1
|
Nikoloudis A, Bauhofer A, Griessl L, Habermehl A, Groiss C, Binder M, Milanov R, Bauer T, Buxhofer-Ausch V, Aichinger C, Hasengruber P, Kaynak E, Wipplinger D, Strassl I, Stiefel O, Petzer A, Rumpold H, Machherndl-Spandl S, Weltermann A, Clausen J. Donor C1 Group KIR-ligand inferiority is linked to increased mortality in haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide. Cytotherapy 2025; 27:457-464. [PMID: 39755976 DOI: 10.1016/j.jcyt.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND AIMS In HLA-identical hematopoietic stem cell transplantation (HSCT), HLA-C1 group killer cell immunoglobulin-like receptor (KIR) ligands have been linked to graft-versus-host disease, whereas C2 homozygosity was associated with increased relapses. The differential impact of the recipients versus the donor's HLA-C KIR ligands cannot be determined in HLA-identical HSCT but may be elucidated in the haploidentical setting, in which HLA-C (including the HLA-C KIR ligand group) mismatching is frequently present. METHODS We retrospectively investigated the effect of recipient versus donor C1 ligand content on survival and complications in post-transplant cyclophosphamide (PTCy)-based haploidentical HSCT (n = 170). HSCTs were categorized as donor C1 supremacy (n = 34), C1 balance (n = 98), or donor C1 inferiority (n = 38). RESULTS Following HSCT from C1-inferior donors, overall mortality (hazard ratio, 2.84; P = 0.002) and non-relapse mortality (sub-hazard ratio [SHR], 3.86; P = 0.007) were significantly increased. Following HSCT from C1-superior donors, a low 1-year relapse incidence and favorable 1-year progression-free survival were observed. C1 supremacy did not significantly impact acute or chronic graft-versus-host disease, natural killer cell reconstitution, or day 21 chimerism. Infection was a more common cause of death among recipients with a C1-inferior donor compared with C1-superior or C1-balanced donors. CONCLUSIONS These findings suggest an increased risk for NRM, particularly infection-related deaths, associated with C1-inferior donors. Upon independent confirmation, C1-inferior donors should be avoided in PTCy-based haploidentical HSCT.
Collapse
Affiliation(s)
- Alexander Nikoloudis
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria.
| | - Anna Bauhofer
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Lena Griessl
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Anke Habermehl
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | - Christina Groiss
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | - Michaela Binder
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | - Robert Milanov
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | - Thomas Bauer
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Veronika Buxhofer-Ausch
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Christoph Aichinger
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | - Petra Hasengruber
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | - Emine Kaynak
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | - Dagmar Wipplinger
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | - Irene Strassl
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Olga Stiefel
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Andreas Petzer
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Holger Rumpold
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Sigrid Machherndl-Spandl
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Ansgar Weltermann
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Johannes Clausen
- Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria
| |
Collapse
|
2
|
Belbachir S, Abraham A, Sharma A, Prockop S, DeZern AE, Bonfim C, Bidgoli A, Li J, Ruggeri A, Bertaina A, Boelens JJ, Purtill D. Engineering the best transplant outcome for high-risk acute myeloid leukemia: the donor, the graft and beyond. Cytotherapy 2024; 26:546-555. [PMID: 38054912 DOI: 10.1016/j.jcyt.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
Allogeneic hemopoietic cell transplantation remains the goal of therapy for high-risk acute myeloid leukemia (AML). However, treatment failure in the form of leukemia relapse or severe graft-versus-host disease remains a critical area of unmet need. Recently, significant progress has been made in the cell therapy-based interventions both before and after transplant. In this review, the Stem Cell Engineering Committee of the International Society for Cell and Gene Therapy summarizes the literature regarding the identification of high risk in AML, treatment approaches before transplant, optimal transplant platforms and measures that may be taken after transplant to ideally prevent, or, if need be, treat AML relapse. Although some strategies remain in the early phases of clinical investigation, they are built on progress in pre-clinical research and cellular engineering techniques that are already improving outcomes for children and adults with high-risk malignancies.
Collapse
Affiliation(s)
- Safia Belbachir
- Haematology Department, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Allistair Abraham
- Center for Cancer and Immunology Research, CETI, Children's National Hospital, Washington, District of Columbia, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts USA
| | - Amy E DeZern
- Bone Marrow Failure and MDS Program, John Hopkins Medicine, Baltimore, Maryland, USA
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division/Instituto de Pesquisa Pele Pequeno Principe Research/Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Alan Bidgoli
- Division of Blood and Marrow Transplantation, Children's Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Jinjing Li
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, and Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Duncan Purtill
- Haematology Department, Fiona Stanley Hospital, Perth, Western Australia, Australia; PathWest Laboratory Medicine, Perth, Western Australia, Australia.
| |
Collapse
|
3
|
Nowak J, Witkowska A, Rogatko-Koroś M, Malinowska A, Graczyk-Pol E, Nestorowicz-Kałużna K, Flaga A, Szlendak U, Wnorowska A, Gawron A. Molecular relapse monitoring reveals the domination of impaired NK cell education over impaired inhibition in missing KIR-ligand recognition in patients after unrelated hematopoietic stem cell transplantation for malignant diseases. HLA 2024; 103:e15364. [PMID: 38312022 DOI: 10.1111/tan.15364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
Transplantation of HLA and/or KIR mismatched allogeneic hematopoietic stem cells can lead NK cells to different states of activation/inhibition or education/resetting and change anti-tumor immunosurveillance. In this study, we used molecular relapse monitoring to investigate a correlation between either missing ligand recognition or variation of the cognate iKIR-HLA pairs with clinical outcomes in patients with hematological malignancies requiring allogeneic hematopoietic stem cell transplantation (allo-HSCT). Patients (N = 418) with acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphoblastic leukemia (ALL), myelodysplastic syndrome (MDS), or lymphoma receiving T-cell repleted graft from HLA-matched or partly mismatched unrelated donors between 2012 and 2020 in our center were included in this study. Missing-ligand recognition was assessed through the presence or absence of recipients' HLA ligand for a particular inhibitory KIR (iKIR) exhibited by the donor. Inhibitory KIR-HLA pair number variation was defined by loss or gain of a new cognate pair of HLA-KIR within the new HLA environment of the recipient, compared with the donor's one. Considering the results of our research, we drew the following conclusions: (i) loss of iKIR-HLA cognate pair for C1, C2, and/or Bw4 groups led to significant deterioration of disease-free survival (DFS), molecular relapse, overall survival (OS) and non-relapse mortality (NRM) for patients undergoing allo-HSCT in the standard phase of the disease. This phenomenon was not observed in patients who underwent transplantation in advanced hematological cancer. (ii) The missing ligand recognition had no impact if the proportion of HLA mismatches was not considered; however, adjustments of HLA mismatch level in the compared groups highlighted the adverse effect of the missing ligand constellation. (iii) The adverse effect of adjusted missing ligand suggests a predominance of lost NK cell education over lost NK cell inhibition in posttransplant recipients' new HLA environment. Our results suggested that donors with the loss of an iKIR-HLA cognate pair after transplantation should be avoided, and donors who provided an additional iKIR-HLA cognate pair should be preferred in the allo-HSCT donor selection process.
Collapse
Affiliation(s)
- Jacek Nowak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Witkowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marta Rogatko-Koroś
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Malinowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Elżbieta Graczyk-Pol
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Anna Flaga
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Urszula Szlendak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Anna Wnorowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Gawron
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
4
|
Petersdorf EW, McKallor C, Malkki M, He M, Spellman SR, Hsu KC, Strong RK, Gooley T, Stevenson P. Role of NKG2D ligands and receptor in haploidentical related donor hematopoietic cell transplantation. Blood Adv 2023; 7:2888-2896. [PMID: 36763517 PMCID: PMC10300293 DOI: 10.1182/bloodadvances.2022008922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
The recurrence of malignancy after hematopoietic cell transplantation (HCT) is the primary cause of transplantation failure. The NKG2D axis is a powerful pathway for antitumor responses, but its role in the control of malignancy after HCT is not well-defined. We tested the hypothesis that gene variation of the NKG2D receptor and its ligands MICA and MICB affect relapse and survival in 1629 patients who received a haploidentical HCT for the treatment of a malignant blood disorder. Patients and donors were characterized for MICA residue 129, the exon 5 short tandem repeat (STR), and MICB residues 52, 57, 98, and 189. Donors were additionally defined for the presence of NKG2D residue 72. Mortality was higher in patients with MICB-52Asn relative to those with 52Asp (hazard ratio [HR], 1.83; 95% confidence interval [CI], 1.24-2.71; P = .002) and lower in those with MICA-STR mismatch than in those with STR match (HR, 0.66; 95% CI, 0.54-0.79; P = .00002). Relapse was lower with NKG2D-72Thr donors than with 72Ala donors (relapse HR, 0.57; 95% CI, 0.35-0.91; P = .02). The protective effects of patient MICB-52Asp with donor MICA-STR mismatch and NKG2D-72Thr were enhanced when all 3 features were present. The NKG2D ligand/receptor pathway is a transplantation determinant. The immunobiology of relapse is defined by the concerted effects of MICA, MICB, and NKG2D germ line variation. Consideration of NKG2D ligand/receptor pairings may improve survival for future patients.
Collapse
Affiliation(s)
- Effie W. Petersdorf
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Caroline McKallor
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mari Malkki
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Meilun He
- National Marrow Donor Program/BeTheMatch, Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Stephen R. Spellman
- National Marrow Donor Program/BeTheMatch, Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Katharine C. Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Roland K. Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ted Gooley
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Phil Stevenson
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
5
|
D’Silva SZ, Bodade A, Kadam S, Tambe M, Dhanda S, Bagal B, Sengar M, Jain H, Nayak L, Bonda A, Punatar S, Gokarn A, Khattry N, Singh M. Frequency of HLA alleles and KIR Ligands in Acute Myeloid Leukemia in Indian Cohort. Indian J Hematol Blood Transfus 2023; 39:50-56. [PMID: 36699439 PMCID: PMC9868221 DOI: 10.1007/s12288-022-01550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/01/2022] [Indexed: 01/28/2023] Open
Abstract
Relationship between various combinations of KIR ligands and HLA alleles have been studied in several diseases. The aim of this retrospective study was to estimate the frequency of HLA alleles and KIR ligands among acute myeloid leukemia patients and healthy controls in order to examine the possible association of HLA alleles and KIR ligands with AML. A total of 439 acute myeloid leukemia patients and 1317 unrelated, healthy ethnic Indian controls were included in the study. HLA typing was performed using PCR-SSP. KIR ligands were assigned by using the KIR ligand Calculator. The frequency of HLA alleles and KIR ligands in patients was then compared with the controls. As compared to controls, frequencies of HLA-A*03 and HLA-B*35 were increased in AML patients, whereas, that of HLA-C*03 was decreased. Frequencies of HLA-A*03 and HLA-C*15 were increased in male patients, however, no significant difference was observed in female patients as compared to controls. In the pediatric group, the frequencies of HLA-A*01 was decreased and that of HLA-A*03 and HLA-B*18 were increased, whereas, frequencies of HLA-B*13 was decreased and that of HLA-B*27 was increased in the adult patients. In the haplotype analysis, the frequency of HLA-A*24/B*35/DRB1*15 was increased in overall patients. In adult group, the frequency of HLA-A*01/B*44/DRB1*07 was increased in patients than in controls. No significant association was observed between KIR ligands and susceptibility/ protection to AML. Our results indicate that certain HLA alleles and haplotypes have presumptive positive or negative role in conferring protection/susceptibility to AML. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-022-01550-0.
