1
|
Hernandez CM, Florant GL, Stranahan AM. Seasonal fluctuations in BDNF regulate hibernation and torpor in golden-mantled ground squirrels. Am J Physiol Regul Integr Comp Physiol 2024; 326:R311-R318. [PMID: 38344803 PMCID: PMC11283892 DOI: 10.1152/ajpregu.00186.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/24/2024]
Abstract
Aphagic hibernators such as the golden-mantled ground squirrel (GMGS; Callospermophilus lateralis) can fast for months and exhibit profound seasonal fluctuations in body weight, food intake, and behavior. Brain-derived neurotrophic factor (BDNF) regulates cellular and systemic metabolism via mechanisms that are conserved across mammalian species. In this study, we characterized regional changes in BDNF with hibernation, hypothermia, and seasonal cycle in GMGS. Analysis of BDNF protein concentrations by ELISA revealed overlapping seasonal patterns in the hippocampus and hypothalamus, where BDNF levels were highest in summer and lowest in winter. BDNF is the primary ligand for receptor tyrosine kinase B (TrkB), and BDNF/TrkB signaling in the brain potently regulates energy expenditure. To examine the functional relevance of seasonal variation in BDNF, hibernating animals were injected with the small molecule TrkB agonist 7,8-dihydroxyflavone (DHF) daily for 2 wk. When compared with vehicle, DHF-treated animals exhibited fewer torpor bouts and shorter bout durations. These results suggest that activating BDNF/TrkB disrupts hibernation and raise intriguing questions related to the role of BDNF as a potential regulatory mechanism or downstream response to seasonal changes in body temperature and environment.NEW & NOTEWORTHY Golden-mantled ground squirrels exhibit dramatic seasonal fluctuations in metabolism and can fast for months while hibernating. Brain-derived neurotrophic factor is an essential determinant of cellular and systemic metabolism, and in this study, we characterized seasonal fluctuations in BDNF expression and then administered the small molecule BDNF mimetic 7,8-dihydroxyflavone (DHF) in hibernating squirrels. The results indicate that activating BDNF/TrkB signaling disrupts hibernation, with implications for synaptic homeostasis in prolonged hypometabolic states.
Collapse
Affiliation(s)
- Caterina M Hernandez
- Department of Neuroscience and Regenerative Medicine, Augusta University, Medical College of Georgia, Augusta, Georgia, United States
- Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, Virginia, United States
| | - Gregory L Florant
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States
| | - Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Augusta University, Medical College of Georgia, Augusta, Georgia, United States
| |
Collapse
|
2
|
Song Z, Griesser M, Schuppli C, van Schaik CP. Does the expensive brain hypothesis apply to amphibians and reptiles? BMC Ecol Evol 2023; 23:77. [PMID: 38114918 PMCID: PMC10729550 DOI: 10.1186/s12862-023-02188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
Vertebrate brains show extensive variation in relative size. The expensive brain hypothesis argues that one important source of this variation is linked to a species' ability to generate the energy required to sustain the brain, especially during periods of unavoidable food scarcity. Here we ask whether this hypothesis, tested so far in endothermic vertebrates, also applies to ectotherms, where ambient temperature is an additional major aspect of energy balance. Phylogenetic comparative analyses of reptiles and amphibians support the hypothesis. First, relative brain size increases with higher body temperature in those species active during the day that can gain free energy by basking. Second, relative brain size is smaller among nocturnal species, which generally face less favorable energy budgets, especially when maintaining high body temperature. However, we do not find an effect of seasonal variation in ambient temperature or food on brain size, unlike in endotherms. We conclude that the factors affecting energy balance in ectotherms and endotherms are overlapping but not identical. We therefore discuss the idea that when body temperatures are seasonally very low, cognitive benefits may be thwarted and selection on larger brain size may be rare. Indeed, mammalian hibernators may show similarities to ectotherms.
Collapse
Affiliation(s)
- Zitan Song
- Comparative Socioecology group, Department for the Ecology of Animal Societies, Max Planck Institute for Animal Behavior, 78467, Konstanz, Germany.
| | - Michael Griesser
- Department of Biology, University of Konstanz, 78467, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78467, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78467, Konstanz, Germany
| | - Caroline Schuppli
- Development and Evolution of Cognition Group, Max Planck Institute for Animal Behavior, 78467, Konstanz, Germany
| | - Carel P van Schaik
- Comparative Socioecology group, Department for the Ecology of Animal Societies, Max Planck Institute for Animal Behavior, 78467, Konstanz, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland
- Center for the Interdisciplinary Study of language Evolution, University of Zurich, Zurich, 8057, Switzerland
| |
Collapse
|
3
|
Drew KL, Bhowmick S, Laughlin BW, Goropashnaya AV, Tøien Ø, Sugiura MH, Wong A, Pourrezaei K, Barati Z, Chen CY. Opportunities and barriers to translating the hibernation phenotype for neurocritical care. Front Neurol 2023; 14:1009718. [PMID: 36779060 PMCID: PMC9911456 DOI: 10.3389/fneur.2023.1009718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Targeted temperature management (TTM) is standard of care for neonatal hypoxic ischemic encephalopathy (HIE). Prevention of fever, not excluding cooling core body temperature to 33°C, is standard of care for brain injury post cardiac arrest. Although TTM is beneficial, HIE and cardiac arrest still carry significant risk of death and severe disability. Mammalian hibernation is a gold standard of neuroprotective metabolic suppression, that if better understood might make TTM more accessible, improve efficacy of TTM and identify adjunctive therapies to protect and regenerate neurons after hypoxic ischemia brain injury. Hibernating species tolerate cerebral ischemia/reperfusion better than humans and better than other models of cerebral ischemia tolerance. Such tolerance limits risk of transitions into and out of hibernation torpor and suggests that a barrier to translate hibernation torpor may be human vulnerability to these transitions. At the same time, understanding how hibernating mammals protect their brains is an opportunity to identify adjunctive therapies for TTM. Here we summarize what is known about the hemodynamics of hibernation and how the hibernating brain resists injury to identify opportunities to translate these mechanisms for neurocritical care.
