1
|
Zhang R, Huang D, Gasparini S, Geerling JC. Efferent projections of Nps-expressing neurons in the parabrachial region. J Comp Neurol 2024; 532:e25629. [PMID: 39031887 DOI: 10.1002/cne.25629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 07/22/2024]
Abstract
In the brain, connectivity determines function. Neurons in the parabrachial nucleus (PB) relay diverse information to widespread brain regions, but the connections and functions of PB neurons that express Nps (neuropeptide S, NPS) remain mysterious. Here, we use Cre-dependent anterograde tracing and whole-brain analysis to map their output connections. While many other PB neurons project ascending axons through the central tegmental tract, NPS axons reach the forebrain via distinct periventricular and ventral pathways. Along the periventricular pathway, NPS axons target the tectal longitudinal column and periaqueductal gray, then continue rostrally to target the paraventricular nucleus of the thalamus. Along the ventral pathway, NPS axons blanket much of the hypothalamus but avoid the ventromedial and mammillary nuclei. They also project prominently to the ventral bed nucleus of the stria terminalis, A13 cell group, and magnocellular subparafasciular nucleus. In the hindbrain, NPS axons have fewer descending projections, targeting primarily the superior salivatory nucleus, nucleus of the lateral lemniscus, and periolivary region. Combined with what is known already about NPS and its receptor, the output pattern of Nps-expressing neurons in the PB region predicts roles in threat response and circadian behavior.
Collapse
Affiliation(s)
- Richie Zhang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Dake Huang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Silvia Gasparini
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Joel C Geerling
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
3
|
Song C, Zhu ZC, Liu CC, Yun WX, Wang ZY, Lu GY, Song R, Wu N, Li J, Li F. Neuropeptide S Receptor 1 variant (I107N) regulates behavioral characteristics and NPS effect in mice in a sex-dependent manner. Neuropharmacology 2024; 242:109771. [PMID: 37858885 DOI: 10.1016/j.neuropharm.2023.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Accumulated data demonstrate that the A/T single-nucleotide polymorphism (SNP) rs324981 in the human neuropeptide S receptor 1 (NPSR1) gene, resulting in an amino acid change from asparagine (N) to isoleucine (I) at position 107, is associated with susceptibility to psychiatric disorders. Neuropeptide S (NPS) has also been implicated in modulating these disorders in rodent experiments. However, the effect of this SNP on NPSR1 activity remains unclear. To elucidate the pathophysiological and pharmacological implications of this SNP, we generated a mouse model carrying the human-specific AA variant in NPSR1. This model exhibited sex-specific behavioral differences mirroring human observations, including fear response, anxiety, and depression. Notably, intracerebroventricular administration of NPS (1 nmol) significantly promoted locomotor activity and alleviated looming-stimulated fear and anxiety-like behaviors in NPSR TT mice, but not in NPSR AA mice. NPS also reduced depression-like behavior in a sex and genotype-dependent manner in the forced swim test. Our study in NPSR variant mice enhances our understanding of phenotypic and pharmacological differences due to the NPSR1 SNP, providing an animal model for further investigation of physiological processes in humans carrying this SNP.
Collapse
Affiliation(s)
- Chen Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Zhi-Chen Zhu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China; Department of Pharmacology, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Chuan-Chuan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China; Department of Pharmacology, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Wen-Xin Yun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Zhi-Yuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Guan-Yi Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Rui Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China.
| | - Fei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Zhang R, Huang D, Gasparini S, Geerling JC. Efferent projections of Nps-expressing neurons in the parabrachial region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553140. [PMID: 37645772 PMCID: PMC10462015 DOI: 10.1101/2023.08.13.553140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In the brain, connectivity determines function. Neurons in the parabrachial nucleus (PB) relay diverse information to widespread brain regions, but the connections and functions of PB neurons that express Nps (neuropeptide S) remain mysterious. Here, we use Cre-dependent anterograde tracing and whole-brain analysis to map their output connections. While many other PB neurons project ascending axons through the central tegmental tract, NPS axons reach the forebrain via distinct periventricular and ventral pathways. Along the periventricular pathway, NPS axons target the tectal longitudinal column and periaqueductal gray then continue rostrally to target the paraventricular nucleus of the thalamus. Along the ventral pathway, NPS axons blanket much of the hypothalamus but avoid the ventromedial and mammillary nuclei. They also project prominently to the ventral bed nucleus of the stria terminalis, A13 cell group, and magnocellular subparafasciular nucleus. In the hindbrain, NPS axons have fewer descending projections, targeting primarily the superior salivatory nucleus, nucleus of the lateral lemniscus, and periolivary region. Combined with what is known about NPS and its receptor, the output pattern of Nps-expressing neurons in the PB region predicts a role in threat response and circadian behavior.
Collapse
Affiliation(s)
- Richie Zhang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Dake Huang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Silvia Gasparini
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Joel C. Geerling
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| |
Collapse
|
5
|
Neurogenic Interventions for Fear Memory via Modulation of the Hippocampal Function and Neural Circuits. Int J Mol Sci 2022; 23:ijms23073582. [PMID: 35408943 PMCID: PMC8998417 DOI: 10.3390/ijms23073582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
Fear memory helps animals and humans avoid harm from certain stimuli and coordinate adaptive behavior. However, excessive consolidation of fear memory, caused by the dysfunction of cellular mechanisms and neural circuits in the brain, is responsible for post-traumatic stress disorder and anxiety-related disorders. Dysregulation of specific brain regions and neural circuits, particularly the hippocampus, amygdala, and medial prefrontal cortex, have been demonstrated in patients with these disorders. These regions are involved in learning, memory, consolidation, and extinction. These are also the brain regions where new neurons are generated and are crucial for memory formation and integration. Therefore, these three brain regions and neural circuits have contributed greatly to studies on neural plasticity and structural remodeling in patients with psychiatric disorders. In this review, we provide an understanding of fear memory and its underlying cellular mechanisms and describe how neural circuits are involved in fear memory. Additionally, we discuss therapeutic interventions for these disorders based on their proneurogenic efficacy and the neural circuits involved in fear memory.
Collapse
|
6
|
Tobinski AM, Rappeneau V. Role of the Neuropeptide S System in Emotionality, Stress Responsiveness and Addiction-Like Behaviours in Rodents: Relevance to Stress-Related Disorders. Pharmaceuticals (Basel) 2021; 14:ph14080780. [PMID: 34451877 PMCID: PMC8400992 DOI: 10.3390/ph14080780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
The neuropeptide S (NPS) and its receptor (NPSR1) have been extensively studied over the last two decades for their roles in locomotion, arousal/wakefulness and anxiety-related and fear-related behaviours in rodents. However, the possible implications of the NPS/NPSR1 system, especially those of the single nucleotide polymorphism (SNP) rs324981, in stress-related disorders and substance abuse in humans remain unclear. This is possibly due to the fact that preclinical and clinical research studies have remained separated, and a comprehensive description of the role of the NPS/NPSR1 system in stress-relevant and reward-relevant endpoints in humans and rodents is lacking. In this review, we describe the role of the NPS/NPSR1 system in emotionality, stress responsiveness and addiction-like behaviour in rodents. We also summarize the alterations in the NPS/NPSR1 system in individuals with stress-related disorders, as well as the impact of the SNP rs324981 on emotion, stress responses and neural activation in healthy individuals. Moreover, we discuss the therapeutic potential and possible caveats of targeting the NPS/NPSR1 system for the treatment of stress-related disorders. The primary goal of this review is to highlight the importance of studying some rodent behavioural readouts modulated by the NPS/NPSR1 system and relevant to stress-related disorders.
