1
|
Brudzynski SM, Burgdorf JS, Moskal JR. From emotional arousal to executive action. Role of the prefrontal cortex. Brain Struct Funct 2024:10.1007/s00429-024-02837-w. [PMID: 39096390 DOI: 10.1007/s00429-024-02837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
Emotional arousal is caused by the activity of two parallel ascending systems targeting mostly the subcortical limbic regions and the prefrontal cortex. The aversive, negative arousal system is initiated by the activity of the mesolimbic cholinergic system and the hedonic, appetitive, arousal is initiated by the activity of the mesolimbic dopaminergic system. Both ascending projections have a diffused nature and arise from the rostral, tegmental part of the brain reticular activating system. The mesolimbic cholinergic system originates in the laterodorsal tegmental nucleus and the mesolimbic dopaminergic system in the ventral tegmental area. Cholinergic and dopaminergic arousal systems have converging input to the medial prefrontal cortex. The arousal system can modulate cortical EEG with alpha rhythms, which enhance synaptic strength as shown by an increase in long-term potentiation (LTP), whereas delta frequencies are associated with decreased arousal and a decrease in synaptic strength as shown by an increase in long-term depotentiation (LTD). It is postulated that the medial prefrontal cortex is an adaptable node with decision making capability and may control the switch between positive and negative affect and is responsible for modifying or changing emotional state and its expression.
Collapse
Affiliation(s)
| | - Jeffrey S Burgdorf
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Joseph R Moskal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
2
|
Appetitive 50 kHz calls in a pavlovian conditioned approach task in Cacna1c haploinsufficient rats. Physiol Behav 2022; 250:113795. [PMID: 35351494 DOI: 10.1016/j.physbeh.2022.113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022]
Abstract
We have previously shown that rats emit high-frequency 50 kHz ultrasonic vocalizations (USV) during sign- and goal-tracking in a common Pavlovian conditioned approach task. Such 50 kHz calls are probably related to positive affect and are associated with meso-limbic dopamine function. In humans, the CACNA1C gene, encoding for the α1C subunit of the L-type voltage-gated calcium channel CaV1.2, is implicated in several mental disorders, including mood disorders associated with altered dopamine signaling. In the present study, we investigated sign- and goal-tracking behavior and the emission of 50 kHz USV in Cacna1c haploinsufficent rats in a task where food pellet delivery is signaled by an appearance of an otherwise inoperable lever. Over the course of this Pavlovian training, these rats not only increased their approach to the reward site, but also their rates of pressing the inoperable lever. During subsequent extinction tests, where reward delivery was omitted, extinction patterns differed between reward site (i.e. magazine entries) and lever, since magazine entries quickly declined whereas behavior towards the lever transiently increased. Based on established criteria to define sign- or goal-tracking individuals, no CACNA1C rat met a sign-tracking criterion, since around 42% of rats tested where goal-trackers and the other 58% fell into an intermediate range. Regarding USV, we found that the CACNA1C rats emitted 50 kHz calls with a clear subject-dependent pattern; also, most of them were of a flat subtype and occurred mainly during initial habituation phases without cues or rewards. Compared, to previously published wildtype controls, Cacna1c haploinsufficent rats displayed reduced numbers of appetitive 50 kHz calls. Moreover, similar to wildtype littermate controls, 50 kHz call emission in Cacna1c haploinsufficent rats was intra-individually stable over training days and was negatively associated with goal-tracking. Together, these findings provide evidence in support of 50 kHz calls as trait marker. The finding that Cacna1c haploinsufficent rats show reductions of 50 kHz calls accompanied with more goal-tracking, is consistent with the assumption of altered dopamine signaling in these rats, a finding which supports their applicability in models of mental disorders.
Collapse
|
3
|
Acoustilytix™: A Web-Based Automated Ultrasonic Vocalization Scoring Platform. Brain Sci 2021; 11:brainsci11070864. [PMID: 34209754 PMCID: PMC8301917 DOI: 10.3390/brainsci11070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/04/2022] Open
Abstract
Ultrasonic vocalizations (USVs) are known to reflect emotional processing, brain neurochemistry, and brain function. Collecting and processing USV data is manual, time-intensive, and costly, creating a significant bottleneck by limiting researchers’ ability to employ fully effective and nuanced experimental designs and serving as a barrier to entry for other researchers. In this report, we provide a snapshot of the current development and testing of Acoustilytix™, a web-based automated USV scoring tool. Acoustilytix implements machine learning methodology in the USV detection and classification process and is recording-environment-agnostic. We summarize the user features identified as desirable by USV researchers and how these were implemented. These include the ability to easily upload USV files, output a list of detected USVs with associated parameters in csv format, and the ability to manually verify or modify an automatically detected call. With no user intervention or tuning, Acoustilytix achieves 93% sensitivity (a measure of how accurately Acoustilytix detects true calls) and 73% precision (a measure of how accurately Acoustilytix avoids false positives) in call detection across four unique recording environments and was superior to the popular DeepSqueak algorithm (sensitivity = 88%; precision = 41%). Future work will include integration and implementation of machine-learning-based call type classification prediction that will recommend a call type to the user for each detected call. Call classification accuracy is currently in the 71–79% accuracy range, which will continue to improve as more USV files are scored by expert scorers, providing more training data for the classification model. We also describe a recently developed feature of Acoustilytix that offers a fast and effective way to train hand-scorers using automated learning principles without the need for an expert hand-scorer to be present and is built upon a foundation of learning science. The key is that trainees are given practice classifying hundreds of calls with immediate corrective feedback based on an expert’s USV classification. We showed that this approach is highly effective with inter-rater reliability (i.e., kappa statistics) between trainees and the expert ranging from 0.30–0.75 (average = 0.55) after only 1000–2000 calls of training. We conclude with a brief discussion of future improvements to the Acoustilytix platform.
