1
|
Xia Y, Xue M, Sun Y, Wang Y, Huang Z, Huang C. Electroacupuncture inhibits TLR4/NF-κB signaling in the dorsal root ganglion of rats with spared nerve injury. Acupunct Med 2024; 42:275-284. [PMID: 39340148 DOI: 10.1177/09645284241279874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Neuropathic pain can be provoked by high mobility group box 1 (HMGB1) activation of toll-like receptor (TLR)4/nuclear factor (NF)-κB signaling in the dorsal root ganglion (DRG). Electroacupuncture (EA) has been reported to effectively alleviate neuropathic pain with few side effects, but its precise mechanism of action remains unknown. The aim of this study was to explore whether 2 Hz EA stimulation suppresses TLR4/NF-κB signaling in the DRG following spared nerve injury (SNI) in a rat model. METHODS In this experiment, SNI rats were given 2 Hz EA once every other day for a total of 21 days. Paw withdrawal threshold (PWT) was measured to assess SNI-induced mechanical hypersensitivity, and western blotting and immunofluorescence staining were used to determine the levels of pain-related signaling molecules and pro-inflammatory mediators in the DRG. RESULTS SNI up-regulated HMGB1, TLR4, myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB p65 protein expression in the DRG. In addition, immunofluorescence staining demonstrated that SNI induced higher levels of TLR4 and MyD88 in the DRG. We also demonstrated co-localization of TLR4 and MyD88 with both calcitonin gene-related peptide (CGRP) and isolectin GS-IB4 in the DRG of SNI rats, respectively. Meanwhile, 2 Hz EA stimulation effectively reversed the elevations of HMGB1, TLR4, MyD88 and NF-κB p65 induced by SNI in the DRG, which was coupled with amelioration of SNI-induced mechanical hypersensitivity. CONCLUSIONS The results of this study suggested that inhibition of the TLR4/NF-κB signaling pathway in the DRG by 2 Hz EA might be exploited as a therapeutic option for neuropathic pain.
Collapse
Affiliation(s)
- Yangyang Xia
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Meng Xue
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Yalan Sun
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Ying Wang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Zhihua Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou, P.R. China
| | - Cheng Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou, P.R. China
| |
Collapse
|
2
|
Gao L, Zhao JX, Qin XM, Zhao J. The ethanol extract of Scutellaria baicalensis Georgi attenuates complete Freund's adjuvant (CFA)-induced inflammatory pain by suppression of P2X3 receptor. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116762. [PMID: 37301308 DOI: 10.1016/j.jep.2023.116762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis Georgi (SBG) is a perennial herb with anti-inflammatory, antibacterial, and antioxidant activities, which is traditionally used to treat inflammation of respiratory tract and gastrointestinal tract, abdominal cramps, bacterial and viral infections. Clinically, it is often used to treat inflammatory-related diseases. Research has shown that the ethanol extract of Scutellaria baicalensis Georgi (SGE) has anti-inflammatory effect, and its main components baicalin and baicalein have analgesic effects. However, the mechanism of SGE in relieving inflammatory pain has not been deeply studied. AIM OF THE STUDY This study aimed to evaluate the analgesic effect of SGE on complete Freund's adjuvant (CFA)-induced inflammatory pain rats, and to investigate whether its effect on relieving inflammatory pain is associated with regulation of P2X3 receptor. MATERIALS AND METHODS The analgesic effects of SGE on CFA-induced inflammatory pain rats were evaluated by measuring mechanical pain threshold, thermal pain threshold, and motor coordination ability. The mechanisms of SGE in relieving inflammatory pain were explored by detecting inflammatory factors levels, NF-κB, COX-2 and P2X3 expression, and were further verified by addition of P2X3 receptor agonist (α, β me-ATP). RESULTS Our results revealed that SGE can notably increase the mechanical pain threshold and thermal pain threshold of CFA-induced inflammatory pain rats, and markedly alleviate the pathological damage in DRG. SGE could suppress the release of inflammatory factors including IL-1β, IL-6, TNF-α and restrain the expression of NF-κB, COX-2 and P2X3. Moreover, α, β me-ATP further exacerbated the inflammatory pain of CFA-induced rats, while SGE could markedly raise the pain thresholds and relieve inflammatory pain. SGE could attenuate the pathological damage, inhibit P2X3 expression, inhibit the elevation of inflammatory factors caused by α, β me-ATP. SGE can also inhibit NF-κB and ERK1/2 activation caused by α, β me-ATP, and inhibit the mRNA expression of P2X3, COX-2, NF-κB, IL-1β, IL-6 and TNF-α in DRG of rats induced by CFA coupled with α, β me-ATP. CONCLUSIONS In summary, our research indicated that SGE could alleviate CFA-induced inflammatory pain by suppression of P2X3 receptor.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China.
| | - Jin-Xia Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Jing Zhao
- Wolfson Institute for Biomedical Research, University College London, UK, London.
| |
Collapse
|
3
|
Falsetta ML, Maddipati KR, Honn KV. Inflammation, lipids, and pain in vulvar disease. Pharmacol Ther 2023; 248:108467. [PMID: 37285943 PMCID: PMC10527276 DOI: 10.1016/j.pharmthera.2023.108467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Localized provoked vulvodynia (LPV) affects ∼14 million people in the US (9% of women), destroying lives and relationships. LPV is characterized by chronic pain (>3 months) upon touch to the vulvar vestibule, which surrounds the vaginal opening. Many patients go months or years without a diagnosis. Once diagnosed, the treatments available only manage the symptoms of disease and do not correct the underlying problem. We have focused on elucidating the underlying mechanisms of chronic vulvar pain to speed diagnosis and improve intervention and management. We determined the inflammatory response to microorganisms, even members of the resident microflora, sets off a chain of events that culminates in chronic pain. This agrees with findings from several other groups, which show inflammation is altered in the painful vestibule. The vestibule of patients is acutely sensitive to inflammatory stimuli to the point of being deleterious. Rather than protect against vaginal infection, it causes heightened inflammation that does not resolve, which coincides with alterations in lipid metabolism that favor production of proinflammatory lipids and not pro-resolving lipids. Lipid dysbiosis in turn triggers pain signaling through the transient receptor potential vanilloid subtype 4 receptor (TRPV4). Treatment with specialized pro-resolving mediators (SPMs) that foster resolution reduces inflammation in fibroblasts and mice and vulvar sensitivity in mice. SPMs, specifically maresin 1, act on more than one part of the vulvodynia mechanism by limiting inflammation and acutely inhibiting TRPV4 signaling. Therefore, SPMs or other agents that target inflammation and/or TRPV4 signaling could prove effective as new vulvodynia therapies.