Collapse
Affiliation(s)
- Kelly L. Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Saurav Bhowmick
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Bernard W. Laughlin
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Anna V. Goropashnaya
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Øivind Tøien
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - M. Hoshi Sugiura
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Ardy Wong
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, United States
| | - Kambiz Pourrezaei
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, United States
| | - Zeinab Barati
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
- Barati Medical LLC, Fairbanks, AK, United States
| | - Chao-Yin Chen
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Henke‐von der Malsburg J, Fichtel C, Kappeler PM. Retaining memory after hibernation: Performance varies independently of activity levels in wild grey mouse lemurs. Ethology 2022. [DOI: 10.1111/eth.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johanna Henke‐von der Malsburg
- Behavioral Ecology and Sociobiology Unit German Primate Center, Leibniz Institute for Primatology Göttingen Germany
- Leibniz ScienceCampus ‘Primate Cognition’ Göttingen Germany
- Department of Sociobiology/Anthropology Johann‐Friedrich‐Blumenbach Institute of Zoology and Anthropology, Kellnerweg 6, 37077 Göttingen, Georg‐August‐University Göttingen Göttingen Germany
- Technological Primates Research Group Max‐Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit German Primate Center, Leibniz Institute for Primatology Göttingen Germany
- Leibniz ScienceCampus ‘Primate Cognition’ Göttingen Germany
| | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit German Primate Center, Leibniz Institute for Primatology Göttingen Germany
- Department of Sociobiology/Anthropology Johann‐Friedrich‐Blumenbach Institute of Zoology and Anthropology, Kellnerweg 6, 37077 Göttingen, Georg‐August‐University Göttingen Göttingen Germany
| |
Collapse
|
5
|
Hensleigh E, Murtishaw AS, Treat MD, Heaney CF, Bolton MM, Sabbagh JJ, Calvin KN, Kinney JW, Breukelen FV. Torpor does not influence spatial memory in hibernating golden-mantled ground squirrels (Spermophilus [Callospermophilus] lateralis). Physiol Biochem Zool 2022; 95:390-399. [DOI: 10.1086/721185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu LN, Chen SG, Tuo QH, Liao DF, Wang XP, Wu RR, Yuan TF, Li YH, Liu XM. Human torpor: translating insights from nature into manned deep space expedition. Biol Rev Camb Philos Soc 2020; 96:642-672. [PMID: 33314677 DOI: 10.1111/brv.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics 'hibernation', could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb ) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor-arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor-arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.
Collapse
Affiliation(s)
- Zhe Shi
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024, China
| | - Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li-Na Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shan-Guang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xiao-Ping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xin-Min Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
7
|
Bailey DM. Oxygen and brain death; back from the brink. Exp Physiol 2020; 104:1769-1779. [PMID: 31605408 DOI: 10.1113/ep088005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022]
Abstract
NEW FINDINGS • What is the topic of this review? To explore the unique evolutionary origins of the human brain and critically appraise its energy budget, including limits of oxygen and glucose deprivation during anoxia and ischaemia. • What advances does it highlight? The brain appears to be more resilient to substrate depletion than traditionally thought, highlighting greater resilience and an underappreciated capacity for functional recovery. ABSTRACT The human brain has evolved into an unusually large, complex and metabolically expensive organ that relies entirely on a continuous supply of O2 and glucose. It has traditionally been assumed that its exorbitant energy budget, combined with little to no energy reserves, renders it especially vulnerable to anoxia and ischaemia, with substrate depletion and progression towards cell death largely irreversible and rapid. However, new and exciting evidence suggests that neurons can survive for longer than previously thought, highlighting an unexpected resilience and underappreciated capacity for functional recovery that has changed the way we think about brain cell death. Nature has the potential to unlock some of the mysteries underlying ischaemic survival, with select vertebrates having solved the problem of anoxia-hypoxia tolerance over millions of years of evolution. Better understanding of their survival strategies, including remarkable adaptations in brain physiology and redox homeostasis, might help to identify new therapeutic targets for human diseases characterized by O2 deprivation, ischaemia-reperfusion injury and ageing.