Collapse
|
4
|
Brudzynski SM. Biological Functions of Rat Ultrasonic Vocalizations, Arousal Mechanisms, and Call Initiation. Brain Sci 2021; 11:brainsci11050605. [PMID: 34065107 PMCID: PMC8150717 DOI: 10.3390/brainsci11050605] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
This review summarizes all reported and suspected functions of ultrasonic vocalizations in infant and adult rats. The review leads to the conclusion that all types of ultrasonic vocalizations subserving all functions are vocal expressions of emotional arousal initiated by the activity of the reticular core of the brainstem. The emotional arousal is dichotomic in nature and is initiated by two opposite-in-function ascending reticular systems that are separate from the cognitive reticular activating system. The mesolimbic cholinergic system initiates the aversive state of anxiety with concomitant emission of 22 kHz calls, while the mesolimbic dopaminergic system initiates the appetitive state of hedonia with concomitant emission of 50 kHz vocalizations. These two mutually exclusive arousal systems prepare the animal for two different behavioral outcomes. The transition from broadband infant isolation calls to the well-structured adult types of vocalizations is explained, and the social importance of adult rat vocal communication is emphasized. The association of 22 kHz and 50 kHz vocalizations with aversive and appetitive states, respectively, was utilized in numerous quantitatively measured preclinical models of physiological, psychological, neurological, neuropsychiatric, and neurodevelopmental investigations. The present review should help in understanding and the interpretation of these models in biomedical research.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
5
|
Wöhr M. Measuring mania-like elevated mood through amphetamine-induced 50-kHz ultrasonic vocalizations in rats. Br J Pharmacol 2021; 179:4201-4219. [PMID: 33830495 DOI: 10.1111/bph.15487] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Rats emit 50-kHz ultrasonic vocalizations (USV) in appetitive situations, reflecting a positive affective state. Particularly high rates of 50-kHz USV are elicited by the psychostimulant d-amphetamine. Exaggerated 50-kHz USV emission evoked by d-amphetamine is modulated by dopamine, noradrenaline and 5-hydroxytyrptamine receptor ligands and inhibited by the mood stabilizer lithium, the gold standard anti-manic drug for treating bipolar disorder. This indicates that exaggerated 50-kHz USV emission can serve as a reliable and valid measure for assessing mania-like elevated mood in rats with sufficient translational power for gaining a better understanding of relevant pathophysiological mechanisms and the identification of new therapeutic targets. The improved capacity to study the effects of anti-manic pharmacological interventions on a broader range of behaviours by including exaggerated 50-kHz USV emission as preclinical outcome measure complementary to locomotor hyperactivity will refine rodent models for mania.
Collapse
Affiliation(s)
- Markus Wöhr
- Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
6
|
Extracellular Dopamine Levels in Nucleus Accumbens after Chronic Stress in Rats with Persistently High vs. Low 50-kHz Ultrasonic Vocalization Response. Brain Sci 2021; 11:brainsci11040470. [PMID: 33917789 PMCID: PMC8068186 DOI: 10.3390/brainsci11040470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Fifty-kHz ultrasonic vocalizations (USVs) in response to an imitation of rough-and-tumble play ('tickling') have been associated with positive affective states and rewarding experience in the rat. This USV response can be used as a measure of inter-individual differences in positive affect. We have previously shown that rats with persistently low positive affectivity are more vulnerable to the effects of chronic variable stress (CVS). To examine whether these differential responses are associated with dopaminergic neurotransmission in the nucleus accumbens (NAc), juvenile male Wistar rats were categorized as of high or low positive affectivity (HC and LC, respectively), and after reaching adulthood, extracellular dopamine (DA) levels in the NAc shell were measured using in vivo microdialysis after three weeks of CVS. Baseline levels of DA were compared as well as the response to K+-induced depolarization and the effect of glial glutamate transporter EAAT2 inhibition by 4 mM l-trans-pyrrolidine-2,4-dicarboxylate (PDC). DA baseline levels were higher in control LC-rats, and stress significantly lowered the DA content in LC-rats. An interaction of stress and affectivity appeared in response to depolarization where stress increased the DA output in HC-rats whereas it decreased it in LC-rats. These results show that NAc-shell DA is differentially regulated in response to stress in animals with high and low positive affect.
Collapse
|
7
|
Burgdorf JS, Brudzynski SM, Moskal JR. Using rat ultrasonic vocalization to study the neurobiology of emotion: from basic science to the development of novel therapeutics for affective disorders. Curr Opin Neurobiol 2020; 60:192-200. [DOI: 10.1016/j.conb.2019.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
|
8
|
Kisko TM, Braun MD, Michels S, Witt SH, Rietschel M, Culmsee C, Schwarting RKW, Wöhr M. Sex‐dependent effects of
Cacna1c
haploinsufficiency on juvenile social play behavior and pro‐social 50‐kHz ultrasonic communication in rats. GENES BRAIN AND BEHAVIOR 2019; 19:e12552. [DOI: 10.1111/gbb.12552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Theresa M. Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Moria D. Braun
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Susanne Michels
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| |
Collapse
|
9
|
Mulvihill KG, Brudzynski SM. Individual behavioural predictors of amphetamine-induced emission of 50 kHz vocalization in rats. Behav Brain Res 2018; 350:80-86. [PMID: 29758247 DOI: 10.1016/j.bbr.2018.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/21/2023]
Abstract
Measurement of ultrasonic vocalizations (USVs) produced by adult rats represents a highly useful index of emotional arousal. The associations found between 50 kHz USV production and a variety of behavioural and pharmacological protocols increasingly suggests they serve as a marker of positive motivational states. This study used a powerful within-subjects design to investigate the relationships among individual differences in approach to a sweet-food reward, predisposition to emit 50 kHz USVs spontaneously, and 50 kHz USVs emission following acute systemic administration of amphetamine. Both approach motivation and predisposition to call were found to not correlate with each other but did predict 50 kHz USV response to acute amphetamine. These two behavioural phenotypes appear to represent dissociable predictors of acute amphetamine-induced emission of 50 kHz USVs in a non-sensitization paradigm. In contrast to that, a measure of sucrose preference was not found to predict 50 kHz USV emission following amphetamine. Acute amphetamine was also found to increase average sound frequency of emitted USVs and selectively increase the proportion of Trill subtype 50 kHz USVs. Together, these data demonstrate that acute amphetamine-induced 50 kHz USVs in the adult rat represent more than just a univariate motivational state and may represent the product of dissociable subsystems of emotional behavior.
Collapse
Affiliation(s)
- Kevin G Mulvihill
- Department of Psychology, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
10
|
Hamed A, Kursa MB. Inter-individual differences in serotonin and glutamate co-transmission reflect differentiation in context-induced conditioned 50-kHz USVs response after morphine withdrawal. Brain Struct Funct 2018; 223:3149-3167. [PMID: 29774428 PMCID: PMC6132671 DOI: 10.1007/s00429-018-1683-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
A growing body of research provides compelling evidence that in rats 50-kHz USVs are a form of expression of positive emotions. Context-induced 50-kHz USVs emission is variable among rats, indicating individual differences in contextual response bound up with pharmacological reward. The aims of this study were to: extract the most important neurotransmitters related to context-induced conditioned 50-kHz USVs response; find biological basis of existing inter-individual differences in context-induced conditioned 50-kHz USVs response; create a model of all-to-all neurotransmitters correlations. The data collected here confirms that re-exposure to the context of morphine administration after the withdrawal period increases the level of 50-kHz USVs and this contextual response is associated with elevated serotonin concentrations in amygdala, hippocampus and mPFC and with increased Glu/Gln ratio in nucleus accumbens. The concentration of serotonin increases simultaneously in amygdala, nucleus accumbens and hippocampus. Moreover, 5-HT concentration in amygdala is bound up with glutamate level in this structure as well as in hippocampus. Furthermore, Glu/Gln ratio in nucleus accumbens has strong associations with Glu/Gln ratio simultaneously in VTA, amygdala, striatum and hippocampus. All-to-all-analysis indicate that concentration of glutamate in hippocampus is proportional to glutamate in VTA and GABA concentration in the hippocampus. We have also demonstrated that Glu/GABA ratio in VTA and amygdala was elevated after post withdrawal re-exposure to the pharmacological reward paired context. Presented analysis indicates a strong correlation between serotonergic and glutamatergic systems in context-induced conditioned response. The strength of this co-transmission correlates with the number of 50-kHz USVs emitted in response to morphine-paired context.
