1
|
Yin B, Shi Z, Wang Y, Meck WH. Oscillation/Coincidence-Detection Models of Reward-Related Timing in Corticostriatal Circuits. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The major tenets of beat-frequency/coincidence-detection models of reward-related timing are reviewed in light of recent behavioral and neurobiological findings. This includes the emphasis on a core timing network embedded in the motor system that is comprised of a corticothalamic-basal ganglia circuit. Therein, a central hub provides timing pulses (i.e., predictive signals) to the entire brain, including a set of distributed satellite regions in the cerebellum, cortex, amygdala, and hippocampus that are selectively engaged in timing in a manner that is more dependent upon the specific sensory, behavioral, and contextual requirements of the task. Oscillation/coincidence-detection models also emphasize the importance of a tuned ‘perception’ learning and memory system whereby target durations are detected by striatal networks of medium spiny neurons (MSNs) through the coincidental activation of different neural populations, typically utilizing patterns of oscillatory input from the cortex and thalamus or derivations thereof (e.g., population coding) as a time base. The measure of success of beat-frequency/coincidence-detection accounts, such as the Striatal Beat-Frequency model of reward-related timing (SBF), is their ability to accommodate new experimental findings while maintaining their original framework, thereby making testable experimental predictions concerning diagnosis and treatment of issues related to a variety of dopamine-dependent basal ganglia disorders, including Huntington’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Bin Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhuanghua Shi
- Department of Psychology, Ludwig Maximilian University of Munich, 80802 Munich, Germany
| | - Yaxin Wang
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Fung BJ, Sutlief E, Hussain Shuler MG. Dopamine and the interdependency of time perception and reward. Neurosci Biobehav Rev 2021; 125:380-391. [PMID: 33652021 PMCID: PMC9062982 DOI: 10.1016/j.neubiorev.2021.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/14/2023]
Abstract
Time is a fundamental dimension of our perception of the world and is therefore of critical importance to the organization of human behavior. A corpus of work - including recent optogenetic evidence - implicates striatal dopamine as a crucial factor influencing the perception of time. Another stream of literature implicates dopamine in reward and motivation processes. However, these two domains of research have remained largely separated, despite neurobiological overlap and the apothegmatic notion that "time flies when you're having fun". This article constitutes a review of the literature linking time perception and reward, including neurobiological and behavioral studies. Together, these provide compelling support for the idea that time perception and reward processing interact via a common dopaminergic mechanism.
Collapse
Affiliation(s)
- Bowen J Fung
- The Behavioural Insights Team, Suite 3, Level 13/9 Hunter St, Sydney NSW 2000, Australia.
| | - Elissa Sutlief
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Woods Basic Science Building Rm914, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Marshall G Hussain Shuler
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Woods Basic Science Building Rm914, 725 N. Wolfe Street, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Terao Y, Honma M, Asahara Y, Tokushige SI, Furubayashi T, Miyazaki T, Inomata-Terada S, Uchibori A, Miyagawa S, Ichikawa Y, Chiba A, Ugawa Y, Suzuki M. Time Distortion in Parkinsonism. Front Neurosci 2021; 15:648814. [PMID: 33815049 PMCID: PMC8017233 DOI: 10.3389/fnins.2021.648814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Although animal studies and studies on Parkinson’s disease (PD) suggest that dopamine deficiency slows the pace of the internal clock, which is corrected by dopaminergic medication, timing deficits in parkinsonism remain to be characterized with diverse findings. Here we studied patients with PD and progressive supranuclear palsy (PSP), 3–4 h after drug intake, and normal age-matched subjects. We contrasted perceptual (temporal bisection, duration comparison) and motor timing tasks (time production/reproduction) in supra- and sub-second time domains, and automatic versus cognitive/short-term memory–related tasks. Subjects were allowed to count during supra-second production and reproduction tasks. In the time production task, linearly correlating the produced time with the instructed time showed that the “subjective sense” of 1 s is slightly longer in PD and shorter in PSP than in normals. This was superposed on a prominent trend of underestimation of longer (supra-second) durations, common to all groups, suggesting that the pace of the internal clock changed from fast to slow as time went by. In the time reproduction task, PD and, more prominently, PSP patients over-reproduced shorter durations and under-reproduced longer durations at extremes of the time range studied, with intermediate durations reproduced veridically, with a shallower slope of linear correlation between the presented and produced time. In the duration comparison task, PD patients overestimated the second presented duration relative to the first with shorter but not longer standard durations. In the bisection task, PD and PSP patients estimated the bisection point (BP50) between the two supra-second but not sub-second standards to be longer than normal subjects. Thus, perceptual timing tasks showed changes in opposite directions to motor timing tasks: underestimating shorter durations and overestimating longer durations. In PD, correlation of the mini-mental state examination score with supra-second BP50 and the slope of linear correlation in the reproduction task suggested involvement of short-term memory in these tasks. Dopamine deficiency didn’t correlate significantly with timing performances, suggesting that the slowed clock hypothesis cannot explain the entire results. Timing performance in PD may be determined by complex interactions among time scales on the motor and sensory sides, and by their distortion in memory.