Collapse
|
7
|
Holanda VAD, Didonet JJ, Costa MBB, do Nascimento Rangel AH, da Silva ED, Gavioli EC. Neuropeptide S Receptor as an Innovative Therapeutic Target for Parkinson Disease. Pharmaceuticals (Basel) 2021; 14:ph14080775. [PMID: 34451872 PMCID: PMC8401573 DOI: 10.3390/ph14080775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disease mainly characterized by the loss of nigral dopaminergic neurons in the substantia nigra pars compacta. Patients suffering from PD develop severe motor dysfunctions and a myriad of non-motor symptoms. The treatment mainly consists of increasing central dopaminergic neurotransmission and alleviating motor symptoms, thus promoting severe side effects without modifying the disease’s progress. A growing body of evidence suggests a close relationship between neuropeptide S (NPS) and its receptor (NPSR) system in PD: (i) double immunofluorescence labeling studies showed that NPSR is expressed in the nigral tyrosine hydroxylase (TH)-positive neurons; (ii) central administration of NPS increases spontaneous locomotion in naïve rodents; (iii) central administration of NPS ameliorates motor and nonmotor dysfunctions in animal models of PD; (iv) microdialysis studies showed that NPS stimulates dopamine release in naïve and parkinsonian rodents; (v) central injection of NPS decreases oxidative damage to proteins and lipids in the rodent brain; and, (vi) 7 days of central administration of NPS protects from the progressive loss of nigral TH-positive cells in parkinsonian rats. Taken together, the NPS/NPSR system seems to be an emerging therapeutic strategy for alleviating motor and non-motor dysfunctions of PD and, possibly, for slowing disease progress.
Collapse
Affiliation(s)
- Victor A. D. Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Julia J. Didonet
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Manara B. B. Costa
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | | | - Edilson D. da Silva
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Elaine C. Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
- Correspondence:
| |
Collapse
|
8
|
Dissociative Effects of Neuropeptide S Receptor Deficiency and Nasal Neuropeptide S Administration on T-Maze Discrimination and Reversal Learning. Pharmaceuticals (Basel) 2021; 14:ph14070643. [PMID: 34358069 PMCID: PMC8308873 DOI: 10.3390/ph14070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Cognitive flexibility refers to the ability to modify learned behavior in response to changes in the environment. In laboratory rodents, cognitive flexibility can be assessed in reversal learning, i.e., the change of contingencies, for example in T-maze discrimination learning. The present study investigated the role of the neuropeptide S (NPS) system in cognitive flexibility. In the first experiment, mice deficient of NPS receptors (NPSR) were tested in T-maze discrimination and reversal learning. In the second experiment, C57BL/6J mice were tested in the T-maze after nasal administration of NPS. Finally, the effect of nasal NPS on locomotor activity was evaluated. NPSR deficiency positively affected the acquisition of T-maze discrimination but had no effects on reversal learning. Nasal NPS administration facilitated reversal learning and supported an allocentric learning strategy without affecting acquisition of the task or locomotor activity. Taken together, the present data show that the NPS system is able to modulate both acquisition of T-maze discrimination and its reversal learning. However, NPSR deficiency only improved discrimination learning, while nasal NPS administration only improved reversal learning, i.e., cognitive flexibility. These effects, which at first glance appear to be contradictory, could be due to the different roles of the NPS system in the brain regions that are important for learning and cognitive flexibility.
Collapse
|
9
|
Si W, Liu X, Pape HC, Reinscheid RK. Neuropeptide S-Mediated Modulation of Prepulse Inhibition Depends on Age, Gender, Stimulus-Timing, and Attention. Pharmaceuticals (Basel) 2021; 14:489. [PMID: 34065431 PMCID: PMC8160819 DOI: 10.3390/ph14050489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Conflicting reports about the role of neuropeptide S (NPS) in animal models of psychotic-like behavior and inconsistent results from human genetic studies seeking potential associations with schizophrenia prompted us to reevaluate the effects of NPS in the prepulse inhibition (PPI) paradigm in mice. Careful examination of NPS receptor (NPSR1) knockout mice at different ages revealed that PPI deficits are only expressed in young male knockout animals (<12 weeks of age), that can be replicated in NPS precursor knockout mice and appear strain-independent, but are absent in female mice. PPI deficits can be aggravated by MK-801 and alleviated by clozapine. Importantly, treatment of wildtype mice with a centrally-active NPSR1 antagonist was able to mimic PPI deficits. PPI impairment in young male NPSR1 and NPS knockout mice may be caused by attentional deficits that are enhanced by increasing interstimulus intervals. Our data reveal a substantial NPS-dependent developmental influence on PPI performance and confirm a significant role of attentional processes for sensory-motor gating. Through its influence on attention and arousal, NPS appears to positively modulate PPI in young animals, whereas compensatory mechanisms may alleviate NPS-dependent deficits in older mice.
Collapse
Affiliation(s)
- Wei Si
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; (W.S.); (X.L.)
| | - Xiaobin Liu
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; (W.S.); (X.L.)
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische-Wilhelms University, 48149 Münster, Germany;
| | - Rainer K. Reinscheid
- Institute of Physiology I, Westfälische-Wilhelms University, 48149 Münster, Germany;
- Institute of Pharmacology and Toxicology, Friedrich-Schiller University, 07747 Jena, Germany
| |
Collapse
|
10
|
Reinscheid RK, Ruzza C. Pharmacology, Physiology and Genetics of the Neuropeptide S System. Pharmaceuticals (Basel) 2021; 14:ph14050401. [PMID: 33922620 PMCID: PMC8146834 DOI: 10.3390/ph14050401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Neuropeptide S (NPS) system is a rather ‘young’ transmitter system that was discovered and functionally described less than 20 years ago. This review highlights the progress that has been made in elucidating its pharmacology, anatomical distribution, and functional involvement in a variety of physiological effects, including behavior and immune functions. Early on, genetic variations of the human NPS receptor (NPSR1) have attracted attention and we summarize current hypotheses of genetic linkage with disease and human behaviors. Finally, we review the therapeutic potential of future drugs modulating NPS signaling. This review serves as an introduction to the broad collection of original research papers and reviews from experts in the field that are presented in this Special Issue.
Collapse
Affiliation(s)
- Rainer K. Reinscheid
- Institute of Pharmacology & Toxicology, University Hospital Jena, Friedrich-Schiller University, 07747 Jena, Germany
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhelms University, 48149 Münster, Germany
- Correspondence: (R.K.R.); (C.R.)
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (R.K.R.); (C.R.)
| |
Collapse
|
11
|
Batran RZ, Gugnani KS, Maher TJ, Khedr MA. New quinolone derivatives as neuropeptide S receptor antagonists: Design, synthesis, homology modeling, dynamic simulations and modulation of Gq/Gs signaling pathways. Bioorg Chem 2021; 111:104817. [PMID: 33848721 DOI: 10.1016/j.bioorg.2021.104817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/16/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023]
Abstract
In a search for new neuropeptide S receptor antagonists, we have described a new series of quinolone-pyranopyrimidine hybrid derivatives aiming to modify the inhibitory characters towards NPSR to develop new therapeutic strategies against anxiety, addiction and food disorders. We identified six potent antagonists 3, 4b, 6, 8, 9 and 10 which counteracted the stimulatory effect of NPS at both Gq and Gs pathways, at low micromolar concentrations, through modulation of Ca2+ and cAMP signaling, respectively. Molecular docking predicted the orientation mode of the top active compounds; 10 and 4b with ΔG value of -23.94 and -23.87 kcal/mol, respectively that is considered good when compared to that of the reference compound ML154 (ΔG = -25.75 kcal/mol) . Molecular dynamic simulations confirmed the stability of binding of compound 10 to the homology model of NPSR as it reached the equilibrium after 4 ns at RMSD of 1.00 Å while ML154 was faster to achieve the equilibrium after 2 ns at RMSD of 1.00 Å.
