1
|
Vörös D, Kiss O, Taigiszer M, László BR, Ollmann T, Péczely L, Zagorácz O, Kertes E, Kállai V, Berta B, Kovács A, Karádi Z, Lénárd L, László K. The role of intraamygdaloid oxytocin in spatial learning and avoidance learning. Peptides 2024; 175:171169. [PMID: 38340898 DOI: 10.1016/j.peptides.2024.171169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The goal of the present study is to investigate the role of intraamygdaloid oxytocin in learning-related mechanisms. Oxytocin is a neuropeptide which is involved in social bonding, trust, emotional responses and various social behaviors. By conducting passive avoidance and Morris water maze tests on male Wistar rats, the role of intraamygdaloid oxytocin in memory performance and learning was investigated. Oxytocin doses of 10 ng and 100 ng were injected into the central nucleus of the amygdala. Our results showed that 10 ng oxytocin significantly reduced the time required to locate the platform during the Morris water maze test while significantly increasing the latency time in the passive avoidance test. However, the 100 ng oxytocin experiment failed to produce a significant effect in either of the tests. Wistar rats pretreated with 20 ng oxytocin receptor antagonist (L-2540) were administered 10 ng of oxytocin into the central nucleus of the amygdala and were also subjected to the aforementioned tests to highlight the role of oxytocin receptors in spatial- and avoidance learning. Results suggest that oxytocin supports memory processing during both the passive avoidance and the Morris water maze tests. Oxytocin antagonists can however block the effects of oxytocin in both tests. The results substantiate that oxytocin uses oxytocin receptors to enhance memory and learning performance.
Collapse
Affiliation(s)
- Dávid Vörös
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Orsolya Kiss
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Márton Taigiszer
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Bettina Réka László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Tamás Ollmann
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - László Péczely
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Olga Zagorácz
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Erika Kertes
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Veronika Kállai
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Beáta Berta
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Anita Kovács
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Zoltán Karádi
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Cellular Bioimpedance Research Group, Szentágothai Research Center, University of Pécs, 7602 Pécs, Hungary; Molecular Endocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, 7602 Pécs, Hungary
| | - László Lénárd
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Molecular Endocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, 7602 Pécs, Hungary
| | - Kristóf László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary.
| |
Collapse
|
2
|
Tseng YT, Schaefke B, Wei P, Wang L. Defensive responses: behaviour, the brain and the body. Nat Rev Neurosci 2023; 24:655-671. [PMID: 37730910 DOI: 10.1038/s41583-023-00736-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Most animals live under constant threat from predators, and predation has been a major selective force in shaping animal behaviour. Nevertheless, defence responses against predatory threats need to be balanced against other adaptive behaviours such as foraging, mating and recovering from infection. This behavioural balance in ethologically relevant contexts requires adequate integration of internal and external signals in a complex interplay between the brain and the body. Despite this complexity, research has often considered defensive behaviour as entirely mediated by the brain processing threat-related information obtained via perception of the external environment. However, accumulating evidence suggests that the endocrine, immune, gastrointestinal and reproductive systems have important roles in modulating behavioural responses to threat. In this Review, we focus on how predatory threat defence responses are shaped by threat imminence and review the circuitry between subcortical brain regions involved in mediating defensive behaviours. Then, we discuss the intersection of peripheral systems involved in internal states related to infection, hunger and mating with the neurocircuits that underlie defence responses against predatory threat. Through this process, we aim to elucidate the interconnections between the brain and body as an integrated network that facilitates appropriate defensive responses to threat and to discuss the implications for future behavioural research.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behaviour, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bernhard Schaefke
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengfei Wei
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behaviour, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Reich N, Hölscher C. Beyond Appetite: Acylated Ghrelin As A Learning, Memory and Fear Behavior-modulating Hormone. Neurosci Biobehav Rev 2022; 143:104952. [DOI: 10.1016/j.neubiorev.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
4
|
Beheshti S, Dehestani H. Differential expression levels of the hippocampal ghrelin and its receptor mRNA during memory consolidation. Behav Brain Res 2021; 408:113270. [PMID: 33811951 DOI: 10.1016/j.bbr.2021.113270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 12/30/2022]
Abstract
Ghrelin is a peptide, secreted mainly from the stomach. But, it is also produced in the brain. Studies have confirmed the positive impact of ghrelin on memory formation. However, the expression levels of ghrelin or its receptors were not measured in the brain during the process of memory formation. The probable alteration in the expression levels of ghrelin or its receptors in the brain during memory formation can be a reason for the contribution of its signaling in this process. We quantified the gene expression levels of ghrelin and its receptors in the hippocampus during fear and spatial memory consolidation. Thirty- nine adult male Wistar rats weighing 180-220 g were utilized. Memory consolidation was evaluated using the inhibitory avoidance task and Morris water maze. Rats were euthanized at different times (1, 3, and 24 h) post-training and their hippocampi were removed and freezed directly in liquid nitrogen. Quantitative real-time polymerize chain reaction (PCR) was used to quantify the messenger ribonucleic acid (mRNA) expression levels of the hippocampal ghrelin and its receptors. The mRNA levels of ghrelin exhibited a significant increase, 24 h post-training in the inhibitory avoidance task, while its receptor levels were down-regulated. Also, the mRNA expression levels of the hippocampal ghrelin were not changed significantly during memory consolidation in the Morris water maze, while its receptor showed a significant increase, 24 h post-training. The results show a differential profile of the expression levels of the hippocampal ghrelin or its receptor mRNA during fear or spatial memory consolidation. This proposes that a local increase in the hippocampal ghrelin or its receptor levels might be crucial for fear, and spatial memory consolidation. However, due to the small sample sizes, it is worth noting the preliminary nature of the conclusions in the present study.
Collapse
Affiliation(s)
- Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Hadi Dehestani
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
5
|
Stoyanova I, Lutz D. Ghrelin-Mediated Regeneration and Plasticity After Nervous System Injury. Front Cell Dev Biol 2021; 9:595914. [PMID: 33869167 PMCID: PMC8046019 DOI: 10.3389/fcell.2021.595914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
The nervous system is highly vulnerable to different factors which may cause injury followed by an acute or chronic neurodegeneration. Injury involves a loss of extracellular matrix integrity, neuronal circuitry disintegration, and impairment of synaptic activity and plasticity. Application of pleiotropic molecules initiating extracellular matrix reorganization and stimulating neuronal plasticity could prevent propagation of the degeneration into the tissue surrounding the injury. To find an omnipotent therapeutic molecule, however, seems to be a fairly ambitious task, given the complex demands of the regenerating nervous system that need to be fulfilled. Among the vast number of candidates examined so far, the neuropeptide and hormone ghrelin holds within a very promising therapeutic potential with its ability to cross the blood-brain barrier, to balance metabolic processes, and to stimulate neurorepair and neuroactivity. Compared with its well-established systemic effects in treatment of metabolism-related disorders, the therapeutic potential of ghrelin on neuroregeneration upon injury has received lesser appreciation though. Here, we discuss emerging concepts of ghrelin as an omnipotent player unleashing developmentally related molecular cues and morphogenic cascades, which could attenuate and/or counteract acute and chronic neurodegeneration.