Collapse
Affiliation(s)
- Yasuo Terao
- Department of Medical Physiology, School of Medicine, Kyorin University, Tokyo, Japan
| | - Motoyasu Honma
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Yuki Asahara
- Department of Neurology, The Jikei University Katsushika Medical Center, Tokyo, Japan
| | | | - Toshiaki Furubayashi
- Graduate School of Health and Environment Science, Tohoku Bunka Gakuen University, Sendai, Japan
| | - Tai Miyazaki
- Department of Neurology, Kyorin University Hospital, Tokyo, Japan
| | - Satomi Inomata-Terada
- Department of Medical Physiology, School of Medicine, Kyorin University, Tokyo, Japan
| | - Ayumi Uchibori
- Department of Neurology, Kyorin University Hospital, Tokyo, Japan
| | - Shinji Miyagawa
- Department of Neurology, The Jikei University Katsushika Medical Center, Tokyo, Japan
| | - Yaeko Ichikawa
- Department of Neurology, Kyorin University Hospital, Tokyo, Japan
| | - Atsuro Chiba
- Department of Neurology, Kyorin University Hospital, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masahiko Suzuki
- Department of Neurology, The Jikei University Katsushika Medical Center, Tokyo, Japan
| |
Collapse
|
4
|
Bansal A, Weech S, Barnett-Cowan M. Movement-Contingent Time Flow in Virtual Reality Causes Temporal Recalibration. Sci Rep 2019; 9:4378. [PMID: 30867525 PMCID: PMC6416345 DOI: 10.1038/s41598-019-40870-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/20/2019] [Indexed: 11/09/2022] Open
Abstract
Virtual reality (VR) provides a valuable research tool for studying what occurs when sensorimotor feedback loops are manipulated. Here we measured whether exposure to a novel temporal relationship between action and sensory reaction in VR causes recalibration of time perception. We asked 31 participants to perform time perception tasks where the interval of a moving probe was reproduced using continuous or discrete motor methods. These time perception tasks were completed pre- and post-exposure to dynamic VR content in a block-counterbalanced order. One group of participants experienced a standard VR task ("normal-time"), while another group had their real-world movements coupled to the flow of time in the virtual space ("movement contingent time-flow; MCTF"). We expected this novel action-perception relationship to affect continuous motor time perception performance, but not discrete motor time perception. The results indicated duration-dependent recalibration specific to a motor task involving continuous movement such that the probe intervals were under-estimated by approximately 15% following exposure to VR with the MCTF manipulation. Control tasks in VR and non-VR settings produced similar results to those of the normal-time VR group, confirming the specificity of the MCTF manipulation. The findings provide valuable insights into the potential impact of VR on sensorimotor recalibration. Understanding this process will be valuable for the development and implementation of rehabilitation practices.
Collapse
Affiliation(s)
- Ambika Bansal
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Séamas Weech
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | | |
Collapse
|
5
|
Graham-Schmidt KT, Martin-Iverson MT, Waters FAV. Setting the beat of an internal clock: Effects of dexamphetamine on different interval ranges of temporal processing in healthy volunteers. Psych J 2019; 8:90-109. [PMID: 30793518 DOI: 10.1002/pchj.274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 12/29/2022]
Abstract
Drug studies are powerful models to investigate the neuropharmacological mechanisms underlying temporal processing in humans. This study administered dexamphetamine to 24 healthy volunteers to investigate time perception at different time scales, along with contributions from working memory. Healthy volunteers were administered 0.45 mg/kg dexamphetamine or placebo in a double-blind, crossover, placebo-controlled design. Time perception was assessed using three experimental tasks: a time-discrimination task, which asked participants to determine whether a comparison interval (1200 ± 0, 50, 100, 150, 200 ms) was shorter or longer than a standard interval (1200 ms); a retrospective time estimation task, which required participants to verbally estimate time intervals (10, 30, 60, 90 and 120 s) retrospectively; and a prospective time-production task, where participants were required to prospectively monitor the passing of time (10, 30, 60, 90 and 120 s). Working memory was assessed with the backwards digit span. On the discrimination task, there was a change in the proportion of long-to-short responses and reaction times in the dexamphetamine condition (but no association with working memory), consistent with an increase in the speed of an internal pacemaker, and an overestimation of durations in the timing of shorter intervals. There was an interaction between dexamphetamine, working memory, and performance on the estimation and production tasks, whereby increasing digit span scores were associated with decreasing interval estimates and increased produced intervals in the placebo condition, but were associated with increased interval estimates and decreased produced intervals after dexamphetamine administration. These findings indicate that the dexamphetamine-induced increase in the speed of the internal pacemaker was modulated by the basal working memory capacity of each participant. These findings in healthy humans have important implications for the role of dopamine, and its contributions to timing deficits, in models of psychiatric disorders.