Collapse
Affiliation(s)
- Selma Zenia D’Silva
- Scientific Officer “E”, Transplant Immunology and Immunogenetics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, CCE, Tata Memorial Centre, Plot No.1 & 2, Sector 22, Kharghar, Navi Mumbai 410210 India
| | - Anand Bodade
- Department of Transfusion Medicine, Tata Memorial Hospital, Mumbai, India
| | - Shalaka Kadam
- Scientific Officer “E”, Transplant Immunology and Immunogenetics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, CCE, Tata Memorial Centre, Plot No.1 & 2, Sector 22, Kharghar, Navi Mumbai 410210 India
| | - Manisha Tambe
- Scientific Officer “E”, Transplant Immunology and Immunogenetics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, CCE, Tata Memorial Centre, Plot No.1 & 2, Sector 22, Kharghar, Navi Mumbai 410210 India
| | - Sandeep Dhanda
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Bhausaheb Bagal
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Manju Sengar
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Hasmukh Jain
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Lingaraj Nayak
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Avinash Bonda
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sachin Punatar
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer, Bone Marrow Transplant Unit, Tata Memorial Centre, Kharghar, India
| | - Anant Gokarn
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer, Bone Marrow Transplant Unit, Tata Memorial Centre, Kharghar, India
| | - Navin Khattry
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer, Bone Marrow Transplant Unit, Tata Memorial Centre, Kharghar, India
| | - Meenakshi Singh
- Scientific Officer “E”, Transplant Immunology and Immunogenetics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, CCE, Tata Memorial Centre, Plot No.1 & 2, Sector 22, Kharghar, Navi Mumbai 410210 India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
6
|
Zafarani A, Taghavi-Farahabadi M, Razizadeh MH, Amirzargar MR, Mansouri M, Mahmoudi M. The Role of NK Cells and Their Exosomes in Graft Versus Host Disease and Graft Versus Leukemia. Stem Cell Rev Rep 2023; 19:26-45. [PMID: 35994137 DOI: 10.1007/s12015-022-10449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells are one of the innate immune cells that play an important role in preventing and controlling tumors and viral diseases, but their role in hematopoietic stem cell transplantation (HCT) is not yet fully understood. However, according to some research, these cells can prevent infections and tumor relapse without causing graft versus host disease (GVHD). In addition to NK cells, several studies are about the anti-leukemia effects of NK cell-derived exosomes that can highlight their roles in graft-versus-leukemia (GVL). In this paper, we intend to investigate the results of various articles on the role of NK cells in allogeneic hematopoietic cell transplantation and also their exosomes in GVL. Also, we have discussed the antiviral effects of these cells in post-HCT cytomegalovirus infection.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoure Mansouri
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Pulsipher MA, Ahn KW, Bunin NJ, Lalefar N, Anderson E, Flower A, Cairo MS, Talano JA, Chaudhury S, Kitko CL, Duke JL, Monos D, Leung W, Dvorak CC, Abdel-Azim H. KIR-favorable TCR-αβ/CD19-depleted haploidentical HCT in children with ALL/AML/MDS: primary analysis of the PTCTC ONC1401 trial. Blood 2022; 140:2556-2572. [PMID: 35776909 PMCID: PMC9918850 DOI: 10.1182/blood.2022015959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
We performed a prospective multicenter study of T-cell receptor αβ (TCR-αβ)/CD19-depleted haploidentical hematopoietic cell transplantation (HCT) in children with acute leukemia and myelodysplastic syndrome (MDS), to determine 1-year disease-free survival (DFS) and compare 2-year outcomes with recipients of other donor cell sources. Fifty-one patients aged 0.7 to 21 years were enrolled; donors were killer immunoglobulin-like receptor (KIR) favorable based on ligand mismatch and/or high B content. The 1-year DFS was 78%. Superior 2-year DFS and overall survival (OS) were noted in patients <10 years of age, those treated with reduced toxicity conditioning (RTC) rather than myeloablative conditioning, and children with minimal residual disease <0.01% before HCT. Multivariate analysis comparing the KIR-favorable haploidentical cohort with controls showed similar DFS and OS compared with other donor cell sources. Multivariate analysis also showed a marked decrease in the risk of grades 2 to 4 and 3 to 4 acute graft versus host disease (aGVHD), chronic GVHD, and transplant-related mortality vs other donor cell sources. Ethnic and racial minorities accounted for 53% of enrolled patients, and data from a large cohort of recipients/donors screened for KIR showed that >80% of recipients had a KIR-favorable donor by our definition, demonstrating that this approach is broadly applicable to groups often unable to find donors. This prospective, multicenter study showed improved outcomes using TCR-αβ/CD19-depleted haploidentical donors using RTC for children with acute leukemia and MDS. Randomized trials comparing this approach with matched unrelated donors are warranted. This trial was registered at https://clinicaltrials.gov as #NCT02646839.
Collapse
Affiliation(s)
- Michael A. Pulsipher
- Division of Hematology and Oncology, Intermountain Primary Children’s Hospital, Huntsman Cancer Institute at the University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
- Section of Transplantation and Cellular Therapy, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Kwang W. Ahn
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Nancy J. Bunin
- Division of Oncology, Center for Childhood Cancer Research and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nahal Lalefar
- Department of Pediatrics, UCSF Benioff Children’s Hospital, Oakland, CA
| | - Eric Anderson
- Rady Children’s Hospital San Diego and UC San Diego School of Medicine, San Diego, CA
| | | | | | - Julie-An Talano
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Carrie L. Kitko
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Jamie L. Duke
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Dimitrios Monos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Wing Leung
- Department of Pediatrics, Duke-National University Singapore (NUS), Singapore
- University of Hong Kong, Hong Kong
| | - Christopher C. Dvorak
- Division of Pediatric Allergy, Immunology and Bone Marrow Transplantation, UCSF Benioff Children’s Hospital, University of California San Francisco, San Francisco, CA
| | - Hisham Abdel-Azim
- Section of Transplantation and Cellular Therapy, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA
- Loma Linda University, School of Medicine Cancer Center, Children Hospital and Medical Center, Loma Linda, CA
| |
Collapse
|
8
|
Yokoyama H. Role of NK cells in cord blood transplantation and their enhancement by the missing ligand effect of the killer-immunoglobulin like receptor. Front Genet 2022; 13:1041468. [PMID: 36330445 PMCID: PMC9623085 DOI: 10.3389/fgene.2022.1041468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are the first lymphocytes reconstituted after allogenic hematopoietic stem cell transplantation (HSCT). Especially, in cord blood transplantation (CBT), the increase in the number of NK cells is sustained for a long period. Although there are conflicting results, many studies show that early reconstitution of NK cells is associated with favorable CBT outcomes, suggesting that maximizing NK cell functions could improve the CBT outcome. Killer immunoglobulin-like receptors (KIRs) include inhibitory and stimulatory receptors, which can regulate NK-cell activity. Because some of the KIRs have HLA class I as their ligand, the KIR—ligand interaction on NK cells can be lost in some cases of CBT, which results in the activation of NK cells and alters HSCT outcome. Thus, effects of KIR–ligand mismatch under various conditions have been widely examined; however, the results have been controversial. Among such studies, those using the largest number of CBTs showed that HLA—C2 (KIR2DL1—ligand) mismatches have a favorable effect on the relapse rate and overall survival only when the CBT used methotrexate for graft-versus-host disease prophylaxis. Another study suggested that KIR—ligand mismatch is involved in reducing the relapse of acute myeloid leukemia, mediated by reactivation of cytomegalovirus. These results indicate that activation of NK cells by KIR—ligand mismatch may have favorable effects on CBT outcomes and could help enhance the NK-cell function.
Collapse
|
9
|
Kawahara Y, Ishimaru S, Tanaka J, Kako S, Hirayama M, Kanaya M, Ishida H, Sato M, Kobayashi R, Kato M, Goi K, Saito S, Koga Y, Hashii Y, Kato K, Sato A, Atsuta Y, Sakaguchi H. Impact of KIR-ligand mismatch on pediatric T-cell acute lymphoblastic leukemia in unrelated cord blood transplantation. Transplant Cell Ther 2022; 28:598.e1-598.e8. [PMID: 35660064 DOI: 10.1016/j.jtct.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Currently, allogeneic hematopoietic stem cell transplantation (allo-HSCT) is considered to be indicated for children and adolescents with high-risk or relapsed T-cell acute lymphoblastic leukemia (T-ALL); however, the outcomes are unsatisfactory. Killer cell immunoglobulin-like receptors (KIRs) are the main receptors on natural killer (NK) cells that play an important role in the graft-versus-leukemia effect after allo-HSCT. In allo-HSCT, when the recipient lacks a donor KIR-ligand (KIR-ligand mismatch in the graft-versus-host [GVH] direction), donor NK cells will be activated against recipient cells. KIR-ligand mismatch in the GVH direction improves outcomes after unrelated cord blood transplantation (UCBT) with acute myeloid leukemia, but the effect in T-ALL is unclear. OBJECTIVE We evaluated the impact of KIR-ligand mismatch in the GVH direction on the transplant outcomes of children and adolescents with T-ALL who received UCBT. STUDY DESIGN We conducted a retrospective study using a nationwide registry of the Japanese Society for Transplantation and Cellular Therapy. Patients diagnosed with T-ALL, aged 0-19 years, and underwent first UCBT between 1999 and 2017 were included. RESULTS A total of 91 patients were included in this study. In all, 23 (25.3%) percent of patients had KIR-ligand mismatch in the GVH direction. The 5-year leukemia-free survival (LFS) and overall survival (OS) rates after UCBT were 65.8% and 69.6%, respectively. In a multivariate analysis, KIR-ligand mismatch in the GVH direction was associated with a significant reduction in the relapse rate (hazard ratio [HR], 0.19; P = 0.002), resulting in better LFS (HR, 0.18; P = 0.010) and OS (HR, 0.26; P = 0.048) without increasing non-relapse mortality (NRM; HR, 1.90; P = 0.264). The cumulative incidence of GVH disease (GVHD) did not differ between patients with and without KIR-ligand mismatch (grade II-IV acute GVHD, 39.1% versus 36.8%, P = 0.648, grade III-IV acute GVHD, 13.0% versus 11.8%, P = 0.857, and chronic GVHD, 26.1% versus 22.9%, P = 0.736, respectively). Furthermore, acute and chronic GVHD were not associated with good patient outcomes. Notably, no relapse was observed in patients who received KIR-ligand mismatched UCBT in complete remission. CONCLUSION KIR-ligand mismatch in the GVH direction improved LFS and decreased relapse rates without increasing NRM in children and adolescents with T-ALL who received UCBT, which was not mediated by GVHD.
Collapse
Affiliation(s)
- Yuta Kawahara
- Department of Pediatrics, Jichi Medical University School of Medicine, Shimotsuke, Japan.
| | - Sae Ishimaru
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan; Trial and Data Center, Princess Máxima Center, Utrecht, the Netherlands
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shinichi Kako
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Minoru Kanaya
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Hisashi Ishida
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Maho Sato
- Department of Hematology/Oncology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Ryoji Kobayashi
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Motohiro Kato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan
| | - Kumiko Goi
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka International Cancer Institute, Osaka, Japan
| | - Koji Kato
- Central Japan Cord Blood Bank, Seto, Japan
| | - Atsushi Sato
- Department of Hematology/Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan; Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hirotoshi Sakaguchi
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
10
|
Improved outcomes of single-unit cord blood transplantation for acute myeloid leukemia by killer immunoglobulin-like receptor 2DL1-ligand mismatch. Bone Marrow Transplant 2022; 57:1171-1179. [PMID: 35538140 DOI: 10.1038/s41409-022-01700-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/27/2022] [Indexed: 12/30/2022]
Abstract
The impact of the killer immunoglobulin-like receptor (KIR)-ligand mismatch between donor and recipient in hematopoietic stem cell transplantation is controversial. Recently, it has been suggested that their effect on cord blood transplantation (CBT) differs among types of mismatched KIR-ligand and graft-versus-host disease (GVHD) prophylaxis. To investigate their role in acute myeloid leukemia (AML), mismatch of KIR2DL1, KIR3DL1, and KIR3DL2-ligand (HLA-C2, Bw4, and A3/11) were retrospectively assessed in patients undergoing CBT with GVHD prophylaxis comprising a calcineurin inhibitor plus methotrexate (CNI/MTX) or mycophenolate mofetil (CNI/MMF). In patients who received CNI/MTX, a favorable effect of KIR-ligand mismatch on relapse was noted in HLA-C2 mismatched cases (24.8% at 3 years post-CBT [no HLA-C2 mismatch, n = 1602] vs. 15.4% [HLA-C2 mismatch, n = 161], P = 0.0116). In this group, overall survival (OS) was also superior (68.2%, P = 0.0083) compared to the other group (55.0%). Multivariate analysis results supported these findings (hazard ratio [HR] 0.61 for relapse, P = 0.017 and HR 0.72 for OS, P = 0.016). However, the KIR-ligand mismatch effect was not observed in patients with KIR-ligand mismatch types other than HLA-C2 and those using CNI/MMF for GVHD prophylaxis. These results suggest that HLA-C2 mismatch in CBT using CNI/MTX as GVHD prophylaxis may improve the outcomes of patients with AML.
Collapse
|
11
|
Barnes SA, Trew I, de Jong E, Foley B. Making a Killer: Selecting the Optimal Natural Killer Cells for Improved Immunotherapies. Front Immunol 2021; 12:765705. [PMID: 34777383 PMCID: PMC8578927 DOI: 10.3389/fimmu.2021.765705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past 20 years natural killer (NK) cell-based immunotherapies have emerged as a safe and effective treatment option for patients with relapsed or refractory leukemia. Unlike T cell-based therapies, NK cells harbor an innate capacity to eliminate malignant cells without prior sensitization and can be adoptively transferred between individuals without the need for extensive HLA matching. A wide variety of therapeutic NK cell sources are currently being investigated clinically, including allogeneic donor-derived NK cells, stem cell-derived NK cells and NK cell lines. However, it is becoming increasingly clear that not all NK cells are endowed with the same antitumor potential. Despite advances in techniques to enhance NK cell cytotoxicity and persistence, the initial identification and utilization of highly functional NK cells remains essential to ensure the future success of adoptive NK cell therapies. Indeed, little consideration has been given to the identification and selection of donors who harbor NK cells with potent antitumor activity. In this regard, there is currently no standard donor selection criteria for adoptive NK cell therapy. Here, we review our current understanding of the factors which govern NK cell functional fate, and propose a paradigm shift away from traditional phenotypic characterization of NK cell subsets towards a functional profile based on molecular and metabolic characteristics. We also discuss previous selection models for NK cell-based immunotherapies and highlight important considerations for the selection of optimal NK cell donors for future adoptive cell therapies.