Collapse
Affiliation(s)
- Irina Stoyanova
- Department of Anatomy and Cell Biology, Medical University Varna, Varna, Bulgaria
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Morsy MD, Alsaleem MA, Aboonq MS, Bashir SO, Al-Daher HA. Acylated Ghrelin Administration Inhibits Sleeve Gastrectomy-Induced Hippocampal Oxidative Stress, Apoptosis and Tau-Hyperphosphorylation by Activating the PI3K/Akt Pathway. Folia Biol (Praha) 2021; 67:49-61. [PMID: 34624937 DOI: 10.14712/fb2021067020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This study investigated the impact of exogenous replacement therapy with acylated ghrelin (AG) post sleeve gastrectomy (SG) on the memory function in rats. In addition, we investigated the possible underlying mechanisms, including the effects on markers of oxidative stress, tau phosphorylation, and apoptosis. Adult male Wistar rats were divided into four groups (N = 18/group) as follows: sham (control), SG, SG+AG (100 μM), and SG+AG+LY294002 (0.25 μg/100 g). We continued all treatments daily for four weeks post-surgery. SG impaired the spatial, retention, and recognition memories as tested by the Morris water maze test, passive avoidance test, and novel object recognition test, respectively. Also, it enhanced the levels of reactive oxygen species and lipid peroxides, reduced glutathione and protein levels of Bcl-2, and increased the levels of Bax and cleaved caspase-3 in the hippocampus. In addition, SG reduced the hippocampal levels of acetylcholine and brain-derived neurotrophic factor. Concomitantly, it inhibited the hippocampal activity of Akt and increased the activity of glycogen synthase kinase 3β and tau protein phosphorylation. Exogenous administration of acylated ghrelin to rats that had undergone SG prevented memory deficits. Also, it prevented the alteration in the above-mentioned biochemical parameters, an effect that was abolished by co-administration of LY294002 (phosphoinositide 3-kinase inhibitor). In conclusion, AG replacement therapy after SG in rats protects them against memory deficits and hippocampal damage by suppressing tau protein phosphorylation, mediated by activating PI3K/Aktinduced inhibition of glycogen synthase kinase 3β.
Collapse
Affiliation(s)
- M D Morsy
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - M A Alsaleem
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - M S Aboonq
- Department of Physiology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - S O Bashir
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - H A Al-Daher
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
7
|
Autio J, Stenbäck V, Gagnon DD, Leppäluoto J, Herzig KH. (Neuro) Peptides, Physical Activity, and Cognition. J Clin Med 2020; 9:jcm9082592. [PMID: 32785144 PMCID: PMC7464334 DOI: 10.3390/jcm9082592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Regular physical activity (PA) improves cognitive functions, prevents brain atrophy, and delays the onset of cognitive decline, dementia, and Alzheimer’s disease. Presently, there are no specific recommendations for PA producing positive effects on brain health and little is known on its mediators. PA affects production and release of several peptides secreted from peripheral and central tissues, targeting receptors located in the central nervous system (CNS). This review will provide a summary of the current knowledge on the association between PA and cognition with a focus on the role of (neuro)peptides. For the review we define peptides as molecules with less than 100 amino acids and exclude myokines. Tachykinins, somatostatin, and opioid peptides were excluded from this review since they were not affected by PA. There is evidence suggesting that PA increases peripheral insulin growth factor 1 (IGF-1) levels and elevated serum IGF-1 levels are associated with improved cognitive performance. It is therefore likely that IGF-1 plays a role in PA induced improvement of cognition. Other neuropeptides such as neuropeptide Y (NPY), ghrelin, galanin, and vasoactive intestinal peptide (VIP) could mediate the beneficial effects of PA on cognition, but the current literature regarding these (neuro)peptides is limited.
Collapse
Affiliation(s)
- Juho Autio
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
| | - Ville Stenbäck
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
- Biocenter Oulu, 90220 Oulu, Finland
| | - Dominique D. Gagnon
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Center of Research in Occupational Safety and Health, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Juhani Leppäluoto
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60-572 Poznan, Poland
- Correspondence:
| |
Collapse
|
8
|
Comeras LB, Herzog H, Tasan RO. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann N Y Acad Sci 2019; 1455:59-80. [PMID: 31271235 PMCID: PMC6899945 DOI: 10.1111/nyas.14179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Survival in a natural environment forces an individual into constantly adapting purposive behavior. Specified interoceptive neurons monitor metabolic and physiological balance and activate dedicated brain circuits to satisfy essential needs, such as hunger, thirst, thermoregulation, fear, or anxiety. Neuropeptides are multifaceted, central components within such life‐sustaining programs. For instance, nutritional depletion results in a drop in glucose levels, release of hormones, and activation of hypothalamic and brainstem neurons. These neurons, in turn, release several neuropeptides that increase food‐seeking behavior and promote food intake. Similarly, internal and external threats activate neuronal pathways of avoidance and defensive behavior. Interestingly, specific nuclei of the hypothalamus and extended amygdala are activated by both hunger and fear. Here, we introduce the relevant neuropeptides and describe their function in feeding and emotional‐affective behaviors. We further highlight specific pathways and microcircuits, where neuropeptides may interact to identify prevailing homeostatic needs and direct respective compensatory behaviors. A specific focus will be on neuropeptide Y, since it is known for its pivotal role in metabolic and emotional pathways. We hypothesize that the orexigenic and anorexigenic properties of specific neuropeptides are related to their ability to inhibit fear and anxiety.
Collapse
Affiliation(s)
- Lucas B Comeras
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Zahiri H, Rostampour M, Khakpour B, Rohampour K. The effect of ghrelin and adenosine mono phosphate kinase (AMPK) on the passive avoidance memory in male wistar rats. Neuropeptides 2019; 73:66-70. [PMID: 30553544 DOI: 10.1016/j.npep.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/25/2018] [Accepted: 11/25/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Hamideh Zahiri
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Rostampour
- Department of Physiology, Guilan University of Medical Sciences, Rasht, Iran; Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Behrouz Khakpour
- Department of Physiology, Guilan University of Medical Sciences, Rasht, Iran; Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Kambiz Rohampour
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
10
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
11
|
Eslami M, Sadeghi B, Goshadrou F. Chronic ghrelin administration restores hippocampal long-term potentiation and ameliorates memory impairment in rat model of Alzheimer's disease. Hippocampus 2018; 28:724-734. [PMID: 30009391 DOI: 10.1002/hipo.23002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/09/2018] [Accepted: 06/16/2018] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), as a common age-related dementia, is a progressive manifestation of cognitive decline following synaptic failure resulted majorly by senile plaques composed of deposits of amyloid beta (Aβ). Ghrelin is a multifunctional peptide hormone with receptors present in various brain tissues including hippocampus and has been associated with neuroprotection, neuromodulation, and memory processing. Here, we investigated the neuroprotective and therapeutic effects of intracerebroventricular (icv) ghrelin infusion for 2 weeks on passive avoidance learning (PAL), memory retention, and synaptic plasticity in the hippocampal dentate gyrus (DG) and CA1 of both normal rats and Aβ1-42-induced neurotoxicity in AD model. Male Wistar rats were evaluated for their passive memory performance using a shuttle box while some groups had already received Aβ1-42 and/or chronic ghrelin. Using field potential recording, the induction of short- and long-term potentiation (STP and LTP) was studied in DG granule cells along with the LTP changes in CA1 pyramidal neurons through stimulation of the medial perforant path (mPP) and Schaffer collaterals (SCs), respectively. Our results demonstrated that chronic ghrelin treatment not only improved memory processing and retrieval in normal rats during the PAL task, but also promoted memory retention and alleviated memory loss by amelioration of Aβ1-42-induced synaptic plasticity impairment in AD subjects through augmentation of field excitatory postsynaptic potential (fEPSP) slope that led to LTP restitution in both the mPP-DG and the CA3-CA1 synapses. Meanwhile, STP was not significantly changed, meaning that although ghrelin enhanced postsynaptic excitability in DG, it did not change presynaptic transmitter release significantly. This suggests the involvement of postsynaptic mechanisms in long-term ghrelin-enhanced memory. In conclusion, it can be inferred that chronic ghrelin administration has an auspicious therapeutic value for impaired cognitive performance and memory deficits in AD-like neuropathology.