Collapse
Affiliation(s)
- Kyran T Graham-Schmidt
- Faculty of Medicine, Dentistry and Health Sciences, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Mathew T Martin-Iverson
- Faculty of Medicine, Dentistry and Health Sciences, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia.,Statewide Department of Neurophysiology, Clinical Research Unit, North Metro Area Mental Health, Graylands Hospital, Perth, Western Australia, Australia
| | - Flavie A V Waters
- Faculty of Medicine, Dentistry and Health Sciences, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,Clinical Research Centre, Graylands Health Campus, North Metropolitan Health Services - Mental Health, Mount Claremont, Western Australia, Australia
| |
Collapse
|
6
|
Thomaschke R, Hoffmann J, Haering C, Kiesel A. Time-Based Expectancy for Task Relevant Stimulus Features. TIMING & TIME PERCEPTION 2016. [DOI: 10.1163/22134468-00002069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
When a particular target stimulus appears more frequently after a certain interval than after another one, participants adapt to such regularity, as evidenced by faster responses to frequent interval-target combinations than to infrequent ones. This phenomenon is known as time-based expectancy. Previous research has suggested that time-based expectancy is primarily motor-based, in the sense that participants learn to prepare a particular response after a specific interval. Perceptual time-based expectancy — in the sense of learning to perceive a certain stimulus after specific interval — has previously not been observed. We conducted a Two-Alternative-Forced-Choice experiment with four stimuli differing in shape and orientation. A subset of the stimuli was frequently paired with a certain interval, while the other subset was uncorrelated with interval. We varied the response relevance of the interval-correlated stimuli, and investigated under which conditions time-based expectancy transfers from trials with interval-correlated stimuli to trials with interval-uncorrelated stimuli. Transfer was observed only where transfer of perceptual expectancy and transfer of response expectancy predicted the same behavioral pattern, not when they predicted opposite patterns. The results indicate that participants formed time-based expectancy for stimuli as well as for responses. However, alternative interpretations are also discussed.
Collapse
|
7
|
Chen T, Helminen TM, Hietanen JK. Affect in the eyes: explicit and implicit evaluations. Cogn Emot 2016; 31:1070-1082. [DOI: 10.1080/02699931.2016.1188059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tingji Chen
- Human Information Processing Laboratory, School of Social Sciences and Humanities/Psychology, University of Tampere, Tampere, Finland
| | - Terhi M. Helminen
- Human Information Processing Laboratory, School of Social Sciences and Humanities/Psychology, University of Tampere, Tampere, Finland
| | - Jari K. Hietanen
- Human Information Processing Laboratory, School of Social Sciences and Humanities/Psychology, University of Tampere, Tampere, Finland
| |
Collapse
|
8
|
Gu BM, van Rijn H, Meck WH. Oscillatory multiplexing of neural population codes for interval timing and working memory. Neurosci Biobehav Rev 2014; 48:160-85. [PMID: 25454354 DOI: 10.1016/j.neubiorev.2014.10.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 01/01/2023]
Abstract
Interval timing and working memory are critical components of cognition that are supported by neural oscillations in prefrontal-striatal-hippocampal circuits. In this review, the properties of interval timing and working memory are explored in terms of behavioral, anatomical, pharmacological, and neurophysiological findings. We then describe the various neurobiological theories that have been developed to explain these cognitive processes - largely independent of each other. Following this, a coupled excitatory - inhibitory oscillation (EIO) model of temporal processing is proposed to address the shared oscillatory properties of interval timing and working memory. Using this integrative approach, we describe a hybrid model explaining how interval timing and working memory can originate from the same oscillatory processes, but differ in terms of which dimension of the neural oscillation is utilized for the extraction of item, temporal order, and duration information. This extension of the striatal beat-frequency (SBF) model of interval timing (Matell and Meck, 2000, 2004) is based on prefrontal-striatal-hippocampal circuit dynamics and has direct relevance to the pathophysiological distortions observed in time perception and working memory in a variety of psychiatric and neurological conditions.