Collapse
Affiliation(s)
- Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, Glamorgan, UK
| |
Collapse
|
8
|
Hernández‐Montero JR, Schöner CR, Kerth G. No evidence for memory retention of a learned association between a cue and roost quality after hibernation in free‐ranging bats. Ethology 2020. [DOI: 10.1111/eth.13029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jesús R. Hernández‐Montero
- Zoological Institute and MuseumApplied Zoology and Nature ConservationUniversity of Greifswald Greifswald Germany
| | - Caroline R. Schöner
- Zoological Institute and MuseumApplied Zoology and Nature ConservationUniversity of Greifswald Greifswald Germany
| | - Gerald Kerth
- Zoological Institute and MuseumApplied Zoology and Nature ConservationUniversity of Greifswald Greifswald Germany
| |
Collapse
|
9
|
Horowitz JM, Horwitz BA. Extreme Neuroplasticity of Hippocampal CA1 Pyramidal Neurons in Hibernating Mammalian Species. Front Neuroanat 2019; 13:9. [PMID: 30814935 PMCID: PMC6381046 DOI: 10.3389/fnana.2019.00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022] Open
Abstract
In awake and behaving mammals (with core and brain temperatures at ~37°C), hippocampal neurons have anatomical and physiological properties that support formation of memories. However, studies of hibernating mammalian species suggest that as hippocampal temperature falls to values below ~10°C, CA1 neurons lose their ability to generate long term potentiation (LTP), a basic form of neuroplasticity. That is, the persistent increase in CA3-CA1 synaptic strength following high-frequency stimulation of CA3 fibers (the hallmark of LTP generation at 37°C) is no longer observed at low brain temperatures although the neurons retain their ability to generate action potentials. In this review, we examine the relationship of LTP to recently observed CA1 structural changes in pyramidal neurons during the hibernation cycle, including the reversible formation of hyperphosphorylated tau. While CA1 neurons appear to be stripped of their ability to generate LTP at low temperatures, their ability to still generate action potentials is consistent with the longstanding proposal that they have projections to neural circuits controlling arousal state throughout the hibernation cycle. Recent anatomical studies significantly refine and extend previous studies of cellular plasticity and arousal state and suggest experiments that further delineate the mechanisms underlying the extreme plasticity of these CA1 neurons.
Collapse
Affiliation(s)
- John M Horowitz
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Barbara A Horwitz
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Hibernating astronauts-science or fiction? Pflugers Arch 2018; 471:819-828. [PMID: 30569200 PMCID: PMC6533228 DOI: 10.1007/s00424-018-2244-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
For long-duration manned space missions to Mars and beyond, reduction of astronaut metabolism by torpor, the metabolic state during hibernation of animals, would be a game changer: Water and food intake could be reduced by up to 75% and thus reducing payload of the spacecraft. Metabolic rate reduction in natural torpor is linked to profound changes in biochemical processes, i.e., shift from glycolysis to lipolysis and ketone utilization, intensive but reversible alterations in organs like the brain and kidney, and in heart rate control via Ca2+. This state would prevent degenerative processes due to organ disuse and increase resistance against radiation defects. Neuro-endocrine factors have been identified as main targets to induce torpor although the exact mechanisms are not known yet. The widespread occurrence of torpor in mammals and examples of human hypometabolic states support the idea of human torpor and its beneficial applications in medicine and space exploration.
Collapse
|
11
|
Kundey SM, Lessard A, Fitz A, Panwar M. Tiger salamanders’ (Ambystoma tigrinum) response retention and usage of visual cues following brumation. Behav Processes 2018; 157:502-508. [DOI: 10.1016/j.beproc.2018.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022]
|
12
|
Griko YV, Rask JC, Raychev R. Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/space.2016.0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuri V. Griko
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| | - Jon C. Rask
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
- KBRwyle, Moffett Field, California
| | - Raycho Raychev
- Space Challenges Program, EnduroSat, Inc., Sofia, Bulgaria
| |
Collapse
|
13
|
Bhowmick S, Moore JT, Kirschner DL, Drew KL. Arctic ground squirrel hippocampus tolerates oxygen glucose deprivation independent of hibernation season even when not hibernating and after ATP depletion, acidosis, and glutamate efflux. J Neurochem 2017; 142:160-170. [PMID: 28222226 DOI: 10.1111/jnc.13996] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 12/20/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) triggers a cascade of uncontrolled cellular processes that perturb cell homeostasis. The arctic ground squirrel (AGS), a seasonal hibernator resists brain damage following cerebral I/R caused by cardiac arrest and resuscitation. However, it remains unclear if tolerance to I/R injury in AGS depends on the hibernation season. Moreover, it is also not clear if events such as depletion of ATP, acidosis, and glutamate efflux that are associated with anoxic depolarization are attenuated in AGS. Here, we employ a novel microperfusion technique to test the hypothesis that tolerance to I/R injury modeled in an acute hippocampal slice preparation in AGS is independent of the hibernation season and persists even after glutamate efflux. Acute hippocampal slices were harvested from summer euthermic AGS, hibernating AGS, and interbout euthermic AGS. Slices were subjected to oxygen glucose deprivation (OGD), an in vitro model of I/R injury to determine cell death marked by lactate dehydrogenase (LDH) release. ATP was assayed using ENLITEN ATP assay. Glutamate and aspartate efflux was measured using capillary electrophoresis. For acidosis, slices were subjected to pH 6.4 or ischemic shift solution (ISS). Acute hippocampal slices from rats were used as a positive control, susceptible to I/R injury. Our results indicate that when tissue temperature is maintained at 36°C, hibernation season has no influence on OGD-induced cell death in AGS hippocampal slices. Our data also show that tolerance to OGD in AGS hippocampal slices occurs despite loss of ATP and glutamate release, and persists during conditions that mimic acidosis and ionic shifts, characteristic of cerebral I/R. Read the Editorial Comment for this article on page 10.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA.,Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Jeanette T Moore
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Daniel L Kirschner
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA.,Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
14
|
Gorr TA. Hypometabolism as the ultimate defence in stress response: how the comparative approach helps understanding of medically relevant questions. Acta Physiol (Oxf) 2017; 219:409-440. [PMID: 27364602 DOI: 10.1111/apha.12747] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/28/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
First conceptualized from breath-hold diving mammals, later recognized as the ultimate cell autonomous survival strategy in anoxia-tolerant vertebrates and burrowing or hibernating rodents, hypometabolism is typically recruited by resilient organisms to withstand and recover from otherwise life-threatening hazards. Through the coordinated down-regulation of biosynthetic, proliferative and electrogenic expenditures at times when little ATP can be generated, a metabolism turned 'down to the pilot light' allows the re-balancing of energy demand with supply at a greatly suppressed level in response to noxious exogenous stimuli or seasonal endogenous cues. A unifying hallmark of stress-tolerant organisms, the adaptation effectively prevents lethal depletion of ATP, thus delineating a marked contrast with susceptible species. Along with disengaged macromolecular syntheses, attenuated transmembrane ion shuttling and PO2 -conforming respiration rates, the metabolic slowdown in tolerant species usually culminates in a non-cycling, quiescent phenotype. However, such a reprogramming also occurs in leading human pathophysiologies. Ranging from microbial infections through ischaemia-driven infarcts to solid malignancies, cells involved in these disorders may again invoke hypometabolism to endure conditions non-permissive for growth. At the same time, their reduced activities underlie the frequent development of a general resistance to therapeutic interventions. On the other hand, a controlled induction of hypometabolic and/or hypothermic states by pharmacological means has recently stimulated intense research aimed at improved organ preservation and patient survival in situations requiring acutely administered critical care. The current review article therefore presents an up-to-date survey of concepts and applications of a coordinated and reversibly down-regulated metabolic rate as the ultimate defence in stress responses.