Collapse
Affiliation(s)
- Adam Hamed
- Laboratory of Spatial Memory, Department of Cellular and Molecular Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Miron Bartosz Kursa
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| |
Collapse
|
11
|
Grant LM, Barth KJ, Muslu C, Kelm-Nelson CA, Bakshi VP, Ciucci MR. Noradrenergic receptor modulation influences the acoustic parameters of pro-social rat ultrasonic vocalizations. Behav Neurosci 2018; 132:269-283. [PMID: 29985007 PMCID: PMC6062469 DOI: 10.1037/bne0000258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rats produce high rates of ultrasonic vocalizations (USVs) in social situations; these vocalizations are influenced by multiple neurotransmitter systems. Norepinephrine (NE) plays a significant role in vocalization biology; however, the contribution of NE to normal, prosocial vocal control has not been well established in the rat. To address this, we used NE adrenoceptor agonists (Cirazoline, Clonidine) and antagonists (Prozasin, Atipamezole, Propranolol) to quantify the contribution of specific alpha-1, alpha-2, and beta NE receptors to USV parameters in male Long Evans rats during seminaturalistic calling. We found that multiple USV acoustic variables (intensity, bandwidth, duration, peak frequency, and call profile) are modified by alterations in NE signaling. Very generally, agents that increased NE neurotransmission (Atipamezole) or activated alpha-1 receptors (Cirazoline), led to an increase in intensity and duration, respectively. Agents that decreased NE neurotransmission (Clonidine) or blocked alpha-1 receptors (Prazosin) reduced call rate, intensity, and bandwidth. However, the beta-receptor antagonist, Propranolol, was associated with increased call rate, duration, and intensity. Limb motor behaviors were largely unaffected by any drug, with the exception of Clonidine. Higher doses of Clonidine significantly reduced gross motor, grooming, and feeding behavior. These results confirm the involvement of NE transmission in vocal control in the rat, and suggest that this USV model is useful for studying the neuropharmacology of behavioral measures that may have implications for disease states, such as Parkinson's disease. (PsycINFO Database Record
Collapse
|
12
|
Mittal N, Thakore N, Reno JM, Bell RL, Maddox WT, Schallert T, Duvauchelle CL. Alcohol-naïve USVs distinguish male HAD-1 from LAD-1 rat strains. Alcohol 2018; 68:9-17. [PMID: 29427829 PMCID: PMC5851795 DOI: 10.1016/j.alcohol.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Ultrasonic vocalizations (USVs) are mediated through specific dopaminergic and cholinergic neural pathways and serve as real-time measures of positive and negative emotional status in rodents. Although most USV studies focus primarily on USV counts, each USV possesses a number of characteristics shown to reflect activity in the associated neurotransmitter system. In the present study, we recorded spontaneously emitted USVs from alcohol-naïve high alcohol drinking (HAD-1) and low alcohol drinking (LAD-1) rats. Using our recently developed WAAVES algorithm, we quantified four acoustic characteristics (mean frequency, duration, power, and bandwidth) from each 22-28 kHz and 50-55 kHz frequency-modulated (FM) USV. This rich USV representation allowed us to apply advanced statistical techniques to identify the USV acoustic characteristics that distinguished HAD-1 from LAD-1 rats. Linear mixed models (LMM) examined the predictability of each USV characteristic in isolation and linear discriminant analysis (LDA), and binomial logistic regression examined the predictability of linear combinations of the USV characteristics as a group. Results revealed significant differences in acoustic characteristics between HAD-1 and LAD-1 rats in both 22-28 kHz and 50-55 kHz FM USVs. In other words, these rats selectively bred for high- and low-alcohol consumption can be identified as HAD-1 or LAD-1 rats with high classification accuracy (approximately 92-100%) exclusively based on their emitted 22-28 kHz and 50-55 kHz FM USV acoustic characteristics. In addition, acoustic characteristics of 22-28 kHz and 50-55 kHz FM USVs emitted by alcohol-naïve HAD-1 and LAD-1 rats significantly correlate with their future alcohol consumption. Our current findings provide novel evidence that USV acoustic characteristics can be used to discriminate between alcohol-naïve HAD-1 and LAD-1 rats, and may serve as biomarkers in rodents with a predisposition for, or against, excessive alcohol intake.
Collapse
Affiliation(s)
- Nitish Mittal
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States
| | - Neha Thakore
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States
| | - James M Reno
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States; The University of Texas at Austin, Department of Psychology, Behavioral Neuroscience Division, 108 E. Dean Keeton, Stop A8000, Austin, TX 78712, United States
| | - Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - W Todd Maddox
- Cognitive Design and Statistical Consulting, Austin, TX 78746, United States
| | - Timothy Schallert
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States; The University of Texas at Austin, Department of Psychology, Behavioral Neuroscience Division, 108 E. Dean Keeton, Stop A8000, Austin, TX 78712, United States
| | - Christine L Duvauchelle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States.
| |
Collapse
|
13
|
Mapping trait-like socio-affective phenotypes in rats through 50-kHz ultrasonic vocalizations. Psychopharmacology (Berl) 2018; 235:83-98. [PMID: 28971233 DOI: 10.1007/s00213-017-4746-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
RATIONALE Fifty-kilohertz ultrasonic vocalizations (USV) in rats are believed to express inter-individual differences in trait-like positive affective phenotypes. Emission of 50-kHz USV can be induced by amphetamine (AMPH) to model mania-like positive affect, raising the possibility that predispositions for high 50-kHz USV production confer susceptibility to mania-like states. Such 50-kHz USV presumably express the sender's motivation for social contact and elicit social approach behavior in receivers. OBJECTIVES We recently showed that AMPH-induced 50-kHz USV are paralleled by mania-like patterns of enhanced social approach behavior towards playback of 50-kHz USV. Here, we assessed whether these AMPH effects are dependent on trait-like inter-individual differences in 50-kHz USV production. METHODS To this aim, we subdivided juvenile rats into those emitting low (LC) and high (HC) rates of baseline 50-kHz USV and compared them across four AMPH dosage conditions: 0.0, 0.5, 1.0, and 2.5 mg/kg. RESULTS HC rats were considerably more susceptible to AMPH in inducing 50-kHz USV than LC rats, consistently across all examined doses. They further appeared to attribute more incentive salience to signals of rewarding social contact, as evidenced by enhanced social approach behavior towards 50-kHz USV playback, a response pattern also seen in LC rats after receiving AMPH treatment. HC but not LC rats emitted aversive 22-kHz USV following 50-kHz USV playback, indicating increased proneness to experience negative affective states if no actual social consequence followed the incentive signal. CONCLUSION Inter-individual differences in 50-kHz USV map onto a unique trait-like socio-affective phenotype associated with enhanced emotional reactivity towards social and non-social reward, possibly conferring risk to mania-like states.