Collapse
Affiliation(s)
- Bon-Mi Gu
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Hedderik van Rijn
- Department of Psychology, University of Groningen, Groningen, The Netherlands
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
Bermudez MA, Schultz W. Timing in reward and decision processes. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120468. [PMID: 24446502 DOI: 10.1098/rstb.2012.0468] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sensitivity to time, including the time of reward, guides the behaviour of all organisms. Recent research suggests that all major reward structures of the brain process the time of reward occurrence, including midbrain dopamine neurons, striatum, frontal cortex and amygdala. Neuronal reward responses in dopamine neurons, striatum and frontal cortex show temporal discounting of reward value. The prediction error signal of dopamine neurons includes the predicted time of rewards. Neurons in the striatum, frontal cortex and amygdala show responses to reward delivery and activities anticipating rewards that are sensitive to the predicted time of reward and the instantaneous reward probability. Together these data suggest that internal timing processes have several well characterized effects on neuronal reward processing.
Collapse
Affiliation(s)
- Maria A Bermudez
- Department of Physiology, Development and Neuroscience, University of Cambridge, , Cambridge, UK
| | | |
Collapse
|
10
|
Allman MJ, Teki S, Griffiths TD, Meck WH. Properties of the Internal Clock: First- and Second-Order Principles of Subjective Time. Annu Rev Psychol 2014; 65:743-71. [DOI: 10.1146/annurev-psych-010213-115117] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Melissa J. Allman
- Department of Psychology, Michigan State University, East Lansing, Michigan 48823;
| | - Sundeep Teki
- Wellcome Trust Center for Neuroimaging, University College London, London, WC1N 3BG United Kingdom;
| | - Timothy D. Griffiths
- Wellcome Trust Center for Neuroimaging, University College London, London, WC1N 3BG United Kingdom;
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle-upon-Tyne, NE2 4HH United Kingdom;
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27701;
| |
Collapse
|
11
|
Heilbronner SR, Meck WH. Dissociations between interval timing and intertemporal choice following administration of fluoxetine, cocaine, or methamphetamine. Behav Processes 2014; 101:123-34. [PMID: 24135569 PMCID: PMC4081038 DOI: 10.1016/j.beproc.2013.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 09/21/2013] [Indexed: 12/26/2022]
Abstract
The goal of our study was to characterize the relationship between intertemporal choice and interval timing, including determining how drugs that modulate brain serotonin and dopamine levels influence these two processes. In Experiment 1, rats were tested on a standard 40-s peak-interval procedure following administration of fluoxetine (3, 5, or 8 mg/kg) or vehicle to assess basic effects on interval timing. In Experiment 2, rats were tested in a novel behavioral paradigm intended to simultaneously examine interval timing and impulsivity. Rats performed a variant of the bi-peak procedure using 10-s and 40-s target durations with an additional "defection" lever that provided the possibility of a small, immediate reward. Timing functions remained relatively intact, and 'patience' across subjects correlated with peak times, indicating a negative relationship between 'patience' and clock speed. We next examined the effects of fluoxetine (5 mg/kg), cocaine (15 mg/kg), or methamphetamine (1 mg/kg) on task performance. Fluoxetine reduced impulsivity as measured by defection time without corresponding changes in clock speed. In contrast, cocaine and methamphetamine both increased impulsivity and clock speed. Thus, variations in timing may mediate intertemporal choice via dopaminergic inputs. However, a separate, serotonergic system can affect intertemporal choice without affecting interval timing directly. This article is part of a Special Issue entitled: Associative and Temporal Learning.
Collapse
Affiliation(s)
- Sarah R Heilbronner
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
12
|
Lake JI, Meck WH. Differential effects of amphetamine and haloperidol on temporal reproduction: Dopaminergic regulation of attention and clock speed. Neuropsychologia 2013; 51:284-92. [DOI: 10.1016/j.neuropsychologia.2012.09.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 11/26/2022]
|
13
|
Macdonald CJ, Cheng RK, Meck WH. Acquisition of "Start" and "Stop" response thresholds in peak-interval timing is differentially sensitive to protein synthesis inhibition in the dorsal and ventral striatum. Front Integr Neurosci 2012; 6:10. [PMID: 22435054 PMCID: PMC3303086 DOI: 10.3389/fnint.2012.00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 02/28/2012] [Indexed: 01/07/2023] Open
Abstract
Time-based decision-making in peak-interval timing procedures involves the setting of response thresholds for the initiation (“Start”) and termination (“Stop”) of a response sequence that is centered on a target duration. Using intracerebral infusions of the protein synthesis inhibitor anisomycin, we report that the acquisition of the “Start” response depends on normal functioning (including protein synthesis) in the dorsal striatum (DS), but not the ventral striatum (VS). Conversely, disruption of the VS, but not the DS, impairs the acquisition of the “Stop” response. We hypothesize that the dorsal and ventral regions of the striatum function as a competitive neural network that encodes the temporal boundaries marking the beginning and end of a timed response sequence.