Collapse
Affiliation(s)
- Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. Box 12622, Egypt.
| | - Kuljeet S Gugnani
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Timothy J Maher
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Mohammed A Khedr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, P.O. Box 11795, Egypt
| |
Collapse
|
12
|
Kolodziejczyk MH, Faesel N, Koch M, Fendt M. Sociability and extinction of conditioned social fear is affected in neuropeptide S receptor-deficient mice. Behav Brain Res 2020; 393:112782. [DOI: 10.1016/j.bbr.2020.112782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 01/16/2023]
|
13
|
Xing L, Shi G, Mostovoy Y, Gentry NW, Fan Z, McMahon TB, Kwok PY, Jones CR, Ptáček LJ, Fu YH. Mutant neuropeptide S receptor reduces sleep duration with preserved memory consolidation. Sci Transl Med 2020; 11:11/514/eaax2014. [PMID: 31619542 DOI: 10.1126/scitranslmed.aax2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
Abstract
Sleep is a crucial physiological process for our survival and cognitive performance, yet the factors controlling human sleep regulation remain poorly understood. Here, we identified a missense mutation in a G protein-coupled neuropeptide S receptor 1 (NPSR1) that is associated with a natural short sleep phenotype in humans. Mice carrying the homologous mutation exhibited less sleep time despite increased sleep pressure. These animals were also resistant to contextual memory deficits associated with sleep deprivation. In vivo, the mutant receptors showed increased sensitivity to neuropeptide S exogenous activation. These results suggest that the NPS/NPSR1 pathway might play a critical role in regulating human sleep duration and in the link between sleep homeostasis and memory consolidation.
Collapse
Affiliation(s)
- Lijuan Xing
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Guangsen Shi
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yulia Mostovoy
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nicholas W Gentry
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Zenghua Fan
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Thomas B McMahon
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Dermatology, University of California San Francisco, San Francisco, CA 94143, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Louis J Ptáček
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA. .,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA.,Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA.,Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ying-Hui Fu
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA. .,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA.,Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA.,Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Kolodziejczyk MH, Fendt M. Corticosterone Treatment and Incubation Time After Contextual Fear Conditioning Synergistically Induce Fear Memory Generalization in Neuropeptide S Receptor-Deficient Mice. Front Neurosci 2020; 14:128. [PMID: 32231512 PMCID: PMC7081924 DOI: 10.3389/fnins.2020.00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Fear memory generalization is a learning mechanism that promotes flexible fear responses to novel situations. While fear generalization has adaptive value, overgeneralization of fear memory is a characteristic feature of the pathology of anxiety disorders. The neuropeptide S (NPS) receptor (NPSR) has been shown to be associated with anxiety disorders and has recently been identified as a promising target for treating anxiety disorders. Moreover, stress hormones play a role in regulating both physiological and pathological fear memories and might therefore also be involved in anxiety disorders. However, little is known about the interplay between stress hormone and the NPS system in the development of overgeneralized fear. Here, we hypothesize that NPSR-deficient mice with high corticosterone (CORT) levels during the fear memories consolidation are more prone to develop generalized fear. To address this hypothesis, NPSR-deficient mice were submitted to a contextual fear conditioning procedure. Immediately after conditioning, mice received CORT injections (2.5 or 5 mg/kg). One day and 1 month later, the mice were tested for the specificity and strength of their fear memory, their anxiety level, and their startle response. Moreover, CORT blood levels were monitored throughout the experiment. Using this protocol, a specific contextual fear memory was observed in all experimental groups, despite the 5-mg/kg CORT-treated NPSR-deficient mice. This group of mice showed a generalization of contextual fear memory and a decreased startle response, and the females of this group had significantly less body weight gain. These findings indicate that interplay between CORT and the NPS system during the consolidation of fear memories is critical for the generalization of contextual fear.
Collapse
Affiliation(s)
- Malgorzata H Kolodziejczyk
- Neuropharmaclogy of Emotional Systems, Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Fendt
- Neuropharmaclogy of Emotional Systems, Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
15
|
Kreutzmann JC, Khalil R, Köhler JC, Mayer D, Florido A, Nadal R, Andero R, Fendt M. Neuropeptide‐S‐receptor deficiency affects sex‐specific modulation of safety learning by pre‐exposure to electric stimuli. GENES BRAIN AND BEHAVIOR 2020; 19:e12621. [DOI: 10.1111/gbb.12621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/28/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Judith C. Kreutzmann
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Department of Systems Physiology of LearningLeibniz Institute for Neurobiology Magdeburg Germany
| | - Radwa Khalil
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Jana C. Köhler
- Institute of PhysiologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Center of Behavioral Brain SciencesOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Dana Mayer
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Antonio Florido
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Roser Nadal
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
- CIBERSAMInstituto de Salud Carlos III, Universitat Autònoma de Barcelona Bellaterra Spain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Raül Andero
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
- CIBERSAMInstituto de Salud Carlos III, Universitat Autònoma de Barcelona Bellaterra Spain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Markus Fendt
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Center of Behavioral Brain SciencesOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| |
Collapse
|
16
|
Gorny X, Säring P, Bergado Acosta JR, Kahl E, Kolodziejczyk MH, Cammann C, Wernecke KEA, Mayer D, Landgraf P, Seifert U, Dieterich DC, Fendt M. Deficiency of the immunoproteasome subunit β5i/LMP7 supports the anxiogenic effects of mild stress and facilitates cued fear memory in mice. Brain Behav Immun 2019; 80:35-43. [PMID: 30797047 DOI: 10.1016/j.bbi.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/22/2018] [Accepted: 02/20/2019] [Indexed: 02/01/2023] Open
Abstract
Proteolysis as mediated by one of the major cellular protein degradation pathways, the ubiquitin-proteasome system (UPS), plays an essential role in learning and memory formation. However, the functional relevance of immunoproteasomes in the healthy brain and especially their impact on normal brain function including processes of learning and memory has not been investigated so far. In the present study, we analyzed the phenotypic effects of an impaired immunoproteasome formation using a β5i/LMP7-deficient mouse model in different behavioral paradigms focusing on locomotor activity, exploratory behavior, innate anxiety, startle response, prepulse inhibition, as well as fear and safety conditioning. Overall, our results demonstrate no strong effects of constitutive β5i/LMP7-deficiency on gross locomotor abilities and anxiety-related behavior in general. However, β5i/LMP7-deficient mice expressed more anxiety after mild stress and increased cued fear after fear conditioning. These findings indicate that the basal proper formation of immunoproteasomes and/or at least the expression of β5i/LMP7 in healthy mice seem to be involved in the regulation of anxiety and cued fear levels.
Collapse
Affiliation(s)
- Xenia Gorny
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany
| | - Paula Säring
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Jorge R Bergado Acosta
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | | | - Clemens Cammann
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany; Friedrich Loeffler Institute for Medical Microbiology, University Medicine, University Greifswald, Greifswald, Germany
| | - Kerstin E A Wernecke
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany
| | - Dana Mayer
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany
| | - Ulrike Seifert
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany; Friedrich Loeffler Institute for Medical Microbiology, University Medicine, University Greifswald, Greifswald, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany.