Collapse
Affiliation(s)
- Maryam Eslami
- Department of Physiology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahman Sadeghi
- Department of Physiology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Fatemeh Goshadrou
- Department of Physiology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Beheshti S, Aslani N. Local injection of d-lys-3-GHRP-6 in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation. Neuropeptides 2018; 67:20-26. [PMID: 29137815 DOI: 10.1016/j.npep.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022]
Abstract
It is well known that the hormone ghrelin affects learning and memory in different experimental models of learning. Though, the effect of antagonism of ghrelin receptor type 1a (GHS-R1a) in various regions of the brain and on different stages of learning has not been examined. In this study the effect of injection of a GHS-R1a selective antagonist (d-Lys-3-GHRP-6) into the basolateral amygdala, dentate gyrus or ventral tegmental area was examined on memory consolidation in the passive avoidance task. Adult male Wistar rats weighing 230-280g were used. Animals underwent stereotaxic surgery and cannulated in their amygdala, dentate gyrus or ventral tegmental area. One week after surgery, the rats received different doses of d-Lys-3-GHRP-6 (0.08, 0.8, and 8nM), immediately after training. The control groups received solvent of the drug. Twenty four hours later in the test day, memory retrieval was assessed. In all groups, post-training injection of d-Lys-3-GHRP-6 decreased step-through latency and increased entries into the dark compartment and time spent in the dark compartment, significantly and in a dose-dependent manner. The results indicate that antagonism of the GHS-R1a in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation and show that the ghrelin signaling has a widespread influence on cognitive performance.
Collapse
Affiliation(s)
- Siamak Beheshti
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Neda Aslani
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
13
|
Kovács A, László K, Zagoracz O, Ollmann T, Péczely L, Gálosi R, Lénárd L. Effects of RFamide-related peptide-1 (RFRP-1) microinjections into the central nucleus of amygdala on passive avoidance learning in rats. Neuropeptides 2017; 62:81-86. [PMID: 27993374 DOI: 10.1016/j.npep.2016.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/31/2016] [Accepted: 12/11/2016] [Indexed: 11/16/2022]
Abstract
The amygdaloid body (AMY) plays an important role in memory, learning and reward-related processes. RFRP-1 immunoreactive fibers and NPFF receptors were identified in the AMY, and previously we verified that RFRP-1 infused into the central nucleus of AMY (CeA) induced place preference. The aim of the present study was to examine the possible effects of RFRP-1 in the CeA on passive avoidance learning. Male Wistar rats were examined in two-compartment passive avoidance paradigm. Animals were shocked with 0.5mA current and subsequently were microinjected bilaterally with 50ng or 100ng RFRP-1 in volume of 0.4μl, or 20ng NPFF receptor antagonist RF9 (ANT) alone, or antagonist 15min before 50ng RFRP-1 treatments into the CeA. Fifty nanogram dose of RFRP-1 significantly increased the step-through latency time, the 100ng RFRP-1 and the ANT alone were ineffective. The effect of 50ng RFRP-1 was eliminated by the ANT pretreatment. Our results suggest that intraamygdaloid RFRP-1 enhances learning processes and memory in aversive situations and this effect can specifically be prevented by ANT pretreatment.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Pécs University Medical School, Hungary
| | - Kristóf László
- Institute of Physiology, Pécs University Medical School, Hungary
| | - Olga Zagoracz
- Institute of Physiology, Pécs University Medical School, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Pécs University Medical School, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University Medical School, Hungary
| | - Rita Gálosi
- Institute of Physiology, Pécs University Medical School, Hungary
| | - László Lénárd
- Institute of Physiology, Pécs University Medical School, Hungary; Molecular Neurophysiology Research Group, Pécs University, Szentágothai Research Center, Pécs, Hungary.
| |
Collapse
|
14
|
Role of D2 dopamine receptors of the ventral pallidum in inhibitory avoidance learning. Behav Brain Res 2017; 321:99-105. [DOI: 10.1016/j.bbr.2017.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/13/2016] [Accepted: 01/01/2017] [Indexed: 11/21/2022]
|
15
|
Chen S, Zuo X, Li Y, Jiang T, Zhang N, Dai F, Chen Q, Zhang Q. Ghrelin is a possible new predictor associated with executive function in patients with type 2 diabetes mellitus. J Diabetes Investig 2016; 8:306-313. [PMID: 27689345 PMCID: PMC5415456 DOI: 10.1111/jdi.12580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/27/2016] [Accepted: 09/27/2016] [Indexed: 01/21/2023] Open
Abstract
AIMS/INTRODUCTION The aim of the present research was to study the ghrelin level, executive function and their possible association in patients with type 2 diabetes mellitus. MATERIALS AND METHODS A total of 370 people were recruited between March 2015 and March 2016 in this study. Among them, 212 participants were patients with type 2 diabetes mellitus and 158 participants were included as the control group. Their blood sample was analyzed for the level of ghrelin and other clinical indexes. Cognitive function was measured by the Montreal Cognitive Assessment, and executive function was evaluated by the Wisconsin Card Sorting Test. RESULTS In the type 2 diabetes mellitus group, age, years of education, duration of diabetes, fasting blood glucose, glycated hemoglobin, hypertension and waist-to-hip ratio were correlated with total Montreal Cognitive Assessment scores. No association was found between ghrelin level and total Montreal Cognitive Assessment score in patients with type 2 diabetes mellitus. However, ghrelin was found to be a significant predictor for executive function impairment measured by the Wisconsin Card Sorting Test in patients with type 2 diabetes mellitus. CONCLUSIONS The level of serum ghrelin might be a biomarker of executive function and become a strong predictor of executive function impairment in patients with type 2 diabetes mellitus. Ghrelin might have a potential protective effect against cognitive function impairment in type 2 diabetes patients.