Collapse
Affiliation(s)
- Samantha A Barnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Isabella Trew
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Emma de Jong
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Bree Foley
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
12
|
Pan C, Zhai Y, Li G, Jiang T, Zhang W. NK Cell-Based Immunotherapy and Therapeutic Perspective in Gliomas. Front Oncol 2021; 11:751183. [PMID: 34765554 PMCID: PMC8576093 DOI: 10.3389/fonc.2021.751183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/08/2021] [Indexed: 12/30/2022] Open
Abstract
Glioma is the most common malignant primary brain tumor diagnosed in adults. Current therapies are unable to improve its clinical prognosis, imposing the need for innovative therapeutic approaches. The main reason for the poor prognosis is the great cell heterogeneity of the tumor and its immunosuppressive microenvironment. Development of new therapies that avoid this immune evasion could improve the response to the current treatments. Natural killer (NK) cells are an intriguing candidate for the next wave of therapies because of several unique features that they possess. For example, NK cell-based immunotherapy causes minimal graft-versus-host disease. Cytokine release syndrome is less likely to occur during chimeric antigen receptor (CAR)-NK therapy, and CAR-NK cells can kill targets in a CAR-independent manner. However, NK cell-based therapy in treating glioma faces several difficulties. For example, CAR molecules are not sufficiently well designed so that they will thoroughly release functioning NK cells. Compared to hematological malignancies, the application of many potential NK cell-based therapies in glioma lags far behind. Here, we review several issues of NK cells and propose several strategies that will improve the efficacy of NK cell-based cancer immunotherapy in the treatment of glioma.
Collapse
Affiliation(s)
- Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - You Zhai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA), Beijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA), Beijing, China
| |
Collapse
|
13
|
Altered effect of killer immunoglobulin-like receptor-ligand mismatch by graft versus host disease prophylaxis in cord blood transplantation. Bone Marrow Transplant 2021; 56:3059-3067. [PMID: 34561558 DOI: 10.1038/s41409-021-01469-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022]
Abstract
The role of killer immunoglobulin-like receptor-ligand mismatch (KIR-ligand mismatch) between donors and recipients undergoing cord blood transplantation (CBT) is controversial. If each immunosuppressant differently affects natural killer (NK) cell function, the effect of KIR-ligand mismatch may be altered depending on the type of graft versus host disease (GVHD) prophylaxis. To verify this hypothesis, the difference in the effect of KIR-ligand mismatch was retrospectively assessed between patients who received CBT for acute leukemia, myelodysplastic syndrome, or chronic myeloid leukemia, as well as GVHD prophylaxis comprising tacrolimus plus methotrexate (MTX) or mycophenolate mofetil (MMF). In the MMF group (n = 1363), KIR-ligand mismatch augmented the incidence of non-relapse mortality (NRM; hazard ratio [HR], 1.40; P = 0.008), which worsened overall survival (OS; HR, 1.30, P = 0.0077). In the analysis of each KIR-ligand mismatch type, HLA-C2 mismatch had a favorable effect on relapse incidence (HR, 0.56; P = 0.0043) and OS (HR, 0.72; P = 0.037) only in the MTX group. In the MMF group, HLA-A3/A11 mismatch worsened NRM (HR, 1.93; P < 0.001) and OS (HR, 1.48; P = 0.014). These results imply that the effects of KIR-ligand mismatch differ with the type of GVHD prophylaxis and that assessing the KIR-ligand mismatch status is important for CBT.
Collapse
|
14
|
Hong S, Rybicki L, Zhang A, Thomas D, Kerr CM, Durrani J, Rainey MA, Mian A, Behera TR, Carraway HE, Nazha A, Mukherjee S, Advani AS, Patel B, Kalaycio M, Bolwell BJ, Hanna R, Gerds AT, Pohlman B, Hamilton BK, Sekeres MA, Majhail NS, Maciejewski JP, Askar M, Sobecks R. Influence of Killer Immunoglobulin-Like Receptors and Somatic Mutations on Transplant Outcomes in Acute Myeloid Leukemia. Transplant Cell Ther 2021; 27:917.e1-917.e9. [PMID: 34380091 DOI: 10.1016/j.jtct.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells are regulated by killer immunoglobulin-like receptor (KIR) interactions with human leukocyte antigen class I ligands. Various models of NK cell alloreactivity have been associated with outcomes after allogeneic hematopoietic cell transplant (alloHCT), but results have varied widely. We hypothesized that somatic mutations in acute myeloid leukemia (AML) in the context of KIR profiles may further refine their association with transplant outcomes. In this single-center, retrospective, observational study, 81 AML patients who underwent matched-related donor alloHCT were included. Post-HCT outcomes were assessed based on mutational status and KIR profiles with the Kaplan-Meier method and log-rank test. On multivariable analysis those with any somatic mutations and C1/C2 heterozygosity had less acute graft-versus-host disease (GvHD) (hazard ratio [HR], 0.32; 95% confidence interval [CI], 0.14-0.75; P = .009), more relapse (HR, 3.02; 95% CI, 1.30-7.01; P = .010), inferior relapse-free survival (RFS; (HR, 2.22; 95% CI, 1.17-4.20; P = .014), and overall survival (OS; HR, 2.21; 95% CI, 1.17-4.20; P = .015), whereas those with a missing KIR ligand had superior RFS (HR, 0.53; 95% CI, 0.30-0.94; P = .031). The presence of a somatic mutation and donor haplotype A was also associated with less acute GvHD (HR, 0.38; 95% CI, 0.16-0.92; P = .032), more relapse (HR, 2.72; 95% CI, 1.13-6.52; P = .025), inferior RFS (HR, 2.11; 95% CI, 1.07-4.14; P = .030), and OS (HR, 2.20; 95% CI, 1.11-4.38; P = .024). Enhanced NK cell alloreactivity from more KIR activating signals (donor B haplotype) and fewer inhibitory signals (recipient missing KIR ligand or C1 or C2 homozygosity) may help mitigate the adverse prognosis associated with some AML somatic mutations. These results may have implications for improving patient risk stratification prior to transplant and optimizing donor selection.
Collapse
Affiliation(s)
- Sanghee Hong
- Department of Hematology and Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Lisa Rybicki
- Department of Quantitative Health Science, Cleveland Clinic, Cleveland, Ohio
| | - Aiwen Zhang
- Allogen Laboratories, Cleveland Clinic, Cleveland, Ohio
| | - Dawn Thomas
- Allogen Laboratories, Cleveland Clinic, Cleveland, Ohio
| | - Cassandra M Kerr
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio
| | - Jibran Durrani
- Department of Hematology and Oncology, National Institutes of Health, Bethesda, Maryland
| | - Magdalena A Rainey
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Agrima Mian
- Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Tapas R Behera
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Hetty E Carraway
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Aziz Nazha
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sudipto Mukherjee
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anjali S Advani
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Bhumika Patel
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Matt Kalaycio
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Brian J Bolwell
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Rabi Hanna
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Aaron T Gerds
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Brad Pohlman
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Betty K Hamilton
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mikkael A Sekeres
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Navneet S Majhail
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Medhat Askar
- Department of Transplant Immunology, Baylor University Medical Center, Houston, Texas
| | - Ronald Sobecks
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
15
|
Relevance of Polymorphic KIR and HLA Class I Genes in NK-Cell-Based Immunotherapies for Adult Leukemic Patients. Cancers (Basel) 2021; 13:cancers13153767. [PMID: 34359667 PMCID: PMC8345033 DOI: 10.3390/cancers13153767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Immunotherapies are promising approaches to curing different acute leukemias. Natural killer (NK) cells are lymphocytes that are efficient in the elimination of leukemic cells. NK-cell-based immunotherapies are particularly attractive, but the landscape of the heterogeneity of NK cells must be deciphered. This review provides an overview of the polymorphic KIR and HLA class I genes that modulate the NK cell repertoire and how these markers can improve the outcomes of patients with acute leukemia. A better knowledge of these genetic markers that are linked to NK cell subsets that are efficient against hematological diseases will optimize hematopoietic stem-cell donor selection and NK immunotherapy design. Abstract Since the mid-1990s, the biology and functions of natural killer (NK) cells have been deeply investigated in healthy individuals and in people with diseases. These effector cells play a particularly crucial role after allogeneic hematopoietic stem-cell transplantation (HSCT) through their graft-versus-leukemia (GvL) effect, which is mainly mediated through polymorphic killer-cell immunoglobulin-like receptors (KIRs) and their cognates, HLA class I ligands. In this review, we present how KIRs and HLA class I ligands modulate the structural formation and the functional education of NK cells. In particular, we decipher the current knowledge about the extent of KIR and HLA class I gene polymorphisms, as well as their expression, interaction, and functional impact on the KIR+ NK cell repertoire in a physiological context and in a leukemic context. In addition, we present the impact of NK cell alloreactivity on the outcomes of HSCT in adult patients with acute leukemia, as well as a description of genetic models of KIRs and NK cell reconstitution, with a focus on emergent T-cell-repleted haplo-identical HSCT using cyclosphosphamide post-grafting (haplo-PTCy). Then, we document how the immunogenetics of KIR/HLA and the immunobiology of NK cells could improve the relapse incidence after haplo-PTCy. Ultimately, we review the emerging NK-cell-based immunotherapies for leukemic patients in addition to HSCT.
Collapse
|
16
|
Agrawal V, Gbolahan OB, Stahl M, Zeidan AM, Zaid MA, Farag SS, Konig H. Vaccine and Cell-based Therapeutic Approaches in Acute Myeloid Leukemia. Curr Cancer Drug Targets 2021; 20:473-489. [PMID: 32357813 DOI: 10.2174/1568009620666200502011059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/05/2020] [Accepted: 03/29/2020] [Indexed: 12/13/2022]
Abstract
Over the past decade, our increased understanding of the interactions between the immune system and cancer cells has led to paradigm shifts in the clinical management of solid and hematologic malignancies. The incorporation of immune-targeted strategies into the treatment landscape of acute myeloid leukemia (AML), however, has been challenging. While this is in part due to the inability of the immune system to mount an effective tumor-specific immunogenic response against the heterogeneous nature of AML, the decreased immunogenicity of AML cells also represents a major obstacle in the effort to design effective immunotherapeutic strategies. In fact, AML cells have been shown to employ sophisticated escape mechanisms to evade elimination, such as direct immunosuppression of natural killer cells and decreased surface receptor expression leading to impaired recognition by the immune system. Yet, cellular and humoral immune reactions against tumor-associated antigens (TAA) of acute leukemia cells have been reported and the success of allogeneic stem cell transplantation and monoclonal antibodies in the treatment of AML clearly provides proof that an immunotherapeutic approach is feasible in the management of this disease. This review discusses the recent progress and persisting challenges in cellular immunotherapy for patients with AML.
Collapse
Affiliation(s)
- Vaibhav Agrawal
- Department of Medicine, Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Olumide B Gbolahan
- Division of Hematology and Oncology, University of Alabama School of Medicine, Birmingham, AL 35294, United States
| | - Maximilian Stahl
- Department of Medicine, Division of Hematology and Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Mohammad Abu Zaid
- Department of Medicine, Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Sherif S Farag
- Department of Medicine, Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Heiko Konig
- Department of Medicine, Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
17
|
Guethlein LA, Beyzaie N, Nemat-Gorgani N, Wang T, Ramesh V, Marin WM, Hollenbach JA, Schetelig J, Spellman SR, Marsh SGE, Cooley S, Weisdorf DJ, Norman PJ, Miller JS, Parham P. Following Transplantation for Acute Myelogenous Leukemia, Donor KIR Cen B02 Better Protects against Relapse than KIR Cen B01. THE JOURNAL OF IMMUNOLOGY 2021; 206:3064-3072. [PMID: 34117109 DOI: 10.4049/jimmunol.2100119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
In the treatment of acute myelogenous leukemia with allogeneic hematopoietic cell transplantation, we previously demonstrated that there is a greater protection from relapse of leukemia when the hematopoietic cell transplantation donor has either the Cen B/B KIR genotype or a genotype having two or more KIR B gene segments. In those earlier analyses, KIR genotyping could only be assessed at the low resolution of gene presence or absence. To give the analysis greater depth, we developed high-resolution KIR sequence-based typing that defines all the KIR alleles and distinguishes the expressed alleles from those that are not expressed. We now describe and analyze high-resolution KIR genotypes for 890 donors of this human transplant cohort. Cen B01 and Cen B02 are the common CenB haplotypes, with Cen B02 having evolved from Cen B01 by deletion of the KIR2DL5, 2DS3/5, 2DP1, and 2DL1 genes. We observed a consistent trend for Cen B02 to provide stronger protection against relapse than Cen B01 This correlation indicates that protection depends on the donor having inhibitory KIR2DL2 and/or activating KIR2DS2, and is enhanced by the donor lacking inhibitory KIR2DL1, 2DL3, and 3DL1. High-resolution KIR typing has allowed us to compare the strength of the interactions between the recipient's HLA class I and the KIR expressed by the donor-derived NK cells and T cells, but no clinically significant interactions were observed. The trend observed between donor Cen B02 and reduced relapse of leukemia points to the value of studying ever larger transplant cohorts.
