1
|
Madbouly NA, Kamal SM, El-Amir AM. Chronic artificial light exposure in daytime and reversed light: Dark cycle inhibit anti-apoptotic cytokines and defect Bcl-2 in peripheral lymphoid tissues during acute systemic inflammatory response to lipopolysaccharide. Int Immunopharmacol 2025; 145:113768. [PMID: 39672023 DOI: 10.1016/j.intimp.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
AIMS The disturbed light: dark (LD) cycle has been associated with critical complications, including obesity, diabetes and cancer. In the present study, we investigated the chronic effects of artificial light at daytime (AL) and light at night (RAL) after intraperitoneal (i.p.) injection of saline and 0.5 mg/kg lipopolysaccharide (LPS) in male Wistar rats. METHODS Liver and kidney parameters, fasting blood glucose (FBG), melatonin level, immunohistochemical examinations of B-cell lymphoma-2 (Bcl-2) in spleen and mesenteric lymph and serum antiapoptotic cytokines [interleukin (IL-) 2, 7 and 1]. KEY FINDINGS After 16 weeks of a daily disturbed LD cycle, RAL increased body weight, upgraded FBG and altered liver and kidney functions with surprisingly increased daytime plasma melatonin. AL + LPS and RAL + LPS rats suffered significantly higher oxidative-nitrosative stress compared to NL + LPS. Oxidative-nitrosative stress was associated with multi-organ inflammation in hepatic, renal, pancreatic, splenic and mesenteric lymph node tissues due to LPS-induced endotoxemia. Anti-apoptotic Bcl-2 activity in peripheral lymphoid organs (spleen and mesenteric lymph node) was lowered due to AL and RAL regimens. At the same pattern, lowering of antiapoptotic serum levels of IL-2, IL-7 and IL-15 indicate alteration of cell cycle and the shifted ability of cells to undergo apoptosis due to abnormal light pollution. SIGNIFICANCE Here, the increased lymphocyte apoptosis in lymphoid tissues due to disturbed LD cycle defects the host defense, dysregulates the inflammatory immune response and dysregulates the immune tolerance during acute systemic inflammation due to LPS.
Collapse
|
2
|
Li G, Hu L, Gu X, Zhu W, Zhen X, Sun X. Targeting Large-Conductance Calcium-Activated Potassium Channels to Ameliorate Lipopolysaccharide-Induced Depressive-Like Behavior in Mice. Neurochem Res 2024; 49:1239-1253. [PMID: 38383879 DOI: 10.1007/s11064-024-04111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
Neuroinflammation plays crucial role in the development and progression of depression. Large conductance calcium- and voltage-dependent potassium (BK) channels mediate the activation of microglia. Herein, we investigated whether BK channels could serve as a target for the treatment of inflammation-associated depression. Lipopolysaccharide (LPS, 0.83 mg/kg) was injected intraperitoneally (i.p.) to induce neuroinflammation and depressive-like behavior in 6-8 week ICR mice. Adeno-associated virus (AAV) constructs (AAV9-Iba1p-BK shRNA-EGFP (BK shRNA-AAV) or AAV9-Iba1p-NC shRNA-EGFP (NC shRNA-AAV)) were unilaterally injected intracerebroventricularly to selectively knock down BK channels in microglia. The tail suspension test (TST) and forced-swim test (FST) were used to evaluate depressive-like behavior in mice 24 h after LPS challenge. The morphology of microglia, expression of BK channels, levels of cytokines, and expression and activity of indoleamine 2,3-dioxygenase (IDO) were measured by immunohistochemistry, western blot, quantitative real time PCR, and enzyme-linked immunosorbent assay (ELISA), respectively. Either paxilline (i.p.), a specific BK channel blocker, or BK shRNA-AAV effectively inhibited the activation of microglia, reduced the production of IL-1β in the hippocampus and suppressed the expression and activity of IDO in the hippocampus and prefrontal cortex, resulting in the amelioration of depressive-like behavior in mice. These data suggest for the first time that BK channels are involved in LPS-induced depressive-like behaviors. Thus, microglia BK channels may be a potential drug target for the depression treatment.
Collapse
Affiliation(s)
- Gangjing Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Li Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiangcheng Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Weijun Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiaohui Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
3
|
Monchaux de Oliveira C, Morael J, Guille A, Amadieu C, Vancassel S, Gaudout D, Capuron L, Pourtau L, Castanon N. Saffron extract interferes with lipopolysaccharide-induced brain activation of the kynurenine pathway and impairment of monoamine neurotransmission in mice. Front Nutr 2023; 10:1267839. [PMID: 37867499 PMCID: PMC10585275 DOI: 10.3389/fnut.2023.1267839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Background Although activation of inflammatory processes is essential to fight infections, its prolonged impact on brain function is well known to contribute to the pathophysiology of many medical conditions, including neuropsychiatric disorders. Therefore, identifying novel strategies to selectively counter the harmful effects of neuroinflammation appears as a major health concern. In that context, this study aimed to test the relevance of a nutritional intervention with saffron, a spice known for centuries for its beneficial effect on health. Methods For this purpose, the impact of an acute oral administration of a standardized saffron extract, which was previously shown to display neuromodulatory properties and reduce depressive-like behavior, was measured in mice challenged with lipopolysaccharide (LPS, 830 μg/kg, ip). Results Pretreatment with saffron extract (6.5 mg/kg, per os) did not reduce LPS-induced sickness behavior, preserving therefore this adaptive behavioral response essential for host defense. However, it interfered with delayed changes of expression of cytokines, chemokines and markers of microglial activation measured 24 h post-LPS treatment in key brain areas for behavior and mood control (frontal cortex, hippocampus, striatum). Importantly, this pretreatment also counteracted by that time the impact of LPS on several neurobiological processes contributing to inflammation-induced emotional alterations, in particular the activation of the kynurenine pathway, assessed through the expression of its main enzymes, as well as concomitant impairment of serotonergic and dopaminergic neurotransmission. Conclusion Altogether, this study provides important clues on how saffron extract interferes with brain function in conditions of immune stimulation and supports the relevance of saffron-based nutritional interventions to improve the management of inflammation-related comorbidities.
Collapse
Affiliation(s)
- Camille Monchaux de Oliveira
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
- Activ’Inside, Beychac-et-Caillau, France
| | - Jennifer Morael
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
| | - Alexandrine Guille
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
| | - Camille Amadieu
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
| | - Sylvie Vancassel
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
| | | | - Lucile Capuron
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
| | | | - Nathalie Castanon
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
| |
Collapse
|
4
|
Mujtaba S, Patro IK, Patro N. Multiple Early Life Stressors as Risk Factors for Neurodevelopmental Abnormalities in the F1 Wistar Rats. Brain Sci 2023; 13:1360. [PMID: 37891729 PMCID: PMC10605318 DOI: 10.3390/brainsci13101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Cumulative exposure to multiple early life stressors is expected to affect behavioral development, causing increased susceptibility to neuropsychiatric disorders. The present study was designed to mimic such conditions in a rat model to study behavioral impairments during adolescence and adulthood. Female Wistar rats (n = 32; 140-150 gm) were switched to a low protein (LP; 8% protein) or control (20% protein) diet 15 days prior to conception, and then the diet regime was maintained throughout the experimental period. Pups born to control and LP dams were intraperitoneally injected with deltamethrin (DLT-pyrethroid insecticide; 0.7 mg/kg body weight; PND 1 to 7), lipopolysaccharide (LPS-bacterial endotoxin; 0.3 mg/kg body weight; PND 3 and 5), or DLT+LPS, on designated days forming eight experimental groups (Control, LP, Control+LPS, LP+LPS, Control+DLT, LP+DLT, Control+DLT+LPS and LP+DLT+LPS). Neurobehavioral assessments were performed in F1 rats (1, 3, 6 months) by open field, elevated plus maze, light and dark box, and rotarod tests. LP rats were found to be highly susceptible to either singular or cumulative exposure as compared to their age-matched control counterparts, showing significantly severe behavioral abnormalities, such as hyperactivity, attention deficits and low anxiety, the hallmark symptoms of neuropsychiatric disorders like schizophrenia and ADHD, suggesting thereby that early life multi-hit exposure may predispose individuals to developmental disorders.
Collapse
Affiliation(s)
- Syed Mujtaba
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India; (S.M.); (I.K.P.)
- School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India; (S.M.); (I.K.P.)
- School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India; (S.M.); (I.K.P.)
| |
Collapse
|
5
|
Arias-Colinas M, Gea A, Khattab A, Vassallo M, Allen SC, Kwan J. Inflammatory Cytokines Are Associated with Cognitive Dysfunction and Depressive State during Acute Bacterial Infections and the Recovery Phase. Int J Mol Sci 2023; 24:14221. [PMID: 37762523 PMCID: PMC10532050 DOI: 10.3390/ijms241814221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
During a bacterial infection, individuals may present with behavioral changes referred to as sickness behavior, which has been suggested is induced by the inflammatory markers that are released because of the infective immunological challenge. However, few studies have explored this multidimensional phenomenon in naturally occurring conditions. A longitudinal observational study was conducted to explore the role of inflammatory cytokines in mediating the sickness behavior during a bacterial infection. There were 13, 11 and 37 participants in the infection, hospital control and healthy groups, respectively. They were all followed up for 6 weeks and their inflammatory markers were quantified throughout those weeks. Cognitive function and depressive state were assessed by means of the Mini-Mental State Examination (MMSE) and Cornell Scale for Depression in Dementia (CSDD). Reductions in proinflammatory markers C-Reactive protein (CRP), interleukin - 6 (IL6) and tumor necrosis factor-α (TNFα) and increments in anti-inflammatory markers (interleukin - 4 (IL4)) were associated with an improvement in CSDD and MSEE in patients recovering from a bacterial infection. The correlation between inflammatory makers and CSDD was statistically significant for the CRP (r = 0.535, p = 0.001), the IL6 (r = 0.499, p < 0.001), the TNFα (r = 0.235, p = 0.007) and the IL4 (r = -0.321, p = 0.018). Inflammatory cytokines may mediate sickness behavior during acute illness. These results may enhance the understanding of the pathophysiology and potential treatment strategies to palliate this sickness behavior.