Collapse
Affiliation(s)
- Siting Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuyang Zuo
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Li
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tian Jiang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Nan Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiaoer Chen
- College of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
16
|
Toufexis DJ, Lipatova O, Johnson AC, Abizaid A. Food-Restriction Lowers the Acoustic Startle Response in both Male and Female Rats, and, in Combination with Acute Ghrelin Injection, Abolishes the Expression of Fear-Potentiated Startle in Male Rats. J Neuroendocrinol 2016; 28. [PMID: 27754564 DOI: 10.1111/jne.12436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/20/2016] [Accepted: 10/15/2016] [Indexed: 12/15/2022]
Abstract
Food restriction has been reported to reduce anxiety-like behaviour in male rats, whereas the effects of food restriction on anxiety in female rats are less clear. Ghrelin is a peptide hormone produced and secreted in the stomach that stimulates food intake and is considered to play a role in reward and emotional responses such as fear expression. Under food restriction, endogenous ghrelin levels increase. In the present study, we examined the effect of moderate food restriction (80% of ad libitum fed weight), with or without an acute application of a small dose of exogenous ghrelin intended to cause an immediate hunger response, on the expression of the acoustic startle reflex (ASR). This was carried out under basal conditions (baseline ASR to 90- and 95-dB noise bursts), and in the presence of a light cue associated with a mild foot-shock, as measured by fear-potentiated startle, which compares the proportional change in ASR in the presence of the conditioned stimulus. The results obtained show that food-restriction reduces basal ASR in both male and female rats, apart from any concomitant change in motor activity, suggesting that food-restriction reduces anxiety levels in both sexes. In addition, the data show that food-restriction reduces fear-potentiated startle in male but not female rats. Acute ghrelin injection, prior to fear-potentiated startle testing, eliminates the expression of fear-potentiated startle in food-restricted male rats alone, suggesting a role for ghrelin in the reduction of fear expression in food-restricted male rats. These data imply that, although food-restriction decreases anxiety in both sexes, learned fear responses remain intact after food-restriction in female but not male rats.
Collapse
Affiliation(s)
- D J Toufexis
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - O Lipatova
- Department of Psychology, Christopher Newport University, Newport News, VA, USA
| | - A C Johnson
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - A Abizaid
- Alfonso Abizaid, Department of Neuroscience, Carlton University, Ottawa, Canada
| |
Collapse
|
17
|
Piermartiri T, Pan H, Figueiredo TH, Marini AM. α-Linolenic Acid, A Nutraceutical with Pleiotropic Properties That Targets Endogenous Neuroprotective Pathways to Protect against Organophosphate Nerve Agent-Induced Neuropathology. Molecules 2015; 20:20355-80. [PMID: 26569216 PMCID: PMC6332275 DOI: 10.3390/molecules201119698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 01/23/2023] Open
Abstract
α-Linolenic acid (ALA) is a nutraceutical found in vegetable products such as flax and walnuts. The pleiotropic properties of ALA target endogenous neuroprotective and neurorestorative pathways in brain and involve the transcription factor nuclear factor kappa B (NF-κB), brain-derived neurotrophic factor (BDNF), a major neuroprotective protein in brain, and downstream signaling pathways likely mediated via activation of TrkB, the cognate receptor of BDNF. In this review, we discuss possible mechanisms of ALA efficacy against the highly toxic OP nerve agent soman. Organophosphate (OP) nerve agents are highly toxic chemical warfare agents and a threat to military and civilian populations. Once considered only for battlefield use, these agents are now used by terrorists to inflict mass casualties. OP nerve agents inhibit the critical enzyme acetylcholinesterase (AChE) that rapidly leads to a cholinergic crisis involving multiple organs. Status epilepticus results from the excessive accumulation of synaptic acetylcholine which in turn leads to the overactivation of muscarinic receptors; prolonged seizures cause the neuropathology and long-term consequences in survivors. Current countermeasures mitigate symptoms and signs as well as reduce brain damage, but must be given within minutes after exposure to OP nerve agents supporting interest in newer and more effective therapies. The pleiotropic properties of ALA result in a coordinated molecular and cellular program to restore neuronal networks and improve cognitive function in soman-exposed animals. Collectively, ALA should be brought to the clinic to treat the long-term consequences of nerve agents in survivors. ALA may be an effective therapy for other acute and chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- Tetsade Piermartiri
- Molecular and Cellular Biology Graduate School Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Hongna Pan
- Department of Neurology and Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Ann M Marini
- Department of Neurology and Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
18
|
Pan H, Piermartiri TCB, Chen J, McDonough J, Oppel C, Driwech W, Winter K, McFarland E, Black K, Figueiredo T, Grunberg N, Marini AM. Repeated systemic administration of the nutraceutical alpha-linolenic acid exerts neuroprotective efficacy, an antidepressant effect and improves cognitive performance when given after soman exposure. Neurotoxicology 2015; 51:38-50. [PMID: 26386148 DOI: 10.1016/j.neuro.2015.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Exposure to nerve agents results in severe seizures or status epilepticus caused by the inhibition of acetylcholinesterase, a critical enzyme that breaks down acetylcholine to terminate neurotransmission. Prolonged seizures cause brain damage and can lead to long-term consequences. Current countermeasures are only modestly effective against the brain damage supporting interest in the evaluation of new and efficacious therapies. The nutraceutical alpha-linolenic acid (LIN) is an essential omega-3 polyunsaturated fatty acid that has a wide safety margin. Previous work showed that a single intravenous injection of alpha-linolenic acid (500 nmol/kg) administered before or after soman significantly protected against soman-induced brain damage when analyzed 24h after exposure. Here, we show that administration of three intravenous injections of alpha-linolenic acid over a 7 day period after soman significantly improved motor performance on the rotarod, enhanced memory retention, exerted an anti-depressant-like activity and increased animal survival. This dosing schedule significantly reduced soman-induced neuronal degeneration in four major vulnerable brain regions up to 21 days. Taken together, alpha-linolenic acid reduces the profound behavioral deficits induced by soman possibly by decreasing neuronal cell death, and increases animal survival.