Collapse
|
14
|
Wöhr M, van Gaalen MM. Pharmacological Studies on the Role of Serotonin in Regulating Socioemotional Ultrasonic Vocalizations in Rats. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00028-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Ultrasonic communication in rats: appetitive 50-kHz ultrasonic vocalizations as social contact calls. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2427-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Mittal N, Thakore N, Bell RL, Maddox WT, Schallert T, Duvauchelle CL. Sex-specific ultrasonic vocalization patterns and alcohol consumption in high alcohol-drinking (HAD-1) rats. Physiol Behav 2017; 203:81-90. [PMID: 29146494 DOI: 10.1016/j.physbeh.2017.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/03/2017] [Accepted: 11/12/2017] [Indexed: 12/29/2022]
Abstract
Ultrasonic vocalizations (USVs) have been established as an animal model of emotional status and are often utilized in drug abuse studies as motivational and emotional indices. Further USV functionality has been demonstrated in our recent work showing accurate identification of selectively-bred high versus low alcohol-consuming male rats ascertained exclusively from 22 to 28kHz and 50-55kHz FM USV acoustic parameters. With the hypothesis that alcohol-sensitive sex differences could be revealed through USV acoustic parameters, the present study examined USVs and alcohol consumption in male and female selectively bred high-alcohol drinking (HAD-1) rats. For the current study, we examined USV data collected during a 12-week experiment in male and female HAD-1 rats. Experimental phases included Baseline (2weeks), 4-h EtOH Access (4weeks), 24-h EtOH Access (4weeks) and Abstinence (2weeks). Findings showed that both male and female HAD-1 rats spontaneously emitted a large number of 22-28kHz and 50-55kHz FM USVs and that females drank significantly more alcohol compared to males over the entire course of the experiment. Analyses of USV acoustic characteristics (i.e. mean frequency, duration, bandwidth and power) revealed distinct sex-specific phenotypes in both 50-55kHz FM and 22-28kHz USV transmission that were modulated by ethanol exposure. Moreover, by using a linear combination of these acoustic characteristics, we were able to develop binomial logistic regression models able to discriminate between male and female HAD-1 rats with high accuracy. Together these results highlight unique emotional phenotypes in male and female HAD-1 rats that are differentially modulated by alcohol experience.
Collapse
Affiliation(s)
- N Mittal
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - N Thakore
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - R L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - W T Maddox
- Cognitive Design and Statistical Consulting, LLC, Austin, TX 78746, USA
| | - T Schallert
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA; The University of Texas at Austin, College of Liberal Arts, Behavioral Neuroscience, 108 E. Dean Keeton, Stop A8000, Austin, TX 78712, USA
| | - C L Duvauchelle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA.
| |
Collapse
|
17
|
Engelhardt KA, Schwarting RKW, Wöhr M. Mapping trait-like socio-affective phenotypes in rats through 50-kHz ultrasonic vocalizations. Psychopharmacology (Berl) 2017. [PMID: 28971233 DOI: 10.1007/s00213-017-4746-y)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Fifty-kilohertz ultrasonic vocalizations (USV) in rats are believed to express inter-individual differences in trait-like positive affective phenotypes. Emission of 50-kHz USV can be induced by amphetamine (AMPH) to model mania-like positive affect, raising the possibility that predispositions for high 50-kHz USV production confer susceptibility to mania-like states. Such 50-kHz USV presumably express the sender's motivation for social contact and elicit social approach behavior in receivers. OBJECTIVES We recently showed that AMPH-induced 50-kHz USV are paralleled by mania-like patterns of enhanced social approach behavior towards playback of 50-kHz USV. Here, we assessed whether these AMPH effects are dependent on trait-like inter-individual differences in 50-kHz USV production. METHODS To this aim, we subdivided juvenile rats into those emitting low (LC) and high (HC) rates of baseline 50-kHz USV and compared them across four AMPH dosage conditions: 0.0, 0.5, 1.0, and 2.5 mg/kg. RESULTS HC rats were considerably more susceptible to AMPH in inducing 50-kHz USV than LC rats, consistently across all examined doses. They further appeared to attribute more incentive salience to signals of rewarding social contact, as evidenced by enhanced social approach behavior towards 50-kHz USV playback, a response pattern also seen in LC rats after receiving AMPH treatment. HC but not LC rats emitted aversive 22-kHz USV following 50-kHz USV playback, indicating increased proneness to experience negative affective states if no actual social consequence followed the incentive signal. CONCLUSION Inter-individual differences in 50-kHz USV map onto a unique trait-like socio-affective phenotype associated with enhanced emotional reactivity towards social and non-social reward, possibly conferring risk to mania-like states.
Collapse
Affiliation(s)
- K -Alexander Engelhardt
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany.
| |
Collapse
|
18
|
Barker DJ, Johnson AM. Automated acoustic analysis of 50-kHz ultrasonic vocalizations using template matching and contour analysis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:EL281. [PMID: 28372124 PMCID: PMC5392077 DOI: 10.1121/1.4977990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 06/07/2023]
Abstract
Ultrasonic vocalizations are a useful tool for inferring affective states in the rat and have been incorporated in research paradigms modeling important human conditions. While the majority of studies report the quantity or rate of observed ultrasonic vocalizations, growing evidence suggests that critical data may be contained in the acoustic features of individual vocalizations. Thus, the goal of the present study was to develop and validate a method for measuring acoustic parameters of ultrasonic vocalizations that were collected using automatic template detection. Acoustic parameters derived using this method were found to be comparable to those collected using commercially available software.
Collapse
Affiliation(s)
- David J Barker
- National Institute on Drug Abuse Intramural Research Program, Neuronal Networks Section, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | - Aaron M Johnson
- Department of Otolaryngology-Head and Neck Surgery, New York University Voice Center, New York University School of Medicine, 345 East 37th Street, Suite 306, New York, New York 10016, USA
| |
Collapse
|
19
|
Engelhardt KA, Fuchs E, Schwarting RKW, Wöhr M. Effects of amphetamine on pro-social ultrasonic communication in juvenile rats: Implications for mania models. Eur Neuropsychopharmacol 2017; 27:261-273. [PMID: 28119084 DOI: 10.1016/j.euroneuro.2017.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/08/2016] [Accepted: 01/05/2017] [Indexed: 11/16/2022]
Abstract
Communication is the act of information transfer between sender and receiver. In rats, vocal communication can be studied through ultrasonic vocalizations (USV). 50-kHz USV occur in appetitive situations, most notably juvenile play, likely expressing the sender׳s positive affective state. Such appetitive 50-kHz USV serve important pro-social communicative functions and elicit social exploratory and approach behavior in the receiver. Emission of 50-kHz USV can be induced pharmacologically by the administration of psychostimulant drugs, such as amphetamine. However, it is unknown whether amphetamine affects the pro-social communicative function of 50-kHz USV in the receiver. We therefore assessed dose-response effects of amphetamine (0.0mg/kg, 0.5mg/kg, 1.0mg/kg, 2.5mg/kg, 5.0mg/kg) on pro-social ultrasonic communication on both, sender and receiver, in juvenile rats. We found an inverted U-shaped effect of amphetamine on 50-kHz USV emission, with 50-kHz USV levels being strongly enhanced by moderate doses, yet less prominent effects were seen following the highest dose. Likewise, amphetamine exerted inverted U-shaped effects on social exploratory and approach behavior induced by playback of appetitive 50-kHz USV. Social approach was enhanced by moderate amphetamine doses, but completely abolished following the highest dose. Amphetamine further dose-dependently promoted the emission of 50-kHz USV following playback of appetitive 50-kHz USV, indicating more vigorous attempts to establish social proximity. Our results support an important role of dopamine in closing a perception-and-action-loop through linking mechanisms relevant for detection and production of social vocalizations. Moreover, our approach possibly provides a new means to study mania-like aberrant social interaction and communication in animal models for bipolar disorder.