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany.
| |
Collapse
|
17
|
Germer J, Kahl E, Fendt M. Memory generalization after one-trial contextual fear conditioning: Effects of sex and neuropeptide S receptor deficiency. Behav Brain Res 2018; 361:159-166. [PMID: 30597251 DOI: 10.1016/j.bbr.2018.12.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
One-trial contextual fear conditioning in laboratory mice results in a fear memory which is relatively specific to the original conditioning context shortly after conditioning but becomes more unspecific after an incubation time of one month. This process is called generalization of fear memory and is used to investigate processes which might be involved in the pathogenesis of post-traumatic stress disorder. In the present study, we investigated the effects of sex and neuropeptide S receptor (NPSR) deficiency in one-trial contextual fear conditioning. In addition to contextual fear, we also measured startle reactivity, anxiety and corticosterone plasma levels of the mice. Our data show main effects of sex and NPSR-deficiency on freezing behavior, startle magnitude, and anxiety levels. However, generalization of contextual fear memory after incubation time was not affected by sex. Notably, NPSR-deficient mice had a more specific fear memory shortly after conditioning than their wildtype littermates but after incubation time, all genotypes had a generalized fear memory. The present data further show that plasma corticosterone levels are increased after incubation time. This increase was significantly more pronounced in NPSR-deficient mice. Taken together, our study confirms the suitability of one-trial contextual fear conditioning to study the effects of incubation time on fear memory generalization but also indicates the need for control groups without incubation. We further demonstrate that the increase of plasma corticosterone levels after incubation time is exaggerated in NPSR-deficient mice. The latter finding suggests an important role of the NPS system in the regulation of corticosterone release.
Collapse
Affiliation(s)
- Josephine Germer
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
18
|
Ensho T, Nakahara K, Suzuki Y, Murakami N. Neuropeptide S increases motor activity and thermogenesis in the rat through sympathetic activation. Neuropeptides 2017; 65:21-27. [PMID: 28433253 DOI: 10.1016/j.npep.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 12/01/2022]
Abstract
The central role of neuropeptide S (NPS), identified as the endogenous ligand for GPR154, now named neuropeptide S receptor (NPSR), has not yet been fully clarified. We examined the central role of NPS for body temperature, energy expenditure, locomotor activity and adrenal hormone secretion in rats. Intracerebroventricular (icv) injection of NPS increased body temperature in a dose-dependent manner. Energy consumption and locomotor activity were also significantly increased by icv injection of NPS. In addition, icv injection of NPS increased the peripheral blood concentration of adrenalin and corticosterone. Pretreatment with the β1- and β2-adrenergic receptor blocker timolol inhibited the NPS-induced increase of body temperature. The expression of both NPS mRNA in the brainstem and NPSR mRNA in the hypothalamus showed a nocturnal rhythm with a peak occurring during the first half of the dark period. To examine whether the endogenous NPS is involved in regulation of body temperature, NPSR antagonist SHA68 was administered one hour after darkness. SHA68 attenuated the nocturnal rise of body temperature. These results suggest that NPS contributes to the regulation of the sympathetic nervous system.
Collapse
Affiliation(s)
- Takuya Ensho
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Keiko Nakahara
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan.
| | - Yoshihiro Suzuki
- Laboratory of Animal Health Science, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | - Noboru Murakami
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| |
Collapse
|
19
|
Martinez-Royo A, Alabart JL, Sarto P, Serrano M, Lahoz B, Folch J, Calvo JH. Genome-wide association studies for reproductive seasonality traits in Rasa Aragonesa sheep breed. Theriogenology 2017; 99:21-29. [DOI: 10.1016/j.theriogenology.2017.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/27/2017] [Accepted: 05/13/2017] [Indexed: 01/06/2023]
|
20
|
Liu X, Si W, Garau C, Jüngling K, Pape HC, Schulz S, Reinscheid RK. Neuropeptide S precursor knockout mice display memory and arousal deficits. Eur J Neurosci 2017; 46:1689-1700. [PMID: 28548278 DOI: 10.1111/ejn.13613] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/02/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Activation of neuropeptide S (NPS) signaling has been found to produce arousal, wakefulness, anxiolytic-like behaviors, and enhanced memory formation. In order to further study physiological functions of the NPS system, we generated NPS precursor knockout mice by homologous recombination in embryonic stem cells. NPS-/- mice were viable, fertile, and anatomically normal, when compared to their wild-type and heterozygous littermates. The total number of NPS neurons-although no longer synthesizing the peptide - was not affected by the knockout, as analyzed in NPS-/- /NPSEGFP double transgenic mice. Analysis of behavioral phenotypes revealed significant deficits in exploratory activity in NPS-/- mice. NPS precursor knockout mice displayed attenuated arousal in the hole board test, visible as reduced total nose pokes and number of holes inspected, that was not confounded by increased repetitive or stereotypic behavior. Importantly, long-term memory was significantly impaired in NPS-/- mice in the inhibitory avoidance paradigm. NPS precursor knockout mice displayed mildly increased anxiety-like behaviors in three different tests measuring responses to stress and novelty. Interestingly, heterozygous littermates often presented behavioral deficits similar to NPS-/- mice or displayed intermediate phenotype. These observations may suggest limited ligand availability in critical neural circuits. Overall, phenotypical changes in NPS-/- mice are similar to those observed in NPS receptor knockout mice and support earlier findings that suggest major functions of the NPS system in arousal, regulation of anxiety and stress, and memory formation.
Collapse
Affiliation(s)
- Xiaobin Liu
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.,Department of Pharmaceutical Science, University of North Texas Health Sciences Center, Fort Worth, TX, USA
| | - Wei Si
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Celia Garau
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Kay Jüngling
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhems-University, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhems-University, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Stefan Schulz
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany
| | - Rainer K Reinscheid
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.,Institute of Physiology I, University Hospital Münster, Westfälische-Wilhems-University, Robert-Koch-Str. 27a, D-48149, Münster, Germany.,Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
21
|
Ruzza C, Calò G, Di Maro S, Pacifico S, Trapella C, Salvadori S, Preti D, Guerrini R. Neuropeptide S receptor ligands: a patent review (2005-2016). Expert Opin Ther Pat 2016; 27:347-362. [PMID: 27788040 DOI: 10.1080/13543776.2017.1254195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Neuropeptide S (NPS) is a 20-residue peptide and endogenous ligand of the NPS receptor (NPSR). This receptor was a formerly orphan GPCR whose activation increases calcium and cyclic adenosine monophosphate levels. The NPS/NPSR system is expressed in several brain regions where it controls important biological functions including locomotor activity, arousal and sleep, anxiety, food intake, memory, pain, and drug addiction. Areas covered: This review furnishes an updated overview of the patent literature covering NPSR ligands since 2005, when the first example of an NPSR antagonist was disclosed. Expert opinion: Several potent NPSR antagonists are available as valuable pharmacological tools despite showing suboptimal pharmacokinetic properties in vivo. The optimization of these ligands is needed to speed up their potential clinical advancement as pharmaceuticals to treat drug addiction. In order to support the design of novel NPSR antagonists, we performed a ligand-based conformational analysis recognizing some structural requirements for NPSR antagonism. The identification of small-molecule NPSR agonists now represents an unmet challenge to be addressed. These molecules will allow investigation of the beneficial effects of selective NPSR activation in a large panel of psychiatric disorders and to foresee their therapeutic potential as anxiolytics, nootropics, and analgesics.