Collapse
Affiliation(s)
- Megan L Falsetta
- University of Rochester, OB/GYN Research Division, Rochester, NY, United States of America; University of Rochester, Pharmacology and Physiology Department, Rochester, NY, United States of America.
| | - Krishna Rao Maddipati
- Wayne State University, Pathology Department, Detroit, MI, United States of America; Wayne State University, Lipidomics Core Facility and Bioactive Lipids Research Program, Detroit, MI, United States of America
| | - Kenneth V Honn
- Wayne State University, Pathology Department, Detroit, MI, United States of America; Wayne State University, Lipidomics Core Facility and Bioactive Lipids Research Program, Detroit, MI, United States of America
| |
Collapse
|
4
|
TRPV4 Role in Neuropathic Pain Mechanisms in Rodents. Antioxidants (Basel) 2022; 12:antiox12010024. [PMID: 36670886 PMCID: PMC9855176 DOI: 10.3390/antiox12010024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain is a chronic pain caused by a disease or damage to the somatosensory nervous system. The knowledge about the complete mechanisms is incomplete, but the role of oxidative compounds has been evaluated. In this context, we highlight the transient potential receptor vanilloid 4 (TRPV4), a non-selective cation channel, that can be activated by oxidated compounds. In clinical trials, the TRPV4 antagonist (GSK2798745) has been well-tolerated in healthy volunteers. The TRPV4 activation by oxidative compounds, such as hydrogen peroxide (H2O2) and nitric oxide (NO), has been researched in neuropathic pain models. Thus, the modulation of TRPV4 activation by decreasing oxidated compounds could represent a new pharmacological approach for neuropathic pain treatment. Most models evaluated the TRPV4 using knockout mice, antagonist or antisense treatments and detected mechanical allodynia, hyposmotic solution-induced nociception and heat hyperalgesia, but this channel is not involved in cold allodynia. Only H2O2 and NO were evaluated as TRPV4 agonists, so one possible target to reduce neuropathic pain should focus on reducing these compounds. Therefore, this review outlines how the TRPV4 channel represents an innovative target to tackle neuropathic pain signaling in models induced by trauma, surgery, chemotherapy, cancer, diabetes and alcohol intake.
Collapse
|
5
|
Tan B, Wu X, Yu J, Chen Z. The Role of Saponins in the Treatment of Neuropathic Pain. Molecules 2022; 27:molecules27123956. [PMID: 35745079 PMCID: PMC9227328 DOI: 10.3390/molecules27123956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain is a chronic pain caused by tissue injury or disease involving the somatosensory nervous system, which seriously affects the patient's body function and quality of life. At present, most clinical medications for the treatment of neuropathic pain, including antidepressants, antiepileptic drugs, or analgesics, often have limited efficacy and non-negligible side effects. As a bioactive and therapeutic component extracted from Chinese herbal medicine, the role of the effective compounds in the prevention and treatment of neuropathic pain have gradually become a research focus to explore new analgesics. Notably, saponins have shown analgesic effects in a large number of animal models. In this review, we summarized the most updated information of saponins, related to their analgesic effects in neuropathic pain, and the recent progress on the research of therapeutic targets and the potential mechanisms. Furthermore, we put up with some perspectives on future investigation to reveal the precise role of saponins in neuropathic pain.
Collapse
Affiliation(s)
- Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Xueqing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- Correspondence: ; Tel.: +86-571-88208228
| |
Collapse
|
6
|
The Emerging Pro-Algesic Profile of Transient Receptor Potential Vanilloid Type 4. Rev Physiol Biochem Pharmacol 2022; 186:57-93. [PMID: 36378366 DOI: 10.1007/112_2022_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) channels are Ca2+-permeable non-selective cation channels which mediate a wide range of physiological functions and are activated and modulated by a diverse array of stimuli. One of this ion channel's least discussed functions is in relation to the generation and maintenance of certain pain sensations. However, in the two decades which have elapsed since the identification of this ion channel, considerable data has emerged concerning its function in mediating pain sensations. TRPV4 is a mediator of mechanical hyperalgesia in the various contexts in which a mechanical stimulus, comprising trauma (at the macro-level) or discrete extracellular pressure or stress (at the micro-level), results in pain. TRPV4 is also recognised as constituting an essential component in mediating inflammatory pain. It also plays a role in relation to many forms of neuropathic-type pain, where it functions in mediating mechanical allodynia and hyperalgesia.Here, we review the role of TRPV4 in mediating pain sensations.
Collapse
|
7
|
Zeeshan S, Naveed M, Khan A, Atiq A, Arif M, Ahmed MN, Kim YS, Khan S. N-Pyrazoloyl and N-thiopheneacetyl hydrazone of isatin exhibited potent anti-inflammatory and anti-nociceptive properties through suppression of NF-κB, MAPK and oxidative stress signaling in animal models of inflammation. Inflamm Res 2019; 68:613-632. [PMID: 31079165 DOI: 10.1007/s00011-019-01245-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/27/2019] [Accepted: 05/02/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Hydrazide derivatives constitute an important class of compounds for new drug development as they are reported to possess good anti-inflammatory and analgesic activity. The present study was aimed to investigate the role of newly synthesized hydrazide derivatives N-pyrazoloyl hydrazone of isatin (PHI) and N-thiopheneacetyl hydrazone of isatin (THI) in acute and chronic inflammatory pain models induced by carrageenan and complete Freud's adjuvant (CFA). MATERIALS PHI and THI (0.1, 1 and 10 mg/kg) pretreatments were provided intraperitoneally to male BALB/c mice prior to inflammatory inducers. Behavioral responses to inflammation and pain were evaluated by assessment of paw edema, mechanical allodynia, mechanical and thermal hyperalgesia. Cytokines production and NF-κB levels were evaluated by ELISA. Western blot analysis was performed for the detection of IκBα, p38, JNK and ERK. Hematoxylin and eosin (H&E) staining and radiographic analysis were performed to evaluate the effect of PHI and THI treatment on bone and soft tissues. Oxidative stress was determined by reduced glutathione, glutathione-S-transferase and catalase assays. Evans blue dye was used to monitor vascular protein leakage. RESULT PHI and THI dose dependently (0.1, 1 and 10 mg/kg) reduced inflammation and pain in mice, however, the dose of 10 mg/kg exhibited significant activity. The anti-inflammatory and analgesic effects were attributed to suppression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) production levels. PHI and THI significantly blocked CFA-induced activation of NF-κB and MAPK signaling pathways. Oxidative stress and plasma nitrite levels were reduced remarkably. The PHI and THI (10 mg/kg) treatment did not exhibit any apparent toxicity on the liver, kidney, muscles strength, and motor co-ordination in mice. CONCLUSION Both PHI and THI possess significant anti-inflammatory and analgesic activity via inhibition of inflammatory mediators.