Collapse
|
14
|
Meck WH, Cheng RK, MacDonald CJ, Gainetdinov RR, Caron MG, Çevik MÖ. Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology 2012; 62:1221-9. [DOI: 10.1016/j.neuropharm.2011.01.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
15
|
van Rijn H, Kononowicz TW, Meck WH, Ng KK, Penney TB. Contingent negative variation and its relation to time estimation: a theoretical evaluation. Front Integr Neurosci 2011; 5:91. [PMID: 22207841 PMCID: PMC3246349 DOI: 10.3389/fnint.2011.00091] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 12/13/2011] [Indexed: 11/13/2022] Open
Abstract
The relation between the contingent negative variation (CNV) and time estimation is evaluated in terms of temporal accumulation and preparation processes. The conclusion is that the CNV as measured from the electroencephalogram (EEG) recorded at fronto-central and parietal-central areas is not a direct reflection of the underlying interval timing mechanism(s), but more likely represents a time-based response preparation/decision-making process.
Collapse
Affiliation(s)
- Hedderik van Rijn
- Experimental Psychology, University of Groningen Groningen, Netherlands
| | | | | | | | | |
Collapse
|
16
|
Agostino PV, Golombek DA, Meck WH. Unwinding the molecular basis of interval and circadian timing. Front Integr Neurosci 2011; 5:64. [PMID: 22022309 PMCID: PMC3196210 DOI: 10.3389/fnint.2011.00064] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 09/30/2011] [Indexed: 12/01/2022] Open
Abstract
Neural timing mechanisms range from the millisecond to diurnal, and possibly annual, frequencies. Two of the main processes under study are the interval timer (seconds-to-minute range) and the circadian clock. The molecular basis of these two mechanisms is the subject of intense research, as well as their possible relationship. This article summarizes data from studies investigating a possible interaction between interval and circadian timing and reviews the molecular basis of both mechanisms, including the discussion of the contribution from studies of genetically modified animal models. While there is currently no common neurochemical substrate for timing mechanisms in the brain, circadian modulation of interval timing suggests an interaction of different frequencies in cerebral temporal processes.
Collapse
Affiliation(s)
- Patricia V Agostino
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes Buenos Aires, Argentina
| | | | | |
Collapse
|
17
|
Allman MJ, Meck WH. Pathophysiological distortions in time perception and timed performance. ACTA ACUST UNITED AC 2011; 135:656-77. [PMID: 21921020 DOI: 10.1093/brain/awr210] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Distortions in time perception and timed performance are presented by a number of different neurological and psychiatric conditions (e.g. Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder and autism). As a consequence, the primary focus of this review is on factors that define or produce systematic changes in the attention, clock, memory and decision stages of temporal processing as originally defined by Scalar Expectancy Theory. These findings are used to evaluate the Striatal Beat Frequency Theory, which is a neurobiological model of interval timing based upon the coincidence detection of oscillatory processes in corticostriatal circuits that can be mapped onto the stages of information processing proposed by Scalar Timing Theory.
Collapse
Affiliation(s)
- Melissa J Allman
- Kennedy Krieger Institute, and Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
18
|
Anticipation of future events improves the ability to estimate elapsed time. Exp Brain Res 2011; 214:323-34. [PMID: 21901454 DOI: 10.1007/s00221-011-2821-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
An accurate estimate of elapsed time is essential for anticipating the timing of future events. Here, we show that the ability to estimate elapsed time on a reaction time (RT) task improved with training during which human participants learned to anticipate the onset of a "Go" signal. In each trial, a warning signal preceded the Go signal by a temporal interval (i.e., foreperiod). The duration of the foreperiod was randomly drawn from a rectangular distribution (1-2 s). Participants were required to initiate a response immediately after the Go signal and performed the task for 480 trials/day for 12 days. Anticipation should have been governed by the probability that the Go signal would occur (hazard rate), which increased for longer foreperiods. Indeed, RTs decreased for longer foreperiods and were inversely related to the hazard rate. The pattern of RT decrease was well explained by the subjective hazard rate, which was formalized based on the assumption that the uncertainty of estimates of elapsed time scales with time (Weber's law). Notably, RTs demonstrated a more linear decrease as a function of foreperiod in LATE compared with EARLY training sessions. This involved a decrease in the Weber fraction used in the subjective hazard rate. The results indicate that the uncertainty associated with estimating elapsed time was reduced as participants learned and used the hazard rate to anticipate the onset of the Go signal. This finding suggests that the ability to estimate elapsed time improves with training on behavioral tasks that implicitly engage timing mechanisms.
