Yu
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Garrett Sommer
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Rena Weinberger
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - William Tower
- Neurological Surgery Department, Weill Cornell Medicine, New York, NY, United States
| | - Teresa A. Milner
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Michael J. Glass
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| |
Collapse
|
6
|
Boghozian R, Sharma S, Narayana K, Cheema M, Brown CE. Sex and interferon gamma signaling regulate microglia migration in the adult mouse cortex in vivo. Proc Natl Acad Sci U S A 2023; 120:e2302892120. [PMID: 37428916 PMCID: PMC10629543 DOI: 10.1073/pnas.2302892120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
Although microglia possess the unique ability to migrate, whether mobility is evident in all microglia, is sex dependent, and what molecular mechanisms drive this, is not well understood in the adult brain. Using longitudinal in vivo two-photon imaging of sparsely labeled microglia, we find a relatively small population of microglia (~5%) are mobile under normal conditions. Following injury (microbleed), the fraction of mobile microglia increased in a sex-dependent manner, with male microglia migrating significantly greater distances toward the microbleed relative to their female counterparts. To understand the signaling pathways involved, we interrogated the role of interferon gamma (IFNγ). Our data show that in male mice, stimulating microglia with IFNγ promotes migration whereas inhibiting IFNγ receptor 1 signaling inhibits them. By contrast, female microglia were generally unaffected by these manipulations. These findings highlight the diversity of microglia migratory responses to injury, its dependence on sex and the signaling mechanisms that modulate this behavior.
Collapse
Affiliation(s)
- Roobina Boghozian
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Sorabh Sharma
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Kamal Narayana
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Manjinder Cheema
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Craig E. Brown
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BCV6T 2A1, Canada
| |
Collapse
|
7
|
Abstract
Differences exist between genders in intracerebral hemorrhage cause, epidemiology, and outcomes. These gender differences are in part attributable to physiologic differences; however, demographic, social/behavioral risk factors, along with health care system variation and potential family and/or clinician bias play a role as well. These factors vary from region to region and interact, making comprehensive and definitive conclusions regarding sex differences a challenging task. Differences between the genders in intracerebral hemorrhage epidemiology and extensive differences in underlying pathophysiology, intervention, risk factors, and outcome are all discussed.
Collapse
Affiliation(s)
- Nicholas Dykman Osteraas
- Department of Neurological Sciences, Division of Cerebrovascular Diseases, Rush University Medical Center, 1725 West Harrison Street Suite 118, Chicago, IL 60612, USA.
| |
Collapse
|
8
|
Tashiro R, Ozaki D, Bautista-Garrido J, Sun G, Obertas L, Mobley AS, Kim GS, Aronowski J, Jung JE. Young Astrocytic Mitochondria Attenuate the Elevated Level of CCL11 in the Aged Mice, Contributing to Cognitive Function Improvement. Int J Mol Sci 2023; 24:ijms24065187. [PMID: 36982260 PMCID: PMC10049211 DOI: 10.3390/ijms24065187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Aging drives cognitive decline, and mitochondrial dysfunction is a hallmark of age-induced neurodegeneration. Recently, we demonstrated that astrocytes secrete functional mitochondria (Mt), which help adjacent cells to resist damage and promote repair after neurological injuries. However, the relationship between age-dependent changes in astrocytic Mt function and cognitive decline remains poorly understood. Here, we established that aged astrocytes secret less functional Mt compared to young astrocytes. We found the aging factor C-C motif chemokine 11 (CCL11) is elevated in the hippocampus of aged mice, and that its level is reduced upon systemic administration of young Mt, in vivo. Aged mice receiving young Mt, but not aged Mt improved cognitive function and hippocampal integrity. Using a CCL11-induced aging-like model in vitro, we found that astrocytic Mt protect hippocampal neurons and enhance a regenerative environment through upregulating synaptogenesis-related gene expression and anti-oxidants that were suppressed by CCL11. Moreover, the inhibition of CCL11-specific receptor C-C chemokine receptor 3 (CCR3) boosted the expression of synaptogenesis-related genes in the cultured hippocampal neurons and restored the neurite outgrowth. This study suggests that young astrocytic Mt can preserve cognitive function in the CCL11-mediated aging brain by promoting neuronal survival and neuroplasticity in the hippocampus.