Collapse
Affiliation(s)
- Lisbeth A Guethlein
- Department of Structural Biology, Stanford University, Stanford, CA.,Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Niassan Beyzaie
- Department of Structural Biology, Stanford University, Stanford, CA.,Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University, Stanford, CA.,Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Tao Wang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | | | - Wesley M Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Jill A Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | | | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Campus, London, United Kingdom.,University College London Cancer Institute, Royal Free Campus, London, United Kingdom
| | - Sarah Cooley
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN; and
| | - Daniel J Weisdorf
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN; and
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, Aurora, CO
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN; and
| | - Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA; .,Department of Microbiology and Immunology, Stanford University, Stanford, CA
| |
Collapse
|
18
|
Prospective KIR genotype evaluation of hematopoietic cell donors is feasible with potential to benefit patients with AML. Blood Adv 2021; 5:2003-2011. [PMID: 33843984 DOI: 10.1182/bloodadvances.2020002701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Donor KIR and recipient HLA combinations that minimize inhibition and favor activation of the NK repertoire are associated with improved outcomes after allogeneic hematopoietic cell transplantation (HCT) in patients with myeloid neoplasia. We prospectively evaluated a weighted donor ranking algorithm designed to prioritize HLA-compatible unrelated donors (URDs) with weak inhibitory KIR3DL1/HLA-Bw4 interaction, followed by donors with nontolerized activating KIR2DS1, and finally those with KIR centromeric B haplotype. During donor evaluation, we performed KIR genotyping and ranked 2079 URDs for 527 subjects with myelodysplastic syndrome (MDS) or acute myelogenous leukemia (AML). Among all patients, 394 (75%) had at least 1 KIR-advantageous donor, and 263 (50%) underwent HCT. In patients with AML, KIR3DL1 weak inhibition provided protection from relapse. Compared with KIR3DL1-Weak Inhibiting donors, KIR3DL1-Noninteracting donors were associated with increased risk of relapse (HR, 2.97; 95% CI, 1.33-6.64; P = .008) and inferior event-free survival (EFS; HR, 2.14; 95% CI, 1.16-3.95; P = .015). KIR3DL1-Strong Inhibiting donors were associated with HR, 1.65 (95% CI, 0.66-4.08; P = .25) for AML relapse and HR, 1.6 (95% CI, 0.81-3.17; P = .1) for EFS when compared with the use of KIR3DL1-weak inhibiting donors. Donor KIR2DS1/HLA-C1 status and centromeric KIR haplotype-B content were not associated with decreased risk of AML relapse. There was no benefit to KIR-based donor selection in patients with MDS. This study demonstrates that donor KIR typing is feasible, and prioritization of donors with certain KIR3DL1 genotypes may confer a protection from relapse after HCT in patients with AML.
Collapse
|
19
|
HLA-A alleles influencing NK cell function impact AML relapse following allogeneic hematopoietic cell transplantation. Blood Adv 2021; 4:4955-4964. [PMID: 33049053 DOI: 10.1182/bloodadvances.2020002086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
HLA-B allotypes exhibiting the Bw4 epitope trigger variable inhibitory signaling of KIR3DL1 receptor types, where strong inhibitory HLA-B and KIR3DL1 allele combinations are associated with increased risk for relapse of acute myelogenous leukemia (AML) following allogeneic hematopoietic cell transplantation (HCT). Several HLA-A allotypes also exhibit the Bw4 epitope. Studies with natural killer (NK) cell clones have demonstrated NK inhibition via KIR3DL1 by HLA-A Bw4+ allotypes, but did not delineate strengths of inhibition or hierarchies of NK education. Using primary NK cells from healthy donors, we demonstrate that HLA-A*23, HLA-A*24, and HLA-A*32 proteins are expressed at different densities and exhibit different capacities to educate and inhibit KIR3DL1-expressing NK cells in vitro. Among the HLA-A Bw4+ allotypes, HLA-A*24 and HLA-A*32 demonstrate the strongest inhibitory capacity. To determine if HLA-A allotypes with strong inhibitory capacity have similar negative impact in allogeneic HCT as HLA-B Bw4+ allotypes, we performed a retrospective analysis of 1729 patients with AML who received an allogeneic HCT from a 9/10 or 10/10 HLA allele-matched unrelated donor. Examination of the donor-recipient pairs whose Bw4 epitope was exclusively contributed from HLA-A*24 and A*32 allotypes revealed that patients with HLA-A*24 who received an allograft from a KIR3DL1+ donor experienced a higher risk of disease relapse (hazard ratio, 1.65; 95% confidence interval, 1.17-2.32; P = .004) when compared with patients without a Bw4 epitope. These findings indicate that despite weak affinity interactions with KIR3DL1, common HLA-A allotypes with the Bw4 epitope can interact with KIR3DL1+ donor NK cells with clinically meaningful impact and provide additional insight to donor NK alloreactivity in HLA-matched HCT.
Collapse
|
20
|
Arima N. Dual effects of natural killer cells in transplantation for leukemia. Crit Rev Oncol Hematol 2020; 158:103206. [PMID: 33388454 DOI: 10.1016/j.critrevonc.2020.103206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells were originally considered to belong to the innate immune system to play a protective role against tumor cells and viral infections. In human, they can recognize self and non-self HLA class 1 as their ligand. So, analyzing the outcomes of allogeneic hematopoietic stem cell transplantation is a good opportunity to know the antitumor effects and regulatory effects of NK cells through HLA class 1 matching and mismatching of donor and recipient. In this review, I looked back on the main analysis results of the past transplants, summarized our reports consisting of many cases in a single ethnic, and showed that NK cells might work oppositely depending on the type of leukemia. New treatment strategies based on these concepts may offer individualized treatment options and ultimately increase offer the possibility of a cure for patients with leukemia.
Collapse
Affiliation(s)
- Nobuyoshi Arima
- Department of Hematology, Shinko Hospital, 1-4-47, Wakihamacho, Chuo-ku, Kobe, 651-0072, Hyogo, Japan.
| |
Collapse
|
21
|
Prator CA, Donatelli J, Henrich TJ. From Berlin to London: HIV-1 Reservoir Reduction Following Stem Cell Transplantation. Curr HIV/AIDS Rep 2020; 17:385-393. [PMID: 32519184 DOI: 10.1007/s11904-020-00505-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Few interventional strategies lead to significant reductions in HIV-1 reservoir size or prolonged antiretroviral (ART)-free remission. Allogeneic stem cell transplantations (SCT) with or without donor cells harboring genetic mutations preventing functional expression of CCR5, an HIV coreceptor, lead to dramatic reductions in residual HIV burden. However, the mechanisms by which SCT reduces viral reservoirs and leads to a potential functional HIV cure are not well understood. RECENT FINDINGS A growing number of studies involving allogeneic SCT in people with HIV are emerging, including those with and without transplants involving CCR5Δ32/Δ32 mutations. Donor cells resistant to HIV entry are likely required in order to achieve permanent ART-free viral remission. However, dramatic reductions in the HIV reservoir secondary to beneficial graft-versus-host effects may lead to loss of HIV detection in blood and various tissues and lead to prolonged time to HIV rebound in individuals with wild-type CCR5 donors. Studies of SCT recipients and those who started very early ART during hyperacute infection suggest that dramatic reductions in reservoir size or restriction of initial reservoir seeding may lead to 8-10 months of time prior to eventual, and rapid, HIV recrudescence. Studies of allogeneic SCT in people with HIV have provided important insights into the size and nature of the HIV reservoir, and have invigorated other gene therapies to achieve HIV cure.
Collapse
Affiliation(s)
- Cecilia A Prator
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA
| | - Joanna Donatelli
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.,California Institute of Regenerative Medicine, Bridges to Stem Cell Research Program, San Francisco State University, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.
| |
Collapse
|
22
|
Shaffer BC, Hsu KC. Selection of allogeneic hematopoietic cell transplant donors to optimize natural killer cell alloreactivity. Semin Hematol 2020; 57:167-174. [PMID: 33256909 DOI: 10.1053/j.seminhematol.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/08/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
Natural killer (NK) cells are potent mediators of the graft versus leukemia phenomenon critical to the success of allogeneic hematopoietic cell transplantation. Central to calibrating NK effector function via their interaction with class I human leukocyte antigens are the numerous inhibitory killer Ig-like receptors (KIR). The KIR receptors are encoded by a family of polymorphic genes, whose expression is largely stochastic and uninfluenced by human leukocyte antigens genotype. These features provide the opportunity to select hematopoietic cell donors with favorable KIR genotypes that confer enhanced protection from relapse via NK-mediated graft versus leukemia. Over the last 2 decades, a large body of work has emerged examining the use of KIR genotyping to stratify potential donors based on anticipated NK alloreactivity. Overall, these results support KIR-based donor selection for patients undergoing allogeneic hematopoietic cell transplantation for a diagnosis of acute myelogenous leukemia. Despite this, the underlying factors that control NK cell responsiveness are not completely understood, and opportunities remain to refine donor selection using NK cell receptor genotyping. In this review, we will summarize the relevant findings with respect to KIR genotyping as a selection parameter for allogeneic hematopoietic cell donors and address practical considerations with respect to KIR-based selection of donors for patients with myeloid neoplasia.
Collapse
Affiliation(s)
- Brian C Shaffer
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell School of Medicine, New York, NY
| | - Katharine C Hsu
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell School of Medicine, New York, NY; Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
23
|
Partanen J, Hyvärinen K, Bickeböller H, Bogunia-Kubik K, Crossland RE, Ivanova M, Perutelli F, Dressel R. Review of Genetic Variation as a Predictive Biomarker for Chronic Graft-Versus-Host-Disease After Allogeneic Stem Cell Transplantation. Front Immunol 2020; 11:575492. [PMID: 33193367 PMCID: PMC7604383 DOI: 10.3389/fimmu.2020.575492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is one of the major complications of allogeneic stem cell transplantation (HSCT). cGvHD is an autoimmune-like disorder affecting multiple organs and involves a dermatological rash, tissue inflammation and fibrosis. The incidence of cGvHD has been reported to be as high as 30% to 60% and there are currently no reliable tools for predicting the occurrence of cGvHD. There is therefore an important unmet clinical need for predictive biomarkers. The present review summarizes the state of the art for genetic variation as a predictive biomarker for cGvHD. We discuss three different modes of action for genetic variation in transplantation: genetic associations, genetic matching, and pharmacogenetics. The results indicate that currently, there are no genetic polymorphisms or genetic tools that can be reliably used as validated biomarkers for predicting cGvHD. A number of recommendations for future studies can be drawn. The majority of studies to date have been under-powered and included too few patients and genetic markers. Like in all complex multifactorial diseases, large collaborative genome-level studies are now needed to achieve reliable and unbiased results. Some of the candidate genes, in particular, CTLA4, HSPE, IL1R1, CCR6, FGFR1OP, and IL10, and some non-HLA variants in the HLA gene region have been replicated to be associated with cGvHD risk in independent studies. These associations should now be confirmed in large well-characterized cohorts with fine mapping. Some patients develop cGvHD despite very extensive immunosuppression and other treatments, indicating that the current therapeutic regimens may not always be effective enough. Hence, more studies on pharmacogenetics are also required. Moreover, all of these studies should be adjusted for diagnostic and clinical features of cGvHD. We conclude that future studies should focus on modern genome-level tools, such as machine learning, polygenic risk scores and genome-wide association study-transcription meta-analyses, instead of focusing on just single variants. The risk of cGvHD may be related to the summary level of immunogenetic differences, or whole genome histocompatibility between each donor-recipient pair. As the number of genome-wide analyses in HSCT is increasing, we are approaching an era where there will be sufficient data to incorporate these approaches in the near future.