Collapse
|
19
|
Quinpirole-induced sensitization to noisy/sparse periodic input: temporal synchronization as a component of obsessive-compulsive disorder. Neuroscience 2011; 179:143-50. [DOI: 10.1016/j.neuroscience.2011.01.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/19/2011] [Accepted: 01/22/2011] [Indexed: 11/22/2022]
|
20
|
Categorical scaling of duration as a function of temporal context in aged rats. Brain Res 2011; 1381:175-86. [PMID: 21262208 DOI: 10.1016/j.brainres.2011.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 12/29/2022]
Abstract
Aged male rats at 10, 20, and 30 mo of age were trained on a 2.0 vs. 8.0-s duration bisection procedure using both auditory and visual signals and were then tested with visual signal durations in which the spacing of the intermediate signal durations was held constant as the short (S) and long (L) anchor durations were moved progressively closer to each other across blocks of sessions. Auditory clicks also preceded some trials in order to determine the potential effects of arousal and/or distraction on the timing of visual signals. The consequences of aging, reducing the S:L ratio, and auditory clicks were to increase the likelihood of observing reversals in response classifications around the geometric mean of the anchor durations. Taken together, these results suggest that the bisection "reversal effect" is dependent upon the calculation of the subjective mid-point between the two anchor durations and the differential setting of response thresholds around this category boundary as a function of temporal context.
Collapse
|
21
|
Coull JT, Cheng RK, Meck WH. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 2011; 36:3-25. [PMID: 20668434 PMCID: PMC3055517 DOI: 10.1038/npp.2010.113] [Citation(s) in RCA: 535] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/29/2010] [Accepted: 06/29/2010] [Indexed: 11/09/2022]
Abstract
We all have a sense of time. Yet, there are no sensory receptors specifically dedicated for perceiving time. It is an almost uniquely intangible sensation: we cannot see time in the way that we see color, shape, or even location. So how is time represented in the brain? We explore the neural substrates of metrical representations of time such as duration estimation (explicit timing) or temporal expectation (implicit timing). Basal ganglia (BG), supplementary motor area, cerebellum, and prefrontal cortex have all been linked to the explicit estimation of duration. However, each region may have a functionally discrete role and will be differentially implicated depending upon task context. Among these, the dorsal striatum of the BG and, more specifically, its ascending nigrostriatal dopaminergic pathway seems to be the most crucial of these regions, as shown by converging functional neuroimaging, neuropsychological, and psychopharmacological investigations in humans, as well as lesion and pharmacological studies in animals. Moreover, neuronal firing rates in both striatal and interconnected frontal areas vary as a function of duration, suggesting a neurophysiological mechanism for the representation of time in the brain, with the excitatory-inhibitory balance of interactions among distinct subtypes of striatal neuron serving to fine-tune temporal accuracy and precision.
Collapse
Affiliation(s)
- Jennifer T Coull
- Laboratoire de Neurobiologie de la Cognition, Pole 3C, Université de Provence and CNRS, Marseille, France.
| | | | | |
Collapse
|
22
|
Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn Sci 2010; 14:208-15. [PMID: 20207189 DOI: 10.1016/j.tics.2010.02.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 02/01/2010] [Accepted: 02/01/2010] [Indexed: 11/21/2022]
Abstract
In the 20th century it was thought that novel behaviors are mediated primarily in cortex and that the development of automaticity is a process of transferring control to subcortical structures. However, evidence supports the view that subcortical structures, such as the striatum, make significant contributions to initial learning. More recently, there has been increasing evidence that neurons in the associative striatum are selectively activated during early learning, whereas those in the sensorimotor striatum are more active after automaticity has developed. At the same time, other recent reports indicate that automatic behaviors are striatum- and dopamine-independent, and might be mediated entirely within cortex. Resolving this apparent conflict should be a major goal of future research.