Collapse
|
9
|
Yoon CW, Rha JH, Park HK, Park SH, Kwon S, Kim BC, Youn YC, Jeong JH, Han HJ, Choi SH. Sex differences in the progression of cerebral microbleeds in patients with concomitant cerebral small vessel disease. Front Neurol 2022; 13:1054624. [PMID: 36619919 PMCID: PMC9810543 DOI: 10.3389/fneur.2022.1054624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background and purpose Sex differences in cerebral microbleeds (CMBs) are not well-known. We aimed to assess the impact of sex on the progression of CMBs. Methods The CHALLENGE (Comparison Study of Cilostazol and Aspirin on Changes in Volume of Cerebral Small Vessel Disease White Matter Changes) database was analyzed. Out of 256 subjects, 189 participants with a follow-up brain scan were included in the analysis. The linear mixed-effect model was used to compare the 2-year changes in the number of CMBs between men and women. Results A total of 65 men and 124 women were analyzed. There were no significant differences in the prevalence (70.8 vs. 71.8%; P = 1.000) and the median [interquartile range (IQR)] number of total CMBs [1 (0-7) vs. 2 (0-7); P = 0.810] at baseline between men and women. The median (IQR) increase over 2 years in the number of CMBs was statistically higher in women than in men [1 (0-2) vs. 0 (0-1), P = 0.026]. The multivariate linear mixed-effects model showed that women had a significantly greater increase in the number of total, deep, and lobar CMBs compared to men after adjusting for age and the baseline number of CMBs [estimated log-transformed mean of difference between women and men: 0.040 (P = 0.028) for total CMBs, 0.037 (P = 0.047) for deep CMBs, and 0.047 (P = 0.009) for lobar CMBs]. Conclusion The progression of CMB over 2 years was significantly greater in women than in men.
Collapse
Affiliation(s)
- Cindy W. Yoon
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Joung-Ho Rha
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hee-Kwon Park
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Soo-Hyun Park
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Soonwook Kwon
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Hyun Jeong Han
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea,*Correspondence: Seong Hye Choi
| |
Collapse
|
10
|
Manwani B, Finger C, Lisabeth L. Strategies for Maintaining Brain Health: The Role of Stroke Risk Factors Unique to Elderly Women. Stroke 2022; 53:2662-2672. [PMID: 35652344 PMCID: PMC10911965 DOI: 10.1161/strokeaha.121.036894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stroke risk and prevalence increase with advanced age and women tend to be older than men at the time of their first stroke. Advanced age in women confers unique stroke risks that are beyond reproductive factors. Previous reviews and guidelines have largely focused on risk factors specific to women, with a predominant focus on reproductive factors and, therefore, younger to middle-aged women. This review aims to specifically describe stroke risk factors in elderly women, the population of women where the majority of strokes occur, with a focus on atrial fibrillation, hormone therapy, psychosocial risk factors, and cognitive impairment. Our review suggests that prevention and management of stroke risks that are unique or more prevalent in elderly women needs a coordinated system of care from general physicians, general neurologists, vascular and cognitive neurologists, psychologists, cardiologists, patients, and their caretakers. Early identification and management of the elderly woman-specific and traditional stroke risk factors is key for decreasing stroke burden in elderly women. Increased education among elderly women regarding stroke risk factors and their identification should be considered, and an update to the guidelines for prevention of stroke in women is strongly encouraged.
Collapse
Affiliation(s)
- Bharti Manwani
- Department of Neurology, University of Texas Health Science Center at Houston (B.M., C.F.)
| | - Carson Finger
- Department of Neurology, University of Texas Health Science Center at Houston (B.M., C.F.)
| | - Lynda Lisabeth
- Department of Epidemiology, University of Michigan, Ann Arbor (L.L.)
| |
Collapse
|
11
|
Ni R. Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis. Int J Mol Sci 2021; 22:12768. [PMID: 34884573 PMCID: PMC8657987 DOI: 10.3390/ijms222312768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Amyloid-beta (Aβ) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant Aβ accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the Aβ pathology, such as transgenic, knock-in mouse and rat models, have facilitated the understanding of disease mechanisms and the development of therapeutics targeting Aβ. There is a rapid advance in high-field MRI in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences, such as diffusion tensor imaging, arterial spin labeling, resting-state functional MRI, anatomical MRI, and MR spectroscopy, as well as contrast agents, have been developed for preclinical imaging in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole-brain field of view. MRI has been used to visualize non-invasively the Aβ deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, and cerebrovascular and glymphatic system in animal models of Alzheimer's disease amyloidosis. Many of the readouts are translational toward clinical MRI applications in patients with Alzheimer's disease. In this review, we summarize the recent advances in MRI for visualizing the pathophysiology in amyloidosis animal models. We discuss the outstanding challenges in brain imaging using MRI in small animals and propose future outlook in visualizing Aβ-related alterations in the brains of animal models.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|