Collapse
Affiliation(s)
- K-Alexander Engelhardt
- Behavioral Neuroscience, Experimental and Biological Psychology Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Eberhard Fuchs
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany.
| |
Collapse
|
20
|
Rippberger H, van Gaalen MM, Schwarting RKW, Wohr M. Environmental and Pharmacological Modulation of Amphetamine- Induced 50-kHz Ultrasonic Vocalizations in Rats. Curr Neuropharmacol 2016; 13:220-32. [PMID: 26411764 PMCID: PMC4598433 DOI: 10.2174/1570159x1302150525124408] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rats emit high-frequency 50-kHz ultrasonic vocalizations (USV) in appetitive situations like social interactions. Drugs of abuse are probably the most potent non-social elicitors of 50-kHz USV, possibly reflecting their euphorigenic properties. Psychostimulants induce the strongest elevation in 50-kHz USV emission, particularly amphetamine (AMPH), either when applied systemically or locally into the nucleus accumbens (Nacc). Emission of AMPH-induced 50-kHz USV depends on test context, such as the presence of conspecifics, and can be manipulated pharmacologically by targeting major neurotransmitter systems, including dopamine (DA), noradrenaline (NA), and serotonin (5-HT), but also protein kinase C (PKC) signaling. Several D1 and D2 receptor antagonists, as well as typical and atypical antipsychotics block the AMPH-induced elevation in 50-kHz USV. Inhibiting D1 and D2 receptors in the Nacc abolishes AMPH-induced 50-kHz USV, indicating a key role for this brain area. NA neurotransmission also regulates AMPH-induced 50-kHz USV emission given that α1 receptor antagonists and α2 receptor agonists exert attenuating effects. Supporting the involvement of the 5-HT system, AMPH-induced 50-kHz USV are attenuated by 5-HT2C receptor activation, whereas 5-HT2C receptor antagonism leads to the opposite effect. Finally, treatment with lithium, tamoxifen, and myricitrin was all found to result in a complete abolishment of the AMPH-induced increase in 50-kHz USV, suggesting the involvement of PKC signaling. Neurotransmitter systems involved in AMPH-induced 50-kHz USV emission only partially overlap with other AMPH-induced behaviors like hyperlocomotion. The validity of AMPH-induced 50-kHz USV as a preclinical model for neuropsychiatric disorders is discussed, particularly with relevance to altered drive and mood seen in bipolar disorder.
Collapse
Affiliation(s)
| | | | | | - Markus Wohr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032 Marburg, Germany.
| |
Collapse
|
21
|
Barker DJ, Simmons SJ, West MO. Ultrasonic Vocalizations as a Measure of Affect in Preclinical Models of Drug Abuse: A Review of Current Findings. Curr Neuropharmacol 2016; 13:193-210. [PMID: 26411762 PMCID: PMC4598431 DOI: 10.2174/1570159x13999150318113642] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The present review describes ways in which ultrasonic vocalizations (USVs) have been used in studies of substance abuse. Accordingly, studies are reviewed which demonstrate roles for affective processing in response to the presentation of drug-related cues, experimenter- and self-administered drug, drug withdrawal, and during tests of relapse/reinstatement. The review focuses on data collected from studies using cocaine and amphetamine, where a large body of evidence has been collected. Data suggest that USVs capture animals’ initial positive reactions to psychostimulant administration and are capable of identifying individual differences in affective responding. Moreover, USVs have been used to demonstrate that positive affect becomes sensitized to psychostimulants over acute exposure before eventually exhibiting signs of tolerance. In the drug-dependent animal, a mixture of USVs suggesting positive and negative affect is observed, illustrating mixed responses to psychostimulants. This mixture is predominantly characterized by an initial bout of positive affect followed by an opponent negative emotional state, mirroring affective responses observed in human addicts. During drug withdrawal, USVs demonstrate the presence of negative affective withdrawal symptoms. Finally, it has been shown that drug-paired cues produce a learned, positive anticipatory response during training, and that presentation of drug-paired cues following abstinence produces both positive affect and reinstatement behavior. Thus, USVs are a useful tool for obtaining an objective measurement of affective states in animal models of substance abuse and can increase the information extracted from drug administration studies. USVs enable detection of subtle differences in a behavioral response that might otherwise be missed using traditional measures.
Collapse
Affiliation(s)
- David J Barker
- National Institute on Drug Abuse, Neuronal Networks Section, 251 Bayview Boulevard, Baltimore, MD 21224.
| | | | | |
Collapse
|
22
|
Garcia EJ, Cain ME. Novelty response and 50 kHz ultrasonic vocalizations: Differential prediction of locomotor and affective response to amphetamine in Sprague-Dawley rats. Psychopharmacology (Berl) 2016; 233:625-37. [PMID: 26564232 PMCID: PMC4729608 DOI: 10.1007/s00213-015-4132-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
RATIONALE Novelty and sensation seeking (NSS) predisposes humans and rats to experiment with psychostimulants. In animal models, different tests of NSS predict different phases of drug dependence. Ultrasonic vocalizations (USVs) are evoked by psychomotor stimulants and measure the affective/motivation response to stimuli, yet the role NSS has on USVs in response to amphetamine is not determined. OBJECTIVES The aim of the present study was to determine if individual differences in NSS and USVs can predict locomotor and USV response to amphetamine (0.0, 0.3, and 1.0 mg/kg) after acute and chronic exposure. METHODS Thirty male rats were tested for their response to novelty (IEN), choice to engage in novelty (NPP), and heterospecific play (H-USV). Rats were administered non-contingent amphetamine or saline for seven exposures, and USVs and locomotor activity were measured. After a 14-day rest, rats were administered a challenge dose of amphetamine. RESULTS Regression analyses indicated that amphetamine dose-dependently increased locomotor activity and the NPP test negatively predicted treatment-induced locomotor activity. The H-USV test predicted treatment-induced frequency-modulated (FM) USVs, but the strength of prediction depended on IEN response. CONCLUSIONS Results provide evidence that locomotor activity and FM USVs induced by amphetamine represent different behavioral responses. The prediction of amphetamine-induced FM USVs by the H-USV screen was changed by the novelty response, indicating that the affective value of amphetamine-measured by FM USVs-depends on novelty response. This provides evidence that higher novelty responders may develop a tolerance faster and may escalate intake faster.