Collapse
Affiliation(s)
- Hongna Pan
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Tetsade C B Piermartiri
- Molecular and Cellular Biology Graduate School Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jun Chen
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - John McDonough
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Craig Oppel
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Wafae Driwech
- Pharmacology Branch, Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kristin Winter
- Pharmacology Branch, Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Emylee McFarland
- Pharmacology Branch, Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Katelyn Black
- Pharmacology Branch, Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Taiza Figueiredo
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Neil Grunberg
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ann M Marini
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
19
|
Beheshti S, Shahrokhi S. Blocking the ghrelin receptor type 1a in the rat brain impairs memory encoding. Neuropeptides 2015; 52:97-102. [PMID: 26072187 DOI: 10.1016/j.npep.2015.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022]
Abstract
Studies have shown that intracerebral administration of ghrelin hormone affects learning and memory in different experimental models of learning. However, the effect of antagonism of ghrelin receptor type 1a (GHS-R1a) on different stages of learning has not been investigated. In this study the effect of intracerebroventricular (i.c.v) injection of a GHS-R1a selective antagonist (d-Lys-3-GHRP-6) was examined on acquisition and consolidation of learning in the passive avoidance task. In total, 72 male Wistar rats weighing 230-280g were randomly distributed into 9 groups of 8 each. Animals underwent stereotaxic surgery and cannulated in their right ventricle. One week after surgery, the rats received different doses of d-Lys-3-GHRP-6 (0.2, 2, 20 and 80nM/5μl; i.c.v) 10min before, or (2, 20 and 80nM/5μl; i.c.v) immediately after training. The control groups received solvent of the drug. Twenty four hours later in the test day, memory retrieval was assessed. Pre-training injection of d-Lys-3-GHRP-6 decreased step-through latency (STL) and increased number of step-throughs into the dark compartment (NST) in a dose-dependent manner, but failed to be statistically significant. It also increased time spent in the dark compartment (TDC), significantly and in a dose-dependent manner. Post-training injection of d-Lys-3-GHRP-6 decreased step-through latency and increased time spent in the dark compartment and number of step-throughs into the dark compartment, significantly and in a dose-dependent manner. The results indicate that antagonism of the GHS-R1a in the rat brain impairs memory encoding on both acquisition and consolidation stages. Further studies are required to elucidate the main brain regions affected by the antagonist.
Collapse
Affiliation(s)
- Siamak Beheshti
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Shahrzad Shahrokhi
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
20
|
Positive reinforcing effect of neurotensin microinjection into the ventral pallidum in conditioned place preference test. Behav Brain Res 2015; 278:470-5. [DOI: 10.1016/j.bbr.2014.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 12/23/2022]
|
21
|
Lénárd L, Kovács A, Ollmann T, Péczely L, Zagoracz O, Gálosi R, László K. Positive reinforcing effects of RFamide-related peptide-1 in the rat central nucleus of amygdala. Behav Brain Res 2014; 275:101-6. [DOI: 10.1016/j.bbr.2014.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 12/28/2022]
|
22
|
Stoyanova II, le Feber J. Ghrelin accelerates synapse formation and activity development in cultured cortical networks. BMC Neurosci 2014; 15:49. [PMID: 24742241 PMCID: PMC3998954 DOI: 10.1186/1471-2202-15-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While ghrelin was initially related to appetite stimulation and growth hormone secretion, it also has a neuroprotective effect in neurodegenerative diseases and regulates cognitive function. The cellular basis of those processes is related to synaptic efficacy and plasticity. Previous studies have shown that ghrelin not only stimulates synapse formation in cultured cortical neurons and hippocampal slices, but also alters some of the electrophysiological properties of neurons in the hypothalamus, amygdala and other subcortical areas. However, direct evidence for ghrelin's ability to modulate the activity in cortical neurons is not available yet. In this study, we investigated the effect of acylated ghrelin on the development of the activity level and activity patterns in cortical neurons, in relation to its effect on synaptogenesis. Additionally, we quantitatively evaluated the expression of the receptor for acylated ghrelin--growth hormone secretagogue receptor-1a (GHSR-1a) during development. RESULTS We performed electrophysiology and immunohistochemistry on dissociated cortical cultures from neonates, treated chronically with acylated ghrelin. On average 76±4.6% of the cortical neurons expressed GHSR-1a. Synapse density was found to be much higher in ghrelin treated cultures than in controls across all age groups (1, 2 or 3 weeks). In all cultures (control and ghrelin treated), network activity gradually increased until it reached a maximum after approximately 3 weeks, followed by a slight decrease towards a plateau. During early developmental stages (1-2 weeks), the activity was much higher in ghrelin treated cultures and consequently, they reached the plateau value almost a week earlier than controls. CONCLUSIONS Acylated ghrelin leads to earlier network formation and activation in cultured cortical neuronal networks, the latter being a possibly consequence of accelerated synaptogenesis.
Collapse
Affiliation(s)
- Irina I Stoyanova
- Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Sciences, Institute for Biomedical Engineering and Technical Medicine MIRA, BSS, ZH 226, University of Twente, P,O, Box 217, Enschede 7500 AE, The Netherlands.
| | | |
Collapse
|
23
|
Hansson C, Alvarez-Crespo M, Taube M, Skibicka KP, Schmidt L, Karlsson-Lindahl L, Egecioglu E, Nissbrandt H, Dickson SL. Influence of ghrelin on the central serotonergic signaling system in mice. Neuropharmacology 2014; 79:498-505. [DOI: 10.1016/j.neuropharm.2013.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 11/22/2013] [Accepted: 12/14/2013] [Indexed: 02/09/2023]
|
24
|
Stoyanova II, le Feber J, Rutten WL. Ghrelin stimulates synaptic formation in cultured cortical networks in a dose-dependent manner. ACTA ACUST UNITED AC 2013; 186:43-8. [DOI: 10.1016/j.regpep.2013.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 07/03/2013] [Accepted: 07/13/2013] [Indexed: 11/17/2022]
|
25
|
Beck B, Pourié G. Ghrelin, neuropeptide Y, and other feeding-regulatory peptides active in the hippocampus: role in learning and memory. Nutr Rev 2013; 71:541-61. [PMID: 23865799 DOI: 10.1111/nure.12045] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The hippocampus is a brain region of primary importance for neurogenesis, which occurs during early developmental states as well as during adulthood. Increases in neuronal proliferation and in neuronal death with age have been associated with drastic changes in memory and learning. Numerous neurotransmitters are involved in these processes, and some neuropeptides that mediate neurogenesis also modulate feeding behavior. Concomitantly, feeding peptides, which act primarily in the hypothalamus, are also present in the hippocampus. This review aims to ascertain the role of several important feeding peptides in cognitive functions, either through their local synthesis in the hippocampus or through their actions via specific receptors in the hippocampus. A link between neurogenesis and the orexigenic or anorexigenic properties of feeding peptides is discussed.
Collapse
Affiliation(s)
- Bernard Beck
- INSERM U954, Nutrition, Génétique et Expositions aux Risques Environnementaux, Faculté de Médecine, Vandœuvre, France.
| | | |
Collapse
|
26
|
Song L, Zhu Q, Liu T, Yu M, Xiao K, Kong Q, Zhao R, Li GD, Zhou Y. Ghrelin modulates lateral amygdala neuronal firing and blocks acquisition for conditioned taste aversion. PLoS One 2013; 8:e65422. [PMID: 23762368 PMCID: PMC3676403 DOI: 10.1371/journal.pone.0065422] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022] Open
Abstract
Ghrelin is an orexigenic brain-gut hormone promoting feeding and regulating energy metabolism in human and rodents. An increasing number of studies have reported that ghrelin and its identified receptor, the growth hormone secretagogue receptor 1a (GHS-R1a), produces remarkably wide and complex functions and biological effects on specific populations of neurons in central nervous system. In this study, we sought to explore the in vivo effects of acute ghrelin exposure on lateral amygdala (LA) neurons at the physiological and behavioral levels. In vivo extracellular single-unit recordings showed that ghrelin with the concentration of several nanomolars (nM) stimulated spontaneous firing of the LA neurons, an effect that was dose-dependent and could be blocked by co-application of a GHS-R1a antagonist D-Lys3-GHRP-6. We also found that D-Lys3-GHRP-6 inhibited spontaneous firing of the LA neurons in a dose-dependent manner, revealing that tonic GHS-R1a activity contributes to orchestrate the basal activity of the LA neurons. Behaviorally, we found that microinfusion of ghrelin (12 ng) into LA before training interfered with the acquisition of conditioned taste aversion (CTA) as tested at 24 h after conditioning. Pre-treatment with either purified IgG against GHS-R1a or GHS-R1a antagonist blocked ghrelin’s effect on CTA memory acquisition. Ghrelin (12 ng) had no effect on CTA memory consolidation or the expression of acquired CTA memory; neither did it affect the total liquid consumption of tested rats. Altogether, our data indicated that ghrelin locally infused into LA blocks acquisition of CTA and its modulation effects on neuronal firing may be involved in this process.