Collapse
Affiliation(s)
- Mónica Arias-Colinas
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Alfredo Gea
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Biomedical Research Network Center for Pathophysiology of Obesity and Nutrition, (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Ahmed Khattab
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth BH8 8GP, UK; (A.K.); (M.V.); (S.C.A.)
| | - Michael Vassallo
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth BH8 8GP, UK; (A.K.); (M.V.); (S.C.A.)
- Department of Medicine for Older People, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK
| | - Stephen C. Allen
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth BH8 8GP, UK; (A.K.); (M.V.); (S.C.A.)
- Department of Medicine for Older People, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK
| | - Joseph Kwan
- Department of Brain Sciences, Imperial College, London W12 0NN, UK
| |
Collapse
|
6
|
Montagnani M, Bottalico L, Potenza MA, Charitos IA, Topi S, Colella M, Santacroce L. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int J Mol Sci 2023; 24:10322. [PMID: 37373470 DOI: 10.3390/ijms241210322] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have shown that the gut microbiota influences behavior and, in turn, changes in the immune system associated with symptoms of depression or anxiety disorder may be mirrored by corresponding changes in the gut microbiota. Although the composition/function of the intestinal microbiota appears to affect the central nervous system (CNS) activities through multiple mechanisms, accurate epidemiological evidence that clearly explains the connection between the CNS pathology and the intestinal dysbiosis is not yet available. The enteric nervous system (ENS) is a separate branch of the autonomic nervous system (ANS) and the largest part of the peripheral nervous system (PNS). It is composed of a vast and complex network of neurons which communicate via several neuromodulators and neurotransmitters, like those found in the CNS. Interestingly, despite its tight connections to both the PNS and ANS, the ENS is also capable of some independent activities. This concept, together with the suggested role played by intestinal microorganisms and the metabolome in the onset and progression of CNS neurological (neurodegenerative, autoimmune) and psychopathological (depression, anxiety disorders, autism) diseases, explains the large number of investigations exploring the functional role and the physiopathological implications of the gut microbiota/brain axis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucrezia Bottalico
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Division, Maugeri Clinical Scientific Research Institutes (IRCCS), 70124 Bari, Italy
| | - Skender Topi
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Marica Colella
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
7
|
Radford-Smith DE, Anthony DC. Mechanisms of Maternal Diet-Induced Obesity Affecting the Offspring Brain and Development of Affective Disorders. Metabolites 2023; 13:455. [PMID: 36984895 PMCID: PMC10053489 DOI: 10.3390/metabo13030455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and metabolic disease are common disorders that share a bidirectional relationship and continue to increase in prevalence. Maternal diet and maternal behaviour both profoundly influence the developmental trajectory of offspring during the perinatal period. At an epidemiological level, both maternal depression and obesity during pregnancy have been shown to increase the risk of neuropsychiatric disease in the subsequent generation. Considerable progress has been made to understand the mechanisms by which maternal obesity disrupts the developing offspring gut-brain axis, priming offspring for the development of affective disorders. This review outlines such mechanisms in detail, including altered maternal care, the maternal microbiome, inflammation, breast milk composition, and maternal and placental metabolites. Subsequently, offspring may be prone to developing gut-brain interaction disorders with concomitant changes to brain energy metabolism, neurotransmission, and behaviour, alongside gut dysbiosis. The gut microbiome may act as a key modifiable, and therefore treatable, feature of the relationship between maternal obesity and the offspring brain function. Further studies examining the relationship between maternal nutrition, the maternal microbiome and metabolites, and offspring neurodevelopment are warranted to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Daniel E. Radford-Smith
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX37JX, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| |
Collapse
|
8
|
Loh MK, Stickling C, Schrank S, Hanshaw M, Ritger AC, Dilosa N, Finlay J, Ferrara NC, Rosenkranz JA. Liposaccharide-induced sustained mild inflammation fragments social behavior and alters basolateral amygdala activity. Psychopharmacology (Berl) 2023; 240:647-671. [PMID: 36645464 DOI: 10.1007/s00213-023-06308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023]
Abstract
RATIONALE Conditions with sustained low-grade inflammation have high comorbidity with depression and anxiety and are associated with social withdrawal. The basolateral amygdala (BLA) is critical for affective and social behaviors and is sensitive to inflammatory challenges. Large systemic doses of lipopolysaccharide (LPS) initiate peripheral inflammation, increase BLA neuronal activity, and disrupt social and affective measures in rodents. However, LPS doses commonly used in behavioral studies are high enough to evoke sickness syndrome, which can confound interpretation of amygdala-associated behaviors. OBJECTIVES AND METHODS The objectives of this study were to find a LPS dose that triggers mild peripheral inflammation but not observable sickness syndrome in adult male rats, to test the effects of sustained mild inflammation on BLA and social behaviors. To accomplish this, we administered single doses of LPS (0-100 μg/kg, intraperitoneally) and measured open field behavior, or repeated LPS (5 μg/kg, 3 consecutive days), and measured BLA neuronal firing, social interaction, and elevated plus maze behavior. RESULTS Repeated low-dose LPS decreased BLA neuron firing rate but increased the total number of active BLA neurons. Repeated low-dose LPS also caused early disengagement during social bouts and less anogenital investigation and an overall pattern of heightened social caution associated with reduced gain of social familiarity over the course of a social session. CONCLUSIONS These results provide evidence for parallel shifts in social interaction and amygdala activity caused by prolonged mild inflammation. This effect of inflammation may contribute to social symptoms associated with comorbid depression and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Maxine K Loh
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Courtney Stickling
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sean Schrank
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Madison Hanshaw
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexandra C Ritger
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Naijila Dilosa
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joshua Finlay
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Nicole C Ferrara
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA. .,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
9
|
Hyper-inflammation of astrocytes in patients of major depressive disorder: Evidence from serum astrocyte-derived extracellular vesicles. Brain Behav Immun 2023; 109:51-62. [PMID: 36587855 DOI: 10.1016/j.bbi.2022.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Astrocyte-derived extracellular vesicles (ADEs) allow the in vivo probing of the inflammatory status of astrocytes practical. Serum sample and ADEs were used to test the inflammatory hypothesis in 70 patients with major depressive disorder (MDD) and 70 matched healthy controls (HCs). In serum, tumor necrosis factor α (TNF-α) and interleukin (IL)-17A were significantly increased, where as IL-12p70 was significantly reduced in the MDD patients compared with HCs. In ADEs, all inflammatory markers (Interferon-γ, IL-12p70, IL-1β, IL-2, IL-4, IL-6, TNF-α, and IL-17A) except IL-10 were significantly increased in the MDD patients, the Hedge's g values of elevated inflammatory markers varied from 0.48 to 1.07. However, there were no differences of all inflammatory markers whether in serum or ADEs between MDD-drug free and medicated subgroups. The association of inflammatory biomarkers between ADEs and serum did not reach statistically significance after multi-comparison correction neither in the HCs nor MDD patients. The spearman coefficients between inflammatory factors and clinical characteristics in the MDD patients, such as onset age, disease course, current episode duration, and severity of depression, were nonsignificant after multi-comparison correction. In the receiver operating characteristic curves analysis, the corrected partial area under the curve (pAUC) of each inflammatory markers in ADEs ranged from 0.522 to 0.696, and the combination of these inflammatory factors achieved a high pAUC (>0.9). Our findings support the inflammatory glial hypothesis of depression, and suggests that in human ADEs could be a useful tool to probe the in vivo astrocyte status.
Collapse
|
10
|
Solarz A, Majcher-Maślanka I, Kryst J, Chocyk A. Early-life stress affects peripheral, blood-brain barrier, and brain responses to immune challenge in juvenile and adult rats. Brain Behav Immun 2023; 108:1-15. [PMID: 36400335 DOI: 10.1016/j.bbi.2022.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/21/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Early-life stress (ELS) may affect brain maturation and neuroimmune interactions and, consequently, the inflammatory response to subsequent environmental factors later in life. Recently, the coexistence of blood-brain barrier (BBB) dysfunction and inflammation has been implicated in the etiology and progression of mental and/or neurodegenerative diseases. There are sex differences in the prevalence and outcomes of these disorders. The number of studies reporting the effects of ELS and sex on BBB functioning and neuroinflammatory processes in response to immune challenge is very limited, and the data are inconsistent. In the present study, we examined whether ELS, based on the maternal separation (MS) paradigm in rats, can condition male and female subjects to subsequent lipopolysaccharide (LPS)-induced immune challenge in juvenility or adulthood. Twenty-four hours after acute LPS injection, serum proinflammatory cytokines were measured, and BBB permeability in the medial prefrontal cortex (mPFC) and hippocampus (HP) was evaluated. Additionally, the mRNA expression of neuroinflammatory markers and BBB-related genes was also studied. We found that a single LPS challenge induced a proinflammatory response both in the periphery and in the mPFC and HP and increased BBB permeability in a sex-dependent fashion. Moreover, MS enhanced the neuroinflammatory response to LPS challenge in males (especially juveniles), whereas MS females showed no difference or a blunted central response to LPS compared with control females, mainly during adulthood. These results suggest that ELS may precondition individuals to subsequent environmental factors later in life in a sex-specific manner and potentially determine their susceptibility or resilience to mental and/or neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Solarz
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smętna Street 12, Poland
| | - Iwona Majcher-Maślanka
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smętna Street 12, Poland
| | - Joanna Kryst
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smętna Street 12, Poland; Department of Chemistry and Biochemistry, Institute for Basics Sciences, Faculty of Physiotherapy, University of Physical Education, Jana Pawła II Av. 78, 31-571 Kraków, Poland
| | - Agnieszka Chocyk
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smętna Street 12, Poland.
| |
Collapse
|
11
|
Matsuura S, Nishimoto Y, Endo A, Shiraki H, Suzuki K, Segi-Nishida E. Hippocampal Inflammation and Gene Expression Changes in Peripheral Lipopolysaccharide Challenged Mice Showing Sickness and Anxiety-Like Behaviors. Biol Pharm Bull 2023; 46:1176-1183. [PMID: 37661396 DOI: 10.1248/bpb.b22-00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Neuroinflammation is often associated with the development of depressive and anxiety disorders. The hippocampus is one of the brain regions affected by inflammation that is associated with these symptoms. However, the mechanism of hippocampal inflammation-induced emotional behavior remains unknown. The aim of this study was to clarify temporal changes in the neuroinflammatory responses in the hippocampus and the response of dentate gyrus (DG) neurons using peripheral lipopolysaccharide (LPS)-challenged mice. LPS administration induced anxiety-like activity in the elevated plus maze test and social interaction test after 24 h, at which time the mice had recovered from sickness behavior. We examined the hippocampal inflammation-related gene expression changes over time. The expression of interleukin-1β (Il1b) and tumor necrosis factor α (Tnfa) was rapidly enhanced and sustained until 24 h after LPS administration, whereas the expression of Il6 was transiently induced at approx. 6 h. IL-6-dependent downstream signaling of transducer and activator of transcription 3 (STAT3) was also activated approx. 3-6 h after LPS treatment. The expression of innate immune genes including interferon-induced transmembrane proteins such as interferon-induced transmembrane protein 1 (Ifitm1) and Ifitm3 and complement factors such as C1qa and C1qb started to increase approx. 6 h and showed sustained or further increase at 24 h. We also examined changes in the expression of several maturation markers in the DG and found that LPS enhanced the expression of calbindin 1 (Calb1), tryptophan-2,3-dioxigenase 2 (Tdo2), Il1rl, and neurotrophin-3 (Ntf3) at 24 h after LPS treatment. Collectively, these results demonstrate temporal changes of inflammation and gene expression in the hippocampus in LPS-induced sickness and anxiety-like behaviors.