Collapse
|
23
|
Individual differences in anticipatory activity to food rewards predict cue-induced appetitive 50-kHz calls in rats. Physiol Behav 2015; 149:107-18. [DOI: 10.1016/j.physbeh.2015.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 12/21/2022]
|
24
|
Williams SN, Undieh AS. Dopamine-sensitive signaling mediators modulate psychostimulant-induced ultrasonic vocalization behavior in rats. Behav Brain Res 2015; 296:1-6. [PMID: 26275925 DOI: 10.1016/j.bbr.2015.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 01/25/2023]
Abstract
The mesolimbic dopamine system plays a major role in psychostimulant-induced ultrasonic vocalization (USV) behavior in rodents. Within this system, psychostimulants elevate synaptic concentrations of dopamine thereby leading to exaggerated activation of postsynaptic dopamine receptors within the D1-like and D2-like subfamilies. Dopamine receptor stimulation activate several transmembrane signaling systems and cognate intracellular mediators; downstream activation of transcription factors then conveys the information from receptor activation to appropriate modulation of cellular and physiologic functions. We previously showed that cocaine-induced USV behavior was associated with enhanced expression of the neurotrophin BDNF. Like cocaine, amphetamine also increases synaptic dopamine levels, albeit primarily through facilitating dopamine release. Therefore, in the present study we investigated whether amphetamine and cocaine similarly activate dopamine-linked signaling cascades to regulate intracellular mediators leading to induction of USV behavior. The results show that amphetamine increased the emission of 50 kHz USVs and this effect was blocked by SCH23390, a D1 receptor antagonist. Similar to cocaine, amphetamine increased BDNF protein expression in discrete brain regions, while pretreatment with K252a, a trkB neurotrophin receptor inhibitor, significantly reduced amphetamine-induced USV behavior. Inhibition of cyclic-AMP/PKA signaling with H89 or inhibition of PLC signaling with U73122 significantly blocked both the acute and subchronic amphetamine-induced USV behavior. In contrast, pharmacologic inhibition of either pathway enhanced cocaine-induced USV behavior. Although cocaine and amphetamine similarly modulate neurotrophin expression and USV, the molecular mechanisms by which these psychostimulants differentially activate dopamine receptor subtypes or other monoaminergic systems may be responsible for the distinct aspects of behavioral responses.
Collapse
Affiliation(s)
- Stacey N Williams
- Department of Pharmaceutical Sciences, Notre Dame of Maryland University, School of Pharmacy, Baltimore, MD 21210, United States.
| | - Ashiwel S Undieh
- School of Medicine, City University of New York, City College, 160 Convent Avenue, New York, NY 10031, United States.
| |
Collapse
|
25
|
Lukas M, Wöhr M. Endogenous vasopressin, innate anxiety, and the emission of pro-social 50-kHz ultrasonic vocalizations during social play behavior in juvenile rats. Psychoneuroendocrinology 2015; 56:35-44. [PMID: 25800147 DOI: 10.1016/j.psyneuen.2015.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/28/2015] [Accepted: 03/03/2015] [Indexed: 12/17/2022]
Abstract
Although the involvement of the neuropeptide arginine vasopressin (AVP) in rodent social interaction is already extensively characterized, little is known about its role in social communication. Rats communicate in the ultrasonic range by means of ultrasonic vocalizations (USV). Depending on developmental stage and affective state, rats emit various distinct types of USV, with appetitive 50-kHz USV being induced by positive social interactions, like juvenile social play, probably serving an affiliative communicative function, namely to (re)establish or induce social proximity. In rats and mice selectively bred for low (LAB) and high (HAB) anxiety-related behavior, the emission of isolation-induced distress USV during maternal deprivation as pups correlates with innate high levels of hypothalamic AVP availability. Moreover, male LAB and HAB rats express deficits in social approach towards conspecifics, together with high and/or abnormal forms of aggression when confronted with harmless opponents, possibly due to a lack of social communication skills. The aim of this study was therefore (1) to investigate and characterize social play behavior and concomitant pro-social 50-kHz USV emission in male and female, juvenile LAB and HAB rats and to compare them to non-selected Wistar (NAB) rats; and (2) to link these findings pharmacologically to the central AVP system via applying an AVP 1a receptor (V1aR) antagonist (0.75 μg; Manning compound) or synthetic AVP (1 ng) into the lateral ventricle of male juvenile NAB rats. Our results show that reduced social play behavior in highly anxious male and female, juvenile HAB rats is accompanied by low amounts of pro-social 50-kHz USV, as compared to respective LAB and NAB rats, possibly reflecting a lack of positive affective states in expectation of or following social interactions in these individuals. Secondly, although synthetic AVP did not alter social play behavior and pro-social 50-kHz USV, we demonstrated for the first time that a blockade of the central AVP system not only reduces juvenile social play behavior, but at the same time pro-social 50-kHz USV emission rates, indicating an involvement of the social neuropeptide in regulating affiliative communication in rodents.
Collapse
Affiliation(s)
- Michael Lukas
- Behavioral and Molecular Neurobiology, Faculty of Biology, University of Regensburg, 93053 Regensburg, Germany.
| | - Markus Wöhr
- Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, 35032 Marburg, Germany.
| |
Collapse
|
26
|
Wöhr M, Rippberger H, Schwarting RKW, van Gaalen MM. Critical involvement of 5-HT2C receptor function in amphetamine-induced 50-kHz ultrasonic vocalizations in rats. Psychopharmacology (Berl) 2015; 232:1817-29. [PMID: 25417553 DOI: 10.1007/s00213-014-3814-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/10/2014] [Indexed: 11/27/2022]
Abstract
RATIONALE Rats emit various distinct types of ultrasonic vocalizations (USV), with high-frequency 50-kHz USV typically occurring in appetitive situations being elicited by administering drugs of abuse, most notably amphetamine (AMPH), possibly reflecting drug wanting/craving and/or liking. OBJECTIVES Because 50-kHz USV emission is, at least in part, dopamine (DA) dependent and 5-HT2C agonists inhibit DA neurotransmission, we hypothesized that AMPH-induced 50-kHz USV can be attenuated by pretreatment with a 5-HT2C agonist. METHODS In experiments I and II, a dose-response curve for AMPH-induced 50-kHz USV was established, and the partial dependency of AMPH-induced 50-kHz USV on DA neurotransmission was validated by pretreatment with the D2-antagonist eticlopride. In experiment III, rats were pretreated with the 5-HT2C agonist CP 809,101 (0.0, 0.3, 1.0, 3.0, and 10 mg/kg), while in experiment IV, CP 809,101 (3.0 mg/kg), the 5-HT2C antagonist SB 242084 (1.0 mg/kg), or the combination of the two, was applied before AMPH administration (2.0 mg/kg). Finally, in experiment V, rats were treated with SB 242084 (0.0, 0.1, 0.3, and 1.0 mg/kg) only, i.e., in absence of AMPH. RESULTS The 5-HT2C agonist CP 809,101 dose-dependently blocked AMPH-induced 50-kHz USV, most notably trills, a call subtype that is considered to exclusively reflect a positive affective state, while the 5-HT2C antagonist SB 242084 induced opposite effects. Moreover, SB 242084 induced 50-kHz USV by its own. CONCLUSIONS 5-HT2C receptors are critically involved in AMPH-induced 50-kHz USV, with 5-HT2C antagonism resulting in a stimulant-like effect. Attenuation of drug wanting/craving and/or liking by coadministration of a 5-HT2C agonist could be a translational pharmacodynamic biomarker.