Collapse
Affiliation(s)
- Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Kati Hyvärinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Katarzyna Bogunia-Kubik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Rachel E Crossland
- Haematological Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Milena Ivanova
- Medical University, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Francesca Perutelli
- Haematological Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Gao F, Ye Y, Gao Y, Huang H, Zhao Y. Influence of KIR and NK Cell Reconstitution in the Outcomes of Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:2022. [PMID: 32983145 PMCID: PMC7493622 DOI: 10.3389/fimmu.2020.02022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells play a significant role in immune tolerance and immune surveillance. Killer immunoglobin-like receptors (KIRs), which recognize human leukocyte antigen (HLA) class I molecules, are particularly important for NK cell functions. Previous studies have suggested that, in the setting of hematopoietic stem cell transplantation (HSCT), alloreactive NK cells from the donor could efficiently eliminate recipient tumor cells and the residual immune cells. Subsequently, several clinical models were established to determine the optimal donors who would exhibit a graft-vs. -leukemia (GVL) effect without developing graft-vs. -host disease (GVHD). In addition, hypotheses about specific beneficial receptor-ligand pairs and KIR genes have been raised and the favorable effects of alloreactive NK cells are being investigated. Moreover, with a deeper understanding of the process of NK cell reconstitution post-HSCT, new factors involved in this process and the defects of previous models have been observed. In this review, we summarize the most relevant literatures about the impact of NK cell alloreactivity on transplant outcomes and the factors affecting NK cell reconstitution.
Collapse
Affiliation(s)
- Fei Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yang Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|
25
|
Successful Treatment of Pediatric Refractory/Relapsed AML with KIR-Ligand-Mismatched Cord Blood Transplant after FLAG-IDA Reinduction Therapy with or without the GO Regimen. Case Rep Hematol 2020; 2020:1378056. [PMID: 32099697 PMCID: PMC7037524 DOI: 10.1155/2020/1378056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/11/2020] [Accepted: 01/25/2020] [Indexed: 11/17/2022] Open
Abstract
Prognosis in pediatric patients with refractory/relapsed acute myeloid leukemia (AML) is grim, and there is no standard treatment for such patients. Combined treatment with intensive chemotherapy and gemtuzumab ozogamicin (GO), a monoclonal anti-CD33 antibody conjugated with calicheamicin, is useful as reinduction therapy in refractory/relapsed AML. Here, we describe three cases of pediatric refractory/relapsed AML that were successfully managed with FLAG-IDA (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin), with or without GO, as reinduction therapy before a KIR-ligand-mismatched cord blood transplant. This strategy relies on the fact that killer cell immunoglobulin-like receptors (KIR) on cord blood natural killer (NK) cells recognize human leukocyte antigen (HLA) class I alleles, and that donor KIR-ligand incompatibility may be associated with lower incidence of relapse and improved survival in AML, as cells that lack these inhibitory HLA ligands can activate NK cells. All three patients are currently alive and have been disease-free for 24-65 months, although one patient developed severe sinusoidal obstructive syndrome (SOS). Thus, our strategy can result in excellent outcomes in pediatric patients with refractory/relapsed AML.
Collapse
|
26
|
Arima N, Kanda J, Yabe T, Morishima Y, Tanaka J, Kako S, Sakaguchi H, Kato M, Ohashi K, Ozawa Y, Fukuda T, Ota S, Tachibana T, Onizuka M, Ichinohe T, Atsuta Y, Kanda Y. Increased Relapse Risk of Acute Lymphoid Leukemia in Homozygous HLA-C1 Patients after HLA-Matched Allogeneic Transplantation: A Japanese National Registry Study. Biol Blood Marrow Transplant 2019; 26:431-437. [PMID: 31704471 DOI: 10.1016/j.bbmt.2019.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022]
Abstract
Natural killer (NK) cells expressing killer cell immunoglobulin-like receptors (KIRs) can recognize specific HLA class I molecules as their ligands. By studying a large Japanese transplant registry, we compared transplant outcomes between patients heterozygous for HLA-CAsn80/CLys80 (HLA-C1/C2) and those homozygous for HLA-C1 (HLA-C1/C1) among patients who had undergone HLA-matched hematopoietic stem cell transplantation (HSCT). A high frequency of KIR2DL1 with strong HLA-C2 binding capacity and a low frequency of HLA-C2 and KIR haplotype B are characteristic of the Japanese population. In our previous report, HLA-C1/C1 patients with myeloid leukemia were less likely to relapse than HLA-C1/C2 patients. We newly assessed 2884 patients with acute lymphoblastic leukemia (ALL) who received HLA-matched allogeneic HSCT and analyzed their leukemia relapses by using adjusted competing-risk methods. HLA-C1/C1 patients with ALL experienced significantly higher relapse rates than HLA-C1/C2 patients (hazard ratio [HR] = 1.55, P = .003), contrary to our results in patients with myeloid leukemia. We allocated patients with ALL to several subgroups and found a higher frequency of relapse (HR >1.8) in the HLA-C1/C1 group than in the HLA-C1/C2 group among patients with Ph-negative ALL, those who had no cytomegalovirus reactivation, those who received transplants from donors who were aged 41 years or older, and those who experienced acute graft-versus-host disease, especially if it required systemic treatment. One interpretation of our results is that KIR2DL1-positive NK cells disrupt T cells, antigen-presenting cells, or both from working efficiently in transplant immunity in HLA-C1/C1 patients with ALL. Another is that KIR2DS1-positive NK cells directly attack HLA-C2-positive ALL blasts in HLA-C1/C2 patients. Whether HLA-C2 can cause recurrence to decrease or increase in patients depending on the disease (ALL or myeloid leukemia) will be a very important finding. We hope that our results will provide clues to the real mechanisms behind relapse after transplantation in patients with different HLA profiles.
Collapse
Affiliation(s)
- Nobuyoshi Arima
- Department of Hematology, Shinko Hospital, Kobe, Japan; Department of Hematology, Medical Research Institute Kitano Hospital, Osaka, Japan.
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Yabe
- Laboratory Department, Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | | | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shinichi Kako
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hirotoshi Sakaguchi
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross, Nagoya First Hospital, Nagoya, Japan
| | - Motohiro Kato
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuteru Ohashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Takahiro Fukuda
- Hematopoietic Stem Cell Transplantation Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | | | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Atsuta
- The Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan; Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
27
|
Abstract
Natural killer (NK) cells are bone marrow-derived large granular lymphocytes defined by CD3negCD56pos and represent 5% to 25% of peripheral blood mononuclear cell fraction of the healthy humans. NK cells have a highly specific and sophisticated target cell recognition receptor system arbitrated by the integration of signals triggered by a multitude of inhibitory and activating receptors. Human NK cells express distinct families of receptors, including (1) killer cell immunoglobulin-like receptors, (2) killer cell lectin-like receptors, (3) leukocyte immunoglobulin-like receptors, and (4) natural cytotoxicity receptors.
Collapse
Affiliation(s)
- Raja Rajalingam
- Department of Surgery, Immunogenetics and Transplantation Laboratory, University of California San Francisco, 3333 California Street, Suite 150, San Francisco, CA 94118, USA.
| |
Collapse
|
28
|
Aurelius J, Möllgård L, Kiffin R, Ewald Sander F, Nilsson S, Thorén FB, Hellstrand K, Martner A. Anthracycline-based consolidation may determine outcome of post-consolidation immunotherapy in AML. Leuk Lymphoma 2019; 60:2771-2778. [PMID: 30991860 DOI: 10.1080/10428194.2019.1599110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Consolidation chemotherapy in acute myeloid leukemia (AML) aims at eradicating residual leukemic cells and mostly comprises high-dose cytarabine with or without the addition of anthracyclines, including daunorubicin. Immunogenic cell death (ICD) may contribute to the efficacy of anthracyclines in solid cancer, but the impact of ICD in AML is only partly explored. We assessed aspects of ICD, as reflected by calreticulin expression, in primary human AML blasts and observed induction of surface calreticulin upon exposure to daunorubicin but not to cytarabine. We next assessed immune phenotypes in AML patients in complete remission (CR), following consolidation chemotherapy with or without anthracyclines. These patients subsequently received immunotherapy with histamine dihydrochloride (HDC) and IL-2. Patients who had received anthracyclines for consolidation showed enhanced frequencies of CD8+ TEM cells in blood along with improved survival. We propose that the choice of consolidation therapy prior to AML immunotherapy may determine clinical outcome.
Collapse
Affiliation(s)
- Johan Aurelius
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Möllgård
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roberta Kiffin
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Ewald Sander
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Fredrik Bergh Thorén
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Cancer Center, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Bachanova V, Weisdorf DJ, Wang T, Marsh SGE, Cereb N, Haagenson MD, Spellman SR, Lee SJ, Guethlein LA, Parham P, Miller JS, Cooley SA. Donor Killer Cell Immunoglobulin-Like Receptor Genotype Does Not Improve Graft-versus-Leukemia Responses in Chronic Lymphocytic Leukemia after Unrelated Donor Transplant: A Center for International Blood and Marrow Transplant Research Analysis. Biol Blood Marrow Transplant 2018; 25:949-954. [PMID: 30594542 DOI: 10.1016/j.bbmt.2018.12.763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
Allogeneic hematopoietic cell transplantation (alloHCT) remains the sole curative therapy for patients with chronic lymphocytic leukemia (CLL), leading to 40% to 45% long-term survival. The impact of donor killer immunoglobulin-like receptor (KIR) genotype on outcomes of unrelated donor (URD) alloHCT for CLL is unknown. We examined 573 adult URD CLL recipient pairs. KIR genotype (presence/absence) was determined for each donor, and comprehensive modeling of interactions with recipient HLA class I loci (KIR ligands) was used to evaluate their effect on relapse and survival. Recipients had a median age of 56 years, and most were not in remission (65%). Both 8/8 HLA-matched (81%) or 7/8 HLA matched grafts (19%) were studied. Factors associated with improved overall survival (OS) were reduced-intensity conditioning (hazard ratio [HR] of death, .76) and good performance status (HR, .46), whereas alloHCT in nonremission (HR, 1.96) and mismatched donors (HR, 2.01) increased mortality. No models demonstrated a relationship between donor KIR genotype and transplant outcomes. Cox regression models comparing donors with A/A versus B/x KIR haplotypes and those with KIR gene content scores of 0 versus 1 versus ≥2 yielded similar rates of nonrelapse mortality, relapse, acute graft-versus-host disease (GVHD), and chronic GVHD and the same progression-free survival and OS. Relapse risk was not different for grafts from donors with KIR3DL1 transplanted into HLA C1/1 versus C2 recipients. This large analysis failed to demonstrate an association between URD KIR genotype and transplant outcome for patients with CLL, and thus KIR genotyping should not be used as a donor selection criterion in this setting.
Collapse
Affiliation(s)
- Veronika Bachanova
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.
| | - Daniel J Weisdorf
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Tao Wang
- Division of Biostatistics and Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Steven G E Marsh
- Anthony Nolan Research Institute & University College London Cancer Institute, Royal Free Campus, London, United Kingdom
| | | | - Michael D Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | | | - Lisbeth A Guethlein
- Structural Biology and Microbiology and Immunology, Stanford University, Stanford, California
| | - Peter Parham
- Structural Biology and Microbiology and Immunology, Stanford University, Stanford, California
| | - Jeffrey S Miller
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sarah A Cooley
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
30
|
Fleischhauer K, Hsu KC, Shaw BE. Prevention of relapse after allogeneic hematopoietic cell transplantation by donor and cell source selection. Bone Marrow Transplant 2018; 53:1498-1507. [PMID: 29795435 PMCID: PMC7286200 DOI: 10.1038/s41409-018-0218-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/27/2023]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is the most established form of cancer immunotherapy and has been successfully applied for the treatment and cure of otherwise lethal neoplastic blood disorders. Cancer immune surveillance is mediated to a large extent by alloreactive T and natural killer (NK) cells recognizing genetic differences between patient and donor. Profound insights into the biology of these effector cells has been obtained over recent years and used for the development of innovative strategies for intelligent donor selection, aiming for improved graft-versus-leukemia effect without unmanageable graft-versus-host disease. The cellular composition of the stem cell source plays a major role in modulating these effects. This review summarizes the current state-of the-art of donor selection according to HLA, NK alloreactivity and stem cell source.
Collapse
Affiliation(s)
- Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany.