Collapse
Affiliation(s)
- T. A. Gorr
- Institute of Veterinary Physiology; Vetsuisse Faculty; University of Zurich; Zurich Switzerland
| |
Collapse
|
15
|
León-Espinosa G, García E, Gómez-Pinedo U, Hernández F, DeFelipe J, Ávila J. Decreased adult neurogenesis in hibernating Syrian hamster. Neuroscience 2016; 333:181-92. [DOI: 10.1016/j.neuroscience.2016.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/29/2022]
|
16
|
Onufriev MV, Semenova TP, Volkova EP, Sergun’kina MA, Yakovlev AA, Zakharova NM, Gulyaeva NV. The characteristics of the expression of the Cdk1 and Cyclin B1 Proteins in the brain of the Yakut ground squirrel (Spermophilus undulatus) at different stages of the hibernation cycle. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Drew KL, Wells M, McGee R, Ross AP, Kelleher-Andersson J. Arctic ground squirrel neuronal progenitor cells resist oxygen and glucose deprivation-induced death. World J Biol Chem 2016; 7:168-177. [PMID: 26981205 PMCID: PMC4768121 DOI: 10.4331/wjbc.v7.i1.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/26/2015] [Accepted: 01/11/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the influence of ischemia/reperfusion on arctic ground squirrel (AGS) neuronal progenitor cells (NPCs), we subjected these cultured cells to oxygen and glucose deprivation.
METHODS: AGS NPCs were expanded and differentiated into NPCs and as an ischemia vulnerable control, commercially available human NPCs (hNPCs) were seeded from thawed NPCs. NPCs, identified by expression of TUJ1 were seen at 14-21 d in vitro (DIV). Cultures were exposed to control conditions, hypoxia, oxygen and glucose deprivation or glucose deprivation alone or following return to normal conditions to model reperfusion. Cell viability and death were assessed from loss of ATP as well as from measures of alamarBlue® and lactate dehydrogenase in the media and from counts of TUJ1 positive cells using immunocytochemistry. Dividing cells were identified by expression of Ki67 and phenotyped by double labeling with GFAP, MAP2ab or TUJ1.
RESULTS: We report that when cultured in NeuraLife™, AGS cells remain viable out to 21 DIV, continue to express TUJ1 and begin to express MAP2ab. Viability of hNPCs assessed by fluorescence alamarBlue (arbitrary units) depends on both glucose and oxygen availability [viability of hNPCs after 24 h oxygen glucose deprivation (OGD) with return of oxygen and glucose decreased from 48151 ± 4551 in control cultures to 43481 ± 2413 after OGD, P < 0.05]. By contrast, when AGS NPCs are exposed to the same OGD with reperfusion at 14 DIV, cell viability assessed by alamarBlue increased from 165305 ± 11719 in control cultures to 196054 ± 13977 after OGD. Likewise AGS NPCs recovered ATP (92766 ± 6089 in control and 92907 ± 4290 after modeled reperfusion; arbitrary luminescence units), and doubled in the ratio of TUJ1 expressing neurons to total dividing cells (0.11 ± 0.04 in control cultures vs 0.22 ± 0.2 after modeled reperfusion, P < 0.05). Maintaining AGS NPCs for a longer time in culture lowered resistance to injury, however, did not impair proliferation of NPCs relative to other cell lineages after oxygen deprivation followed by re-oxygenation.
CONCLUSION: Ischemic-like insults decrease viability and increase cell death in cultures of human NPCs. Similar conditions have less affect on cell death and promote proliferation in AGS NPCs.
Collapse
|
18
|
Larson J, Drew KL, Folkow LP, Milton SL, Park TJ. No oxygen? No problem! Intrinsic brain tolerance to hypoxia in vertebrates. ACTA ACUST UNITED AC 2014; 217:1024-39. [PMID: 24671961 DOI: 10.1242/jeb.085381] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many vertebrates are challenged by either chronic or acute episodes of low oxygen availability in their natural environments. Brain function is especially vulnerable to the effects of hypoxia and can be irreversibly impaired by even brief periods of low oxygen supply. This review describes recent research on physiological mechanisms that have evolved in certain vertebrate species to cope with brain hypoxia. Four model systems are considered: freshwater turtles that can survive for months trapped in frozen-over lakes, arctic ground squirrels that respire at extremely low rates during winter hibernation, seals and whales that undertake breath-hold dives lasting minutes to hours, and naked mole-rats that live in crowded burrows completely underground for their entire lives. These species exhibit remarkable specializations of brain physiology that adapt them for acute or chronic episodes of hypoxia. These specializations may be reactive in nature, involving modifications to the catastrophic sequelae of oxygen deprivation that occur in non-tolerant species, or preparatory in nature, preventing the activation of those sequelae altogether. Better understanding of the mechanisms used by these hypoxia-tolerant vertebrates will increase appreciation of how nervous systems are adapted for life in specific ecological niches as well as inform advances in therapy for neurological conditions such as stroke and epilepsy.