Collapse
Affiliation(s)
- Sara Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Naveed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adnan Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Atiq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Maryam Arif
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Yeong Shik Kim
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. .,College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
8
|
Li ZH, Cui D, Qiu CJ, Song XJ. Cyclic nucleotide signaling in sensory neuron hyperexcitability and chronic pain after nerve injury. NEUROBIOLOGY OF PAIN 2019; 6:100028. [PMID: 31223142 PMCID: PMC6565612 DOI: 10.1016/j.ynpai.2019.100028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/08/2022]
Abstract
Activation of cAMP-PKA and cGMP-PKG pathways contributes to injury-induced sensory neuron hyperexcitability. Activation of cAMP and cGMP contributes to the development of bone cancer pain. PAR2 activation mediates injury-induced cAMP-dependent sensory neuron hyperexcitability.
The cyclic nucleotide signaling, including cAMP-PKA and cGMP-PKG pathways, has been well known to play critical roles in regulating cellular growth, metabolism and many other intracellular processes. In recent years, more and more studies have uncovered the roles of cAMP and cGMP in the nervous system. The cAMP and cGMP signaling mediates chronic pain induced by different forms of injury and stress. Here we summarize the roles of cAMP-PKA and cGMP-PKG signaling pathways in the pathogenesis of chronic pain after nerve injury. In addition, acute dissociation and chronic compression of the dorsal root ganglion (DRG) neurons, respectively, leads to neural hyperexcitability possibly through PAR2 activation-dependent activation of cAMP-PKA pathway. Clinically, radiotherapy can effectively alleviate bone cancer pain at least partly through inhibiting the cancer cell-induced activation of cAMP-PKA pathway. Roles of cyclic nucleotide signaling in neuropathic and inflammatory pain are also seen in many other animal models and are involved in many pro-nociceptive mechanisms including the activation of hyperpolarization-activated cyclic nucleotide (HCN)-modulated ion channels and the exchange proteins directly activated by cAMP (EPAC). Further understanding the roles of cAMP and cGMP signaling in the pathogenesis of chronic pain is theoretically significant and clinically valuable for treatment of chronic pain.
Collapse
Affiliation(s)
- Ze-Hua Li
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| | - Dong Cui
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| | - Cheng-Jie Qiu
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xue-Jun Song
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
9
|
Zhang X, Zhao W, Liu X, Huang Z, Shan R, Huang C. Celastrol ameliorates inflammatory pain and modulates HMGB1/NF-κB signaling pathway in dorsal root ganglion. Neurosci Lett 2019; 692:83-89. [DOI: 10.1016/j.neulet.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/03/2023]
|
10
|
Moore C, Gupta R, Jordt SE, Chen Y, Liedtke WB. Regulation of Pain and Itch by TRP Channels. Neurosci Bull 2018; 34:120-142. [PMID: 29282613 PMCID: PMC5799130 DOI: 10.1007/s12264-017-0200-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Nociception is an important physiological process that detects harmful signals and results in pain perception. In this review, we discuss important experimental evidence involving some TRP ion channels as molecular sensors of chemical, thermal, and mechanical noxious stimuli to evoke the pain and itch sensations. Among them are the TRPA1 channel, members of the vanilloid subfamily (TRPV1, TRPV3, and TRPV4), and finally members of the melastatin group (TRPM2, TRPM3, and TRPM8). Given that pain and itch are pro-survival, evolutionarily-honed protective mechanisms, care has to be exercised when developing inhibitory/modulatory compounds targeting specific pain/itch-TRPs so that physiological protective mechanisms are not disabled to a degree that stimulus-mediated injury can occur. Such events have impeded the development of safe and effective TRPV1-modulating compounds and have diverted substantial resources. A beneficial outcome can be readily accomplished via simple dosing strategies, and also by incorporating medicinal chemistry design features during compound design and synthesis. Beyond clinical use, where compounds that target more than one channel might have a place and possibly have advantageous features, highly specific and high-potency compounds will be helpful in mechanistic discovery at the structure-function level.
Collapse
Affiliation(s)
- Carlene Moore
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Wolfgang B Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
12
|
Kiasalari Z, Rahmani T, Mahmoudi N, Baluchnejadmojarad T, Roghani M. Diosgenin ameliorates development of neuropathic pain in diabetic rats: Involvement of oxidative stress and inflammation. Biomed Pharmacother 2017; 86:654-661. [DOI: 10.1016/j.biopha.2016.12.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/29/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022] Open
|
13
|
Wang HL, Li YX, Niu YT, Zheng J, Wu J, Shi GJ, Ma L, Niu Y, Sun T, Yu JQ. Observing Anti-inflammatory and Anti-nociceptive Activities of Glycyrrhizin Through Regulating COX-2 and Pro-inflammatory Cytokines Expressions in Mice. Inflammation 2016; 38:2269-78. [PMID: 26178479 DOI: 10.1007/s10753-015-0212-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study aimed to investigate the potential anti-inflammatory and anti-nociceptive activities of glycyrrhizin (GL) in mice and to explore the possible related mechanisms. Xylene-induced ear edema, carrageenan-induced paw edema and acetic acid-induced vascular permeability test were used to investigate the anti-inflammatory activities of GL in mice. Anti-nociceptive effects of GL were assessed by using acetic acid-induced writhing, hot plate test and formalin test, as well as evaluation of spontaneous locomotor activity and motor performance. The mRNA expression of pro-inflammatory cytokines (such as TNF-α, IL-6 and iNOS) and the protein expression of cyclooxygenase-2 (COX-2) were explored by using real-time fluorogenic PCR and Western blot, respectively. The results showed that GL significantly reduced xylene-induced ear edema, carrageenan-induced paw edema, and acetic acid-induced vascular permeation. Additionally, GL significantly inhibited the nociceptions induced by acetic acid and formalin. However, the nociceptions could not be decreased by GL in the hot plate test, and GL did not affect spontaneous locomotor activity and motor performance. The expression levels of TNF-α, IL-6, iNOS and COX-2 were significantly downregulated by GL. In conclusion, GL exerts significant anti-inflammatory and analgesic activities by attenuating the expression levels of TNF-α, IL-6, iNOS and COX-2.