- German Cancer Consortium, Heidelberg, Germany.
| | - Katharine C Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research (CIBMTR), Froedtert & the Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
31
|
Weisdorf D, Cooley S, Wang T, Trachtenberg E, Haagenson MD, Vierra-Green C, Spellman S, Spahn A, Vogel J, Kobusingye H, Fehninger T, Woolfrey A, Devine S, Ross M, Waller EK, Sobecks R, Parham P, Guethlein LA, Marsh SGE, Miller J. KIR Donor Selection: Feasibility in Identifying better Donors. Biol Blood Marrow Transplant 2018; 25:e28-e32. [PMID: 30149149 DOI: 10.1016/j.bbmt.2018.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/18/2018] [Indexed: 01/17/2023]
Abstract
We previously reported that acute myelogenous leukemia (AML) transplants using killer cell immunoglobulin-type receptor (KIR) B haplotype better or best (≥2 B activating gene loci ± Cen B/B) unrelated donors (URDs) yield less relapse and better survival. In this prospective trial we evaluated 535 AML searches from 14 participating centers with centralized donor KIR genotyping for donor selection. This represented 3% to 48% of all AML searches (median 20%) per center, totaling 3 to 172 patients (median 22) per center. Donor KIR genotype was reported at a median of 14 days after request (≤26 days for 76% of searches). In 535 searches, 2080 donors were requested for KIR genotyping (mean 4.3 per search); and a median of 1.8 (range, 0 to 4.5) per search were KIR typed. Choosing more donors for confirmatory HLA and KIR haplotype identification enriched the likelihood of finding KIR better or best donors. The search process identified a mean of 30% KIR better or best donors; the success ranged from 24% to 38% in the 11 centers enrolling ≥8 patients. More donors requested for KIR genotyping increased the likelihood of identifying KIR better or best haplotype donors. Of the 247 transplants, 9.3% used KIR best, 19% used KIR better, and 48% used KIR neutral donors while 24% used a non-KIR-tested donor. KIR genotyping did not delay transplantation. The time from search to transplant was identical for transplants using a KIR-genotyped versus a non-KIR-genotyped donor. Prospective evaluation can rapidly identify KIR favorable genotype donors, but choosing more donors per search would substantially increase the likelihood of having a KIR best or better donor available for transplantation. Transplant centers and donor registries must both commit extra effort to incorporate new characteristics (beyond HLA, age, and parity) into improved donor selection. Deliberate efforts to present additional genetic factors for donor selection will require novel procedures.
Collapse
Affiliation(s)
- Daniel Weisdorf
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota.
| | - Sarah Cooley
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Tao Wang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Michael D Haagenson
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI & Minneapolis, MN
| | - Cynthia Vierra-Green
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI & Minneapolis, MN
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI & Minneapolis, MN
| | - Ashley Spahn
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI & Minneapolis, MN
| | - Jenny Vogel
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI & Minneapolis, MN
| | - Hati Kobusingye
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI & Minneapolis, MN
| | | | - Ann Woolfrey
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | | | | | | | | - Steven G E Marsh
- Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, London, United Kingdom
| | - Jeffrey Miller
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
32
|
Escudero A, Martínez-Romera I, Fernández L, Valentín J, González-Vicent M, Vicario JL, Madero-Jarabo R, Diaz MÁ, Pérez-Martínez A. Donor KIR Genotype Impacts on Clinical Outcome after T Cell-Depleted HLA Matched Related Allogeneic Transplantation for High-Risk Pediatric Leukemia Patients. Biol Blood Marrow Transplant 2018; 24:2493-2500. [PMID: 30145228 DOI: 10.1016/j.bbmt.2018.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
Abstract
Preliminary data suggest that ex vivo T cell-depleted matched related donor (MRD) hematopoietic stem cell transplantation (HSCT) is feasible and confers a clinically beneficial reduction in graft-versus-host disease. Classically, T cell-depleted grafts were associated with reduction of the graft-versus-leukemia (GVL) effect because of delayed T cell immune reconstitution. However, natural killer (NK) cell alloreactivity is also critical for an early GVL effect as well as for lymphocyte immune reconstitution. Here, we study the role of NK cells in MRD T cell-depleted HSCT, which is still poorly understood. Given that MRD ligands for inhibitory killer cell immunoglobulin-like receptors (KIRs) are matched, we focused on activating KIR receptors. We retrospectively analyzed KIR genotyping in patients and MRDs in 40 ex vivo T cell-depleted pediatric HSCTs. The log-rank test and Cox proportional risk test were performed to correlate genotype with clinical outcome (relapse rate, disease-free survival, and overall survival) and immune reconstitution. The statistical analysis revealed poorer overall survival when donors have a KIR-B content score of ≥2, a best/better subtype, or present the KIR2DS1 gene. The patient's relapse rate was higher when donors present the KIR2DL5A gene, as well as a poorer probability of disease-free survival when the donor is classified with a best/better subtype. Regarding immune reconstitution, donor KIR haplotype A or the presence of inhibitory KIR genes promote best recovery of T lymphocytes, whereas donor KIR haplotype B or the presence of activating KIR genes confer better expansion of NK cells. These findings suggest that the selection of MRDs with an inhibitory KIR phenotype improve T cell expansion as well as the clinical outcome after pediatric ex vivo T cell-depleted HSCT.
Collapse
Affiliation(s)
- Adela Escudero
- Traslational Research in Pediatric Oncology, Hematopoietic Stem Cell Transplantation, Cell Therapy, INGEMM-IdiPAZ, La Paz University Hospital, Madrid, Spain
| | | | - Lucía Fernández
- Hematological Research Program, Cancer Research National Centre, Madrid, Spain
| | - Jaime Valentín
- Traslational Research in Pediatric Oncology, Hematopoietic Stem Cell Transplantation, Cell Therapy, INGEMM-IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Marta González-Vicent
- Department of Hemato-Oncology and Stem Cell Transplantation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | | | - Miguel Ángel Diaz
- Department of Hemato-Oncology and Stem Cell Transplantation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Antonio Pérez-Martínez
- Traslational Research in Pediatric Oncology, Hematopoietic Stem Cell Transplantation, Cell Therapy, INGEMM-IdiPAZ, La Paz University Hospital, Madrid, Spain; Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, La Paz University Hospital. Madrid, Spain.
| |
Collapse
|
33
|
Description of CD8 + Regulatory T Lymphocytes and Their Specific Intervention in Graft-versus-Host and Infectious Diseases, Autoimmunity, and Cancer. J Immunol Res 2018; 2018:3758713. [PMID: 30155493 PMCID: PMC6098849 DOI: 10.1155/2018/3758713] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/09/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Gershon and Kondo described CD8+ Treg lymphocytes as the first ones with regulating activity due to their tolerance ability to foreign antigens and their capacity to inhibit the proliferation of other lymphocytes. Regardless, CD8+ Treg lymphocytes have not been fully described-unlike CD4+ Treg lymphocytes-because of their low numbers in blood and the lack of specific and accurate population markers. Still, these lymphocytes have been studied for the past 30 years, even after finding difficulties during investigations. As a result, studies have identified markers that define their subpopulations. This review is focused on the expression of cell membrane markers as CD25, CD122, CD103, CTLA-4, CD39, CD73, LAG-3, and FasL as well as soluble molecules such as FoxP3, IFN-γ, IL-10, TGF-β, IL-34, and IL-35, in addition to the lack of expression of cell activation markers such as CD28, CD127 CD45RC, and CD49d. This work also underlines the importance of identifying some of these markers in infections with several pathogens, autoimmunity, cancer, and graft-versus-host disease as a strategy in their prevention, monitoring, and cure.
Collapse
|
34
|
Wong E, Davis JE, Grigg A, Szer J, Ritchie D. Strategies to enhance the graft versus tumour effect after allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant 2018; 54:175-189. [PMID: 29904127 DOI: 10.1038/s41409-018-0244-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/09/2018] [Accepted: 05/15/2018] [Indexed: 11/09/2022]
Abstract
Relapse of haematological malignancies after allogeneic haematopoietic stem cell transplant is a major cause of mortality. The immunological mechanisms that may lead to disease relapse may include immunological immaturity prior to reconstitution of the allogeneic immune system, tumour antigen downregulation or promotion of T-cell exhaustion by interactions with the tumour microenvironment. Current therapeutic strategies for post-transplant relapse are limited in their efficacy and alternative approaches are required. In this review, we discuss the mechanisms of T and NK-cell immune evasion that facilitate relapse of haematological malignancies after allogeneic stem cell transplantation, and explore emerging strategies to augment the allogeneic immune system in order to construct a more potent graft versus tumour response.
Collapse
Affiliation(s)
- Eric Wong
- Clinical Haematology and Bone Marrow Transplantation, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Victoria, Australia. .,Australian Cancer Research Foundation Translational Research Laboratory, Victoria, Australia. .,Department of Medicine, University of Melbourne, Victoria, Australia.
| | - Joanne E Davis
- Australian Cancer Research Foundation Translational Research Laboratory, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia
| | - Andrew Grigg
- Department of Medicine, University of Melbourne, Victoria, Australia.,Department of Clinical Haematology and Olivia Newton John Cancer Research Institute, Austin Hospital, Victoria, Australia
| | - Jeff Szer
- Clinical Haematology and Bone Marrow Transplantation, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia
| | - David Ritchie
- Clinical Haematology and Bone Marrow Transplantation, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Victoria, Australia.,Australian Cancer Research Foundation Translational Research Laboratory, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Petersdorf EW. In celebration of Ruggero Ceppellini: HLA in transplantation. HLA 2018; 89:71-76. [PMID: 28102037 DOI: 10.1111/tan.12955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/17/2022]
Abstract
The availability of hematopoietic cell transplantation as curative therapy for blood disorders has been dramatically improved through a better understanding of the human leukocyte antigen (HLA) barrier. Although a fully compatible unrelated donor is preferable, transplantation from donors with a limited degree of HLA mismatching is associated with acceptable outcomes in many cases. Research on the limits of HLA mismatching, and the features that define permissible HLA mismatches will continue to enable transplantation to be more broadly available to patients in need.
Collapse
Affiliation(s)
- E W Petersdorf
- Fred Hutchinson Cancer Research Center, Division of Clinical Research, Seattle, Washington
| |
Collapse
|
36
|
Fuchs E. Haploidentical Hematopoietic Cell Transplantation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
37
|
Reddy P, Ferrara JL. Graft-Versus-Host Disease and Graft-Versus-Leukemia Responses. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
38
|
Arima N, Kanda J, Tanaka J, Yabe T, Morishima Y, Kim SW, Najima Y, Ozawa Y, Eto T, Kanamori H, Mori T, Kobayashi N, Kondo T, Nakamae H, Uchida N, Inoue M, Fukuda T, Ichinohe T, Atsuta Y, Kanda Y. Homozygous HLA-C1 is Associated with Reduced Risk of Relapse after HLA-Matched Transplantation in Patients with Myeloid Leukemia. Biol Blood Marrow Transplant 2017; 24:717-725. [PMID: 29197675 DOI: 10.1016/j.bbmt.2017.11.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells assume graft-versus-leukemia alloreactivity after hematopoietic stem cell transplantation (HSCT) through their inhibitory killer cell immunoglobulin-like receptors (KIRs). KIR2D family members recognize HLA-C alleles with Asn80 (HLA-C1) or Lys80 (HLA-C2). The predominance of HLA-C1 over HLA-C2 and the frequent presence of KIR2DL1 are characteristic of Japanese people. We compared clinical outcomes among homozygous HLA-C1 (HLA-C1/C1) patients and heterozygous HLA-C1/C2 patients who underwent HLA-matched HSCT for hematologic malignancies by assessing the data of 10,638 patients from the Japanese national registry. HLA-C1/C1 recipients had a lower rate of relapse than HLA-C1/C2 recipients after transplantation for acute myelogenous leukemia (AML) (hazard ratio [HR], .79; P = .006) and chronic myelogenous leukemia (CML) (HR, .48; P = .025), but not for acute lymphoblastic leukemia (HR, 1.36), lymphoma (HR, .97), or low-grade myelodysplastic syndrome (HR, 1.40). We then grouped AML and CML patients together and divided them into several subgroups. Advantages of HLA-C1/C1 recipients over HLA-C1/C2 recipients regarding relapse were observed irrespective of donor relation (related: HR, .79, P = .069; unrelated: HR, .77, P = .022), preparative regimen (myeloablative: HR, .79, P = .014; reduced intensity: HR, .73, P = .084), and occurrence of acute graft-versus-host disease (yes: HR, .70, P = .122; no, HR .71, P = .026) or cytomegalovirus reactivation (reactivated: HR .67,P = .054; nonreactivated: HR .71, P = .033); however, these advantages were not observed in recipients with a delay in achieving complete chimerism (HR, 1.06). The advantage of decreasing relapse and extending relapse-free survival of C1/1 over C1/2 KIR-ligand status was most pronounced in T cell-depleted HSCT (HR, .27; P < .001 and HR, .30; P = .002, respectively) and in children age <15 years (HR, .29; P < .001 and HR .31; P < .001, respectively). Our findings represent an important mechanism responsible for the immunity against HLA-C2-negative myeloid leukemia cells after HLA-matched transplantation.
Collapse
Affiliation(s)
- Nobuyoshi Arima
- Department of Hematology, Medical Research Institute Kitano Hospital, Osaka, Japan.