Collapse
Affiliation(s)
- Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany,
| | | | | | | |
Collapse
|
27
|
Harmonic and frequency modulated ultrasonic vocalizations reveal differences in conditioned and unconditioned reward processing. Behav Brain Res 2015; 287:207-14. [PMID: 25827931 DOI: 10.1016/j.bbr.2015.03.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/11/2015] [Accepted: 03/22/2015] [Indexed: 11/21/2022]
Abstract
Novelty and sensation seeking (NSS) and ultrasonic vocalizations (USVs) are both used as measures of individual differences in reward sensitivity in rodent models. High responders in the inescapable novelty screen have a greater response to low doses of amphetamine and acquire self-administration more rapidly, while the novelty place preference screen is positively correlated with compulsive drug seeking. These screens are uncorrelated and implicated in separate drug abuse models. 50 kHz USVs measure affective state in rats and are evoked by positive stimuli. NSS and USVs are each implicated in drug response, self-administration, and reveal differences in individual behavior, yet their relationship with each other is not understood. The present study screened rats for their response to novelty and measured USVs of all call types in response to heterospecific play to determine the relationships between these individual difference traits. Generally, we hypothesized that 50k Hz USVs would be positively correlated with the NPP screen, and that 22 kHz would be positively correlated with the IEN screen. Results indicate none of the screens were correlated indicating they are measuring different individual difference traits. However, examination of the subtypes of USVs indicated harmonic USVs and the novelty place preference were positively correlated. Harmonic 50 kHz USVs increased in response to reward associated context, suggesting animals conditioned to the heterospecific tickle arena and anticipated rewarding stimuli, while FM only increased in response to tickling. USV subtypes can be used to elucidate differences in attribution of incentive value across conditioned stimuli and receipt of rewarding stimuli. These data provide strong support that harmonic and FM USVs can be used to understand reward processing in addition to NSS.
Collapse
|
28
|
Johnson AM, Grant LM, Schallert T, Ciucci MR. Changes in Rat 50-kHz Ultrasonic Vocalizations During Dopamine Denervation and Aging: Relevance to Neurodegeneration. Curr Neuropharmacol 2015; 13:211-9. [PMID: 26411763 PMCID: PMC4598432 DOI: 10.2174/1570159x1302150525122416] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 11/22/2022] Open
Abstract
Vocal communication is negatively affected by neurodegenerative diseases, such as Parkinson disease, and by aging. The neurological and sensorimotor mechanisms underlying voice deficits in Parkinson disease and aging are not well-understood. Rat ultrasonic vocalizations provide a unique behavioral model for studying communication deficits and the mechanisms underlying these deficits in these conditions. The purpose of this review was to examine the existing literature for methods using rat ultrasonic vocalization with regard to the primary disease pathology of Parkinson disease, dopamine denervation, and aging. Although only a small amount of papers were found for each of these topics, results suggest that both shared and unique acoustic deficits in ultrasonic vocalizations exist across conditions and that these acoustic deficits are due to changes in either dopamine signaling or denervation and in aging models changes to the nucleus ambiguus, at the level of the neuromuscular junction, and the composition of the vocal folds in the larynx. We conclude that ultrasonic vocalizations are a useful tool for studying biologic mechanisms underlying vocal communication deficits in neurodegenerative diseases and aging.
Collapse
|
29
|
Brudzynski SM. Pharmacology of Ultrasonic Vocalizations in adult Rats: Significance, Call Classification and Neural Substrate. Curr Neuropharmacol 2015; 13:180-92. [PMID: 26411761 PMCID: PMC4598430 DOI: 10.2174/1570159x13999150210141444] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022] Open
Abstract
Pharmacological studies of emotional arousal and initiation of emotional states in rats measured by their ultrasonic vocalizations are reviewed. It is postulated that emission of vocalizations is an inseparable feature of emotional states and it evolved from mother-infant interaction. Positive emotional states are associated with emission of 50 kHz vocalizations that could be induced by rewarding situations and dopaminergic activation of the nucleus accumbens and are mediated by D1, D2, and partially D3 dopamine receptors. Three biologically significant subtypes of 50 kHz vocalizations have been identified, all expressing positive emotional states: (1) flat calls without frequency modulation that serve as contact calls during social interactions; (2) frequencymodulated calls without trills that signal rewarding and significantly motivated situation; and (3) frequency-modulated calls with trills or trills themselves that are emitted in highly emotional situations associated with intensive affective state. Negative emotional states are associated with emission of 22 kHz vocalizations that could be induced by aversive situations, muscarinic cholinergic activation of limbic areas of medial diencephalon and forebrain, and are mediated by M2 muscarinic receptors. Two biologically significant subtypes of 22 kHz vocalizations have been identified, both expressing negative emotional sates: (1) long calls that serve as alarm calls and signal external danger; and (2) short calls that express a state of discomfort without external danger. The positive and negative states with emission of vocalizations are initiated by two ascending reticular activating subsystems: the mesolimbic dopaminergic subsystem as a specific positive arousal system, and the mesolimbic cholinergic subsystem as a specific negative arousal system.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, L2S 3A1 Canada.
| |
Collapse
|
30
|
High-anxiety rats are less sensitive to the rewarding affects of amphetamine on 50kHz USV. Behav Brain Res 2014; 275:234-42. [PMID: 25234225 DOI: 10.1016/j.bbr.2014.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 11/21/2022]
Abstract
This study assessed behaviour, as measured by 50kHz calls related to positive affect, in rats with different fear conditioned response strengths: low-anxiety rats (LR) and high-anxiety rats (HR), after amphetamine injection in a two-injection protocol (TIPS). The results showed that the first dose of amphetamine evoked similar behavioural effects in frequency-modulated (FM) 50kHz calls in the LR and HR groups. The second injection of amphetamine resulted in stronger FM 50kHz calls in LR compared with HR rats. The biochemical data ('ex vivo' analysis) showed that the LR rats had increased basal levels of dopamine in the amygdala, and increased homovanilic acid (HVA), dopamine's main metabolite, in the amygdala and prefrontal cortex compared with HR rats. The 'in vivo' analysis (microdialysis study) showed that the LR rats had increased HVA concentrations in the basolateral amygdala in response to an aversively conditioned context. Research has suggested that differences in dopaminergic system activity in the amygdala and prefrontal cortex may be one of the biological factors that underlie individual differences in response to fear stimuli, which may also affect the rewarding effects of amphetamine.