Collapse
Affiliation(s)
- Chiara Ruzza
- a Department of Medical Sciences, Section of Pharmacology, School of Medicine and National Institute of Neuroscience , University of Ferrara , Ferrara , Italy
| | - Girolamo Calò
- a Department of Medical Sciences, Section of Pharmacology, School of Medicine and National Institute of Neuroscience , University of Ferrara , Ferrara , Italy
| | | | - Salvatore Pacifico
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Claudio Trapella
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Severo Salvadori
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Delia Preti
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Remo Guerrini
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| |
Collapse
|
22
|
Li MS, Peng YL, Jiang JH, Xue HX, Wang P, Zhang PJ, Han RW, Chang M, Wang R. Neuropeptide S Increases locomotion activity through corticotropin-releasing factor receptor 1 in substantia nigra of mice. Peptides 2015; 71:196-201. [PMID: 26239581 DOI: 10.1016/j.peptides.2015.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 11/26/2022]
Abstract
Neuropeptide S (NPS), the endogenous ligand of NPS receptor (NPSR), was reported to be involved in the regulation of arousal, anxiety, locomotion, learning and memory. The basal ganglia play a crucial role in regulating of locomotion-related behavior. Here, we found that NPSR protein of mouse was distributed in the substantia nigra (SN) and globus pallidus (LGP) by immunohistochemical analysis. However, less is known about the direct locomotion-related effects of NPS in both SN and LGP. Therefore, we investigated the role of NPS in locomotion processes, using the open field test. The results showed that NPS infused into the SN (0.03, 0.1, 1nmol) or LGP (0.01, 0.03, 0.1nmol) dose-dependently increased the locomotor activity in mice. SHA 68 (50mg/kg), an antagonist of NPSR, blocked the locomotor stimulant effect of NPS in both nuleus. Meanwhile, these effects of NPS were also counteracted by the CRF1 receptor antagonist antalarmin (30mg/kg, i.p.). In addition, we found that the expression of c-Fos was significantly increased after NPS was delivered into SN. In conclusion, these results indicate that NPS-NPSR system may regulate locomotion together with the CRF1 system in SN.
Collapse
Affiliation(s)
- M S Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Y L Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - J H Jiang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - H X Xue
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - P Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - P J Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - R W Han
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - M Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China.
| | - R Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
23
|
Ruzza C, Rizzi A, Malfacini D, Pulga A, Pacifico S, Salvadori S, Trapella C, Reinscheid RK, Calo G, Guerrini R. In vitro and in vivo pharmacological characterization of a neuropeptide S tetrabranched derivative. Pharmacol Res Perspect 2015; 3:e00108. [PMID: 25692025 PMCID: PMC4317238 DOI: 10.1002/prp2.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/11/2014] [Indexed: 11/11/2022] Open
Abstract
The peptide welding technology (PWT) is a novel chemical strategy that allows the synthesis of multibranched peptides with high yield, purity, and reproducibility. With this approach, a tetrabranched derivative of neuropeptide S (NPS) has been synthesized and pharmacologically characterized. The in vitro activity of PWT1-NPS has been studied in a calcium mobilization assay. In vivo, PWT1-NPS has been investigated in the locomotor activity (LA) and recovery of the righting reflex (RR) tests. In calcium mobilization studies, PWT1-NPS behaved as full agonist at the mouse NPS receptor (NPSR) being threefold more potent than NPS. The selective NPSR antagonists [ (t) Bu-D-Gly(5)]NPS and SHA 68 displayed similar potency values against NPS and PWT1-NPS. In vivo, both NPS (1-100 pmol, i.c.v.) and PWT1-NPS (0.1-100 pmol, i.c.v.) stimulated mouse LA, with PWT1-NPS showing higher potency than NPS. In the RR assay, NPS (100 pmol, i.c.v.) was able to reduce the percentage of mice losing the RR after diazepam administration and their sleep time 5 min after the i.c.v. injection, but it was totally inactive 2 h after the injection. On the contrary, PWT1-NPS (30 pmol, i.c.v.), injected 2 h before diazepam, displayed wake-promoting effects. This PWT1-NPS stimulant effect was no longer evident in mice lacking the NPSR receptor. The PWT1 technology can be successfully applied to the NPS sequence. PWT1-NPS displayed in vitro a pharmacological profile similar to NPS. In vivo PWT1-NPS mimicked NPS effects showing higher potency and long-lasting action.
Collapse
Affiliation(s)
- Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara 44121, Ferrara, Italy
| | - Anna Rizzi
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara 44121, Ferrara, Italy
| | - Davide Malfacini
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara 44121, Ferrara, Italy
| | - Alice Pulga
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara 44121, Ferrara, Italy
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara 44121, Ferrara, Italy
| | - Severo Salvadori
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara 44121, Ferrara, Italy
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara 44121, Ferrara, Italy
| | - Rainer K Reinscheid
- Department of Pharmaceutical Sciences, University of California Irvine Irvine, California, 92697
| | - Girolamo Calo
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara 44121, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara 44121, Ferrara, Italy
| |
Collapse
|
24
|
Pulkkinen V, Ezer S, Sundman L, Hagström J, Remes S, Söderhäll C, Greco D, Dario G, Haglund C, Kere J, Arola J. Neuropeptide S receptor 1 (NPSR1) activates cancer-related pathways and is widely expressed in neuroendocrine tumors. Virchows Arch 2014; 465:173-83. [PMID: 24915894 PMCID: PMC4116602 DOI: 10.1007/s00428-014-1602-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/28/2014] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
Neuroendocrine tumors (NETs) arise from disseminated neuroendocrine cells and express general and specific neuroendocrine markers. Neuropeptide S receptor 1 (NPSR1) is expressed in neuroendocrine cells and its ligand neuropeptide S (NPS) affects cell proliferation. Our aim was to study whether NPS/NPSR1 could be used as a biomarker for neuroendocrine neoplasms and to identify the gene pathways affected by NPS/NPSR1. We collected a cohort of NETs comprised of 91 samples from endocrine glands, digestive tract, skin, and lung. Tumor type was validated by immunostaining of chromogranin-A and synaptophysin expression and tumor grade was analyzed by Ki-67 proliferation index. NPS and NPSR1 expression was quantified by immunohistochemistry using polyclonal antibodies against NPS and monoclonal antibodies against the amino-terminus and carboxy-terminus of NPSR1 isoform A (NPSR1-A). The effects of NPS on downstream signaling were studied in a human SH-SY5Y neuroblastoma cell line which overexpresses NPSR1-A and is of neuroendocrine origin. NPSR1 and NPS were expressed in most NET tissues, with the exception of adrenal pheochromocytomas in which NPS/NPSR1 immunoreactivity was very low. Transcriptome analysis of NPSR1-A overexpressing cells revealed that mitogen-activated protein kinase (MAPK) pathways, circadian activity, focal adhesion, transforming growth factor beta, and cytokine-cytokine interactions were the most altered gene pathways after NPS stimulation. Our results show that NETs are a source of NPS and NPSR1, and that NPS affects cancer-related pathways.
Collapse
Affiliation(s)
- V Pulkkinen
- Pulmonary Division, Department of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang S, Jin X, You Z, Wang S, Lim G, Yang J, McCabe M, Li N, Marota J, Chen L, Mao J. Persistent nociception induces anxiety-like behavior in rodents: role of endogenous neuropeptide S. Pain 2014; 155:1504-1515. [PMID: 24793908 DOI: 10.1016/j.pain.2014.04.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Abstract
Anxiety disorder is a comorbid condition of chronic pain. Analgesics and anxiolytics, subject to addiction and abuse, are currently used to manage pain and anxiety symptoms. However, the cellular mechanism underlying chronic pain and anxiety interaction remains to be elucidated. We report that persistent nociception following peripheral nerve injury induced anxiety-like behavior in rodents. Brain expression and release of neuropeptide S (NPS), a proposed endogenous anxiolytic peptide, was diminished in rodents with coexisting nociceptive and anxiety-like behaviors. Intracerebroventricular administration of exogenous NPS concurrently improved both nociceptive and anxiety-like behaviors. At the cellular level, NPS enhanced intra-amygdaloidal inhibitory transmission by increasing presynaptic gamma-aminobutyric acid (GABA) release from interneurons. These findings indicate that the interaction between nociceptive and anxiety-like behaviors in rodents may be regulated by the altered NPS-mediated intra-amygdaloidal GABAergic inhibition. The data suggest that enhancing the brain NPS function may be a new strategy to manage comorbid pain and anxiety.