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshio Yabe
- Hematology Division, Japanese Red Cross Tokyo Metropolitan Blood Center, Tokyo, Japan
| | - Yasuo Morishima
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Sung-Won Kim
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yuho Najima
- Hematology Division, Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Heiwa Kanamori
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Takehiko Mori
- Department of Hematology, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Kobayashi
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Tadakazu Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka City University Hospital, Osaka, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Masami Inoue
- Department of Hematology/Oncology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan; Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinobu Kanda
- Devision of Hematology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
39
|
Shimoni A, Vago L, Bernardi M, Yerushalmi R, Peccatori J, Greco R, Shem-Tov N, Lo Russo A, Danylesko I, Apel A, Bonini C, Lupo Stanghellini MT, Nagler A, Ciceri F. Missing HLA C group 1 ligand in patients with AML and MDS is associated with reduced risk of relapse and better survival after allogeneic stem cell transplantation with fludarabine and treosulfan reduced toxicity conditioning. Am J Hematol 2017. [PMID: 28631269 DOI: 10.1002/ajh.24827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reduced-toxicity conditioning with fludarabine and treosulfan is a dose-intensive regimen with enhanced anti-leukemia effect and acceptable toxicity in AML/MDS. HLA-C regulates natural-killer (NK) cell function by inhibiting Killer immunoglobulin-like receptors (KIR) and is divided into C1 and C2 epitopes. The missing-ligand theory suggests that missing recipient KIR ligands drives NK-alloreactivity after SCT, in the absence of HLA-mismatch by activating unlicensed donor NK cells. We analyzed SCT outcomes in 203 patients with AML/MDS, median age 58 years, given SCT from matched-siblings (n = 97) or matched-unrelated donors (n = 106), using two treosulfan doses (total 36 or 42 g/m2 ). 34% expressed one HLA-C group 1 allele (C1C1), 19% one HLA-C group 2 allele (C2C2), and 48% both KIR ligands (C1C2). Median follow-up was 48 months. 5-year relapse, nonrelapse mortality (NRM) and leukemia-free survival (LFS) rates were 38%, 27%, and 36%, respectively. Relapse rates were 43%, 45%, and 26% in patients expressing C1C1, C1C2, and C2C2 ligands, respectively (P = .03). Multivariate-analysis identified chemo-refractory disease (HR 3.1, P = .003), poor cytogenetics (HR 1.7, P = .08), female donor to male recipient (HR 0.4, P = .01) and C2C2 ligands (HR 0.4, P = .04) as independent factors predicting relapse. HLA-C ligands were not associated with GVHD or NRM. LFS was 33%, 30%, and 46%, respectively (P = .07). Chemorefractory disease (HR 3.1, P = .0004) and C2C2 group ligand (HR 0.6, P = .06) independently predicted LFS. Treosulfan dose did not predict any SCT outcome. In conclusion, missing HLA-C group 1 ligand is associated with reduced relapse risk, similar NRM and improved LFS, after HLA-matched SCT with treosulfan conditioning in AML/MDS.
Collapse
Affiliation(s)
- Avichai Shimoni
- Division of Hematology; Chaim Sheba Medical Center, Tel-Hashoer; Israel
- Sackler Medical School, Tel-Aviv University; Tel-Aviv Israel
| | - Luca Vago
- IRCCS San Raffaele Hospital; Hematology and Bone Marrow Transplantation Unit; Milan Italy
| | - Massimo Bernardi
- IRCCS San Raffaele Hospital; Hematology and Bone Marrow Transplantation Unit; Milan Italy
| | - Ronit Yerushalmi
- Division of Hematology; Chaim Sheba Medical Center, Tel-Hashoer; Israel
| | - Jacopo Peccatori
- IRCCS San Raffaele Hospital; Hematology and Bone Marrow Transplantation Unit; Milan Italy
| | - Raffaella Greco
- IRCCS San Raffaele Hospital; Hematology and Bone Marrow Transplantation Unit; Milan Italy
| | - Noga Shem-Tov
- Division of Hematology; Chaim Sheba Medical Center, Tel-Hashoer; Israel
| | - Alessandro Lo Russo
- IRCCS San Raffaele Hospital; Hematology and Bone Marrow Transplantation Unit; Milan Italy
| | - Ivetta Danylesko
- Division of Hematology; Chaim Sheba Medical Center, Tel-Hashoer; Israel
| | - Arie Apel
- Division of Hematology; Chaim Sheba Medical Center, Tel-Hashoer; Israel
| | - Chiara Bonini
- IRCCS San Raffaele Hospital; Hematology and Bone Marrow Transplantation Unit; Milan Italy
- University Vita-Salute San Raffaele; Milan Italy
| | | | - Arnon Nagler
- Division of Hematology; Chaim Sheba Medical Center, Tel-Hashoer; Israel
- Sackler Medical School, Tel-Aviv University; Tel-Aviv Israel
| | - Fabio Ciceri
- IRCCS San Raffaele Hospital; Hematology and Bone Marrow Transplantation Unit; Milan Italy
- University Vita-Salute San Raffaele; Milan Italy
| |
Collapse
|
40
|
Boudreau JE, Giglio F, Gooley TA, Stevenson PA, Le Luduec JB, Shaffer BC, Rajalingam R, Hou L, Hurley CK, Noreen H, Reed EF, Yu N, Vierra-Green C, Haagenson M, Malkki M, Petersdorf EW, Spellman S, Hsu KC. KIR3DL1/HLA-B Subtypes Govern Acute Myelogenous Leukemia Relapse After Hematopoietic Cell Transplantation. J Clin Oncol 2017; 35:2268-2278. [PMID: 28520526 PMCID: PMC5501362 DOI: 10.1200/jco.2016.70.7059] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose Disease relapse remains a major challenge to successful outcomes in patients who undergo allogeneic hematopoietic cell transplantation (HCT). Donor natural killer (NK) cell alloreactivity in HCT can control leukemic relapse, but capturing alloreactivity in HLA-matched HCT has been elusive. HLA expression on leukemia cells-upregulated in the post-HCT environment-signals for NK cell inhibition via inhibitory killer immunoglobulin-like (KIR) receptors and interrupts their antitumor activity. We hypothesized that varied strengths of inhibition among subtypes of the ubiquitous KIR3DL1 and its cognate ligand, HLA-B, would titrate NK reactivity against acute myelogenous leukemia (AML). Patients and Methods By using an algorithm that was based on polymorphism-driven expression levels and specificities, we predicted and tested inhibitory and cytotoxic NK potential on the basis of KIR3DL1/HLA-B subtype combinations in vitro and evaluated their impact in 1,328 patients with AML who underwent HCT from 9/10 or 10/10 HLA-matched unrelated donors. Results Segregated by KIR3DL1 subtype, NK cells demonstrated reproducible patterns of strong, weak, or noninhibition by target cells with defined HLA-B subtypes, which translated into discrete cytotoxic hierarchies against AML. In patients, KIR3DL1 and HLA-B subtype combinations that were predictive of weak inhibition or noninhibition were associated with significantly lower relapse (hazard ratio [HR], 0.72; P = .004) and overall mortality (HR, 0.84; P = .030) compared with strong inhibition combinations. The greatest effects were evident in the high-risk group of patients with all KIR ligands (relapse: HR, 0.54; P < .001; and mortality: HR, 0.74; P < .008). Beneficial effects of weak and noninhibiting KIR3DL1 and HLA-B subtype combinations were separate from and additive to the benefit of donor activating KIR2DS1. Conclusion Consideration of KIR3DL1-mediated inhibition in donor selection for HLA-matched HCT may achieve superior graft versus leukemia effects, lower risk for relapse, and an increase in survival among patients with AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Alleles
- Cell Line
- Child
- Child, Preschool
- Cytotoxicity Tests, Immunologic
- Female
- Genetic Variation
- Genotype
- HLA-B Antigens/genetics
- HLA-B Antigens/immunology
- Hematopoietic Stem Cell Transplantation
- Humans
- Infant
- Infant, Newborn
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- Receptors, KIR3DL1/genetics
- Receptors, KIR3DL1/immunology
- Recurrence
- Survival Rate
- Transplantation, Homologous
- Young Adult
Collapse
Affiliation(s)
- Jeanette E. Boudreau
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Fabio Giglio
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Ted A. Gooley
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Philip A. Stevenson
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Jean-Benoît Le Luduec
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Brian C. Shaffer
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Raja Rajalingam
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Lihua Hou
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Carolyn Katovich Hurley
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Harriet Noreen
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Elaine F. Reed
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Neng Yu
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Cynthia Vierra-Green
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Michael Haagenson
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Mari Malkki
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Effie W. Petersdorf
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Stephen Spellman
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| | - Katharine C. Hsu
- Jeanette E. Boudreau, Fabio Giglio, Jean-Benoît Le Luduec, Brian C. Shaffer, and Katharine C. Hsu, Memorial Sloan Kettering Cancer Center; Brian C. Shaffer and Katharine C. Hsu, Weill Cornell Medical College, New York, NY; Ted A. Gooley, Philip A. Stevenson, Mari Malkki, and Effie W. Petersdorf, Fred Hutchinson Cancer Research Center, Seattle, WA; Raja Rajalingam, University of California, San Francisco, San Francisco; Elaine F. Reed, University of California, Los Angeles, Los Angeles, CA; Lihua Hou and Carolyn Katovich Hurley, Georgetown University Medical Center, Washington, DC; Harriet Noreen, University of Minnesota; Cynthia Vierra-Green, Michael Haagenson, and Stephen Spellman, Center for International Blood and Marrow Transplant Research, Minneapolis, MN; and Neng Yu, American Red Cross Blood Services, Dedham, MA
| |
Collapse
|
41
|
Sarvaria A, Jawdat D, Madrigal JA, Saudemont A. Umbilical Cord Blood Natural Killer Cells, Their Characteristics, and Potential Clinical Applications. Front Immunol 2017; 8:329. [PMID: 28386260 PMCID: PMC5362597 DOI: 10.3389/fimmu.2017.00329] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system able to kill different targets such as cancer cells and virally infected cells without prior activation making then attractive candidates for cancer immunotherapy. Umbilical cord blood (UCB) has become a source of hematopoietic stem cells for transplantation but as we gain a better understanding of the characteristics of each immune cell that UCB contains, we will also be able to develop new cell therapies for cancer. In this review, we present what is currently known of the phenotype and functions of UCB NK cells and how these cells could be used in the future for cancer immunotherapy.
Collapse
Affiliation(s)
- Anushruti Sarvaria
- Anthony Nolan Research Institute, London, UK; Cancer Institute, University College London, London, UK
| | - Dunia Jawdat
- King Abdullah International Medical Research Center , Riyadh , Saudi Arabia
| | - J Alejandro Madrigal
- Anthony Nolan Research Institute, London, UK; Cancer Institute, University College London, London, UK
| | - Aurore Saudemont
- Anthony Nolan Research Institute, London, UK; Cancer Institute, University College London, London, UK
| |
Collapse
|
42
|
Heidenreich S, Kröger N. Reduction of Relapse after Unrelated Donor Stem Cell Transplantation by KIR-Based Graft Selection. Front Immunol 2017; 8:41. [PMID: 28228753 PMCID: PMC5296332 DOI: 10.3389/fimmu.2017.00041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/10/2017] [Indexed: 01/22/2023] Open
Abstract
Besides donor T cells, natural killer (NK) cells are considered to have a major role in preventing relapse after allogeneic hematopoietic stem cell transplantation (HSCT). After T-cell-depleted haploidentical HSCT, a strong NK alloreactivity has been described. These effects have been attributed to killer-cell immunoglobulin-like receptors (KIR). Abundant reports suggest a major role of KIR not only on outcome after haploidentical HSCT but also in the unrelated donor setting. In this review, we give a brief overview of the mechanism of NK cell activation, nomenclature of KIR haplotypes, human leukocyte antigen (HLA) groups, and distinct models for prediction of NK cell alloreactivity. It can be concluded that KIR-ligand mismatch seems to provoke adverse effects in unrelated donor HSCT with reduced overall survival and increased risk for high-grade acute graft-versus-host disease. The presence of activating KIR, as seen in KIR haplotype B, as well as the patient’s HLA C1/x haplotype might reduce relapse in myeloid malignancies.