Collapse
|
23
|
Choi WY, Morvan C, Balsam PD, Horvitz JC. Dopamine D1 and D2 antagonist effects on response likelihood and duration. Behav Neurosci 2010; 123:1279-87. [PMID: 20001111 DOI: 10.1037/a0017702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimentally induced and parkinsonian disruptions in dopamine (DA) transmission are associated with motor abnormalities that include a reduced likelihood of behavioral response initiation and an increased duration of executed responses. Here we investigated the dopamine receptor subtypes involved in regulating these two aspects of behavior. We examined the effects of D1 family (D1/D5) antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390; 0, 0.04, 0.08, or 0.16 mg/kg) and D2/D3 antagonist 3,5-dichloro-N-(1-ethylpyrrolidin-2-ylmethyl)-2-hydroxy-6-methoxybenzamide (+)-tartrate salt (raclopride; 0, 0.2, or 0.4 mg/kg) on the likelihood and duration of a cued Pavlovian approach and a cued operant lever-press response. While the high doses of the D1 and D2 antagonists produced similar levels of overall locomotor suppression, only the D2 antagonist increased the duration of time that animals' heads remained in the food compartment during both Pavlovian and operant task performance. In contrast, D1 antagonist SCH23390 decreased the proportion of trials in which animals executed both the Pavlovian approach and operant lever-press, while raclopride did not. The results suggest that D2 receptor blockade preferentially increases response duration, and, under the simple discrete-trial procedures employed here, D1 receptor blockade preferential reduces Pavlovian and operant response likelihood.
Collapse
Affiliation(s)
- Won Yung Choi
- Columbia University, Department of Psychiatry, New York, New York, USA
| | | | | | | |
Collapse
|
24
|
Meck WH, Penney TB, Pouthas V. Cortico-striatal representation of time in animals and humans. Curr Opin Neurobiol 2008; 18:145-52. [PMID: 18708142 DOI: 10.1016/j.conb.2008.08.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Revised: 07/30/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
25
|
Impairments in timing, temporal memory, and reversal learning linked to neurotoxic regimens of methamphetamine intoxication. Brain Res 2007; 1186:255-66. [PMID: 17996849 DOI: 10.1016/j.brainres.2007.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 09/30/2007] [Accepted: 10/03/2007] [Indexed: 01/27/2023]
Abstract
Methamphetamine intoxication has long-term consequences on dopaminergic function and corticostriatal-mediated behaviors in humans and other animals. In order to determine the potential impact on timing and temporal memory, we examined methamphetamine dose regimens that have been linked to neurotoxicity in adult (8 months) male rats. Rats that were given repetitive, high-dose methamphetamine (3.0 mg/kg ip x 4 injections/2 h) or saline injections were trained on a 2-s vs 8-s bisection procedure using auditory and visual signal durations. Following the high-dose regimen, baseline timing performance was reestablished prior to the rats' receiving reversal training in which the spatial/temporal mapping of the anchor durations (2 s and 8 s) to response options (left or right lever) was reversed. Low-dose methamphetamine (0.5 mg/kg ip) or saline injections were subsequently used to evaluate the effectiveness of the neurotoxic doses in terms of modifying the horizontal leftward shifts associated with increases in clock speed. Overall, the results indicate that MAP intoxication leads to reduced auditory/visual differences in clock speed, deficits in reversal learning, distortions in temporal memory, and lowered dopaminergic regulation of clock speed consistent with damage to prefrontal cortex and corticostriatal circuitry.
Collapse
|
26
|
Cheng RK, Ali YM, Meck WH. Ketamine “unlocks” the reduced clock-speed effects of cocaine following extended training: Evidence for dopamine–glutamate interactions in timing and time perception. Neurobiol Learn Mem 2007; 88:149-59. [PMID: 17513138 DOI: 10.1016/j.nlm.2007.04.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 03/26/2007] [Accepted: 04/04/2007] [Indexed: 11/24/2022]
Abstract
The present study examined the clock-speed modulating effects of acute cocaine administration in groups of male rats that received different amounts of baseline training on a 36-s peak-interval procedure prior to initial drug injection. After injection of cocaine (10, 15, or 20mg/kg, ip), rats that had received a minimal amount of training (e.g., <or=30 sessions) prior to drug administration displayed a horizontal leftward shift in their timing functions indicating that the speed of the internal clock was increased. In contrast, rats that had received an extended amount of training (e.g., >or=180 sessions) prior to cocaine (15 mg/kg, ip) administration did not produce this "classic" curve-shift effect, but instead displayed a general disruption of temporal control following drug administration. Importantly, when co-administered with a behaviorally ineffective dose of ketamine (10mg/kg, ip) the ability of cocaine to modulate clock speed in rats receiving extended training was restored. A glutamate "lock/unlock" hypothesis is used to explain the observed dopamine-glutamate interactions as a function of timing behaviors becoming learned habits.