Collapse
Affiliation(s)
- Lige Song
- Department of Physiology, Medical College of Qingdao University, Qingdao, Shandong, China
- Department of Neurology, Medical College Affiliated General Hospital, Qingdao, Shandong, China
| | - Qianqian Zhu
- Department of Physiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Tianwei Liu
- Department of Physiology, Medical College of Qingdao University, Qingdao, Shandong, China
- Research Institute of Cerebrovascular Diseases, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Ming Yu
- Department of Physiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Kewei Xiao
- Department of Physiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Qingnuan Kong
- Department of Physiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Renliang Zhao
- Department of Neurology, Medical College Affiliated General Hospital, Qingdao, Shandong, China
| | - Guo-Dong Li
- Department of Anesthesiology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (YZ); (GDL)
| | - Yu Zhou
- Department of Physiology, Medical College of Qingdao University, Qingdao, Shandong, China
- * E-mail: (YZ); (GDL)
| |
Collapse
|
27
|
NBM-T-L-BMX-OS01, Semisynthesized from Osthole, Is a Novel Inhibitor of Histone Deacetylase and Enhances Learning and Memory in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:514908. [PMID: 23606881 PMCID: PMC3625590 DOI: 10.1155/2013/514908] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/19/2013] [Accepted: 02/25/2013] [Indexed: 12/15/2022]
Abstract
NBM-T-L-BMX-OS01 (BMX) was derived from the semisynthesis of osthole, isolated from Cnidium monnieri (L.) Cuss., and was identified to be a potent inhibitor of HDAC8. This study shows that HDAC8 is highly expressed in the pancreas and the brain. The function of HDAC8 in the brain has not been adequately studied. Because BMX enhances neurite outgrowth and cAMP response element-binding protein (CREB) activation, the effect of BMX on neural plasticity such as learning and memory is examined. To examine declarative and nondeclarative memory, a water maze, a passive one-way avoidance task, and a novel object recognition task were performed. Results from the water maze revealed that BMX and suberoylanilide-hydroxamic-acid-(SAHA-) treated rats showed shorter escape latency in finding the hidden platform. The BMX-treated animals spent more time in the target quadrant in the probe trial performance. An analysis of the passive one-way avoidance results showed that the BMX-treated animals stayed longer in the illuminated chamber by 1 day and 7 days after footshock. The novel object recognition task revealed that the BMX-treated animals showed a marked increase in the time spent exploring novel objects. Furthermore, BMX ameliorates scopolamine-(Sco-) induced learning and memory impairment in animals, indicating a novel role of BMX in learning and memory.
Collapse
|
28
|
Kajbaf F, Ahmadi R, Fatemi Tabatabaie R, Safarpoor E. Effect of intrahippocampal ghrelin agonist administration on passive avoidance learning and anxiety in rats. Pak J Biol Sci 2012; 15:1063-1068. [PMID: 24261121 DOI: 10.3923/pjbs.2012.1063.1068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hippocampus, amygdala and dorsal raphe nucleus are the cerebral main structures involved in learning, memory and anxiety. Ghrelin increases the level of several hormones in these structures and affects learning, memory and anxiety-like behaviors. This study was performed to investigate the effect of ghrelin agonist on passive avoidance learning and anxiety in adult female rats in the presence and absence of ovary hormones. Five groups of rats, including control group with no injections, ovariectomized groups; one group receiving normal saline and other group receiving ghrelin agonist solution, surgery shocked (sham operated) groups; one group receiving saline and other group ghrelin agonist solution, were tested. Inside stereotaxis apparatus, two sided CA1 cannulae were used and 1 microL of saline or ghrelin agonist solution, at 3 nmol microL(-1) concentration, was injected into each cannula. Passive avoidance learning was measured by using shuttle box and anxiety by elevated plus- maze. Ghrelin agonist increased the level of learning in surgery shocked group in comparison with control group. Anxiety-like behavior was seen in both ovariectomized and surgery shocked groups. Ghrelin agonist binds its own receptors in the hippocampus, thereby increases learning capability and induces anxiety-like behaviors. Proper management of these behaviors might be useful in controlling some forms of nervous system diseases in humans.
Collapse
Affiliation(s)
- F Kajbaf
- Department of Animal Biology, School of Basic Medical Sciences, Islamic Azad University, Qom, Iran
| | | | | | | |
Collapse
|
29
|
Alvarez-Crespo M, Skibicka KP, Farkas I, Molnár CS, Egecioglu E, Hrabovszky E, Liposits Z, Dickson SL. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence. PLoS One 2012; 7:e46321. [PMID: 23071554 PMCID: PMC3468604 DOI: 10.1371/journal.pone.0046321] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022] Open
Abstract
Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control) at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R) are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL) and ventromedial (LaVM) parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field), intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like) behaviors if food is not available.
Collapse
Affiliation(s)
- Mayte Alvarez-Crespo
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Karolina P. Skibicka
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Imre Farkas
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Csilla S. Molnár
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Emil Egecioglu
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Suzanne L. Dickson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Attenuating the effect of Ghrelin on memory storage via bilateral reversible inactivation of the basolateral amygdale. Behav Brain Res 2012; 232:391-4. [DOI: 10.1016/j.bbr.2012.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/18/2012] [Accepted: 03/22/2012] [Indexed: 11/23/2022]
|
31
|
Gahete MD, Córdoba-Chacón J, Kineman RD, Luque RM, Castaño JP. Role of ghrelin system in neuroprotection and cognitive functions: implications in Alzheimer's disease. Peptides 2011; 32:2225-8. [PMID: 21983104 PMCID: PMC3228413 DOI: 10.1016/j.peptides.2011.09.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 07/27/2011] [Accepted: 09/26/2011] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial progressive neurodegenerative disorder characterized by loss of memory and cognitive deficits, strongly influenced by the metabolic status, in which the impairment of neuropeptides/neurotransmitters systems has been previously observed. Ghrelin is a multifunctional hormone produced in a wide variety of tissues, which has been associated with the progression of obesity and metabolic syndrome, but has been also linked to neuromodulation, neuroprotection and memory and learning processes. In addition, ghrelin system also acts in an autocrine/paracrine fashion where the majority of its components [ghrelin variants (native ghrelin, In1-ghrelin), acylation enzyme (GOAT) and receptors (GHS-Rs)] are expressed in the different regions of central nervous system. In spite of all these pieces of information strongly suggesting a close association between ghrelin system and AD, which could be of pathophysiological relevance, few studies have been addressed to clarify this relationship. In this work, the role of ghrelin system in neuroprotection, memory consolidation and learning is reviewed, and its influence in AD, as well as the regulation of its expression in the brain of AD patients, is discussed.