Collapse
Affiliation(s)
- Shuzhuo Zhang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA Department of Anesthesia and Pain Therapy, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100050, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
[d-Pen(p- t BuBzl)5]NPS, a novel ligand for the neuropeptide S receptor: structure activity and pharmacological studies. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0927-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Camarda V, Ruzza C, Rizzi A, Trapella C, Guerrini R, Reinscheid RK, Calo G. In vitro and in vivo pharmacological characterization of the novel neuropeptide S receptor ligands QA1 and PI1. Peptides 2013; 48:27-35. [PMID: 23911665 DOI: 10.1016/j.peptides.2013.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 11/22/2022]
Abstract
The pharmacological activity of the novel neuropeptide S (NPS) receptor (NPSR) ligands QA1 and PI1 was investigated. In vitro QA1 and PI1 were tested in calcium mobilization studies performed in HEK293 cells expressing the recombinant mouse (HEK293mNPSR) and human (HEK293hNPSRIle107 and HEK293hNPSRAsn107) NPSR receptors. In vivo the compounds were studied in mouse righting reflex (RR) and locomotor activity (LA) tests. NPS caused a concentration dependent mobilization of intracellular calcium in the three cell lines with high potency (pEC50 8.73-9.14). In inhibition response curve and Schild protocol experiments the effects of NPS were antagonized by QA1 and PI1. QA1 displayed high potency (pKB 9.60-9.82) behaving as a insurmountable antagonist. However in coinjection experiments QA1 produced a rightward swift of the concentration response curve to NPS without modifying its maximal effects; this suggests that QA1 is actually a slow dissociating competitive antagonist. PI1 displayed a competitive type of antagonism and lower values of potencies (pA2 7.74-8.45). In vivo in mice NPS (0.1 nmol, i.c.v.) elicited arousal promoting action in the RR assay and stimulant effects in the LA test. QA1 (30 mgkg(-1)) was able to partially counteract the arousal promoting NPS effects, while PI1 was inactive in the RR test. In the LA test QA1 and PI1 only poorly blocked the NPS stimulant action. The present data demonstrated that QA1 and PI1 act as potent NPSR antagonists in vitro, however their usefulness for in vivo investigations in mice seems limited probably by pharmacokinetic reasons.
Collapse
Affiliation(s)
- V Camarda
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Glotzbach-Schoon E, Andreatta M, Reif A, Ewald H, Tröger C, Baumann C, Deckert J, Mühlberger A, Pauli P. Contextual fear conditioning in virtual reality is affected by 5HTTLPR and NPSR1 polymorphisms: effects on fear-potentiated startle. Front Behav Neurosci 2013; 7:31. [PMID: 23630477 PMCID: PMC3632789 DOI: 10.3389/fnbeh.2013.00031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/01/2013] [Indexed: 01/25/2023] Open
Abstract
The serotonin (5-HT) and neuropeptide S (NPS) systems are discussed as important genetic modulators of fear and sustained anxiety contributing to the etiology of anxiety disorders. Sustained anxiety is a crucial characteristic of most anxiety disorders which likely develops through contextual fear conditioning. This study investigated if and how genetic alterations of the 5-HT and the NPS systems as well as their interaction modulate contextual fear conditioning; specifically, function polymorphic variants in the genes coding for the 5-HT transporter (5HTT) and the NPS receptor (NPSR1) were studied. A large group of healthy volunteers was therefore stratified for 5HTTLPR (S+ vs. LL carriers) and NPSR1 rs324981 (T+ vs. AA carriers) polymorphisms resulting in four genotype groups (S+/T+, S+/AA, LL/T+, LL/AA) of 20 participants each. All participants underwent contextual fear conditioning and extinction using a virtual reality (VR) paradigm. During acquisition, one virtual office room (anxiety context, CXT+) was paired with an unpredictable electric stimulus (unconditioned stimulus, US), whereas another virtual office room was not paired with any US (safety context, CXT−). During extinction no US was administered. Anxiety responses were quantified by fear-potentiated startle and ratings. Most importantly, we found a gene × gene interaction on fear-potentiated startle. Only carriers of both risk alleles (S+/T+) exhibited higher startle responses in CXT+ compared to CXT−. In contrast, anxiety ratings were only influenced by the NPSR1 polymorphism with AA carriers showing higher anxiety ratings in CXT+ as compared to CXT−. Our results speak in favor of a two level account of fear conditioning with diverging effects on implicit vs. explicit fear responses. Enhanced contextual fear conditioning as reflected in potentiated startle responses may be an endophenotype for anxiety disorders.
Collapse
Affiliation(s)
- Evelyn Glotzbach-Schoon
- Department of Psychology I, Biological Psychology, Clinical Psychology, and Psychotherapy, University of Würzburg Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Interaction between retinoid acid receptor-related orphan receptor alpha (RORA) and neuropeptide S receptor 1 (NPSR1) in asthma. PLoS One 2013; 8:e60111. [PMID: 23565190 PMCID: PMC3615072 DOI: 10.1371/journal.pone.0060111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/21/2013] [Indexed: 12/31/2022] Open
Abstract
Retinoid acid receptor-related Orphan Receptor Alpha (RORA) was recently identified as a susceptibility gene for asthma in a genome-wide association study. To investigate the impact of RORA on asthma susceptibility, we performed a genetic association study between RORA single nucleotide polymorphisms (SNPs) in the vicinity of the asthma-associated SNP (rs11071559) and asthma-related traits. Because the regulatory region of a previously implicated asthma susceptibility gene, Neuropeptide S receptor 1 (NPSR1), has predicted elements for RORA binding, we hypothesized that RORA may interact biologically and genetically with NPSR1. 37 RORA SNPs and eight NPSR1 SNPs were genotyped in the Swedish birth cohort BAMSE (2033 children) and the European cross-sectional PARSIFAL study (1120 children). Seven RORA SNPs confined into a 49 kb region were significantly associated with physician-diagnosed childhood asthma. The most significant association with rs7164773 (T/C) was driven by the CC genotype in asthma cases (OR = 2.0, 95%CI 1.36-2.93, p = 0.0003 in BAMSE; and 1.61, 1.18-2.19, p = 0.002 in the combined BAMSE-PARSIFAL datasets, respectively), and strikingly, the risk effect was dependent on the Gln344Arg mutation in NPSR1. In cell models, stimulation of NPSR1 activated a pathway including RORA and other circadian clock genes. Over-expression of RORA decreased NPSR1 promoter activity further suggesting a regulatory loop between these genes. In addition, Rora mRNA expression was lower in the lung tissue of Npsr1 deficient mice compared to wildtype littermates during the early hours of the light period. We conclude that RORA SNPs are associated with childhood asthma and show epistasis with NPSR1, and the interaction between RORA and NPSR1 may be of biological relevance. Combinations of common susceptibility alleles and less common functional polymorphisms may modify the joint risk effects on asthma susceptibility.
Collapse
|
30
|
The role of the neuropeptide S system in addiction: focus on its interaction with the CRF and hypocretin/orexin neurotransmission. Prog Neurobiol 2012; 100:48-59. [PMID: 23041581 DOI: 10.1016/j.pneurobio.2012.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/19/2012] [Accepted: 09/26/2012] [Indexed: 11/20/2022]
Abstract
Recent behavioral, pharmacological and molecular findings have linked the NPS system to drug dependence. Most of the evidence supports the possibility that increased NPS activity may contribute to shaping vulnerability to addiction, especially relapse. However, data suggesting that the anxiolytic-like properties of NPS may have protective effects on addiction have been also published. In addition, evidence from conditioned place preference experiments, though not unequivocal, suggests that NPS per se is devoid of motivational properties. Intriguingly, several effects of NPS on drugs of abuse appear to be mediated by downstream activation of brain corticotrophin releasing factor (CRF) and hypocretin-1/orexin-A (Hcrt-1/Ox-A) systems. The major objective of the present article is to review the existing work on NPS and addiction. Particular attention is devoted to the interpretation of findings revealing complex neuroanatomical and functional interactions between NPS, CRF, and the Hcrt-1/Ox-A systems. Original data aimed at shedding light on the role of NPS in reward processing are also shown. Finally, existing findings are discussed within the framework of addiction theories, and the potential of the NPS system as a treatment target for addiction is analyzed.