Collapse
Affiliation(s)
- Hong-Ling Wang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, 750004, China
| | - Ya-Ting Niu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jie Zheng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jing Wu
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, 750004, China
| | - Guang-Jiang Shi
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Lin Ma
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Tao Sun
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China. .,Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
14
|
Ibrahim SIA, Strong JA, Zhang JM. Mineralocorticoid Receptor, A Promising Target for Improving Management of Low Back Pain by Epidural Steroid Injections. ACTA ACUST UNITED AC 2016; 3:177-184. [PMID: 28956026 PMCID: PMC5611848 DOI: 10.24015/japm.2016.0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM OF REVIEW Low back pain is a major health problem in United States and worldwide. In this review, we aim to show that mineralocorticoid receptor (MR) activation has a critical role in the initiation of immune and inflammatory responses, which in turn can impact the effectiveness of the currently used steroids for epidural injections in low back pain management since most steroids activate MR in addition to the primary target, glucocorticoid receptor (GR). Moreover, we would like to determine some of the benefits of blocking the MR-induced negative effects. Overall, we propose a novel therapeutic approach for low back pain management by using a combination of a MR antagonist and a GR agonist in the epidural injections. METHOD We will first introduce the societal cost of low back pain and discuss how epidural steroid injections became a popular treatment for this condition. We will then describe several preclinical models used for the study of low back pain conditions and the findings with respect to the role of MR in the development of inflammatory low back pain. RECENT FINDINGS MR has pro-inflammatory effects in many tissues which can counteract the anti-inflammatory effects induced by GR activation. Blocking MR using the selective MR antagonist eplerenone can reduce pain and sensory neuron excitability in experimental models of low back pain. Moreover, combining the MR antagonist with clinically used steroids is more effective in reducing pain behaviors than using the steroids alone. SUMMARY MR antagonists are promising candidates to increase the effectiveness of currently used steroids. Since the activation of the MR is evident in preclinical models of low back pain, blocking its deleterious effects can be beneficial in managing inflammatory pain conditions.
Collapse
Affiliation(s)
- Shaimaa I A Ibrahim
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology, University of Cincinnati, Cincinnati, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA
| |
Collapse
|
15
|
Enhanced binding capability of nuclear factor-κB with demethylated P2X3 receptor gene contributes to cancer pain in rats. Pain 2016; 156:1892-1905. [PMID: 26049406 PMCID: PMC4770335 DOI: 10.1097/j.pain.0000000000000248] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is Available in the Text. Epigenetic regulations of P2X3 receptors play a crucial role in cancer pain. Targeting p65 binding to demethylated P2X3 receptor gene suppresses cancer pain. Nuclear factor-kappa B (NF-κB) signaling is implicated in both cancer development and inflammation processes. However, the roles and mechanisms of NF-κB signaling in the development of cancer-induced pain (CIP) remain unknown. This study was designed to investigate the roles of the p65 subunit of NF-κB in regulation of the purinergic receptor (P2X3R) plasticity in dorsal root ganglion (DRG) of CIP rats. We showed here that tumor cell injection produced mechanical and thermal hyperalgesia, and an enhanced body weight–bearing difference, which was correlated with an upregulation of p65 and P2X3R expression in lumber DRGs and a potentiation of ATP-evoked responses of tibia-innervating DRG neurons. Inhibition of NF-κB signaling using p65 inhibitor pyrrolidine dithiocarbamate, BAY-11-7082, or lentiviral-p65 short-hairpin RNA significantly attenuated CIP and reversed the activities of P2X3R. Interestingly, tumor cell injection led to a significant demethylation of CpG island in p2x3r gene promoter and enhanced ability of p65 to bind the promoter of p2x3r gene. Our findings suggest that upregulation of P2X3R expression was mediated by the enhanced binding capability of p65 with demethylated promoter of p2x3r gene, thus contributing to CIP. NF-κBp65 might be a potential target for treating CIP, a neuropathic pain generated by tumor cell–induced injury to nerves that innervate the skin.
Collapse
|
16
|
Effect of TRPV4-p38 MAPK Pathway on Neuropathic Pain in Rats with Chronic Compression of the Dorsal Root Ganglion. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6978923. [PMID: 27366753 PMCID: PMC4913001 DOI: 10.1155/2016/6978923] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022]
Abstract
The aim of this study was to investigate the relationships among TRPV4, p38, and neuropathic pain in a rat model of chronic compression of the dorsal root ganglion. Mechanical allodynia appeared after CCD surgery, enhanced via the intrathecal injection of 4α-phorbol 12,13-didecanoate (4α-PDD, an agonist of TRPV4) and anisomycin (an agonist of p38), but was suppressed by Ruthenium Red (RR, an inhibitor of TRPV4) and SB203580 (an inhibitor of p38). The protein expressions of p38 and P-p38 were upregulated by 4α-PDD and anisomycin injection but reduced by RR and SB203580. Moreover, TRPV4 was upregulated by 4α-PDD and SB203580 and downregulated by RR and anisomycin. In DRG tissues, the numbers of TRPV4- or p38-positive small neurons were significantly changed in CCD rats, increased by the agonists, and decreased by the inhibitors. The amplitudes of ectopic discharges were increased by 4α-PDD and anisomycin but decreased by RR and SB203580. Collectively, these results support the link between TRPV4 and p38 and their intermediary role for neuropathic pain in rats with chronic compression of the dorsal root ganglion.