Collapse
Affiliation(s)
- Manuel D. Gahete
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, IL, USA
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - José Córdoba-Chacón
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, IL, USA
| | - Rhonda D. Kineman
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, IL, USA
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Raúl M. Luque
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Justo P. Castaño
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| |
Collapse
|
32
|
László K, Tóth K, Kertes E, Péczely L, Ollmann T, Madarassy-Szücs A, Lénárd L. The role of neurotensin in passive avoidance learning in the rat central nucleus of amygdala. Behav Brain Res 2011; 226:597-600. [PMID: 21946307 DOI: 10.1016/j.bbr.2011.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/23/2011] [Accepted: 08/27/2011] [Indexed: 11/30/2022]
Abstract
Tridecapeptide neurotensin (NT) acts as a neurotransmitter and/or neuromodulator and plays a role in learning and reinforcement. The central nucleus of amygdala (CeA), which is relatively rich in NT and neurotensin-1 receptors (NTS1), participates in the regulation of memory and learning mechanisms. The aim of this study was to examine the possible effect of NT and NTS1 antagonist (ANT) on passive avoidance learning after their microinjection into the CeA of male wistar rats. NT significantly increased the latency time. Effect of NT was blocked by ANT pretreatment. ANT in itself had no effect. Our results show that in the rat CeA NT facilitates passive avoidance learning via NTS1.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|
33
|
Aydin S, Dag E, Ozkan Y, Arslan O, Koc G, Bek S, Kirbas S, Kasikci T, Abasli D, Gokcil Z, Odabasi Z, Catak Z. Time-dependent changes in the serum levels of prolactin, nesfatin-1 and ghrelin as a marker of epileptic attacks young male patients. Peptides 2011; 32:1276-80. [PMID: 21554911 DOI: 10.1016/j.peptides.2011.04.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 11/24/2022]
Abstract
A relationship between hormones and seizures has been reported in animals and humans. Therefore, the purpose of this study was to investigate the association between serum levels of prolactin, nesfatin-1 and ghrelin measured different times after a seizure or non-epileptic event and compared with controls. The study included a total of 70 subjects, and of whom 18 patients had secondary generalized epilepsy (SGE), 16 patients had primary generalized epilepsy (PGE), 16 patients exhibited paroxysmal event (psychogenic) and 20 healthy males were control subjects. The first sample was taken within 5min of a seizure, with further samples taken after 1, 24, and 48h so long as the patient did not exhibit further clinically observable seizures; blood samples were taken once from control subjects. Prolactin was measured immediately using TOSOH Bioscience hormone assays. Nesfatin-1 and ghrelin peptides were measured using a commercial immunoassay kit. Patients suffering from focal epilepsy with secondary generalization and primary generalized epilepsy presented with significantly higher levels of serum prolactin and nesfatin-1 and lower ghrelin levels 5min, 1 and 24h after a seizure than patients presenting with paroxysmal events (psychogenic) and control subjects; the data were similar but not statistically significant after 48h. The present study suggests that increased serum prolactin and nesfatin-1 concentrations, decreased ghrelin concentrations could be used as markers to identify patients that have suffered a recent epileptic seizure or other paroxysmal event (psychogenic).
Collapse
Affiliation(s)
- Suleyman Aydin
- Firat University, Medical School, Department of Medical Biochemistry, Elazig, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hansson C, Haage D, Taube M, Egecioglu E, Salomé N, Dickson SL. Central administration of ghrelin alters emotional responses in rats: behavioural, electrophysiological and molecular evidence. Neuroscience 2011; 180:201-11. [PMID: 21303683 DOI: 10.1016/j.neuroscience.2011.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/06/2011] [Accepted: 02/01/2011] [Indexed: 12/20/2022]
Abstract
The orexigenic and pro-obesity hormone ghrelin targets key hypothalamic and mesolimbic circuits involved in energy balance, appetite and reward. Given that such circuits are closely integrated with those regulating mood and cognition, we sought to determine whether chronic (>2 weeks) CNS exposure to ghrelin alters anxiety- and depression-like behaviour in rats as well as some physiological correlates. Rats bearing chronically implanted i.c.v. catheters were treated with ghrelin (10 μg/d) or vehicle for 4 weeks. Tests used to assess anxiety- and depression-like behaviour were undertaken during weeks 3-4 of the infusion. These revealed an increase in anxiety- and depression-like behaviour in the ghrelin-treated rats relative to controls. At the end of the 4-week infusion, brains were removed and the amygdala dissected for subsequent qPCR analysis that revealed changes in expression of a number of genes representing key systems implicated in these behavioural changes. Finally, given the key role of the dorsal raphe serotonin system in emotional reactivity, we examined the electrophysiological response of dorsal raphe neurons after a ghrelin challenge, and found mainly inhibitory responses in this region. We demonstrate that the central ghrelin signalling system is involved in emotional reactivity in rats, eliciting pro-anxiety and pro-depression effects and have begun to explore novel target systems for ghrelin that may be of importance for these effects.
Collapse
Affiliation(s)
- C Hansson
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, SE-40530 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Chen L, Xing T, Wang M, Miao Y, Tang M, Chen J, Li G, Ruan DY. Local infusion of ghrelin enhanced hippocampal synaptic plasticity and spatial memory through activation of phosphoinositide 3-kinase in the dentate gyrus of adult rats. Eur J Neurosci 2011; 33:266-75. [DOI: 10.1111/j.1460-9568.2010.07491.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Erşahin M, Toklu HZ, Erzik C, Cetinel S, Akakin D, Velioğlu-Oğünç A, Tetik S, Ozdemir ZN, Sener G, Yeğen BC. The anti-inflammatory and neuroprotective effects of ghrelin in subarachnoid hemorrhage-induced oxidative brain damage in rats. J Neurotrauma 2010; 27:1143-55. [PMID: 20205513 DOI: 10.1089/neu.2009.1210] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To elucidate the putative neuroprotective effects of ghrelin in subarachnoid hemorrhage (SAH)-induced brain injury, Wistar albino rats (n = 54) were divided into sham-operated control, saline-treated SAH, and ghrelin-treated (10 microg/kg/d IP) SAH groups. The rats were injected with blood (0.3 mL) into the cisterna magna to induce SAH, and were sacrificed 48 h after the neurological examination scores were recorded. In plasma samples, neuron-specific enolase (NSE), S-100beta protein, TNF-alpha, and IL-1beta levels were evaluated, while forebrain tissue samples were taken for the measurement of malondialdehyde (MDA), glutathione (GSH), reactive oxygen species levels, myeloperoxidase (MPO), Na(+)-K(+)-ATPase activity, and DNA fragmentation ratio. Brain tissue samples containing the basilar arteries were obtained for histological examination, while cerebrum and cerebellum were removed for the measurement of blood-brain barrier (BBB) permeability and brain water content. The neurological scores were impaired at 48 h after SAH induction, and SAH caused significant decreases in brain GSH content and Na(+)-K(+)-ATPase activity, and increases in chemiluminescence, MDA levels, and MPO activity. Compared with the control group, the protein levels of NSE, S-100beta, TNF-alpha, and IL-1beta in plasma were also increased, while ghrelin treatment prevented all SAH-induced alterations observed both biochemically and histopathologically. The results demonstrate that ghrelin alleviates SAH-induced oxidative brain damage, and exerts neuroprotection by maintaining a balance in oxidant-antioxidant status, by inhibiting proinflammatory mediators, and preventing the depletion of endogenous antioxidants evoked by SAH.