Collapse
Affiliation(s)
- Sumire Matsuura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| | - Yuki Nishimoto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| | - Akane Endo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| | - Hirono Shiraki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| | - Kanzo Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| |
Collapse
|
12
|
Bay-Richter C, Wegener G. Antidepressant Effects of NSAIDs in Rodent Models of Depression-A Systematic Review. Front Pharmacol 2022; 13:909981. [PMID: 35754506 PMCID: PMC9213814 DOI: 10.3389/fphar.2022.909981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years much focus has been on neuroimmune mechanisms of depression. As a consequence, many preclinical and clinical trials have been performed examining potential antidepressant effects of several anti-inflammatory drugs. The results of such trials have been varied. With the current manuscript we wished to elucidate the effects of non-steroidal anti-inflammatory drugs (NSAIDs) on depressive-like behaviour in rodent models of depression by performing a systematic review of the available literature. We performed a systematic literature search in PubMed for rodent models of depression where NSAIDs were administered and a validated measure of depressive-like behaviour was applied. 858 studies were initially identified and screened using Covidence systematic review software. Of these 36 met the inclusion criteria and were included. The extracted articles contained data from both rat and mouse studies but primarily male animals were used. Several depression models were applied and 17 different NSAIDs were tested for antidepressant effects. Our results suggest that stress models are the best choice when examining antidepressant effects of NSAIDs. Furthermore, we found that rat models provide a more homogenous response than mouse models. Intriguingly, the use of female animals was only reported in three studies and these failed to find antidepressant effects of NSAIDs. This should be explored further. When comparing the different classes of NSAIDs, selective COX-2 inhibitors were shown to provide the most stable antidepressant effect compared to non-selective COX-inhibitors. Suggested mechanisms behind the antidepressant effects were attenuation of neuroinflammation, HPA-axis dysregulation and altered monoamine expression.
Collapse
Affiliation(s)
- Cecilie Bay-Richter
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Wang S, Guan YG, Zhu YH, Wang MZ. Role of high mobility group box protein 1 in depression: A mechanistic and therapeutic perspective. World J Psychiatry 2022; 12:779-786. [PMID: 35978968 PMCID: PMC9258272 DOI: 10.5498/wjp.v12.i6.779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/12/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
As a common and serious psychiatric disorder, depression significantly affects psychosocial functioning and quality of life. However, the mechanism of depression is still enigmatic and perplexing, which limits its precise and effective therapeutic methods. Recent studies demonstrated that neuroinflammation activation plays an important role in the pathophysiology of depression. In this respect, high mobility group box 1 (HMGB1) may be a possible signaling inducer of neuroinflammation and can be a potential mechanistic and therapeutic target for depression. Herein, we review recent studies on the mechanistic and therapeutic targets of HMGB1 in depression and propose potential perspectives on this topic.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yu-Guang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Beijing Key Laboratory of Epilepsy, Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100093, China
| | - Yan-Hua Zhu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Min-Zhong Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
14
|
Kirsten TB, Silva EP, Biondi TF, Rodrigues PS, Cardoso CV, Massironi SMG, Mori CMC, Bondan EF, Bernardi MM. Bate palmas mutant mice as a model of Kabuki syndrome: Higher susceptibility to infections and vocalization impairments? J Neurosci Res 2022; 100:1438-1451. [PMID: 35362120 DOI: 10.1002/jnr.25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/11/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Abstract
The recessive mutant mouse bate palmas (bapa) arose from N-ethyl-N-nitrosourea mutagenesis. Previous studies of our group revealed some behavioral impairments and a mutation in the lysine (K)-specific methyltransferase 2D (Kmt2d) gene. Because mutations in the KMT2D gene in humans are mainly responsible for Kabuki syndrome, this study was proposed to validate bapa mice as a model of Kabuki syndrome. Besides other symptoms, Kabuki syndrome is characterized by increased susceptibility to infections and speech impairments, usually diagnosed in the early childhood. Thus, juvenile male and female bapa mice were studied in different developmental stages (prepubertal period and puberty). To induce sickness behavior and to study infection susceptibility responses, lipopolysaccharide (LPS) was used. To study oral communication, ultrasonic vocalizations were evaluated. Behavioral (open-field test) and central (astrocytic glial fibrillary acidic protein [GFAP] and tyrosine hydroxylase [TH]) evaluations were also performed. Control and bapa female mice emitted 31-kHz ultrasounds on prepubertal period when exploring a novel environment, a frequency not yet described for mice, being defined as 31-kHz exploratory vocalizations. Males, LPS, and puberty inhibited these vocalizations. Bapa mice presented increased motor/exploratory behaviors on prepubertal period due to increased striatal TH expression, revealing striatal dopaminergic system hyperactivity. Combining open-field behavior and GFAP expression, bapa mice did not develop LPS tolerance, that is, they remained expressing signs of sickness behavior after LPS challenge, being more susceptible to infectious/inflammatory processes. It was concluded that bapa mice is a robust experimental model of Kabuki syndrome.
Collapse
Affiliation(s)
- Thiago B Kirsten
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Ericka P Silva
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Thalles F Biondi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Paula S Rodrigues
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Carolina V Cardoso
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Silvia M G Massironi
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Claudia M C Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Eduardo F Bondan
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Maria M Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| |
Collapse
|
15
|
Haavik H, Niazi IK, Kumari N, Amjad I, Duehr J, Holt K. The Potential Mechanisms of High-Velocity, Low-Amplitude, Controlled Vertebral Thrusts on Neuroimmune Function: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:536. [PMID: 34071880 PMCID: PMC8226758 DOI: 10.3390/medicina57060536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
The current COVID-19 pandemic has necessitated the need to find healthcare solutions that boost or support immunity. There is some evidence that high-velocity, low-amplitude (HVLA) controlled vertebral thrusts have the potential to modulate immune mediators. However, the mechanisms of the link between HVLA controlled vertebral thrusts and neuroimmune function and the associated potential clinical implications are less clear. This review aims to elucidate the underlying mechanisms that can explain the HVLA controlled vertebral thrust--neuroimmune link and discuss what this link implies for clinical practice and future research needs. A search for relevant articles published up until April 2021 was undertaken. Twenty-three published papers were found that explored the impact of HVLA controlled vertebral thrusts on neuroimmune markers, of which eighteen found a significant effect. These basic science studies show that HVLA controlled vertebral thrust influence the levels of immune mediators in the body, including neuropeptides, inflammatory markers, and endocrine markers. This narravtive review discusses the most likely mechanisms for how HVLA controlled vertebral thrusts could impact these immune markers. The mechanisms are most likely due to the known changes in proprioceptive processing that occur within the central nervous system (CNS), in particular within the prefrontal cortex, following HVLA spinal thrusts. The prefrontal cortex is involved in the regulation of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis and the immune system. Bi-directional neuro-immune interactions are affected by emotional or pain-related stress. Stress-induced sympathetic nervous system activity also alters vertebral motor control. Therefore, there are biologically plausible direct and indirect mechanisms that link HVLA controlled vertebral thrusts to the immune system, suggesting HVLA controlled vertebral thrusts have the potential to modulate immune function. However, it is not yet known whether HVLA controlled vertebral thrusts have a clinically relevant impact on immunity. Further research is needed to explore the clinical impact of HVLA controlled vertebral thrusts on immune function.
Collapse
Affiliation(s)
- Heidi Haavik
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
| | - Imran Khan Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 0627, New Zealand
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Nitika Kumari
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 0627, New Zealand
| | - Imran Amjad
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad 46000, Pakistan
| | - Jenna Duehr
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
| | - Kelly Holt
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
| |
Collapse
|
16
|
Schiller M, Ben-Shaanan TL, Rolls A. Neuronal regulation of immunity: why, how and where? Nat Rev Immunol 2021; 21:20-36. [PMID: 32811994 DOI: 10.1038/s41577-020-0387-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Neuroimmunology is one of the fastest-growing fields in the life sciences, and for good reason; it fills the gap between two principal systems of the organism, the nervous system and the immune system. Although both systems affect each other through bidirectional interactions, we focus here on one direction - the effects of the nervous system on immunity. First, we ask why is it beneficial to allow the nervous system any control over immunity? We evaluate the potential benefits to the immune system that arise by taking advantage of some of the brain's unique features, such as its capacity to integrate and synchronize physiological functions, its predictive capacity and its speed of response. Second, we explore how the brain communicates with the peripheral immune system, with a focus on the endocrine, sympathetic, parasympathetic, sensory and meningeal lymphatic systems. Finally, we examine where in the brain this immune information is processed and regulated. We chart a partial map of brain regions that may be relevant for brain-immune system communication, our goal being to introduce a conceptual framework for formulating new hypotheses to study these interactions.