Collapse
Affiliation(s)
- Silke Heidenreich
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
43
|
Killer cell Immunoglobulin-like Receptors (KIRs) and hematopoietic stem cell transplantation outcomes. A review of the literature. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Lemoli RM, Parisi S, Curti A. Novel strategies of adoptive immunotherapy: How natural killer cells may change the treatment of elderly patients with acute myeloblastic leukemia. Exp Hematol 2016; 45:10-16. [PMID: 27826123 DOI: 10.1016/j.exphem.2016.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/27/2016] [Accepted: 10/10/2016] [Indexed: 01/08/2023]
Abstract
Although many attempts have been made to identify novel molecular-targeted therapies for patients with acute myeloid leukemia, their translation into the clinic have had limited impact. In particular, the question of effective and curative treatments for elderly patients, who are not eligible for stem cell transplantation, remains an unmet medical need. To answer this question, a wide range of immunologic therapeutic strategies, mostly T cell based, have been proposed and investigated. At present, however, the clinical results have been largely unsatisfactory. Natural killer cells have recently been used as a means of adoptive immunotherapy with promising clinical results. On the basis of recent clinical reports and moving from the basic immunobiology of natural killer cells, here we discuss some open issues in the clinical translation of natural killer-based adoptive immunotherapy for the management of elderly patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Roberto M Lemoli
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, IRCCS S. Martino-IST, Genoa, Italy
| | - Sarah Parisi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Antonio Curti
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy.
| |
Collapse
|
45
|
Shaffer BC, Hsu KC. How important is NK alloreactivity and KIR in allogeneic transplantation? Best Pract Res Clin Haematol 2016; 29:351-358. [PMID: 27890259 DOI: 10.1016/j.beha.2016.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Relapse of acute myelogenous leukemia (AML) after allogeneic hematopoietic cell transplantation (allo HCT) is a major cause of death in transplant recipients. Efforts to control relapse by promoting donor T-cell alloreactivity, such as withdrawal of immune suppression or donor lymphocyte infusions, are limited by the propensity to induce graft versus host disease (GVHD) and by inadequate efficacy. Therefore, options for AML patients who have relapsed AML after allo HCT are few and outcomes are poor. Similar to T-cells, natural killer (NK) cells have potent anti-leukemia effector capacity, and yet unlike T-cells, NK cells do not mediate GVHD. Furthermore, their function does not require matching of human leukocyte antigens (HLA) between donor and recipient. Maximizing donor NK alloreactivity thus holds the exciting possibility to induce the graft versus leukemia (GVL) effect without engendering GVHD. Among the array of activating and inhibitory NK cell surface receptors, the killer Ig-like receptors (KIR) play a central role in modulating NK effector function. Here we will review how KIR mediates donor alloreactivity, discuss the role of KIR gene and allele typing to optimize allo HCT donor selection, and discuss how KIR may aid adoptive NK and other cell therapies.
Collapse
Affiliation(s)
- Brian C Shaffer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Katharine C Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Immunology Program, Sloan Kettering Institute, New York, NY, United States; Department of Medicine, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
46
|
Hoff GA, Fischer JC, Hsu K, Cooley S, Miller JS, Wang T, Haagenson M, Spellman S, Lee SJ, Uhrberg M, Venstrom JM, Verneris MR. Recipient HLA-C Haplotypes and microRNA 148a/b Binding Sites Have No Impact on Allogeneic Hematopoietic Cell Transplantation Outcomes. Biol Blood Marrow Transplant 2016; 23:153-160. [PMID: 27746218 DOI: 10.1016/j.bbmt.2016.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022]
Abstract
Natural killer cells are important in graft-versus-leukemia responses after hematopoietic cell transplantation (HCT). A variety of surface receptors dictates natural killer cell function, including killer cell immunoglobulin-like receptor recognition of HLA-C. Previous single-center studies show that HLA-C epitopes, designated C1 and C2, were associated with allogeneic HCT outcomes; specifically, recipients homozygous for the C1 epitope (C1/C1) experienced a survival benefit. Additionally, mismatching at HLA-C was beneficial in recipients possessing at least 1 C2 allele, whereas the opposite was true for homozygous C1 (C1/C1) recipients where HLA-C mismatching resulted in worse outcomes. In this analysis we aimed to validate these findings in a large multicenter study. We also set out to determine whether surface expression of recipient HLA-C, determined by polymorphism in a microRNA (miR-148a/b) binding site within the 3'-region of the HLA-C transcript, was associated with transplant outcomes. In this large registry cohort, we were unable to confirm the prior findings regarding recipient HLA-C epitope status and outcome. Additionally, HLA-C surface expression (ie, surface density), as predicted by the miR-148a/b binding single nucleotide polymorphism, was also not with associated transplant outcomes. Collectively, neither HLA-C surface expression, as determined by miR-148a/b, nor recipient HLA-C epitopes (C1, C2) are associated with allogeneic HCT outcomes.
Collapse
Affiliation(s)
- Gretchen A Hoff
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Johannes C Fischer
- Institute of Transplantation Diagnostics and Cell Therapeutics, Universitatklinikum Dusseldorf Klinik fur Kinder, Düsseldorf, Germany
| | - Katharine Hsu
- Blood and Marrow Transplantation, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Cooley
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael Haagenson
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephanie J Lee
- Blood and Marrow Transplantation, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Markus Uhrberg
- Institute of Transplantation Diagnostics and Cell Therapeutics, University Clinic of Düsseldorf, Düsseldorf, Germany
| | - Jeffrey M Venstrom
- Blood and Marrow Transplant, University of California San Francisco Medical Center, San Francisco, California
| | - Michael R Verneris
- University of Colorado, Pediatric BMT and Cell Therapy, Aurora, Colorado.
| |
Collapse
|
47
|
Kannan GS, Aquino-Lopez A, Lee DA. Natural killer cells in malignant hematology: A primer for the non-immunologist. Blood Rev 2016; 31:1-10. [PMID: 27665023 DOI: 10.1016/j.blre.2016.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 08/03/2016] [Accepted: 08/29/2016] [Indexed: 12/19/2022]
Abstract
Natural killer cells were first described over 40years ago, but the last 15years has shown tremendous progress in our understanding of their biology and our ability to manipulate them for clinical therapeutic effect. Despite the increased understanding by clinicians and scientists investigating these cells, their biology remains a confusing subject for many because of the wide array of receptors, complex interactions, multiple models of predicting function, and contradictory data in the literature. While they are microscopically indistinguishable from T cells and share many of the same effector functions, their mechanisms of target recognition are completely distinct from yet complimentary to T cells. In this review we provide a basic understanding of NK cell biology and HLA recognition as compared and contrasted to T cells using a metaphor of border patrol and passports. We conclude with a summary of the evidence for NK cell effects in hematologic malignancies and describe new advances in NK cell immunotherapy aimed at improving these effects.
Collapse
Affiliation(s)
- Geoffrey S Kannan
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, 450 Brooklyn Ave, Boston, MA 02215, USA.
| | - Arianexys Aquino-Lopez
- Clinical and Translational Sciences Program, University of Texas Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, TX 77030, USA; Division of Pediatrics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX 77030, USA.
| | - Dean A Lee
- Division of Hematology, Oncology, and BMT, Nationwide Children's Hospital, 700 Children's Drive, WA4023, Columbus, OH 43205, USA.
| |
Collapse
|
48
|
Choi I, Yoon SR, Park SY, Kim H, Jung SJ, Kang YL, Lee JH, Lee JH, Kim DY, Lee JL, Park HS, Choi EJ, Lee YS, Kang YA, Jeon M, Seol M, Baek S, Yun SC, Kim HJ, Lee KH. Donor-Derived Natural Killer Cell Infusion after Human Leukocyte Antigen-Haploidentical Hematopoietic Cell Transplantation in Patients with Refractory Acute Leukemia. Biol Blood Marrow Transplant 2016; 22:2065-2076. [PMID: 27530969 DOI: 10.1016/j.bbmt.2016.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
The optimum method of donor natural killer cell infusion (DNKI) after allogeneic hematopoietic cell transplantation (HCT) remains unclear. Fifty-one patients (age range, 19 years to 67 years) with refractory acute leukemia underwent HLA-haploidentical HCT and underwent DNKI on days 6, 9, 13, and 20 of HCT. Median DNKI doses were .5, .5, 1.0, and 2.0 × 108/kg cells, respectively. During DNKI, 33 of the 45 evaluated patients (73%) developed fever (>38.3°C) along with weight gain (median, 13%; range, 2% to 31%) and/or hyperbilirubinemia (median, 6.2 mg/dL; range, 1.0 mg/dL to 35.1 mg/dL); the toxicity was reversible in 90% of patients. After transplantation, we observed cumulative incidences of neutrophil engraftment (≥500/µL), grade 2 to 4 acute graft-versus-host disease (GVHD), chronic GVHD, and nonrelapse mortality of 84%, 28%, 30%, and 16%, respectively. The leukemia complete remission rate was 57% at 1 month after HCT and 3-year cumulative incidence of leukemia progression was 75%. When analyzed together with our historical cohort of 40 patients with refractory acute leukemia who underwent haploidentical HCT and DNKI on days 14 and 21 only, higher expression of NKp30 (>90%) on donor NK cells was an independent predictor of higher complete remission (hazard ratio, 5.59) and less leukemia progression (hazard ratio, .57). Additional DNKI on days 6 and 9 was not associated with less leukemia progression (75% versus 55%).
Collapse
Affiliation(s)
- Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Soo-Yeon Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hanna Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sol-Ji Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - You-Lee Kang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Je-Hwan Lee
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Jung-Hee Lee
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Dae-Young Kim
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Jae-Lyun Lee
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Han-Seung Park
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Eun-Ji Choi
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Young-Shin Lee
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Young-A Kang
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Mijin Jeon
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Miee Seol
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Seunghyun Baek
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Sung-Cheol Yun
- Department of Clinical Epidemiology and Biostatistics, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatistics, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Kyoo-Hyung Lee
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea.
| |
Collapse
|
49
|
KIR and HLA Genotypes Implicated in Reduced Killer Lymphocytes Immunity Are Associated with Vogt-Koyanagi-Harada Disease. PLoS One 2016; 11:e0160392. [PMID: 27490240 PMCID: PMC4973954 DOI: 10.1371/journal.pone.0160392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/18/2016] [Indexed: 01/29/2023] Open
Abstract
Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells are killer lymphocytes that provide defense against viral infections and tumor transformation. Analogous to that of CTL, interactions of killer-cell immunoglobulin-like receptors (KIR) with specific human leukocyte antigen (HLA) class I ligands calibrate NK cell education and response. Gene families encoding KIRs and HLA ligands are located on different chromosomes, and feature variation in the number and type of genes. The independent segregation of KIR and HLA genes results in variable KIR-HLA interactions in individuals, which may impact disease susceptibility. We tested whether KIR-HLA combinations are associated with Vogt-Koyanagi-Harada (VKH) disease, a bilateral granulomatous panuveitis that has strong association with HLA-DR4. We present a case control study of 196 VKH patients and 209 controls from a highly homogeneous native population of Japan. KIR and HLA class I genes were typed using oligonucleotide hybridization method and analyzed using two-tailed Fisher’s exact probabilities. The incidence of Bx-KIR genotypes was decreased in VKH patients (odds ratio [OR] 0.58, P = 0.007), due primarily to a decrease in centromeric B-KIR motif and its associated KIRs 2DS2, 2DL2, 2DS3, and 2DL5B. HLA-B22, implicated in poor immune response, was increased in VKH (OR = 4.25, P = 0.0001). HLA-Bw4, the ligand for KIR3DL1, was decreased in VKH (OR = 0.59, P = 0.01). The KIR-HLA combinations 2DL2+C1/C2 and 3DL1+Bw4, which function in NK education, were also decreased in VKH (OR = 0.49, P = 0.012; OR = 0.59, P = 0.013). Genotypes missing these two inhibitory KIR-HLA combinations in addition to missing activating KIRs 2DS2 and 2DS3 were more common in VKH (OR = 1.90, P = 0.002). These results suggest that synergistic hyporesponsiveness of NK cells (due to poor NK education along with missing of activating KIRs) and CTL (due to HLA-B22 restriction) fail to mount an effective immune response against viral-infection that may trigger VKH pathogenesis in genetically susceptible individuals, such as HLA-DR4 carriers.
Collapse
|
50
|
Altaf SY, Apperley JF, Olavarria E. Matched unrelated donor transplants-State of the art in the 21st century. Semin Hematol 2016; 53:221-229. [PMID: 27788759 DOI: 10.1053/j.seminhematol.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/20/2016] [Indexed: 12/29/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) is the therapy of choice in many hematological malignant and non-malignant diseases by using human leukocyte antigen (HLA)-matched siblings as stem cell source but only one third of the patients will have HLA-matched siblings. Hence, physicians rely on the availability of matched unrelated donors (URD). The possibility of finding a matched URD is now more than 70% due to continuous expansion of URD registries around the world. The use of URD in adult patients is steadily increasing and in the last 8 years has superseded the numbers of matched sibling donor transplants and has become the most commonly used stem cell source. There is also an increasing trend to use peripheral blood (PB) stem cells rather than bone marrow (BM) stem cells. Outcomes following URD transplants depend mainly upon the indication and urgency of transplant, age and comorbidities of recipients, cytomegalovirus (CMV) matching/mismatching between donor and the recipient, and degree of HLA matching. In some studies outcome of unrelated stem cell transplants in terms of treatment-related mortality (TRM), disease-free survival (DFS), and overall survival (OS) is comparable to sibling donors.
Collapse
Affiliation(s)
- Syed Y Altaf
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jane F Apperley
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Eduardo Olavarria
- Centre for Haematology, Imperial College London, London, United Kingdom.
| |
Collapse
|