Collapse
Affiliation(s)
- John Larson
- Psychiatric Institute, Department of Psychiatry and Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
19
|
Christian SL, Rasley BT, Roe T, Moore JT, Harris MB, Drew KL. Habituation of Arctic ground squirrels (Urocitellus parryii) to handling and movement during torpor to prevent artificial arousal. Front Physiol 2014; 5:174. [PMID: 24847278 PMCID: PMC4023073 DOI: 10.3389/fphys.2014.00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/15/2014] [Indexed: 11/13/2022] Open
Abstract
Hibernation is a unique physiological adaptation characterized by periods of torpor that consist of repeated, reversible, and dramatic reductions of body temperature, metabolism, and blood flow. External and internal triggers can induce arousal from torpor in the hibernator. Studies of hibernating animals often require that animals be handled or moved prior to sampling or euthanasia but this movement can induce changes in the hibernation status of the animal. In fact, it has been demonstrated that movement of animals while they are hibernating is sufficient to induce an artificial arousal, which can detrimentally alter experimental findings obtained from animals assumed to be torpid. Therefore, we assessed a method to induce habituation of torpid hibernators to handling and movement to reduce inadvertent arousals. A platform rocker was used to mimic motion experienced during transfer of an animal and changes in respiratory rate (RR) were used to assess responsiveness of torpid Arctic ground squirrels (AGS, Urocitellus parryii). We found that movement alone did not induce a change in RR, however, exposure to handling induced an increase in RR in almost all AGS. This change in RR was markedly reduced with increased exposures, and all AGS exhibited a change in RR ≤ 1 by the end of the study. AGS habituated faster mid-season compared to early in the season, which mirrors other assessments of seasonal variation of torpor depth. However, AGS regained responsiveness when they were not exposed to daily handling. While AGS continued to undergo natural arousals during the study, occurrence of a full arousal was neither necessary for becoming habituated nor detrimental to the time required for habituation. These data suggest that even when torpid, AGS are able to undergo mechanosensory habituation, one of the simplest forms of learning, and provides a reliable way to reduce the sensitivity of torpid animals to handling.
Collapse
Affiliation(s)
- Sherri L Christian
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks Fairbanks, AK, USA ; Department of Biochemistry, Memorial University of Newfoundland St. John's, NL, Canada
| | - Brian T Rasley
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks Fairbanks, AK, USA
| | - Tanna Roe
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks Fairbanks, AK, USA
| | - Jeanette T Moore
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks Fairbanks, AK, USA
| | - Michael B Harris
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks Fairbanks, AK, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks Fairbanks, AK, USA
| |
Collapse
|
20
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|
21
|
Day KM, Tomasi TE. Winter energetics of female Indiana bats Myotis sodalis. Physiol Biochem Zool 2014; 87:56-64. [PMID: 24457921 DOI: 10.1086/671563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding physiological limits and environmental optima is critical to developing protection strategies for endangered and threatened species. One theory to explain the decline in endangered Indiana bat Myotis sodalis populations involves increasing cave temperatures in winter hibernacula. Altered cave temperatures can raise metabolism and cause more arousals in torpid bats, both of which use more fat reserves. In addition, fluctuations in cave temperatures may cause additional arousals. Our objectives were to quantify the effect of temperature and fluctuations thereof on torpid metabolism and arousal frequency in this species. Female Indiana bats (n=36) were collected from caves just before hibernation, maintained in an environmental chamber that simulated hibernacula conditions, and had skin temperature recorded every 30 min throughout the winter. One environmental chamber containing bats (n=12) was sequentially set at 8°, 6°, and 4°C over the winter. The second chamber containing bats (n=12) experienced the same mean temperatures, but temperature fluctuated ±2°C on a regular basis. Torpor bouts were longest at 4°C and were not affected by temperature fluctuations. However, the temperature fluctuations appeared to cause longer arousals. Other bats (n=12) were individually placed in metabolic chambers to calculate oxygen consumption during torpor and during arousals. Torpid metabolism was affected by temperature; at 9°C, it was higher than at 7° or 5°C. Metabolism during arousals was not different among temperature treatments, but rates were almost 200 times higher than torpid metabolic rates. We calculated a winter energy budget and, from the energetic perspective, determined an optimum hibernation temperature (3°-6°C) for female Indiana bats. These findings suggest that hibernacula that provide these conditions deserve extra protection, although other factors in addition to energetics may play a role in temperature preferences.