Collapse
Affiliation(s)
- Maya Schiller
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar L Ben-Shaanan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Asya Rolls
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
17
|
Molecular insights into the therapeutic promise of targeting HMGB1 in depression. Pharmacol Rep 2020; 73:31-42. [PMID: 33015736 DOI: 10.1007/s43440-020-00163-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
Depression is a common psychiatric disorder, the exact pathogenesis of which is still elusive. Studies have proposed that immunity disproportion and enhancement in proinflammatory cytokines might be linked with the development of depression. HMGB1 (High-mobility group box (1) protein has obtained more interest as an essential factor in inherent immune reactions and a regulating factor in various inflammation-related diseases. HMGB1 is a ubiquitous chromatin protein and is constitutively expressed in nucleated mammalian cells. HMGB1 is released by glial cells and neurons upon inflammasome activation and act as a pro-inflammatory cytokine. HMGB1 is a late mediator of inflammation and has been indicated as a major mediator in various neuroinflammatory diseases. Microglia, which is the brain immune cell, is stimulated by HMGB1 and released inflammatory mediators and induces chronic neurodegeneration in the CNS (central nervous system). In the current review, we aimed to investigate the role of HMGB1 in the pathogenesis of depression. The studies found that HMGB1 functions as proinflammatory cytokines primarily via binding receptors like RAGE (receptor for advanced glycation end product), TLR2 and TLR4 (Toll-like receptor 2 and 4). Further, HMGB1 added to the preparing impacts of stress-pretreatment and assumed a major function in neurodegenerative conditions through moderating neuroinflammation. Studies demonstrated that neuroinflammation played a major role in the development of depression. The patients of depression generally exhibited an elevated amount of proinflammatory cytokines in the serum, microglia activation and neuronal deficit in the CNS.
Collapse
|
18
|
Treading water: mixed effects of high fat diet on mouse behavior in the forced swim test. Physiol Behav 2020; 223:112965. [DOI: 10.1016/j.physbeh.2020.112965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 12/27/2022]
|
19
|
Zinc, but not paracetamol, prevents depressive-like behavior and sickness behavior, and inhibits interferon-gamma and astrogliosis in rats. Brain Behav Immun 2020; 87:489-497. [PMID: 32006614 DOI: 10.1016/j.bbi.2020.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Considering all mental and addictive disorders, depression is the most responsible for years of life lost due to premature mortality and disability. Antidepressant drugs have limited effectiveness. Depression can be triggered by immune/inflammatory factors. Zinc and paracetamol interfere with immune system and have demonstrated beneficial effects on depression treatment when administered concomitant with antidepressant drugs. The objective of this study was to test zinc and/or paracetamol as treatments of depressive-like behavior, sickness behavior, and anxiety in rats, as well as to understand the central and peripheral mechanisms involved. Sickness behavior and depressive-like behavior were induced in rats with repetitive lipopolysaccharide (LPS, 1 mg/kg for two consecutive days) administrations. Rats received zinc and/or paracetamol for three consecutive days. Sickness behavior (daily body weight and open field general activity); anxiety (light-dark test); depressive-like/antidepressant behavior (forced swim test); plasma corticosterone and interferon (IFN)-gamma levels; and glial fibrillary acidic protein (GFAP) and tyrosine hydroxylase (TH) brain expression were evaluated. LPS induced sickness behavior and depressive-like behavior, as well as elevated IFN-gamma levels and increased GFAP expression. Zinc prevented both behavioral and biochemical impairments. Paracetamol and zinc + paracetamol association induced only slight beneficial effects. Anxiety, corticosterone, and TH do not seem be related with depression and the other behavioral and neuroimmune changes. In conclusion, zinc treatment was beneficial for sickness behavior and depressive-like behavior without concomitant administration of antidepressants. IFN-gamma and GFAP were linked with the expression of sickness behavior and depressive-like behavior and were also involved with the antidepressant effects. Therefore, zinc, IFN-gamma, and GFAP pathways should be considered for depression treatment.
Collapse
|
20
|
Kongsui R, Sriraksa N, Thongrong S. The Neuroprotective Effect of Zingiber cassumunar Roxb. Extract on LPS-Induced Neuronal Cell Loss and Astroglial Activation within the Hippocampus. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4259316. [PMID: 32596307 PMCID: PMC7273477 DOI: 10.1155/2020/4259316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022]
Abstract
The systemic administration of lipopolysaccharide (LPS) has been recognized to induce neuroinflammation which plays a significant role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In this study, we aimed to determine the protective effect of Zingiber cassumunar (Z. cassumunar) or Phlai (in Thai) against LPS-induced neuronal cell loss and the upregulation of glial fibrillary acidic protein (GFAP) of astrocytes in the hippocampus. Adult male Wistar rats were orally administered with Z. cassumunar extract at various doses (50, 100, and 200 mg/kg body weight) for 14 days before a single injection of LPS (250 μg/kg/i.p.). The results indicated that LPS-treated animals exhibited neuronal cell loss and the activation of astrocytes and also increased proinflammatory cytokine interleukin- (IL-) 1β in the hippocampus. Pretreatment with Z. cassumunar markedly reduced neuronal cell loss in the hippocampus. In addition, Z. cassumunar extract at a dose of 200 mg/kg BW significantly suppressed the inflammatory response by reducing the expression of GFAP and IL-1ß in the hippocampus. Therefore, the results suggested that Z. cassumunar extract might be valuable as a neuroprotective agent in neuroinflammation-induced brain damage. However, further investigations are essential to validate the possible active ingredients and mechanisms of its neuroprotective effect.
Collapse
Affiliation(s)
- Ratchaniporn Kongsui
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Napatr Sriraksa
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Sitthisak Thongrong
- Division of Anatomy, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
21
|
Pinto R, Belsky J, Baptista J, Carvalho A, Cunha C, Soares I, Mesquita AR. Mothers' distress exposure and children's withdrawn behavior - A moderating role for the Interferon Gamma gene (IFNG). Dev Psychobiol 2020; 62:783-791. [PMID: 32072627 DOI: 10.1002/dev.21955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/05/2019] [Accepted: 01/02/2020] [Indexed: 11/09/2022]
Abstract
The dysregulation of the inflammatory response, including pro-inflammatory molecules, produces neuropsychiatric symptoms and depression-like behavior, including withdrawal from the physical and social environment. Genetic variants that enhance immune reactivity may thus increase inflammatory and withdrawn reactions to stress. Here we investigated a functional polymorphism of Interferon Gamma gene (IFNG +874 T > A, rs2430561) as moderator of the relationship between mothers' distress exposure and children's withdrawn behavior at preschool age. Participants were 198 Portuguese preschool children (mean age = 57.98 months). Exposure to mother's distress was assessed using the Brief Symptom Inventory, and withdrawn behavior with the Caregiver Teacher Report Form. All children provided saliva samples for genotyping. Contrary to expecations based on prior work, the rs2430561 AA genotype-not the T variant-interacted with (high levels of) mothers' distress exposure, to increase children's withdrawn behavior. No significant main effects were detected. The polymorphism in Interferon Gamma gene showed specific environmental stressor-dependent effects on withdrawn behavior during childhood, ones which are interpreted in light of the "behavioral immune system" hypothesis, and which proved inconsistent with diathesis-stress thinking.
Collapse
Affiliation(s)
- Raquel Pinto
- CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Jay Belsky
- Department of Human Ecology, University of California, Davis, Davis, CA, USA
| | - Joana Baptista
- CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Soares
- CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Ana R Mesquita
- CIPsi, School of Psychology, University of Minho, Braga, Portugal
| |
Collapse
|
22
|
Jmjd3 is involved in the susceptibility to depression induced by maternal separation via enhancing the neuroinflammation in the prefrontal cortex and hippocampus of male rats. Exp Neurol 2020; 328:113254. [PMID: 32084453 DOI: 10.1016/j.expneurol.2020.113254] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/09/2020] [Accepted: 02/17/2020] [Indexed: 12/29/2022]
Abstract
Adverse childhood experience is a major risk factor for the onset of depression in adulthood. Neuroinflammation characterized by microglial activation and cytokine secretion is involved in susceptibility to depression induced by early life stress. Jumonji domain-containing protein 3 (Jmjd3), a trimethylated lysine 27 in histone 3 (H3K27me3) demethylase, can be activated by nuclear factor-kappa B (NF-κB), further regulating the expression of pro-inflammatory cytokines and resulting in neuroinflammation. However, its involvement in susceptibility to early life stress-related depression is unknown. In the current study, maternal separation (MS) was utilized as a model of early life stress and systemic lipopolysaccharide (LPS) administration in adulthood was used as a later-life challenge. Depressive- and anxiety-like behaviors and memory impairment were detected by behavioral tests. Microglial activation, pro-inflammatory cytokine expression, and NF-κB, Jmjd3, and H3K27me3 expression were detected in the prefrontal cortex and hippocampus in both infant and adult rats. Meanwhile, the Jmjd3 inhibitor GSK-J4 was used as an intervention in vivo and in vitro. Our results showed that MS induced depression-like behaviors and synchronously caused microglial activation, pro-inflammatory cytokine over-expression, NF-κB and Jmjd3 over-expression, and decreased H3K27me3 expression in infant rats. All these alterations could also be detected in adulthood. Seven-day LPS administration in adult rats induced similar changes of behaviors and biomarkers. Interestingly, compared with rats not exposed to MS, MS-exposed rats receiving LPS administration developed more severe depression-like behaviors and neuroinflammatory status, higher levels of NF-κB and Jmjd3 expression, and lower levels of H3K27me3 expression. In addition, LPS induced microglial activation, pro-inflammatory cytokine expression and increased Jmjd3 expression in vitro. Furthermore, GSK-J4 treatment alleviated these alterations in vivo and in vitro. Thus, our data indicate that Jmjd3 is involved in the susceptibility to depression induced by MS via enhancement of neuroinflammation in the prefrontal cortex and hippocampus of rats.