Collapse
|
31
|
Taracha E, Kaniuga E, Chrapusta SJ, Maciejak P, Śliwa L, Hamed A, Krząścik P. Diverging frequency-modulated 50-kHz vocalization, locomotor activity and conditioned place preference effects in rats given repeated amphetamine treatment. Neuropharmacology 2014; 83:128-36. [DOI: 10.1016/j.neuropharm.2014.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
|
32
|
Ahrens AM, Nobile CW, Page LE, Maier EY, Duvauchelle CL, Schallert T. Individual differences in the conditioned and unconditioned rat 50-kHz ultrasonic vocalizations elicited by repeated amphetamine exposure. Psychopharmacology (Berl) 2013; 229:687-700. [PMID: 23700082 PMCID: PMC3935796 DOI: 10.1007/s00213-013-3130-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 04/22/2013] [Indexed: 01/26/2023]
Abstract
RATIONALE Adult rats often produce 50-kHz ultrasonic vocalizations (USVs), particularly the frequency-modulated varieties, in appetitive situations. These calls are thought by some to reflect positive affective states and the reinforcing value of drugs such as amphetamine and cocaine. OBJECTIVE The objective of this study was to determine whether the number of unconditioned 50-kHz USVs elicited by amphetamine predicts the development and/or magnitude of drug-conditioned motivation. METHODS In three experiments, we recorded USVs before and after injections of 1 mg/kg amphetamine (i.v. or i.p.) administered once per session. Rats were categorized as "high callers" or "low callers" according to individual differences in the number of 50-kHz USVs elicited by their first amphetamine injection. We examined the conditioned appetitive behavior and conditioned place preference (CPP) that emerged in high and low callers after repeated pairings of amphetamine with specific contexts. We also examined whether amphetamine-induced calling was affected by treatment within an unfamiliar (test chamber) versus familiar (home cage) context. RESULTS Within an unfamiliar environment, the high callers consistently produced more amphetamine-induced 50-kHz USVs than the low callers. Compared to the low callers, high callers showed significantly greater amphetamine CPP as well as enhanced conditioned 50-kHz USVs and locomotor activity during anticipation of amphetamine. Individual differences were stable when amphetamine was administered in test chambers, but when it was administered in home cages, low callers showed an increase in 50-kHz calling that matched the high callers. CONCLUSIONS These findings suggest that individual differences in drug-induced USVs can reveal environment-sensitive traits involved in drug-related appetitive motivation.
Collapse
Affiliation(s)
- Allison M. Ahrens
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, University of Michigan at Ann Arbor, Ann Arbor, MI 48109, USA
| | - Cameron W. Nobile
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - Lindsay E. Page
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - Esther Y. Maier
- College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Timothy Schallert
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, University of Michigan at Ann Arbor, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Brudzynski SM. Ethotransmission: communication of emotional states through ultrasonic vocalization in rats. Curr Opin Neurobiol 2013; 23:310-7. [DOI: 10.1016/j.conb.2013.01.014] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/04/2013] [Accepted: 01/13/2013] [Indexed: 01/18/2023]
|
34
|
Rats selectively bred for low levels of play-induced 50 kHz vocalizations as a model for autism spectrum disorders: a role for NMDA receptors. Behav Brain Res 2013; 251:18-24. [PMID: 23623884 DOI: 10.1016/j.bbr.2013.04.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/11/2022]
Abstract
Early childhood autism is characterized by deficits in social approach and play behaviors, socio-emotional relatedness, and communication/speech abnormalities, as well as repetitive behaviors. These core neuropsychological features of autism can be modeled in laboratory rats, and the results may be useful for drug discovery and therapeutic development. We review data that show that rats selectively bred for low rates of play-related pro-social ultrasonic vocalizations (USVs) can be used to model social deficit symptoms of autism. Low-line animals engage in less social contact time with conspecifics, show lower rates of play induced pro-social USVs, and show an increased proportion of non-frequency modulated (i.e. monotonous) ultrasonic vocalizations compared to non-selectively bred random-line animals. Gene expression patterns in the low-line animals show significant enrichment in autism-associated genes, and the NMDA receptor family was identified as a significant hub. Treatment of low-line animals with the NMDAR functional glycine site partial agonist, GLYX-13, rescued the deficits in play-induced pro-social 50-kHz USVs and reduced monotonous USVs. Since the NMDA receptor has been implicated in the genesis of autistic symptoms, it is possible that GLYX-13 may be of therapeutic value in the treatment of autism.
Collapse
|
35
|
50-kHz calls in rats: Effects of MDMA and the 5-HT1A receptor agonist 8-OH-DPAT. Pharmacol Biochem Behav 2012; 101:258-64. [DOI: 10.1016/j.pbb.2012.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/10/2012] [Accepted: 01/14/2012] [Indexed: 11/18/2022]
|
36
|
Wright JS, Panksepp J. An Evolutionary Framework to Understand Foraging, Wanting, and Desire: The Neuropsychology of the SEEKING System. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/15294145.2012.10773683] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Quinpirole-induced 50kHz ultrasonic vocalization in the rat: Role of D2 and D3 dopamine receptors. Behav Brain Res 2012; 226:511-8. [DOI: 10.1016/j.bbr.2011.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 12/13/2022]
|
38
|
Brudzynski SM, Gibson B, Silkstone M, Burgdorf J, Kroes RA, Moskal JR, Panksepp J. Motor and locomotor responses to systemic amphetamine in three lines of selectively bred Long-Evans rats. Pharmacol Biochem Behav 2011; 100:119-24. [DOI: 10.1016/j.pbb.2011.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/26/2011] [Accepted: 08/10/2011] [Indexed: 01/22/2023]
|
39
|
Mapping patterns of depression-related brain regions with cytochrome oxidase histochemistry: Relevance of animal affective systems to human disorders, with a focus on resilience to adverse events. Neurosci Biobehav Rev 2011; 35:1876-89. [DOI: 10.1016/j.neubiorev.2011.02.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 12/28/2022]
|
40
|
Wright JS, Panksepp J. Toward affective circuit-based preclinical models of depression: sensitizing dorsal PAG arousal leads to sustained suppression of positive affect in rats. Neurosci Biobehav Rev 2011; 35:1902-15. [PMID: 21871918 DOI: 10.1016/j.neubiorev.2011.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/23/2011] [Accepted: 08/03/2011] [Indexed: 12/31/2022]
Abstract
Little is known about why clinical depression feels so bad, perhaps because optimal neural circuit-based animal models of depression do not yet exist. Our goal here was to develop a strategy of inducing and measuring depressive-like states in the rat using neural circuits as both the independent and major dependent variables. We hypothesized that repeated electrical stimulation of the brain (ESB) within the dorsal periaqueductal gray (dPAG) aversion circuits would lead to a long-lasting suppression of 50kHz ultrasonic vocalizations (USVs), a validated measure of positive social affect. Fifteen consecutive daily 10min sessions of intermittent PAG-ESB reduced systematically evoked 50kHz USVs for up to 29 days following termination of ESB treatment, along with altering traditional measures of negative affect, including behavioral agitation, sucrose intake, and decreased exploratory behavior. These findings suggest a new affective circuit-based preclinical model of depression.
Collapse
Affiliation(s)
- Jason S Wright
- Center for the Study of Animal Well-being, Department of Veterinary & Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA.
| | | |
Collapse
|