Collapse
|
17
|
Wang Z, Huang H, Yang S, Huang S, Guo J, Tang Q, Qi F. Long-term effect of ropivacaine nanoparticles for sciatic nerve block on postoperative pain in rats. Int J Nanomedicine 2016; 11:2081-90. [PMID: 27274236 PMCID: PMC4876796 DOI: 10.2147/ijn.s101563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose The analgesic effect of ropivacaine (Rop) for nerve block lasts only ~3–6 hours for single use. The aim of this study was to develop long-acting regional anesthetic Rop nanoparticles and investigate the effects of sciatic nerve block on postoperative pain in rats. Materials and methods Rop nanoparticles were developed using polyethylene glycol-co-polylactic acid (PELA). One hundred and twenty adult male Wistar rats were randomly divided into four groups (n=30, each): Con (control group; 0.9% saline, 200 µL), PELA (PELA group; 10 mg), Rop (Rop group; 0.5%, 200 µL), and Rop-PELA (Rop-PELA group; 10%, 10 mg). Another 12 rats were used for the detection of Rop concentration in plasma. The mechanical withdrawal threshold and thermal withdrawal latency were measured at 2 hours, 4 hours, 8 hours, 1 day, 2 days, 3 days, 5 days, and 7 days after incision. The expression of c-FOS was determined by immunohistochemistry at 2 hours, 8 hours, 48 hours, and 7 days. Nerve and organ toxicities were also evaluated at 7 days. Results The duration of Rop absorption in the plasma of the Rop-PELA group was longer (>8 hours) than that of the Rop group (4 hours). Mechanical withdrawal threshold and thermal withdrawal latency in the Rop-PELA group were higher than that in other groups (4 hours–3 days). c-FOS expression in the Rop-PELA group was lower than that in the control group at 2 hours, 8 hours, and 48 hours and lower than that in the Rop group at 8 hours and 48 hours after paw incision. Slight foreign body reactions were observed surrounding the sciatic nerve at 7 days. No obvious pathophysiological change was found in the major organs after Rop-PELA administration at 7 days. Conclusion Rop-PELA provides an effective analgesia for nerve block over 3 days after single administration, and the analgesic mechanism might be mediated by the regulation of spinal c-FOS expression. However, its potential long-term tissue toxicity needs to be further investigated.
Collapse
Affiliation(s)
- Zi Wang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Haizhen Huang
- Department of Anesthesiology, Stomatology Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Shaozhong Yang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Shanshan Huang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Jingxuan Guo
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Qi Tang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Feng Qi
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
18
|
Zhang HH, Hu J, Zhou YL, Qin X, Song ZY, Yang PP, Hu S, Jiang X, Xu GY. Promoted Interaction of Nuclear Factor-κB With Demethylated Purinergic P2X3 Receptor Gene Contributes to Neuropathic Pain in Rats With Diabetes. Diabetes 2015; 64:4272-84. [PMID: 26130762 DOI: 10.2337/db15-0138] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/24/2015] [Indexed: 11/13/2022]
Abstract
Painful diabetic neuropathy is a common complication of diabetes produced by mechanisms that as yet are incompletely defined. The aim of this study was to investigate the roles of nuclear factor-κB (NF-κB) in the regulation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3R) plasticity in dorsal root ganglion (DRG) neurons of rats with painful diabetes. Here, we showed that hindpaw pain hypersensitivity in streptozocin-induced diabetic rats was attenuated by treatment with purinergic receptor antagonist suramin or A-317491. The expression and function of P2X3Rs was markedly enhanced in hindpaw-innervated DRG neurons in diabetic rats. The CpG (cytosine guanine dinucleotide) island in the p2x3r gene promoter region was significantly demethylated, and the expression of DNA methyltransferase 3b was remarkably downregulated in DRGs in diabetic rats. The binding ability of p65 (an active form of NF-κB) with the p2x3r gene promoter region and p65 expression were enhanced significantly in diabetes. The inhibition of p65 signaling using the NF-κB inhibitor pyrrolidine dithiocarbamate or recombinant lentiviral vectors designated as lentiviral vector-p65 small interfering RNA remarkably suppressed P2X3R activities and attenuated diabetic pain hypersensitivity. Insulin treatment significantly attenuated pain hypersensitivity and suppressed the expression of p65 and P2X3Rs. Our findings suggest that the p2x3r gene promoter DNA demethylation and enhanced interaction with p65 contributes to P2X3R sensitization and diabetic pain hypersensitivity.
Collapse
MESH Headings
- Animals
- CpG Islands/drug effects
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetic Neuropathies/enzymology
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/prevention & control
- Epigenesis, Genetic/drug effects
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/enzymology
- Ganglia, Spinal/metabolism
- Gene Expression Regulation/drug effects
- Hindlimb
- Hypoglycemic Agents/therapeutic use
- Insulin/therapeutic use
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuralgia/complications
- Neuralgia/metabolism
- Neuralgia/prevention & control
- Neurons/drug effects
- Neurons/enzymology
- Neurons/metabolism
- Promoter Regions, Genetic/drug effects
- Purinergic P2X Receptor Antagonists/therapeutic use
- RNA Interference
- Rats, Sprague-Dawley
- Receptors, Purinergic P2X3/chemistry
- Receptors, Purinergic P2X3/genetics
- Receptors, Purinergic P2X3/metabolism
- Transcription Factor RelA/agonists
- Transcription Factor RelA/antagonists & inhibitors
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Hong-Hong Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Ji Hu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - You-Lang Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Xin Qin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Zhen-Yuan Song
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Pan-Pan Yang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Shufen Hu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Xinghong Jiang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
19
|
Vizin RCL, Scarpellini CDS, Ishikawa DT, Correa GM, de Souza CO, Gargaglioni LH, Carrettiero DC, Bícego KC, Almeida MC. TRPV4 activates autonomic and behavioural warmth-defence responses in Wistar rats. Acta Physiol (Oxf) 2015; 214:275-89. [PMID: 25739906 DOI: 10.1111/apha.12477] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/10/2015] [Accepted: 02/26/2015] [Indexed: 11/28/2022]
Abstract
AIM In this study, we aimed at investigating the involvement of the warmth-sensitive channel - TRPV4 (in vitro sensitive to temperatures in the range of approx. 24-34 °C) - on the thermoregulatory mechanisms in rats. METHODS We treated rats with a chemical selective agonist (RN-1747) and two antagonists (RN-1734 and HC-067047) of the TRPV4 channel and measured core body temperature, metabolism, heat loss index and preferred ambient temperature. RESULTS Our data revealed that chemical activation of TRPV4 channels by topical application of RN-1747 on the skin leads to hypothermia and this effect was blocked by the pre-treatment with the selective antagonist of this channel. Intracerebroventricular treatment with RN-1747 did not cause hypothermia, indicating that the observed response was indeed due to activation of TRPV4 channels in the periphery. Intravenous blockade of this channel with HC-067047 caused an increase in core body temperature at ambient temperature of 26 and 30 °C, but not at 22 and 32 °C. At 26 °C, HC-067047-induced hyperthermia was accompanied by increase in oxygen consumption (an index of thermogenesis), while chemical stimulation of TRPV4 increased tail heat loss, indicating that these two autonomic thermoeffectors in the rat are modulated through TRPV4 channels. Furthermore, rats chemically stimulated with TRPV4 agonist choose colder ambient temperatures and cold-seeking behaviour after thermal stimulation (28-31 °C) was inhibited by TRPV4 antagonist. CONCLUSION Our results suggest, for the first time, that TRPV4 channel is involved in the recruitment of behavioural and autonomic warmth-defence responses to regulate core body temperature.