Collapse
Affiliation(s)
- Katie M Day
- Department of Biology, Missouri State University, Springfield, Missouri 65897
| | | |
Collapse
|
22
|
Arendt T, Bullmann T. Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a "master switch" regulating synaptic gain in neuronal networks. Am J Physiol Regul Integr Comp Physiol 2013; 305:R478-89. [PMID: 23824962 DOI: 10.1152/ajpregu.00117.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present paper provides an overview of adaptive changes in brain structure and learning abilities during hibernation as a behavioral strategy used by several mammalian species to minimize energy expenditure under current or anticipated inhospitable environmental conditions. One cellular mechanism that contributes to the regulated suppression of metabolism and thermogenesis during hibernation is reversible phosphorylation of enzymes and proteins, which limits rates of flux through metabolic pathways. Reversible phosphorylation during hibernation also affects synaptic membrane proteins, a process known to be involved in synaptic plasticity. This mechanism of reversible protein phosphorylation also affects the microtubule-associated protein tau, thereby generating a condition that in the adult human brain is associated with aggregation of tau protein to paired helical filaments (PHFs), as observed in Alzheimer's disease. Here, we put forward the concept that phosphorylation of tau is a neuroprotective mechanism to escape NMDA-mediated hyperexcitability of neurons that would otherwise occur during slow gradual cooling of the brain. Phosphorylation of tau and its subsequent targeting to subsynaptic sites might, thus, work as a kind of "master switch," regulating NMDA receptor-mediated synaptic gain in a wide array of neuronal networks, thereby enabling entry into torpor. If this condition lasts too long, however, it may eventually turn into a pathological trigger, driving a cascade of events leading to neurodegeneration, as in Alzheimer's disease or other "tauopathies".
Collapse
Affiliation(s)
- Thomas Arendt
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Germany.
| | | |
Collapse
|
23
|
Thompson AB, Montiglio PO, Humphries MM. Behavioural impacts of torpor expression: A transient effect in captive eastern chipmunks (Tamias striatus). Physiol Behav 2013; 110-111:115-21. [DOI: 10.1016/j.physbeh.2013.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 12/03/2012] [Accepted: 01/06/2013] [Indexed: 01/03/2023]
|
24
|
Seasonal and sex differences in the hippocampus of a wild rodent. Behav Brain Res 2012; 236:131-138. [PMID: 22974551 DOI: 10.1016/j.bbr.2012.08.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/29/2012] [Accepted: 08/28/2012] [Indexed: 01/14/2023]
Abstract
Studies across and within species suggest that hippocampus size is sexually dimorphic in polygamous species, but not in monogamous species. Although hippocampal volume varies with sex, season and mating system, few studies have simultaneously tested for sex and seasonal differences. Here, we test for sex and seasonal differences in the hippocampal volume of wild Richardson's ground squirrels (Urocitellus richardsonii), a polygamous species that lives in matrilineal, kin-based social groups and has profound sex differences in behavior. Based on the behavior and ecology of this species, we predicted that males would have a significantly larger hippocampus than females and that the hippocampus would be largest in males during the breeding season. Analyses of both absolute and relative volumes of the hippocampus yielded a significant difference between the sexes and seasons as well as an interaction between the two such that non-breeding males have significantly larger hippocampal volumes than breeding males or females from either season. Dentate gyrus, CA1 and CA3 subfield volumes were generally larger in the non-breeding season and in males, but no significant interaction effects were detected. This sex and seasonal variation in hippocampal volume is likely the result of their social organization and male-only food caching behavior during the non-breeding season. The demonstration of a sex and seasonal variation in hippocampal volume suggests that Richardson's ground squirrel may be a useful model for understanding hippocampal plasticity within a natural context.
Collapse
|
25
|
Dave KR, Christian SL, Perez-Pinzon MA, Drew KL. Neuroprotection: lessons from hibernators. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:1-9. [PMID: 22326449 PMCID: PMC3334476 DOI: 10.1016/j.cbpb.2012.01.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/15/2022]
Abstract
Mammals that hibernate experience extreme metabolic states and body temperatures as they transition between euthermia, a state resembling typical warm blooded mammals, and prolonged torpor, a state of suspended animation where the brain receives as low as 10% of normal cerebral blood flow. Transitions into and out of torpor are more physiologically challenging than the extreme metabolic suppression and cold body temperatures of torpor per se. Mammals that hibernate show unprecedented capacities to tolerate cerebral ischemia, a decrease in blood flow to the brain caused by stroke, cardiac arrest or brain trauma. While cerebral ischemia often leads to death or disability in humans and most other mammals, hibernating mammals suffer no ill effects when blood flow to the brain is dramatically decreased during torpor or experimentally induced during euthermia. These animals, as adults, also display rapid and pronounced synaptic flexibility where synapses retract during torpor and rapidly re-emerge upon arousal. A variety of coordinated adaptations contribute to tolerance of cerebral ischemia in these animals. In this review we discuss adaptations in heterothermic mammals that may suggest novel therapeutic targets and strategies to protect the human brain against cerebral ischemic damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
26
|
|
27
|
Segal M. Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability. Eur J Neurosci 2010; 31:2178-84. [PMID: 20550565 DOI: 10.1111/j.1460-9568.2010.07270.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An emerging view of structure-function relations of synapses in central spiny neurons asserts that larger spines produce large synaptic currents and that these large spines are persistent ('memory') compared to small spines which are transient. Furthermore, 'learning' involves enlargement of small spine heads and their conversion to being large and stable. It is also assumed that the number of spines, hence the number of synapses, is reflected in the frequency of miniature excitatory postsynaptic currents (mEPSCs). Consequently, there is an assumption that the size and number of mEPSCs are closely correlated with, respectively, the physical size of synapses and number of spines. However, several recent observations do not conform to these generalizations, necessitating a reassessment of the model: spine dimension and synaptic responses are not always correlated. It is proposed that spines are formed and shaped by ongoing network activity, not necessarily by a 'learning' event, to the extent that, in the absence of such activity, new spines are not formed and existing ones disappear or convert into thin filopodia. In the absence of spines, neurons can still maintain synapses with afferent fibers, which can now terminate on its dendritic shaft. Shaft synapses are likely to produce larger synaptic currents than spine synapses. Following loss of their spines, neurons are less able to cope with the large synaptic inputs impinging on their dendritic shafts, and these inputs may lead to their eventual death. Thus, dendritic spines protect neurons from synaptic activity-induced rises in intracellular calcium concentrations.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel.