Collapse
|
23
|
LPS-induced sickness behavior is not affected by selenium but is switched off by psychogenic stress in rats. Vet Res Commun 2019; 43:239-247. [PMID: 31760569 DOI: 10.1007/s11259-019-09766-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/02/2019] [Indexed: 01/03/2023]
Abstract
Sickness behavior (SB) is considered part of the adaptive behavioral and neuroimmune changes that occur in response to inflammatory processes. However, SB is a motivational state modulated by the environmental context. The objective of this study was to evaluate if selenium could ameliorate symptoms of SB and if stress would affect these responses. We induced SB in rats using lipopolysaccharide (LPS). We choose selenium based on our findings of LPS-exposure decreasing selenium levels in rats. We exposed these rats to a psychogenic stress and studied motivational modulation paradigms, such as cure of the organism, preservation of the species, and fight or flight. We studied ultrasonic vocalizations, open-field behaviors, body weight, and IL-1 beta and IFN-gamma serum levels. LPS-induced SB was evidenced by decreased motor/exploratory activity and increased proinflammatory mediators' levels. Selenium treatment did not exert beneficial effects on SB, revealing that probably the selenium deficiency was not related to SB. When analyzed with the stress paradigm, the behavior of rats was differentially affected. LPS did not affect behavior in the presence of stress. SB was abrogated during stressor events to prioritize survival behaviors, such as fight-or-flight. Contrarily, the association of LPS, selenium, and stress induced SB even during stressor events, revealing that this combination induced a cumulative toxic effect.
Collapse
|
24
|
Liu K, Zhao X, Lu X, Zhu X, Chen H, Wang M, Yan W, Jing L, Deng Y, Yu L, Wu H, Wen G, Sun X, Lv Z. Effect of selective serotonin reuptake inhibitor on prefrontal-striatal connectivity is dependent on the level of TNF-α in patients with major depressive disorder. Psychol Med 2019; 49:2608-2616. [PMID: 30520409 DOI: 10.1017/s0033291718003616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND We hypothesize that the tumor necrosis factor-α (TNF-α) may play a role in disturbing the effect of selective serotonin reuptake inhibitor (SSRI) on the striatal connectivity in patients with major depressive disorder (MDD). METHODS We performed a longitudinal observation by combining resting-state functional magnetic resonance imaging (rs-fMRI) and biochemical analyses to identify the abnormal striatal connectivity in MDD patients, and to evaluate the effect of TNF-α level on these abnormal connectivities during SSRI treatment. Eighty-five rs-fMRI scans were collected from 25 MDD patients and 35 healthy controls, and the scans were repeated for all the patients before and after a 6-week SSRI treatment. Whole-brain voxel-wise functional connectivity (FC) was calculated by correlating the rs-fMRI time courses between each voxel and the striatal seeds (i.e. spherical regions placed at the striatums). The level of TNF-α in serum was evaluated by Milliplex assay. Factorial analysis was performed to assess the interaction effects of 'TNF-α × treatment' in the regions with between-group FC difference. RESULTS Compared with controls, MDD patients showed significantly higher striatal FC in the medial prefrontal cortex (MPFC) and bilateral middle/superior temporal cortices before SSRI treatment (p < 0.001, uncorrected). Moreover, a significant interaction effect of 'TNF-α × treatment' was found in MPFC-striatum FC in MDD patients (p = 0.002), and the significance remained after adjusted for age, gender, head motion, and episode of disease. CONCLUSION These findings provide evidence that treatment-related brain connectivity change is dependent on the TNF-α level in MDD patients, and the MPFC-striatum connectivities possibly serve as an important target in the brain.
Collapse
Affiliation(s)
- Kai Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohua Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaobing Lu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiaoxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Chen
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengmeng Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Linlin Jing
- TCM Integrated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Yanjia Deng
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Yu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Ge Wen
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuegang Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Zenz G, Jačan A, Reichmann F, Farzi A, Holzer P. Intermittent Fasting Exacerbates the Acute Immune and Behavioral Sickness Response to the Viral Mimic Poly(I:C) in Mice. Front Neurosci 2019; 13:359. [PMID: 31057355 PMCID: PMC6478699 DOI: 10.3389/fnins.2019.00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Intermitted fasting and other forms of calorie restriction are increasingly demonstrated to exert potential health benefits. Interestingly, restricted feeding is also able to mitigate sickness in response to bacterial factors stimulating Toll-like receptor 4 (TLR4). However, little is known about how fasting modifies the activity of virus-associated molecular patterns. We therefore analyzed the impact of an intermittent fasting (IF) regimen on the immune and behavioral response to the TLR3 agonist and viral mimic polyinosinic:polycytidylic acid [Poly(I:C)] in mice. The effects of intraperitoneally injected Poly(I:C) (12 mg/kg) on plasma and cerebral cytokine expression and behavior (locomotion, exploration, and ingestion) were examined in male C57BL/6N mice under control conditions and following a 9 days period of intermittent (alternate day) fasting (IF). Poly(I:C) increased the circulating levels of cytokines (TNF-α, MCP-1, IL-6, IL-10, IFN-α, IFN-γ), an effect amplified by IF. In addition, IF aggravated sickness behavior in response to Poly(I:C), while cerebral cytokine expression was enhanced by application of Poly(I:C) in the absence of a significant effect of IF. Furthermore, IF augmented the expression of neuropeptide Y (NPY) mRNA in the hypothalamus and increased the plasma levels of corticosterone, while Poly(I:C) had little effect on these readouts. Our data show that IF does not abate, but exaggerates the immune and sickness response to the viral mimic Poly(I:C). This adverse effect of IF occurs despite increased hypothalamic NPY expression and enhanced plasma corticosterone. We therefore propose that the effects of IF on the immune and behavioral responses to viral and bacterial factors are subject to different neuronal and neuroendocrine control mechanisms.
Collapse
Affiliation(s)
- Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Angela Jačan
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
26
|
Fukuda T, Ohya R, Kobayashi K, Ano Y. Matured Hop Bitter Acids in Beer Improve Lipopolysaccharide-Induced Depression-Like Behavior. Front Neurosci 2019; 13:41. [PMID: 30760978 PMCID: PMC6362420 DOI: 10.3389/fnins.2019.00041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/15/2019] [Indexed: 01/08/2023] Open
Abstract
Recent studies have demonstrated a close association between neural inflammation and development of mental illnesses, such as depression. Clinical trials have reported that treatment with non-steroidal anti-inflammatory drugs is associated with reduced risk of depression. Moreover, nutritional approaches for the prevention and management of depression have garnered significant attention in recent years. We have previously demonstrated that iso-α-acids (IAAs)—the bitter components in beer—suppress hippocampal microglial inflammation, thereby improving cognitive decline. However, effects of hop-derived components other than IAAs on inflammation have not been elucidated. In the present study, we demonstrated that consumption of matured hop bitter acids (MHBAs) generated from α- and β-acids, which show a high similarity with the chemical structure of IAAs, suppress lipopolysaccharide (LPS)-induced cytokine productions in the brain. MHBAs administration increased norepinephrine (NE) secretion and reduced immobility time which represents depression-like behavior in the tail suspension test. Moreover, MHBAs components, including hydroxyallohumulinones and hydroxyalloisohumulones, reduced LPS-induced immobility time. Although further researches are needed to clarify the underlying mechanisms, these findings suggest that MHBAs reduce inflammatory cytokine productions and increase NE secretion, thereby improving depression-like behavior. Similarly, inoculation with LPS induced loss of dendritic spines, which was improved upon MHBAs administration. Additionally, vagotomized mice showed attenuated improvement of immobility time, increase in NE level, and improvement of dendrite spine density following MHBAs administration. Therefore, MHBAs activate the vagus nerve and suppress neuronal damage and depression-like behavior induced by inflammation.
Collapse
Affiliation(s)
- Takafumi Fukuda
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Japan
| | - Rena Ohya
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Japan
| | - Keiko Kobayashi
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Japan
| | - Yasuhisa Ano
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Japan
| |
Collapse
|
27
|
Cytokine variations within brain structures in rats selected for differences in aggression. Neurosci Lett 2019; 692:193-198. [PMID: 30423398 DOI: 10.1016/j.neulet.2018.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/15/2018] [Accepted: 11/06/2018] [Indexed: 01/30/2023]
Abstract
The present study examined the content of cytokines (IL-1β, IL-2, IL-6, IL-10) in the brain structures (the hypothalamus, striatum, frontal cortex, and hippocampus) in two rat lines selected for differences in fear-induced aggression at 2, 4, and 24 h after a peripheral injection of saline or lipopolysaccharide (LPS, 250 μg/kg). LPS stimulation elevated cytokine activity above baseline levels in both aggressive and nonaggressive rats, but the pattern, time course of cytokine changes, and their regional characteristics varied according to the animal aggressiveness. After LPS administration, aggressive rats showed increased levels of IL-1β in the hypothalamus at 2 and 4 h and in the frontal cortex at 4 and 24 h compared to LPS-treated nonaggressive line. IL-2 was increased in the frontal cortex and striatum of aggressive rats within 24 h, while IL-6 elevation in the hypothalamus was found at 4 h and in the frontal cortex at 2 and 4 h. In the hippocampus, the levels of IL-1β, IL-2, and IL-6 were lower in LPS-treated aggressive rats than in nonaggressive animals. The levels of anti-inflammatory cytokine IL-10 were also decreased in all brain structures of aggressive rats receiving LPS. The results indicate that genetic predisposition to increased aggression is associated with a time and region-dependent changes in the levels of pro- and anti-inflammatory cytokines.
Collapse
|
28
|
Francija E, Petrovic Z, Brkic Z, Mitic M, Radulovic J, Adzic M. Disruption of the NMDA receptor GluN2A subunit abolishes inflammation-induced depression. Behav Brain Res 2018; 359:550-559. [PMID: 30296532 DOI: 10.1016/j.bbr.2018.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022]
Abstract
Recent reports have demonstrated that lipopolysaccharide (LPS)-induced depressive-like behaviour is mediated via NMDA receptor. In this study, we further investigated the role of GluN2 A subunit of NMDA receptor in synaptic processes in the prefrontal cortex (PFC) and hippocampus of GluN2 A knockout (KO) mice in LPS-induced depressive-like behavior. Our data suggest that LPS-treated mice, lacking GluN2 A subunit, did not exhibit depressive-like behaviour. This was accompanied by unaltered levels of IL-6 and significant changes in neuroplasticity markers and glutamate receptor subunits composition in PFC and hippocampus. In particular, an immune challenge in GluN2 A KO mice resulted in unchanged PSA-NCAM levels and proBDNF increase in both brain structures as well as in increase in BDNF levels in hippocampus. Furthermore, the absence of GluN2 A resulted in increased levels of all NCAM isoforms in PFC upon LPS which was followed with a decrease in GluN1 and GluN2B subunits. The levels of AMPA receptor subunits (GluA1, GluA3, and GluA4) in the hippocampus of GluN2 A mice were unaltered upon the treatment and abundantly present in the PFC of KO mice. These results indicate that the GluN2 A subunit is critical in neuroinflammation-related depression, that its absence abolishes LPS-induced depressive phenotype, sustains PSA-NCAM levels, increases proBDNF signalling in the PFC and hippocampus and potentiates synaptic stabilization through NCAM in the PFC upon an immune challenge.