Collapse
Affiliation(s)
- R. C. L. Vizin
- Graduate Program on Neuroscience and Cognition; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
| | - C. da S. Scarpellini
- Department of Animal Morphology and Physiology; College of Agricultural and Veterinary Sciences; São Paulo State University; Jaboticabal SP Brazil
- Joint UFSCar-UNESP Graduate Program of Physiological Sciences; Sao Carlos SP Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - Fisiologia Comparada); Jaboticabal SP Brazil
| | - D. T. Ishikawa
- Graduate Program on Neuroscience and Cognition; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
| | - G. M. Correa
- Department of Animal Morphology and Physiology; College of Agricultural and Veterinary Sciences; São Paulo State University; Jaboticabal SP Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - Fisiologia Comparada); Jaboticabal SP Brazil
| | - C. O. de Souza
- Graduate Program on Neuroscience and Cognition; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
| | - L. H. Gargaglioni
- Department of Animal Morphology and Physiology; College of Agricultural and Veterinary Sciences; São Paulo State University; Jaboticabal SP Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - Fisiologia Comparada); Jaboticabal SP Brazil
| | - D. C. Carrettiero
- Graduate Program on Neuroscience and Cognition; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
- Natural and Humanities Science Center; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
| | - K. C. Bícego
- Department of Animal Morphology and Physiology; College of Agricultural and Veterinary Sciences; São Paulo State University; Jaboticabal SP Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - Fisiologia Comparada); Jaboticabal SP Brazil
| | - M. C. Almeida
- Graduate Program on Neuroscience and Cognition; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
- Natural and Humanities Science Center; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
| |
Collapse
|
20
|
Souza GR, Cunha TM, Silva RL, Lotufo CM, Verri WA, Funez MI, Villarreal CF, Talbot J, Sousa LP, Parada CA, Cunha FQ, Ferreira SH. Involvement of nuclear factor kappa B in the maintenance of persistent inflammatory hypernociception. Pharmacol Biochem Behav 2015; 134:49-56. [PMID: 25902407 DOI: 10.1016/j.pbb.2015.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 04/07/2015] [Accepted: 04/15/2015] [Indexed: 01/09/2023]
Abstract
The pathophysiology of chronic inflammatory pain remains poorly understood. In this context, we developed an experimental model in which successive daily injection of prostaglandin E2 (PGE2) for 14days into rat hind paws produces a persistent state of hypernociception (i.e. decrease in mechanical nociceptive threshold). This state persists for more than 30days after discontinuing PGE2 injection. In the present study, we investigated the participation of nuclear factor kappa B (NF-κB), in the maintenance of this process. Mechanical hypernociception was evaluated using the electronic von Frey test. Activation of NF-κB signaling was measured through the determination of NF-κB p65 subunit translocation to the nucleus of dorsal root ganglion neurons (DRG) by immunofluorescence and western blotting. Herein, we detected an increase in NF-κB p65 subunit translocation to the nucleus of DRG neurons along with persistent inflammatory hypernociception compared with controls. Intrathecal treatment with either dexamethasone or PDTC (NF-κB activation inhibitor) after ending of the induction phase of the persistent inflammatory hypernociception, curtailed the hypernociception period as well as reducing NF-κB p65 subunit translocation. Treatment with antisense oligonucleotides against the NF-κB p65 subunit for 5 consecutive days also reduced persistent inflammatory hypernociception. Inhibition of PKA and PKCε reduced persistent inflammatory hypernociception, which was associated with inhibition of NF-κB p65 subunit translocation. Together these results suggest that peripheral activation of NF-κB by PKA and PKC in primary sensory neurons plays an important role in maintaining persistent inflammatory pain.
Collapse
Affiliation(s)
- Guilherme R Souza
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Rangel L Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Celina M Lotufo
- Instituto de Ciências Biomédicas, Federal University of Uberlandia, Umuarama, MG 38405-320 Uberlândia, Brazil
| | - Waldiceu A Verri
- Departamento de Ciencias Patologicas, Universidade Estadual de Londrina, Londrina, Parana, Brazil
| | - Mani I Funez
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Christiane F Villarreal
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Jhimmy Talbot
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos A Parada
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.
| | - Sergio H Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
21
|
Wang J, Wang XW, Zhang Y, Yin CP, Yue SW. Ca(2+) influx mediates the TRPV4-NO pathway in neuropathic hyperalgesia following chronic compression of the dorsal root ganglion. Neurosci Lett 2015; 588:159-65. [PMID: 25575793 DOI: 10.1016/j.neulet.2015.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 12/18/2022]
Abstract
Chronic compression of the dorsal root ganglion (DRG) (CCD) in rats is a typical model of neuropathic pain. TRPV4 contributed to mechanical allodynia induced by the CCD model. Our previous study demonstrated that TRPV4 enhances neuropathic hyperalgesia through a NO-cGMP-PKG cascade. However, the underlying mechanism(s) is still largely unknown. Therefore, the aim of the present study was to test whether TRPV4-mediated Ca(2+) influx is involved in the TRPV4-NO pathway. Regulation of intracellular calcium concentration by intrathecal injection of TRPV4-targeted siRNA significantly decreased the behavioural hyperalgesia, NF-κB activity, and NO content in CCD rats. Intraperitoneal (i.p.) injection of mibefradil significantly induced dose-dependent increases in the paw withdrawal latency (PWL) and mechanical withdrawal thresholds (MWT), as well as decreases in NF-κB activity and NO content in DRG of CCD rats. Moreover, pre-treatment with 4α-PDD attenuated the suppressive effects of mibefradil on CCD-induced neuropathic hyperalgesia, NF-κB activity, and NO production. The data showed that TRPV4-mediated Ca(2+) influx might be engaged in the TRPV4-NO pathway in neuropathic hyperalgesia in the CCD model.