Collapse
Affiliation(s)
- Mehmet Erşahin
- Haydarpasa Numune Education and Research Hospital, Department of Neurosurgery, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Effects of neurotensin in amygdaloid spatial learning mechanisms. Behav Brain Res 2010; 210:280-3. [PMID: 20219557 DOI: 10.1016/j.bbr.2010.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 12/31/2022]
Abstract
Neurotensin (NT) acts as a neurotransmitter and/or neuromodulator and plays a role in learning and reward related processes. The central nucleus of amygdala (CeA) participates in the regulation of memory and learning mechanisms. In Morris water maze test, rats were microinjected with NT or neurotensin receptor-1 (NTS1) antagonist SR 48692 (ANT). NT significantly reduced the escape latency. Effect of NT was blocked by ANT pretreatment. Our results show that in the rat CeA NT facilitates spatial learning. We clarified that NTS1s are involved in this action.
Collapse
|
38
|
Role of intraamygdaloid acylated-ghrelin in spatial learning. Brain Res Bull 2010; 81:33-7. [DOI: 10.1016/j.brainresbull.2009.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 11/23/2022]
|
39
|
Castañeda TR, Tong J, Datta R, Culler M, Tschöp MH. Ghrelin in the regulation of body weight and metabolism. Front Neuroendocrinol 2010; 31:44-60. [PMID: 19896496 DOI: 10.1016/j.yfrne.2009.10.008] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 12/25/2022]
Abstract
Ghrelin, a peptide hormone predominantly produced by the stomach, was isolated as the endogenous ligand for the growth hormone secretagogue receptor. Ghrelin is a potent stimulator of growth hormone (GH) secretion and is the only circulatory hormone known to potently enhance feeding and weight gain and to regulate energy homeostasis following central and systemic administration. Therapeutic intervention with ghrelin in catabolic situations may induce a combination of enhanced food intake, increased gastric emptying and nutrient storage, coupled with an increase in GH thereby linking nutrient partitioning with growth and repair processes. These qualities have fostered the idea that ghrelin-based compounds may have therapeutic utility in treating malnutrition and wasting induced by various sub-acute and chronic disorders. Conversely, compounds that inhibit ghrelin action may be useful for the prevention or treatment of metabolic syndrome components such as obesity, impaired lipid metabolism or insulin resistance. In recent years, the effects of ghrelin on glucose homeostasis, memory function and gastrointestinal motility have attracted considerable amount of attention and revealed novel therapeutic targets in treating a wide range of pathologic conditions. Furthermore, discovery of ghrelin O-acyltransferase has also opened new research opportunities that could lead to major understanding of ghrelin physiology. This review summarizes the current knowledge on ghrelin synthesis, secretion, mechanism of action and biological functions with an additional focus on potential for ghrelin-based pharmacotherapies.
Collapse
Affiliation(s)
- T R Castañeda
- Dept. of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH, USA
| | | | | | | | | |
Collapse
|
40
|
Luque EM, Carlini VP, Vincenti LM, Puechagut P, Stutz G, Santillán ME, Ruiz RD, Martini AC, Fiol de Cuneo M. Effects of hexarelin (a ghrelin analogue) on fertilisation and the pre- and postnatal development of mice. Reprod Fertil Dev 2010; 22:926-38. [DOI: 10.1071/rd09231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 01/14/2010] [Indexed: 11/23/2022] Open
Abstract
Ghrelin (Ghr) has been associated with reproductive physiology and pre- and postnatal development. The objectives of the present study were to evaluate the effects of hexarelin (HEX; 100 or 200 µg kg−1 day−1), a therapeutic Ghr analogue, on: (1) embryo development 60 h post ovulation, induced pharmacologically, in pregnant mice; (2) the physical, neurobiological and sexual development of offspring of female mice injected with HEX during the first, second or third week of pregnancy or throughout the entire pregnancy; and (3) adult memory acquisition in these offspring. We also evaluated the effects of chronic HEX administration on memory acquisition in adult mice. Treatment of non-pregnant female mice with HEX decreased ovulation rate. However, treatment of pregnant mice with HEX at any time during pregnancy tended to accelerate offspring maturation, regardless of bodyweight. This effect was only significant on neurobiological parameters following treatment during the first week. HEX treatment during the first week and/or throughout the entire pregnancy resulted in impaired memory acquisition in the offspring, with female mice being more susceptible to these effects. Similar results were observed for the effects of chronic HEX treatment on memory acquisition in adult mice. In conclusion, HEX seems to exert differential effects depending on when it is administered. Because HEX has started to be used therapeutically, its deleterious effects on ovulation and memory acquisition must be further evaluated.
Collapse
|
41
|
László K, Tóth K, Kertes E, Péczely L, Lénárd L. The role of neurotensin in positive reinforcement in the rat central nucleus of amygdala. Behav Brain Res 2009; 208:430-5. [PMID: 20035801 DOI: 10.1016/j.bbr.2009.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 10/20/2022]
Abstract
In the central nervous system neurotensin (NT) acts as a neurotransmitter and neuromodulator. It was shown that NT has positive reinforcing effects after its direct microinjection into the ventral tegmental area. The central nucleus of amygdala (CeA), part of the limbic system, plays an important role in learning, memory, regulation of feeding, anxiety and emotional behavior. By means of immunohistochemical and radioimmune methods it was shown that the amygdaloid body is relatively rich in NT immunoreactive elements and NT receptors. The aim of our study was to examine the possible effects of NT on reinforcement and anxiety in the CeA. In conditioned place preference test male Wistar rats were microinjected bilaterally with 100 or 250 ng NT in volume of 0.4 microl or 35 ng neurotensin receptor 1 (NTS1) antagonist SR 48692 alone, or NTS1 antagonist 15 min before 100 ng NT treatment. Hundred or 250 ng NT significantly increased the time rats spent in the treatment quadrant. Prior treatment with the non-peptide NTS1 antagonist blocked the effects of NT. Antagonist itself did not influence the reinforcing effect. In elevated plus maze test we did not find differences among the groups as far as the anxiety index (time spent on the open arms) was concerned. Our results suggest that in the rat ACE NT has positive reinforcing effects. We clarified that NTS1s are involved in this action. It was also shown that NT does not influence anxiety behavior.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | | | | | | | | |
Collapse
|