Collapse
Affiliation(s)
- Ester Francija
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Zorica Petrovic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Zeljka Brkic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Jelena Radulovic
- Department of Psychiatry and Behavioural Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia.
| |
Collapse
|
29
|
Liu L, Zhao Z, Lu L, Liu J, Wu X, Sun J, Wei Y, Dong J. The role of HMGB1 in neuroinflammation and tissue repair: A potential therapeutic target for depression? TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018300035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High mobility group protein box 1 (HMGB1), a sophisticated danger signal with pleiotropic functions, has been proved to function as a pro-inflammatory cytokine. In the central neural system (CNS), HMGB1 can stimulate microglia, the immune cell in the CNS, to release inflammatory factors and to cause chronic neurodegeneration. The evidence showed that HMGB1 can act as a pro-inflammatory cytokine mainly through its receptors like advanced glycation end product (RAGE), Toll-like 4 (TLR4), and so on. Moreover, HMGB1 contributed to the priming effects of stress-pretreatment and played a key role in neurodegeneration diseases via mediating neuroinflammation. However, the evidence also showed that HMGB1 played a role in tissue repair, with the ability to promote cell migration and proliferation, to induce the differentiation of mesenchymal stem cells (MSCs), and to regenerate spinal cord. These pleiotropic functions of HMGB1 make it possible to play a role from cell death to new life. Depression is a chronic, severe, and often life-threatening disease accompanied with impaired neurogenesis. The evidence showed that neuroinflammation played a key role in the process of depression. Depressive patients often showed a high expression of inflammatory cytokines in the blood and an activation of microglia in the brain. Meanwhile, they also showed a neuron deficit in the brain. Though they lack direct evidence linking HMGB1 with depression, the ability of HMGB1 that can function from neuroinflammation to tissue repair makes HMGB1 a promising therapeutic target of depression.
Collapse
Affiliation(s)
- Lumei Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P. R. China
| | - Zhengxiao Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P. R. China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P. R. China
| | - Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P. R. China
| | - Xiao Wu
- The Respiratory Department of the TCM Hospital of Jiangsu, Nanjing 210000, P. R. China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P. R. China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P. R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P. R. China
| |
Collapse
|
30
|
Albertini G, Deneyer L, Ottestad-Hansen S, Zhou Y, Ates G, Walrave L, Demuyser T, Bentea E, Sato H, De Bundel D, Danbolt NC, Massie A, Smolders I. Genetic deletion of xCT attenuates peripheral and central inflammation and mitigates LPS-induced sickness and depressive-like behavior in mice. Glia 2018; 66:1845-1861. [PMID: 29693305 DOI: 10.1002/glia.23343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
The communication between the immune and central nervous system (CNS) is affected in many neurological disorders. Peripheral injections of the endotoxin lipopolysaccharide (LPS) are widely used to study this communication: an LPS challenge leads to a biphasic syndrome that starts with acute sickness and is followed by persistent brain inflammation and chronic behavioral alterations such as depressive-like symptoms. In vitro, the response to LPS treatment has been shown to involve enhanced expression of system <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup><mml:mrow><mml:mi>x</mml:mi></mml:mrow> <mml:mrow><mml:mi>c</mml:mi></mml:mrow> <mml:mrow><mml:mo>-</mml:mo></mml:mrow> </mml:msubsup> </mml:math> . This cystine-glutamate antiporter, with xCT as specific subunit, represents the main glial provider of extracellular glutamate in mouse hippocampus. Here we injected male xCT knockout and wildtype mice with a single intraperitoneal dose of 5 mg/kg LPS. LPS-injection increased hippocampal xCT expression but did not alter the mainly astroglial localization of the xCT protein. Peripheral and central inflammation (as defined by cytokine levels and morphological activation of microglia) as well as LPS-induced sickness and depressive-like behavior were significantly attenuated in xCT-deficient mice compared with wildtype mice. Our study is the first to demonstrate the involvement of system <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup><mml:mrow><mml:mi>x</mml:mi></mml:mrow> <mml:mrow><mml:mi>c</mml:mi></mml:mrow> <mml:mrow><mml:mo>-</mml:mo></mml:mrow> </mml:msubsup> </mml:math> in peripheral and central inflammation in vivo and the potential therapeutic relevance of its inhibition in brain disorders characterized by peripheral and central inflammation, such as depression.
Collapse
Affiliation(s)
- Giulia Albertini
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Lauren Deneyer
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Sigrid Ottestad-Hansen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Yun Zhou
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Gamze Ates
- Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Laura Walrave
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Thomas Demuyser
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Eduard Bentea
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Hideyo Sato
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Technology, Niigata University, Niigata, 951-8518, Japan
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Niels C Danbolt
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, 1090, Belgium
| |
Collapse
|
31
|
Ventorp F, Bay-Richter C, Nagendra AS, Janelidze S, Matsson VS, Lipton J, Nordström U, Westrin Å, Brundin P, Brundin L. Exendin-4 Treatment Improves LPS-Induced Depressive-Like Behavior Without Affecting Pro-Inflammatory Cytokines. JOURNAL OF PARKINSONS DISEASE 2018; 7:263-273. [PMID: 28387682 PMCID: PMC5438473 DOI: 10.3233/jpd-171068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Exendin-4 is a peptide agonist of the glucagon-like peptide-1 (GLP-1) receptor, currently in clinical trials as a potential disease-modifying therapy for Parkinson’s disease. In light of this, it is important to understand potential modes of action of exendin-4 in the brain. Exendin-4 is neuroprotective and has been proposed to be directly anti-inflammatory, and that this is one way it reduces neurodegeneration. However, prior studies have focused on animal models involving both neurodegeneration and inflammation, therefore, it is also possible that the observed decreased inflammation is secondary to reduced neurodegeneration. Objective: To investigate whether exendin-4 directly reduces inflammation in the brain following an insult that involves neuroinflammation but not neurodegeneration, namely systemic administration of lipopolysaccharide (LPS). Methods: Rats were administered LPS systemically and were treated with either 0.5 μg/kg exendin-4 or saline vehicle injections over 5 days. Behavior was evaluated with forced swim test. We assayed TNF-α and IL-1β levels in cerebrospinal fluid and cytokine mRNA expression in striatal, hippocampal and cortical tissues using qPCR. We determined brain monoamines using high-performance liquid chromatography. Finally, we isolated primary brain microglia from rats and measured cytokine production after exendin-4 treatment and LPS stimulation. Results: Exendin-4 treatment did not affect cytokine mRNA expression in brain, cytokine levels in cerebrospinal fluid or cytokine production from cultured microglia, although there was a trend towards increased striatal dopamine. Importantly, exendin-4 significantly prevented depressive-like behavior at 24 hours after LPS injection, indicating that the drug engaged a target in the brain. Depressive-like behavior was associated with altered dopamine turnover in the striatum. Conclusion: We did not detect any anti-inflammatory effects of exendin-4. In previous studies exploring the effects of exendin-4 on brain insults involving neurodegeneration, observations of reduced inflammation might have been secondary to mitigation of neuronal death. Our results indicate that the effects of exendin-4 on behavior may be due to effects on dopamine synthesis or metabolism.
Collapse
Affiliation(s)
- Filip Ventorp
- Division of Psychiatry, Lund University, Lund, Sweden
| | | | - Analise Sauro Nagendra
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | | - Jack Lipton
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Ulrika Nordström
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Åsa Westrin
- Division of Psychiatry, Lund University, Lund, Sweden
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Lena Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|
32
|
Ota M, Ogura J, Ogawa S, Kato K, Matsuda H, Kunugi H. A Single Intraperitoneal Injection of Endotoxin Changes Glial Cells in Rats as Revealed by Positron Emission Tomography Using [ 11C]PK11195. Nucl Med Mol Imaging 2018; 52:224-228. [PMID: 29942401 DOI: 10.1007/s13139-017-0510-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose Intracranial administration of lipopolysaccharide (LPS) is known to elicit a rapid innate immune response, activate glial cells in the brain, and induce depression-like behavior. However, no study has focused on the changes in glial cells induced by intraperitoneal injection of LPS in vivo. Methods Ten adult male Fischer F344 rats underwent [11C]PK11195 PET before and 2 days after intraperitoneal injection of LPS to evaluate the changes in glial cells. The difference in standardized uptake values (SUV) of [11C]PK11195 between before and after injection was determined. Results There was a cluster of brain regions that showed significant reductions in SUV. This cluster included the bilateral striata and bilateral frontal regions, especially the somatosensory areas. Conclusions Changes in activity of glial cells induced by the intraperitoneal injection of LPS were detected in vivo by [11C]PK11195 PET. Intraperitoneal injection of LPS is known to induce depression, and further studies with [11C]PK11195 PET would clarify the relationships between neuroinflammation and depression.
Collapse
Affiliation(s)
- Miho Ota
- 1Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Jun Ogura
- 1Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Shintaro Ogawa
- 1Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Koichi Kato
- Organic Radiochemistry Section, Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center Hospital of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center Hospital of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Hiroshi Kunugi
- 1Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| |
Collapse
|
33
|
Holmes SE, Hinz R, Conen S, Gregory CJ, Matthews JC, Anton-Rodriguez JM, Gerhard A, Talbot PS. Elevated Translocator Protein in Anterior Cingulate in Major Depression and a Role for Inflammation in Suicidal Thinking: A Positron Emission Tomography Study. Biol Psychiatry 2018; 83:61-69. [PMID: 28939116 DOI: 10.1016/j.biopsych.2017.08.005] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Major depressive disorder is associated with raised peripheral inflammatory markers. Mounting evidence also suggests that inflammation is involved in suicidal behavior. However, the involvement of inflammation in the brains of individuals with depression, and its association with suicidal ideation, needs further clarification. Translocator protein (TSPO), which is upregulated in activated glia (predominantly microglia), can be measured as an indication of neuroinflammation in vivo using positron emission tomography and TSPO-specific radioligands. METHODS We used [11C](R)-PK11195 positron emission tomography to compare TSPO availability in the anterior cingulate cortex (ACC), prefrontal cortex, and insula between 14 medication-free patients in a major depressive episode of at least moderate severity and 13 matched healthy control subjects. In a post hoc analysis, we also compared TSPO availability between patients with and without suicidal thoughts. RESULTS Multivariate analysis of variance indicated significantly higher TSPO in patients compared with control subjects (p = .005). The elevation was of large effect size and significant in the ACC (p = .022, Cohen's d = 0.95), with smaller nonsignificant elevations in the prefrontal cortex (p = .342, Cohen's d = 0.38) and insula (p = .466, Cohen's d = 0.29). TSPO was not elevated in patients without suicidal thinking but was significantly increased in those with suicidal thoughts compared with those without, most robustly in the ACC (p = .008) and insula (p = .023). CONCLUSIONS We confirm evidence for increased TSPO availability, suggestive of predominantly microglial activation, in the ACC during a moderate to severe major depressive episode. Our findings provide further incentive for evaluating anti-inflammatory therapies in major depressive disorder.