| |
Collapse
|
28
|
Dave KR, Anthony Defazio R, Raval AP, Dashkin O, Saul I, Iceman KE, Perez-Pinzon MA, Drew KL. Protein kinase C epsilon activation delays neuronal depolarization during cardiac arrest in the euthermic arctic ground squirrel. J Neurochem 2009; 110:1170-9. [PMID: 19493168 PMCID: PMC2774829 DOI: 10.1111/j.1471-4159.2009.06196.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the pre-hibernation season, arctic ground squirrels (AGS) can tolerate 8 min of asphyxial cardiac arrest (CA) without detectable brain pathology. Better understanding of the mechanisms regulating innate ischemia tolerance in AGS has the potential to facilitate the development of novel prophylactic agents to induce ischemic tolerance in patients at risk of stroke or CA. We hypothesized that neuroprotection in AGS involves robust maintenance of ion homeostasis similar to anoxia-tolerant turtles. Ion homeostasis was assessed by monitoring ischemic depolarization (ID) in cerebral cortex during CA in vivo and during oxygen glucose deprivation in vitro in acutely prepared hippocampal slices. In both models, the onset of ID was significantly delayed in AGS compared with rats. The epsilon protein kinase C (epsilonPKC) is a key mediator of neuroprotection and inhibits both Na+/K+-ATPase and voltage-gated sodium channels, primary mediators of the collapse of ion homeostasis during ischemia. The selective peptide inhibitor of epsilonPKC (epsilonV1-2) shortened the time to ID in brain slices from AGS but not in rats despite evidence that epsilonV1-2 decreased activation of epsilonPKC in brain slices from both rats and AGS. These results support the hypothesis that epsilonPKC activation delays the collapse of ion homeostasis during ischemia in AGS.
Collapse
Affiliation(s)
- Kunjan R Dave
- Department of Neurology, Cerebral Vascular Disease Research Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33101, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nowakowski SG, Swoap SJ, Sandstrom NJ. A single bout of torpor in mice protects memory processes. Physiol Behav 2009; 97:115-20. [PMID: 19233219 DOI: 10.1016/j.physbeh.2009.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 12/15/2022]
Abstract
Memory consolidation is the process by which new and labile information is stabilized as long-term memory. Consolidation of spatial memories is thought to involve the transfer of information from the hippocampus to cortical regions. While the hypometabolic and hypothermic state of torpor dramatically changes hippocampal connectivity, little work has considered the functional consequences of these changes. The present study examines the role of a single bout of shallow torpor in the process of memory consolidation in mice. Adult female C57Bl/6NHSD mice were trained on the Morris Water Maze (MWM) task. Immediately following acquisition, the mice were exposed to one of four experimental manipulations for 24 h: fasted at an ambient temperature of 19 degrees C, fasted at 29 degrees C, allowed free access to food at 19 degrees C, or allowed free access to food at 29 degrees C. Mice fasted at 19 degrees C entered a bout of torpor as assessed by core body temperature while none of the mice in the other conditions did so. Spatial biases were then assessed with a probe trial in the MWM. During the probe trial, mice that had entered torpor and mice that were fed at 29 degrees C spent twice as much time in the prior target platform location than mice that were fed at 19 degrees C and those that were fasted at 29 degrees C. These findings demonstrate that, while food restriction or cool ambient temperature independently disrupt memory processes, together they cause physiological changes including the induction of a state of torpor that result in functional preservation of the memory process.
Collapse
|
30
|
Zhao HW, Christian SL, Castillo MR, Bult-Ito A, Drew KL. Distribution of NMDA receptor subunit NR1 in arctic ground squirrel central nervous system. J Chem Neuroanat 2006; 32:196-207. [PMID: 17097266 PMCID: PMC3796384 DOI: 10.1016/j.jchemneu.2006.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 09/13/2006] [Accepted: 09/13/2006] [Indexed: 10/23/2022]
Abstract
Hibernation is a natural model of neuroprotection and adult synaptic plasticity. NMDA receptors (NMDAR), which play key roles in excitotoxicity and synaptic plasticity, have not been characterized in a hibernating species. Tolerance to excitotoxicity and cognitive enhancement in Arctic ground squirrels (AGS, Spermophilus parryii) suggests that NMDAR expression may decrease in hibernation and increase upon arousal. NMDAR consist of at least one NMDAR1 (NR1) subunit, which is required for receptor function. Localization of NR1 reflects localization of the majority, if not all, NMDAR complexes. The purpose of this study, therefore, was to characterize the distribution of NR1 subunits in AGS central nervous system using immunohistochemistry. In addition, we compare NR1 expression in hippocampus of hibernating AGS (hAGS) and inter-bout euthermic AGS (ibeAGS) and assess changes in cell somata size using NR1 stained sections in three hippocampal sub-regions (CA1, CA3, and dentate gyrus). For the first time, we report that immunoreactivity of anti-NR1 is widely distributed throughout the central nervous system in AGS and is similar to other species. No differences exist in the expression and distribution of NR1 in hAGS and ibeAGS. However, we report a significant decrease in size of hippocampal CA1 and dentate gyrus NR1-expressing neuronal somata during hibernation torpor.