Collapse
|
31
|
The functional coding variant Asn107Ile of the neuropeptide S receptor gene (NPSR1) is associated with schizophrenia and modulates verbal memory and the acoustic startle response. Int J Neuropsychopharmacol 2012; 15:1205-15. [PMID: 22078257 DOI: 10.1017/s1461145711001623] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recently, the neuropeptide S (NPS) neurotransmitter system has been identified as a promising psychopharmacological drug target given that NPS has shown anxiolytic-like and stress-reducing properties and memory-enhancing effects in rodent models. NPS binds to the G-protein-coupled receptor encoded by the neuropeptide S receptor gene (NPSR1). A functional variant within this gene leads to an amino-acid exchange (rs324981, Asn107Ile) resulting in a gain-of-function in the Ile107 variant which was recently associated with panic disorder in two independent studies. A potential psychopharmacological effect of NPS on schizophrenia psychopathology was demonstrated by showing that NPS can block NMDA antagonist-induced deficits in prepulse inhibition. We therefore explored a potential role of the NPSR1 Asn107Ile variation in schizophrenia. A case-control sample of 778 schizophrenia patients and 713 healthy control subjects was successfully genotyped for NPSR1 Asn107Ile. Verbal declarative memory and acoustic startle response were measured in subsamples of the schizophrenia patients. The case-control comparison revealed that the low-functioning NPSR1 Asn107 variant was significantly associated with schizophrenia (OR 1.19, p=0.017). Moreover, specifically decreased verbal memory consolidation was found in homozygous Asn107 carriers while memory acquisition was unaffected by NPSR1 genotype. The schizophrenia patients carrying the Ile107 variant demonstrated significantly reduced startle amplitudes but unaffected prepulse inhibition and habituation. The present study confirms findings from rodent models demonstrating an effect of NPS on memory consolidation and startle response in schizophrenia patients. Based on these findings, we consider NPS as a promising target for antipsychotic drug development.
Collapse
|
32
|
Npas4: a neuronal transcription factor with a key role in social and cognitive functions relevant to developmental disorders. PLoS One 2012; 7:e46604. [PMID: 23029555 PMCID: PMC3460929 DOI: 10.1371/journal.pone.0046604] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/01/2012] [Indexed: 11/19/2022] Open
Abstract
Npas4 is a transcription factor, which is highly expressed in the brain and regulates the formation and maintenance of inhibitory synapses in response to excitatory synaptic activity. A deregulation of the inhibitory-excitatory balance has been associated with a variety of human developmental disorders such as schizophrenia and autism. However, not much is known about the role played by inhibitory synapses and inhibitory pathways in the development of nervous system disorders. We hypothesized that alterations in the inhibitory pathways induced by the absence of Npas4 play a major role in the expression of the symptoms observed in psychiatric disorders. To test this hypothesis we tested mice lacking the transcription factor (Npas4 knock-out mice (Npas4-KO)) in a battery of behavioral assays focusing on general activity, social behaviors, and cognitive functions. Npas4-KO mice are hyperactive in a novel environment, spend less time exploring an unfamiliar ovariectomized female, spend more time avoiding an unfamiliar male during a first encounter, show higher social dominance than their WT littermates, and display pre-pulse inhibition, working memory, long-term memory, and cognitive flexibility deficits. These behavioral deficits may replicate schizophrenia-related symptomatology such as social anxiety, hyperactivity, and cognitive and sensorimotor gating deficits. Immunohistochemistry analyses revealed that Npas4 expression is induced in the hippocampus after a social encounter and that Npas4 regulates the expression of c-Fos in the CA1 and CA3 regions of the hippocampus after a cognitive task. Our results suggest that Npas4 may play a major role in the regulation of cognitive and social functions in the brain with possible implications for developmental disorders such as schizophrenia and autism.
Collapse
|
33
|
Pulga A, Ruzza C, Rizzi A, Guerrini R, Calo G. Anxiolytic- and panicolytic-like effects of Neuropeptide S in the mouse elevated T-maze. Eur J Neurosci 2012; 36:3531-7. [PMID: 22928868 DOI: 10.1111/j.1460-9568.2012.08265.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). Recently, epidemiological studies revealed an association between NPSR single nucleotide polymorphisms and susceptibility to panic disorders. Here we investigated the effects of NPS in mice subjected to the elevated T maze (ETM), an assay which has been proposed to model anxiety and panic. Diazepam [1 mg/kg, intraperitoneally (i.p.)] elicited clear anxiolytic effects reducing the latency to emerge from the closed to the open (CO) arm without modifying the latencies from the open to the closed (OC) arm. By contrast, chronic fluoxetine (10 mg/kg i.p., once a day for 21 days) selectively increased OC latency, suggesting a panicolytic-like effect. NPS given intracerebroventricularly at 0.001-1 nmol elicited both anxiolytic- and panicolytic-like effects. However, although the NPS anxiolytic dose-response curve displayed the classical sigmoidal shape, the dose-response curve of the putative panicolytic-like effect was bell shaped with peak effect at 0.01 nmol. The behaviour of wild-type [NPSR(+/+)] and receptor knock out [NPSR(-/-)] mice in the ETM task was superimposable. NPS at 0.01 nmol elicited anxiolytic- and panicolytic-like effects in NPSR(+/+) but not in NPSR(-/-) mice. In conclusion, this study demonstrated that NPS, via selective activation of the NPSR, promotes both anxiolytic- and panicolytic-like actions in the mouse ETM.
Collapse
Affiliation(s)
- Alice Pulga
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center and National Institute of Neuroscience, Ferrara, Italy
| | | | | | | | | |
Collapse
|
34
|
Domschke K, Klauke B, Winter B, Gajewska A, Herrmann MJ, Warrings B, Mühlberger A, Wosnitza K, Dlugos A, Naunin S, Nienhaus K, Fobker M, Jacob C, Arolt V, Pauli P, Reif A, Zwanzger P, Deckert J. Modification of caffeine effects on the affect-modulated startle by neuropeptide S receptor gene variation. Psychopharmacology (Berl) 2012; 222:533-41. [PMID: 22399050 DOI: 10.1007/s00213-012-2678-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/22/2012] [Indexed: 01/12/2023]
Abstract
RATIONALE/OBJECTIVES Both the neuropeptide S (NPS) system and antagonism at the adenosine A2A receptor (e.g., by caffeine) were found to play a crucial role in the mediation of arousal and anxiety/panic in animal and human studies. Furthermore, a complex interaction of the neuropeptide S and the adenosinergic system has been suggested with administration of the adenosine A2A receptor antagonist caffeine downregulating NPS levels (Lage et al., 2006) and attenuating the stimulatory effects of NPS in rodents (Boeck et al., 2010). METHODS Thus, in the present study, the impact of the functional neuropeptide S receptor (NPSR) A/T (Asn(107)Ile; rs324981) variant on affect-modulated (neutral, unpleasant, and pleasant IAPS pictures) startle response depending on the administration of 300 mg caffeine citrate was investigated in a sample of 124 (m = 58, f = 66) healthy probands using a double-blind, placebo-controlled design. RESULTS ANOVA revealed a significant interaction between NPSR genotype, challenge condition, and picture valence. Comparing startle magnitudes upon stimulation with neutral or emotional pictures between the placebo and caffeine condition, in AA/AT non-risk genotype carriers no significant difference was discerned, while TT risk genotype carriers showed a significantly increased startle magnitude in response to neutral stimuli (p = .02) and a significantly decreased startle magnitude in response to unpleasant stimuli (p = .02) in the caffeine condition as compared to the placebo condition. CONCLUSIONS In summary, the present findings - extending previous evidence from rodent studies - for the first time provide support for a complex, non-linear interaction of the neuropeptide S and adenosinergic systems affecting the affect-modulated startle response as an intermediate phenotype of anxiety in humans.