Collapse
Affiliation(s)
- Jie Wang
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012, China.
| | - Xiao-Wei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012, China
| | - Yang Zhang
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan 250012, China
| | - Cui-Ping Yin
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan 250012, China
| | - Shou-Wei Yue
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan 250012, China.
| |
Collapse
|
22
|
Khan S, Shehzad O, Chun J, Choi RJ, Park S, Islam MN, Choi JS, Kim YS. Anti-hyperalgesic and anti-allodynic activities of capillarisin via suppression of inflammatory signaling in animal model. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:478-486. [PMID: 24495472 DOI: 10.1016/j.jep.2014.01.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia capillaris has widespread traditional and pharmacological applications such as analgesic, anti-inflammatory, anti-pyretic, enhance immunity and anti-tumor activity properties. To evaluate the pharmacological activities of this plant, capillarisin, one of the potent constituent of Artemisia capillaris was studied based on anti-hyperalgesic and anti-allodynic effects with detailed mechanism. It can be assumed that measurement of anti-nociceptive effects of capillarisin is one of the parameter for the evaluation of this herb. Capillarisin has extensive pharmacological properties and has been considered to have promising ant-inflammatory and anti-nociceptive activities. The aim of the current study is to investigate the effect of capillarisin and underlying molecular mechanisms of action in preventing acute and subchronic inflammatory pain. MATERIALS AND METHODS The inflammatory pain was induced after 40 min or 1h of administration of vehicle, 70% EtOH extract of Artemisia capillaris (100mg/kg) or capillarisin (20 and 80 mg/kg) by intraplantar (i.p.l.) injections of CFA and carrageenan in ICR mice, respectively. Mechanical hyperalgesia and allodynia were evaluated in both acute and subchronic models. Further analysis was performed in CFA-induced mice exploring various molecular and signaling pathways such as NF-κB, AP-1, and ERK-CREB involved in the persistent pain sensations. RESULTS In acute model, mechanical hyperalgesia and allodynia were evaluated after every 2h until 6h of CFA and after 4h of carrageenan injections. Whereas, in subchronic inflammatory pain model, mechanical hyperalgesia and paw edema were measured after 4h of CFA injection and every day after 4h of daily treatment until 5 days with interval of day four in order to assess the tolerance effect of capillarisin. Further analysis was performed in CFA-induced mice exploring various molecular and signaling pathways such as NF-κB, AP-1 and ERK-CREB involved in the persistent of pain sensations. Pre-treatment of capillarisin strongly inhibited NF-κB mediated genes (iNOS, COX-2), involved in pain. The plasma leading nitrite production was significantly reduced by capillarisin. Moreover, i.p. administration of capillarisin markedly suppressed the adenosine 5׳-triphosphate (ATP) in plasma and substance P in CFA-induced paw tissue. CONCLUSIONS The present study indicates that capillarisin possessed promising anti-hyperalgesic and anti-allodynic effects through the inhibition of various inflammatory pain signaling, suggesting that capillarisin constitutes a significant component for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Salman Khan
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Omer Shehzad
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea; Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Jaemoo Chun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ran Joo Choi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Saitbyul Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Md Nurul Islam
- Department of Food Science and Nutrition, Pukyong National University, Pusan 608-737, Republic of Korea
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Pusan 608-737, Republic of Korea
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
23
|
Yu J, Fu P, Zhang Y, Liu S, Cui D. Pregabalin alters nociceptive behavior and expression level of P2X3 receptor in the spinal dorsal horn in a rat model induced by chronic compression of the dorsal root ganglion. Anat Rec (Hoboken) 2013; 296:1907-12. [PMID: 24136739 DOI: 10.1002/ar.22816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 08/05/2013] [Indexed: 01/07/2023]
Abstract
P2X3 receptors are present in the spinal dorsal horn (SDH) and play an essential role in the regulation of nociception and pain. Pregabalin (PGB) has been used as a new antiepileptic drug in the treatment of neuropathic pain. However, it is unclear whether PGB-induced analgesia was associated with the P2X3 receptor in SDH. Here, rats were randomly divided into four groups (n = 12 per group), including 2 sham operation groups, which was treated by normal saline (Sham + NS group) or PGB (Sham + PGB group), other 2 groups with chronic compression of the dorsal root ganglion, a normal saline-treated CCD group (CCD+NS group), and a PGB-treated CCD group (CCD + PGB group). A rat model of neuropathic pain was used by compressing the right L4 and L5 dorsal root ganglia. Each group was evaluated using the mechanical withdrawal threshold (MWT). The mRNA and protein levels of the P2X3 receptor in the ipsilateral SDH were measured by RT-PCR, western blot, and immunofluorescence on 14 day after CCD operation. CCD rats showed the highest mechanical hyperalgesia and the lowest pain threshold in the four groups. Simultaneously, CCD rats showed higher P2X3 mRNA and protein expression in ipsilateral side of the SDH than the sham operation rats. However, the MWT was increased and expression of P2X3 mRNA and protein in the ipsilateral SDH in CCD rats was decreased 3 days after PGB treatment. Thus, PGB may partially reverse mechanical hyperalgesia in CCD rats by inhibiting P2X3 receptor expression in the ipsilateral SDH.
Collapse
Affiliation(s)
- Jianfeng Yu
- Department of Anesthesiology, Weifang Medical University, Shandong Province, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Li Q, Liu Y, Chu Z, Chen J, Dai F, Zhu X, Hu A, Yun C. Brain-derived neurotrophic factor expression in dorsal root ganglia of a lumbar spinal stenosis model in rats. Mol Med Rep 2013; 8:1836-44. [PMID: 24127005 DOI: 10.3892/mmr.2013.1723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/26/2013] [Indexed: 11/06/2022] Open
Abstract
This study aimed to investigate the expression of brain-derived neurotrophic factor (BDNF) in dorsal root ganglia (DRG) of a rat model of lumbar spinal stenosis (LSS). Adult male rats were divided into the operation and sham operation groups. The operation group was comprised of the rat models of LSS. Walking distance and BDNF expression levels in DRG were measured in the two groups at different time points. The total BDNF protein levels and positive cell mean optical density (MOD) values in the operation group were significantly higher at each time point compared with that of the sham operation and preoperative control groups (P<0.05). The total BDNF protein levels and MOD values following sport in the operation group were significantly higher compared with those prior to sport (P<0.05). In the sham operation group, BDNF protein levels and MOD values before and after sport at each time point showed no significant differences than those of the operation group (P>0.05). Moreover, BDNF protein levels and MOD values in the operation group indicated a negative correlation with walking distance. The present study demonstrated that the expression of BDNF in rat models of LSS increased with time and was associated with a decrease in walking distance. BDNF was therefore important for the process of intermittent claudication caused by LSS.