Collapse
Affiliation(s)
- Sophie E Holmes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rainer Hinz
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Silke Conen
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Catherine J Gregory
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Julian C Matthews
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jose M Anton-Rodriguez
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Peter S Talbot
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; Greater Manchester Mental Health NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.
| |
Collapse
|
34
|
Seki K, Yoshida S, Jaiswal MK. Molecular mechanism of noradrenaline during the stress-induced major depressive disorder. Neural Regen Res 2018; 13:1159-1169. [PMID: 30028316 PMCID: PMC6065220 DOI: 10.4103/1673-5374.235019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic stress-induced depression is a common hallmark of many psychiatric disorders with high morbidity rate. Stress-induced dysregulation of noradrenergic system has been implicated in the pathogenesis of depression. Lack of monoamine in the brain has been believed to be the main causative factor behind pathophysiology of major depressive disorder (MDD) and several antidepressants functions by increasing the monoamine level at the synapses in the brain. However, it is undetermined whether the noradrenergic receptor stimulation is critical for the therapeutic effect of antidepressant. Contrary to noradrenergic receptor stimulation, it has been suggested that the desensitization of β-adrenoceptor is involved in the therapeutic effect of antidepressant. In addition, enhanced noradrenaline (NA) release is central response to stress and thought to be a risk factor for the development of MDD. Moreover, fast acting antidepressant suppresses the hyperactivation of noradrenergic neurons in locus coeruleus (LC). However, it is unclear how they alter the firing activity of LC neurons. These inconsistent reports about antidepressant effect of NA-reuptake inhibitors (NRIs) and enhanced release of NA as a stress response complicate our understanding about the pathophysiology of MDD. In this review, we will discuss the role of NA in pathophysiology of stress and the mechanism of therapeutic effect of NA in MDD. We will also discuss the possible contributions of each subtype of noradrenergic receptors on LC neurons, hypothalamic-pituitary-adrenal axis (HPA-axis) and brain derived neurotrophic factor-induced hippocampal neurogenesis during stress and therapeutic effect of NRIs in MDD.
Collapse
Affiliation(s)
- Kenjiro Seki
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, Fukushima, Japan
| | - Satomi Yoshida
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, Fukushima, Japan
| | - Manoj Kumar Jaiswal
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Locker AR, Michalovicz LT, Kelly KA, Miller JV, Miller DB, O'Callaghan JP. Corticosterone primes the neuroinflammatory response to Gulf War Illness-relevant organophosphates independently of acetylcholinesterase inhibition. J Neurochem 2017; 142:444-455. [PMID: 28500787 PMCID: PMC5575502 DOI: 10.1111/jnc.14071] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
Gulf War Illness (GWI) is a chronic multi-symptom disorder affecting veterans of the 1991 Gulf War. Among the symptoms of GWI are those associated with sickness behavior, observations suggestive of underlying neuroinflammation. We have shown that exposure of mice to the stress hormone, corticosterone (CORT), and to diisopropyl fluorophosphate (DFP), as a nerve agent mimic, results in marked neuroinflammation, findings consistent with a stress/neuroimmune basis of GWI. Here, we examined the contribution of irreversible and reversible acetylcholinesterase (AChE) inhibitors to neuroinflammation in our mouse model of GWI. Male C57BL/6J mice received 4 days of CORT (400 mg/L) in the drinking water followed by a single dose of chlorpyrifos oxon (CPO; 8 mg/kg, i.p.), DFP (4 mg/kg, i.p.), pyridostigmine bromide (PB; 3 mg/kg, i.p.), or physostigmine (PHY; 0.5 mg/kg, i.p.). CPO and DFP alone caused cortical and hippocampal neuroinflammation assessed by qPCR of tumor necrosis factor-alpha, IL-6, C-C chemokine ligand 2, IL-1β, leukemia inhibitory factor and oncostatin M; CORT pretreatment markedly augmented these effects. Additionally, CORT exposure prior to DFP or CPO enhanced activation of the neuroinflammation signal transducer, signal transducer and activator of transcription 3 (STAT3). In contrast, PHY or PB alone or with CORT pretreatment did not produce neuroinflammation or STAT3 activation. While all of the CNS-acting AChE inhibitors (DFP, CPO, and PHY) decreased brain AChE activity, CORT pretreatment abrogated these effects for the irreversible inhibitors. Taken together, these findings suggest that irreversible AChE inhibitor-induced neuroinflammation and particularly its exacerbation by CORT, result from non-cholinergic effects of these compounds, pointing potentially to organophosphorylation of other neuroimmune targets.
Collapse
Affiliation(s)
- Alicia R. Locker
- Health Effects Laboratory DivisionCenters for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Lindsay T. Michalovicz
- Health Effects Laboratory DivisionCenters for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Kimberly A. Kelly
- Health Effects Laboratory DivisionCenters for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Julie V. Miller
- Health Effects Laboratory DivisionCenters for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Diane B. Miller
- Health Effects Laboratory DivisionCenters for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - James P. O'Callaghan
- Health Effects Laboratory DivisionCenters for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| |
Collapse
|
36
|
Bryleva EY, Brundin L. Suicidality and Activation of the Kynurenine Pathway of Tryptophan Metabolism. Curr Top Behav Neurosci 2017; 31:269-284. [PMID: 27221623 DOI: 10.1007/7854_2016_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A recent report by the World Health Organization declared suicide to be a major global problem. With more than 800,000 lives lost each year, suicide is calculated to be the 14th leading cause of death around the world. While the biological mechanisms causing suicidal ideation and behavior are not fully understood, increased levels of inflammation, arising from various sources, have been detected in the central nervous system and the peripheral blood of suicidal patients and suicide completers. Inflammation induces the kynurenine pathway of tryptophan metabolism, which generates a range of metabolites with potent effects on neurotransmitter systems as well as on inflammation. Recent evidence indicates that a dysregulation of the enzymes in the kynurenine pathway may be present in suicidal patients, with a resulting imbalance of metabolites that modulate glutamate neurotransmission and neuroinflammation. As the body of research in these areas grows, targeting the kynurenine pathway enzymes and metabolites may provide novel therapeutic opportunities for detection, treatment, and ultimately prevention of suicidal behavior.
Collapse
Affiliation(s)
- Elena Y Bryleva
- Laboratory of Behavioral Medicine, Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., Grand Rapids, MI, 49503, USA
| | - Lena Brundin
- Laboratory of Behavioral Medicine, Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., Grand Rapids, MI, 49503, USA.
| |
Collapse
|
37
|
Bryleva EY, Keaton SA, Grit J, Madaj Z, Sauro-Nagendra A, Smart L, Halstead S, Achtyes E, Brundin L. The acute-phase mediator serum amyloid A is associated with symptoms of depression and fatigue. Acta Psychiatr Scand 2017; 135:409-418. [PMID: 28374419 DOI: 10.1111/acps.12730] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Establish whether inflammatory biomarkers-serum amyloid A (SAA), C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)-are related to key symptoms of depression, including anxiety and fatigue, in a cross-sectional, out-patient setting to identify biomarkers that reflect psychiatric symptomatology in a naturalistic, real-life population. METHODS We measured SAA, CRP, IL-6, and TNF-α in plasma samples from 89 adult psychiatric out-patients by multiplex, high-sensitivity electrochemiluminescent assays. Psychiatric symptoms were evaluated using the Hamilton Depression Rating Scale (HAMD-17), the Patient Health Questionnaire (PHQ-9), and the Center for Epidemiological Studies Depression Scale (CES-D). RESULTS Plasma SAA was most robustly associated with depressive symptoms across diagnostic boundaries in this cohort of out-patients. Elevated SAA was significantly associated with higher total scores on the HAMD-17 scale and correlated with multiple scale items that rated symptoms of fatigue and depressed mood, but not with anxiety-related items. CONCLUSIONS SAA might constitute a cross-diagnostic marker indicative of depressed mood and fatigue in a naturalistic patient setting. Because SAA activates Toll-like receptors 2 and 4, present on macrophages and glial cells, its association with depression severity could also implicate this inflammatory mediator in the pathogenesis of mood disorders.