Collapse
Affiliation(s)
- Huiwen W Zhao
- Alaskan Basic Neuroscience Program, Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA.
| | | | | | | | | |
Collapse
|
31
|
von der Ohe CG, Darian-Smith C, Garner CC, Heller HC. Ubiquitous and temperature-dependent neural plasticity in hibernators. J Neurosci 2006; 26:10590-8. [PMID: 17035545 PMCID: PMC6674705 DOI: 10.1523/jneurosci.2874-06.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/17/2006] [Accepted: 08/29/2006] [Indexed: 12/29/2022] Open
Abstract
Hibernating mammals are remarkable for surviving near-freezing brain temperatures and near cessation of neural activity for a week or more at a time. This extreme physiological state is associated with dendritic and synaptic changes in hippocampal neurons. Here, we investigate whether these changes are a ubiquitous phenomenon throughout the brain that is driven by temperature. We iontophoretically injected Lucifer yellow into several types of neurons in fixed slices from hibernating ground squirrels. We analyzed neuronal microstructure from animals at several stages of torpor at two different ambient temperatures, and during the summer. We show that neuronal cell bodies, dendrites, and spines from several cell types in hibernating ground squirrels retract on entry into torpor, change little over the course of several days, and then regrow during the 2 h return to euthermia. Similar structural changes take place in neurons from the hippocampus, cortex, and thalamus, suggesting a global phenomenon. Investigation of neural microstructure from groups of animals hibernating at different ambient temperatures revealed that there is a linear relationship between neural retraction and minimum body temperature. Despite significant temperature-dependent differences in extent of retraction during torpor, recovery reaches the same final values of cell body area, dendritic arbor complexity, and spine density. This study demonstrates large-scale and seemingly ubiquitous neural plasticity in the ground squirrel brain during torpor. It also defines a temperature-driven model of dramatic neural plasticity, which provides a unique opportunity to explore mechanisms of large-scale regrowth in adult mammals, and the effects of remodeling on learning and memory.
Collapse
Affiliation(s)
- Christina G von der Ohe
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| | | | | | | |
Collapse
|
32
|
Zhao HW, Ross AP, Christian SL, Buchholz JN, Drew KL. Decreased NR1 phosphorylation and decreased NMDAR function in hibernating Arctic ground squirrels. J Neurosci Res 2006; 84:291-8. [PMID: 16676330 PMCID: PMC3796386 DOI: 10.1002/jnr.20893] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heterothermic mammals such as ground squirrels tolerate ischemia and N-methyl-D-aspartate (NMDA) better than homeothermic mammals such as rats both in vivo and in vitro, and this tolerance is enhanced in the hibernating state. However, the cellular mechanisms underlying this tolerance remain unclear. NMDA receptors (NMDAR) play a key role in excitotoxicity. The purpose of the current study was therefore to test the hypothesis that NMDAR are down-regulated in hibernating Arctic ground squirrels (hAGS; Spermophilus parryii). To address this hypothesis, we used Western blot analysis to investigate NMDAR phosphorylation, an activator of NMDAR function, and internalization in naïve hippocampal tissue from hAGS, interbout euthermic AGS (ibeAGS), and rats. Furthermore, we used fura-2 calcium imaging to examine NMDAR function in cultured hippocampal slices from hAGS, ibeAGS, and rats. We report that phosphorylation of the NMDAR1 (NR1) subunit is decreased in hippocampal tissue from hAGS and that the NMDAR component of Glu-induced increase in [Ca(2+)](i) is decreased in hippocampal slices from hAGS. Moreover, the fraction of NR1 in the functional membrane pool in AGS is less than that in rats.
Collapse
Affiliation(s)
- Huiwen W. Zhao
- Alaskan Basic Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Austin P. Ross
- Alaskan Basic Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Sherri L. Christian
- Alaskan Basic Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - John N. Buchholz
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Kelly L. Drew
- Alaskan Basic Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
- Correspondence to: Kelly L. Drew, PhD, Associate Professor, Alaskan Basic Neuroscience Program, Institute of Arctic Biology, Box 757000, University of Alaska Fairbanks, Fairbanks, AK 99775-7000.
| |
Collapse
|
33
|
Conrad CD. What is the functional significance of chronic stress-induced CA3 dendritic retraction within the hippocampus? BEHAVIORAL AND COGNITIVE NEUROSCIENCE REVIEWS 2006; 5:41-60. [PMID: 16816092 PMCID: PMC1512384 DOI: 10.1177/1534582306289043] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chronic stress produces consistent and reversible changes within the dendritic arbors of CA3 hippocampal neurons, characterized by decreased dendritic length and reduced branch number. This chronic stress-induced dendritic retraction has traditionally corresponded to hippocampus-dependent spatial memory deficits. However, anomalous findings have raised doubts as to whether a CA3 dendritic retraction is sufficient to compromise hippocampal function. The purpose of this review is to outline the mechanism underlying chronic stress-induced CA3 dendritic retraction and to explain why CA3 dendritic retraction has been thought to mediate spatial memory. The anomalous findings provide support for a modified hypothesis, in which chronic stress is proposed to induce CA3 dendritic retraction, which then disrupts hypothalamic-pituitary-adrenal axis activity, leading to dysregulated glucocorticoid release. The combination of hippocampal CA3 dendritic retraction and elevated glucocorticoid release contributes to impaired spatial memory. These findings are presented in the context of clinical conditions associated with elevated glucocorticoids.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Deparment of Psychology, Arizona State University, Box 1104, Tempe, 85287-1104, USA.
| |
Collapse
|