Collapse
Affiliation(s)
- Qinliang Li
- Department of Spine, The Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu 222000, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mechanism underlying anti-hyperalgesic and anti-allodynic properties of anomalin in both acute and chronic inflammatory pain models in mice through inhibition of NF-κB, MAPKs and CREB signaling cascades. Eur J Pharmacol 2013; 718:448-58. [PMID: 23911882 DOI: 10.1016/j.ejphar.2013.07.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 07/06/2013] [Accepted: 07/16/2013] [Indexed: 12/30/2022]
Abstract
The numerous mediators of pain and inflammation are products of injury-induced gene expression that lead to changes in the nervous system and immune responses. These multiple molecules and mechanisms suggest novel strategies that could be used for analgesic drug development. The present study investigated the possible anti-hyperalgesic effects of anomalin in complete Freund's adjuvant (CFA)-induced acute and chronic inflammatory pain models. Acute pretreatment of mice with anomalin (10 and 50mg/kg, i.p.) produced a significant anti-nociceptive effect against CFA- and carrageenan-induced mechanical hyperalgesia and allodynia. In a chronic pain model, administration of anomalin inhibited CFA-induced hyperalgesia, and it did not cause any apparent toxicity. Another set of experiments observed that anomalin inhibited CFA- and carrageenan-induced paw edema in acute and chronic models. To elucidate the molecular mechanism underlying the anti-nociceptive effect of anomalin, the various pain signaling pathways [NF-κB, cAMP response element-binding protein (CREB), and mitogen activated protein kinase (MAPKs)/AP-1] that are involved were examined. Intraperitoneal (i.p.) pretreatment of anomalin exhibited potent inhibitory effects on direct mediators of hyperalgesia (iNOS and COX-2). The release of CFA-induced plasma nitrite and paw tissue hyperalgesic cytokine (TNF-α) was reduced remarkably. In addition, the adenosine 5'-triphosphate (ATP) in plasma and substance P (SP) in paw tissue were markedly suppressed by anomalin. These results demonstrate that anomalin exhibits an analgesic effect in a consistent manner and that its mechanisms involve the inhibition of the NF-κB, CREB, and MAPKs/AP-1 signaling pathways.
Collapse
|
26
|
Zhang HH, Hu J, Zhou YL, Hu S, Wang YM, Chen W, Xiao Y, Huang LYM, Jiang X, Xu GY. Promoted interaction of nuclear factor-κB with demethylated cystathionine-β-synthetase gene contributes to gastric hypersensitivity in diabetic rats. J Neurosci 2013; 33:9028-38. [PMID: 23699514 PMCID: PMC6705038 DOI: 10.1523/jneurosci.1068-13.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 12/13/2022] Open
Abstract
Patients with long-standing diabetes frequently demonstrate gastric hypersensitivity with an unknown mechanism. The present study was designed to investigate roles for nuclear factor-κB (NF-κB) and the endogenous H2S-producing enzyme cystathionine-β-synthetase (CBS) signaling pathways by examining cbs gene methylation status in adult rats with diabetes. Intraperitoneal injection of streptozotocin (STZ) produced gastric hypersensitivity in female rats in response to gastric balloon distention. Treatment with the CBS inhibitor aminooxyacetic acid significantly attenuated STZ-induced gastric hypersensitivity in a dose-dependent fashion. Aminooxyacetic acid treatment also reversed hyperexcitability of gastric-specific dorsal root ganglion (DRG) neurons labeled by the dye DiI in diabetic rats. Conversely, the H2S donor NaHS enhanced neuronal excitability of gastric DRG neurons. Expression of CBS and p65 were markedly enhanced in gastric DRGs in diabetic rats. Blockade of NF-κB signaling using pyrrolidine dithiocarbamate reversed the upregulation of CBS expression. Interestingly, STZ treatment led to a significant demethylation of CpG islands in the cbs gene promoter region, as determined by methylation-specific PCR and bisulfite sequencing. STZ treatment also remarkably downregulated the expression of DNA methyltransferase 3a and 3b. More importantly, STZ treatment significantly enhanced the ability of cbs to bind DNA at the p65 consensus site, as shown by chromatin immunoprecipitation assays. Our findings suggest that upregulation of cbs expression is attributed to cbs promoter DNA demethylation and p65 activation and that the enhanced interaction of the cbs gene and p65 contributes to gastric hypersensitivity in diabetes. This finding may guide the development and evaluation of new treatment modalities for patients with diabetic gastric hypersensitivity.
Collapse
Affiliation(s)
- Hong-Hong Zhang
- Division of Endocrinology, the Second Affiliated Hospital, Soochow University, Suzhou 215000, P.R. China
- Institute of Neuroscience, Suzhou Key Laboratory of Pain Research and Therapy, Department of Neurobiology, Soochow University, Suzhou 215123, P.R. China
| | - Ji Hu
- Division of Endocrinology, the Second Affiliated Hospital, Soochow University, Suzhou 215000, P.R. China
| | - You-Lang Zhou
- Institute of Neuroscience, Suzhou Key Laboratory of Pain Research and Therapy, Department of Neurobiology, Soochow University, Suzhou 215123, P.R. China
- Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, P.R. China, and
| | - Shufen Hu
- Institute of Neuroscience, Suzhou Key Laboratory of Pain Research and Therapy, Department of Neurobiology, Soochow University, Suzhou 215123, P.R. China
| | - Yong-Meng Wang
- Institute of Neuroscience, Suzhou Key Laboratory of Pain Research and Therapy, Department of Neurobiology, Soochow University, Suzhou 215123, P.R. China
| | - Wei Chen
- Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, P.R. China, and
| | - Ying Xiao
- Division of Endocrinology, the Second Affiliated Hospital, Soochow University, Suzhou 215000, P.R. China
| | - Li-Yen Mae Huang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1069
| | - Xinghong Jiang
- Institute of Neuroscience, Suzhou Key Laboratory of Pain Research and Therapy, Department of Neurobiology, Soochow University, Suzhou 215123, P.R. China
| | - Guang-Yin Xu
- Division of Endocrinology, the Second Affiliated Hospital, Soochow University, Suzhou 215000, P.R. China
- Institute of Neuroscience, Suzhou Key Laboratory of Pain Research and Therapy, Department of Neurobiology, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|