Collapse
Affiliation(s)
- Ruey-Kuang Cheng
- Department of Psychology and Neuroscience, Duke University, 572 Research Drive, Genome Sciences Research Building II, Box 91050, Durham, NC 27708, USA
| | | | | |
Collapse
|
27
|
Cheng RK, Hakak OL, Meck WH. Habit formation and the loss of control of an internal clock: inverse relationship between the level of baseline training and the clock-speed enhancing effects of methamphetamine. Psychopharmacology (Berl) 2007; 193:351-62. [PMID: 17464501 DOI: 10.1007/s00213-007-0783-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 03/21/2007] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Drugs that modulate the effective level of dopamine (DA) in cortico-striatal circuits have been shown to alter the perception of time in the seconds-to-minutes range. How this relationship changes as a function of repeated experience with the reinforcement contingencies and the gradual adaptation of the underlying neural circuits remains unclear. MATERIALS AND METHODS The present study examined the clock-speed enhancing effects of methamphetamine (MAP 0.5 or 1.0 mg/kg, ip) in groups of rats that received different levels of baseline training (20, 60, or 120 sessions) on a 50-s peak-interval (PI) procedure before initial drug administration. RESULTS A curvilinear relationship was observed such that rats that received either minimal or intermediate levels of training (<or=60 sessions) displayed dose- x training-related horizontal leftward shifts in their timing functions, suggesting that the speed of the internal clock was increased. In contrast, rats that had received an extended level of training (>or=120 sessions) did not show this "classic" DA agonist curve-shift effect, but instead displayed a dose-dependent disruption of temporal control after MAP administration. A transition from DA-sensitive to DA-insensitive mechanisms is proposed to account for the loss of control of clock speed, as timing behaviors associated with the PI procedure gradually become learned habits through the strengthening of DA-glutamate connections.
Collapse
Affiliation(s)
- Ruey-Kuang Cheng
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
28
|
Meck WH. Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res 2006; 1109:93-107. [PMID: 16890210 DOI: 10.1016/j.brainres.2006.06.031] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/04/2006] [Accepted: 06/05/2006] [Indexed: 11/18/2022]
Abstract
The effects of selective dopamine (DA) depleting lesions with 6-hydroxydopamine microinjection into the SN, CPu, and NAS, as well as radiofrequency lesions of the CPu on the performance characteristics of rats trained on a single-valued 20-s peak-interval (PI) timing procedure or a double-valued 10-s and 60-s PI procedure were evaluated. A double dissociation in the performance of duration discriminations was found. Rats with CPu lesions were unable to exhibit temporal control of their behavior suggesting complete insensitivity to signal duration but were able to show discrimination of the relative reward value of a signal by differentially modifying their response rates appropriately. In contrast, rats with NAS lesions were able to exhibit temporal control of their behavior by differentially modifying their response rates as a function of signal duration(s), suggesting no impairment of sensitivity to signal duration, but were unable to show discrimination of the relative reward value of a signal.
Collapse
Affiliation(s)
- Warren H Meck
- Department of Psychology and Neuroscience, Duke University, 572 Research Drive, Genome Sciences Research Building II-Box 91050, Durham, NC 27708, USA.
| |
Collapse
|
29
|
Meck WH. Frontal cortex lesions eliminate the clock speed effect of dopaminergic drugs on interval timing. Brain Res 2006; 1108:157-67. [PMID: 16844101 DOI: 10.1016/j.brainres.2006.06.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 06/04/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
Behavioral and pharmacological challenges using methamphetamine (MAP-0.5 and 1.0 mg/kg, i.p.), haloperidol (HAL-0.12 mg/kg, i.p.), and sulfated cholecystokinin octapeptide (CCK-0.05 and 0.1 mg/kg, i.p.) were used to evaluate the effects of excitotoxic lesions of cholinergic cell bodies in the medial septal area and the nucleus basalis magnocellularis, radiofrequency lesions of the fimbria-fornix, and aspiration lesions of the frontal cortex on interval timing in rats trained on a 40-s peak-interval procedure. Results demonstrated that lesions of the nucleus basalis magnocellularis and frontal cortex selectively reduced the modulatory control of clock speed which is likely mediated by dopamine D(2) receptors located on cortico-striatal neurons.
Collapse
Affiliation(s)
- Warren H Meck
- Department of Psychology and Neuroscience, Duke University, 572 Research Drive, Genome Sciences Research Building II-Box 91050, Durham, NC 27708-0086, USA.
| |
Collapse
|