Collapse
Affiliation(s)
- Katharina Domschke
- Department of Psychiatry and Psychotherapy, University of Muenster, Albert-Schweitzer-Campus 1, Gebaeude A9, 48149 Muenster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ruzza C, Rizzi A, Camarda V, Pulga A, Marzola G, Filaferro M, Novi C, Ruggieri V, Marzola E, Vitale G, Salvadori S, Guerrini R, Calo' G. [tBu-D-Gly5]NPS, a pure and potent antagonist of the neuropeptide S receptor: in vitro and in vivo studies. Peptides 2012; 34:404-11. [PMID: 22342393 DOI: 10.1016/j.peptides.2012.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 01/31/2023]
Abstract
Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). Recently, the NPSR ligand [(t)Bu-D-Gly(5)]NPS was generated and in vitro characterized as a pure antagonist at the mouse NPSR. In the present study the pharmacological profile of [(t)Bu-D-Gly(5)]NPS has been investigated. [(t)Bu-D-Gly(5)]NPS activity was evaluated in vitro in the calcium mobilization assay at the rat NPSR and in vivo in the locomotor activity and righting reflex tests in mice and in the elevated plus maze and defensive burying assays in rats. In vitro, [(t)Bu-D-Gly(5)]NPS was inactive per se while it inhibited the calcium mobilization induced by 30 nM NPS (pK(B) 7.42). In Schild analysis experiments [(t)Bu-D-Gly(5)]NPS (0.1-10 μM) produced a concentration-dependent rightward shift of the concentration-response curve to NPS, showing a pA(2) value of 7.17. In mouse locomotor activity experiments, supraspinal injection of [(t)Bu-D-Gly(5)]NPS (1-10 nmol) dose dependently counteracted NPS (0.1 nmol) stimulant effects. In the mouse righting reflex assay [(t)Bu-D-Gly(5)]NPS (0.1-10 nmol) fully prevented the arousal-promoting action of the natural peptide (0.1 nmol). Finally, [(t)Bu-D-Gly(5)]NPS (3-30 nmol) was able to completely block NPS (1 nmol) anxiolytic-like actions in rat elevated plus maze and defensive burying assays. Collectively, the present results demonstrated that [(t)Bu-D-Gly(5)]NPS behaves both in vitro and in vivo as a pure and potent NPSR antagonist. This compound represents a novel and useful tool for investigating the pharmacology and neurobiology of the NPS/NPSR system.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Dose-Response Relationship, Drug
- HEK293 Cells
- Humans
- Infusions, Intraventricular
- Injections, Spinal
- Kinetics
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Mice
- Motor Activity/drug effects
- Motor Activity/physiology
- Neuropeptides/pharmacology
- Rats
- Rats, Wistar
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/metabolism
- Reflex, Righting/drug effects
- Reflex, Righting/physiology
- Transfection
Collapse
Affiliation(s)
- C Ruzza
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 19, 44121 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Behavioural phenotypic characterization of CD-1 mice lacking the neuropeptide S receptor. Neuropharmacology 2012; 62:1999-2009. [PMID: 22248636 DOI: 10.1016/j.neuropharm.2011.12.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/28/2011] [Accepted: 12/30/2011] [Indexed: 11/23/2022]
Abstract
Neuropeptide S (NPS) is the endogenous ligand of a previously orphan receptor now named NPSR. In the brain NPS regulates several biological functions including anxiety, arousal, locomotion, food intake, learning and memory, pain and drug abuse. Mice lacking the NPSR gene (NPSR(-/-)) represent an useful tool to investigate the neurobiology of the NPS/NPSR system. NPSR(-/-) mice have been generated in a 129S6/SvEv genetic background. In the present study we generated CD-1 congenic NPSR(+/+) and NPSR(-/-) mice and investigated their phenotype and sensitivity to NPS in various behavioural assays. The phenotype analysis revealed no locomotor differences between NPSR(+/+) and NPSR(-/-) mice. The behaviour of NPSR(+/+) and NPSR(-/-) mice in the righting reflex test was superimposable. No differences were recorded between the two genotypes in the elevated plus maze, open field and stress-induced hyperthermia tests, with the exception of rearing behaviour that was reduced in knockout animals. Moreover the behaviour of NPSR(+/+) and NPSR(-/-) mice in the forced swimming, novel object recognition and formalin assays was similar. The stimulatory effects of NPS in the locomotor activity test and its anxiolytic-like actions in the elevated plus maze and open field assays were evident in NPSR(+/+) but not NPSR(-/-) animals. In conclusion, the present study indicates that the NPS/NPSR system does not tonically control locomotion, sensitivity to diazepam, anxiety, depressive-like behaviours, memory and pain transmission in mice. Furthermore our results clearly show that the product of the NPSR gene represents the mandatory protein for all the NPS biological effects so far described.
Collapse
|
37
|
Powell SB, Weber M, Geyer MA. Genetic models of sensorimotor gating: relevance to neuropsychiatric disorders. Curr Top Behav Neurosci 2012; 12:251-318. [PMID: 22367921 PMCID: PMC3357439 DOI: 10.1007/7854_2011_195] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sensorimotor gating, or the ability of a sensory event to suppress a motor response, can be measured operationally via prepulse inhibition (PPI) of the startle response. PPI is deficient in schizophrenia patients as well as other neuropsychiatric disorders, can be measured across species, and has been used widely as a translational tool in preclinical neuropharmacological and genetic research. First developed to assess drug effects in pharmacological and developmental models, PPI has become one of the standard behavioral measures in genetic models of schizophrenia and other neuropsychiatric disorders that exhibit PPI deficits. In this chapter we review the literature on genetic models of sensorimotor gating and discuss the utility of PPI as a tool in phenotyping mutant mouse models. We highlight the approaches to genetic mouse models of neuropsychiatric disease, discuss some of the important caveats to these approaches, and provide a comprehensive table covering the more recent genetic models that have evaluated PPI.
Collapse
Affiliation(s)
- Susan B. Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Martin Weber
- Department of Neuroscience, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
38
|
Dal Ben D, Antonini I, Buccioni M, Lambertucci C, Marucci G, Thomas A, Volpini R, Cristalli G. Neuropeptide S receptor: recent updates on nonpeptide antagonist discovery. ChemMedChem 2011; 6:1163-71. [PMID: 21452188 DOI: 10.1002/cmdc.201100038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/24/2011] [Indexed: 11/09/2022]
Abstract
Neuropeptide S (NPS) is a 20-amino acid peptide of great interest due to its possible involvement in several biological processes, including food intake, locomotion, wakefulness, arousal, and anxiety. Structure-activity relationship studies of NPS have identified key points for structural modifications with the goal of modulating NPS receptor (NPSR) agonist activity or achieving antagonism at the same receptor. Only limited information is available for nonpeptide NPSR antagonists. In the last year, several studies have been reported in literature which present various series of small molecules as antagonists of this receptor. The results allow a comparison of the structures and activities of these molecules, leading to the design of new ligands with increased potency and improved pharmacological and pharmacokinetic profiles. This work presents a brief overview of the available information regarding structural features and pharmacological characterization of published nonpeptide NPSR antagonists.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino via S. Agostino 1, 62032 Camerino, MC, Italy.
| | | | | | | | | | | | | | | |
Collapse
|