Collapse
Affiliation(s)
- E Y Bryleva
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - S A Keaton
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA.,Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - J Grit
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Z Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, USA
| | - A Sauro-Nagendra
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - L Smart
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - S Halstead
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - E Achtyes
- Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA.,Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - L Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.,Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| |
Collapse
|
38
|
Zhe Q, Sulei W, Weiwei T, Hongyan L, Jianwei W. Effects of Jiaotaiwan on depressive-like behavior in mice after lipopolysaccharide administration. Metab Brain Dis 2017; 32:415-426. [PMID: 27796565 DOI: 10.1007/s11011-016-9925-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022]
Abstract
Jiao-Tai-Wan (JTW), has been usually used for insomnia in traditional Chinese medicine (TCM). The previous study shown that JTW was benefit for depression-like behavior, but the possible mechanism is not clear. This study is to determine whether JTW was benefit for the treatment of lipopolysaccharide (LPS)-induced depression-like behavior in mice and explore its possible mechanism. All drugs were intragastrically administered once daily for 7 consecutive days. On the 7th day, LPS was injected into mice 30 min after drug administration. Behavioral tests were performed 24 h after LPS administration. Serum levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured by enzyme-linked immunosorbent assay (ELISA). The 5-hydroxytryptamine (5-HT) and nor-epinephrine (NE) levels in prefrontal cortex were determined by UPLC-MS. The protein expressions of NF-κB signaling in prefrontal cortex were determined by western blot. Behavioral tests were measured via tail suspension test (TST), forced swimming test (FST), sucrose preference test (SPT) and open field test (OFT). In addition, effects of JTW on the TNF-α induced depressive-like behavior were also examined. Pretreatment with JTW (4.2 and 8.4 g/kg) or fluoxetine (20 mg/kg) effectively attenuated LPS-induced upregulations of the serum TNF-α and IL-6 contents and JTW (4.2 and 8.4 g/kg) or fluoxetine (20 mg/kg) effectively increased the contents of 5-HT and NE compared with LPS-treated group. Meanwhile, the western blot analysis results indicated the correlation between the antidepressant activity of JTW and the regulation of NF-κB signaling in brain. Besides, JTW (4.2 and 8.4 g/kg) or fluoxetine (20 mg/kg) significantly shortened LPS-induced increases in immobility time of TST, FST and weakened the reduction of the sucrose preference in SPT without significant alterations of locomotor activity in OFT. Additionally, JTW effectively reversed the depressive-like behavior induced by TNF-α (0.1 fg/site, i.c.v.). Our findings indicated that Jiao-Tai-Wan (JTW) played an important role in monoaminergic response and anti-inflammation in lipopolysaccharide (LPS)-induced mouse model, which may be therapeutically exploited to alleviate depression-like behavior.
Collapse
Affiliation(s)
- Qian Zhe
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wang Sulei
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Weiwei
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Long Hongyan
- Central Laboratory, Nanjing Municipal Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China.
| | - Wang Jianwei
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
39
|
Mental Health in Allergic Rhinitis: Depression and Suicidal Behavior. CURRENT TREATMENT OPTIONS IN ALLERGY 2017; 4:71-97. [PMID: 28966902 DOI: 10.1007/s40521-017-0110-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A high proportion of suicides visit their medical provider in the month prior to death, but depression, suicidal thoughts, and substance use are seldom addressed. For the clinicians routinely treating a substantial patient population with allergic diseases, there are additional concerns, as allergy has been linked with both depression and suicidal behavior. While psychotropic medications may affect diagnosis of allergies, medications used to treat allergies impact mood and behavior. Thus, we present an overview of the overlap of allergic rhinitis with depression and suicidal behavior in adults, based on clinical and epidemiological data, and our research and clinical experience. In summary, we suggest: 1) inquiring among patients with allergies about personal and family history of depression, substance use disorders, suicidal ideation and attempts 2) increased mindfulness regarding the potential effects of allergy medications on mood and behavior; and 3) for people identified with certain types of depression or increased suicide risk, a systematic multilevel collaborative approach. While for practical reasons the majority of patients with depression will continue to be treated by general or family practitioners, the allergy-treating provider should always consider integrated care for bipolar, psychotic or suicidal depression and incomplete remission, or relapsing and highly recurrent course. While awaiting results of much needed basic and clinical research to guide clinical approach for patients with comorbid allergic rhinitis and depression, the simple steps recommended here are expected to improved clinical outcomes in depression, including, on a large scale, reduced premature deaths by suicide.
Collapse
|
40
|
Moraes MMT, Galvão MC, Cabral D, Coelho CP, Queiroz-Hazarbassanov N, Martins MFM, Bondan EF, Bernardi MM, Kirsten TB. Propentofylline Prevents Sickness Behavior and Depressive-Like Behavior Induced by Lipopolysaccharide in Rats via Neuroinflammatory Pathway. PLoS One 2017; 12:e0169446. [PMID: 28056040 PMCID: PMC5215944 DOI: 10.1371/journal.pone.0169446] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/16/2016] [Indexed: 01/03/2023] Open
Abstract
Recent studies have demonstrated the intimate relationship between depression and immune disturbances. Aware of the efficacy limits of existing antidepressant drugs and the potential anti-inflammatory properties of propentofylline, we sought to evaluate the use of propentofylline as a depression treatment. We used a rat model of depression induced by repetitive lipopolysaccharide (LPS) administrations. We have studied sickness behavior, by assessing daily body weight, open field behavior, and TNF-α plasmatic levels. Anxiety-like behavior (light-dark test), depressive-like behavior (forced swim test), plasmatic levels of the brain-derived neurotrophic factor (BDNF, depression biomarker), and central glial fibrillary acidic protein (GFAP) expression (an astrocyte biomarker) were also evaluated. LPS induced body weight loss, open field behavior impairments (decreased locomotion and rearing, and increased immobility), and increased TNF-α levels in rats, compared with control group. Thus, LPS induced sickness behavior. LPS also increased the immobility and reduced climbing in the forced swim test, when compared with the control group, i.e., LPS induced depressive-like behavior in rats. Propentofylline prevented sickness behavior after four days of consecutive treatment, as well as prevented the depressive-like behavior after five days of consecutive treatments. Propentofylline also prevented the increase in GFAP expression induced by LPS. Neither LPS nor propentofylline has influenced the anxiety and BDNF levels of rats. In conclusion, repetitive LPS administrations induced sickness behavior and depressive-like behavior in rats. Propentofylline prevented both sickness behavior and depressive-like behavior via neuroinflammatory pathway. The present findings may contribute to a better understanding and treatment of depression and associated diseases.
Collapse
Affiliation(s)
- Márcia M. T. Moraes
- Environmental and Experimental Pathology, Paulista University, Sao Paulo, Brazil
| | - Marcella C. Galvão
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Sao Paulo, Brazil
| | - Danilo Cabral
- Environmental and Experimental Pathology, Paulista University, Sao Paulo, Brazil
| | - Cideli P. Coelho
- Graduate Program of Animal Medicine and Welfare, University of Santo Amaro, Sao Paulo, Brazil
| | | | - Maria F. M. Martins
- Environmental and Experimental Pathology, Paulista University, Sao Paulo, Brazil
| | - Eduardo F. Bondan
- Environmental and Experimental Pathology, Paulista University, Sao Paulo, Brazil
| | - Maria M. Bernardi
- Environmental and Experimental Pathology, Paulista University, Sao Paulo, Brazil
| | - Thiago Berti Kirsten
- Environmental and Experimental Pathology, Paulista University, Sao Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
41
|
Brkic Z, Petrovic Z, Franic D, Mitic M, Adzic M. Male-specific effects of lipopolysaccharide on glucocorticoid receptor nuclear translocation in the prefrontal cortex of depressive rats. Psychopharmacology (Berl) 2016; 233:3315-30. [PMID: 27387895 DOI: 10.1007/s00213-016-4374-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022]
Abstract
RATIONALE Inflammation plays a key role in the pathogenesis of major depressive disorder (MDD) for a subset of depressed individuals. One of the possible routes by which cytokines can induce depressive symptoms is by promoting the dysregulation of hypothalamic-pituitary-adrenal (HPA) axis via altering glucocorticoid receptor (GR) function. OBJECTIVES We investigated the mechanisms that finely tune the GR functioning upon lipopolysaccharide (LPS), i.e., subcellular localization of the GR, the levels of its co-chaperones FK506 binding protein 52 (FKBP4) and FK506 binding protein 51 (FKBP5), the receptor phosphorylation status along with its upstream kinases, as well as mRNA levels of GR-regulated genes in the prefrontal cortex (PFC) of male and female Wistar rats. RESULTS We found that upon LPS treatment, animals of both sexes exhibited depressive-like behavior and elevated serum corticosterone. However, the nuclear translocation of the GR and both FKBPs was found only in males, together with elevated phosphorylation of the GR at serine 232 and 246 and the activation and nuclear translocation of all analyzed kinases. This activation of the GR in males was paralleled with altered expression of GR-related genes, particularly PTGS2 and BDNF. CONCLUSION Our data suggest that LPS treatment produced alterations in the mechanisms that control the GR nuclear translocation in the PFC of males, and that these mechanisms may contribute to the sex-specific dysfunction of GR-related neurotrophic and neuroinflammatory processes in inflammation-associated depression.
Collapse
Affiliation(s)
- Zeljka Brkic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522-MBE090, Belgrade, 11001, Serbia
| | - Zorica Petrovic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522-MBE090, Belgrade, 11001, Serbia
| | - Dusanka Franic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522-MBE090, Belgrade, 11001, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522-MBE090, Belgrade, 11001, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522-MBE090, Belgrade, 11001, Serbia.
| |
Collapse
|
42
|
Guo Y, Cai H, Chen L, Liang D, Yang R, Dang R, Jiang P. Quantitative profiling of neurotransmitter abnormalities in the hippocampus of rats treated with lipopolysaccharide: Focusing on kynurenine pathway and implications for depression. J Neuroimmunol 2016; 295-296:41-6. [DOI: 10.1016/j.jneuroim.2016.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 01/03/2023]
|
43
|
Bhattacharya A, Derecki NC, Lovenberg TW, Drevets WC. Role of neuro-immunological factors in the pathophysiology of mood disorders. Psychopharmacology (Berl) 2016; 233:1623-36. [PMID: 26803500 DOI: 10.1007/s00213-016-4214-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
Abstract
Mood disorders, despite the widespread availability of monoamine-based antidepressant treatments, are associated with persistently high rates of disability, together with elevated rates of mortality due to suicide, cardiovascular disease, and other causes. The development of more effective treatments has been hindered by the lack of knowledge about the etiology and pathogenesis of mood disorders. An emerging area of science that promises novel pathways to antidepressant and mood stabilizing therapies surrounds evidence that immune cells and their signaling play a major role in the pathophysiology of major depressive disorder (MDD) and bipolar disorder (BD). Here, we review evidence that the release of neuroactive cytokines, particularly interleukins such as IL-1β, IL-6, and TNF-α, is altered in these disorders and discuss mechanisms such as the ATP-gated ion channel P2X7, through which cytokine signaling can influence neuro-glial interactions. Brain P2X7, an emerging target and antagonism of P2X7 holds promise as a novel mechanism for targeting treatment-resistant depression. We further discuss the role of microglia and astroglia in central neuroinflammation and their interaction with the peripheral immune system We present extant clinical evidence that bolsters the role of neuroinflammation and neuroactive cytokines in mood disorders. To that end, the role of clinical imaging by probing neuroinflammatory markers is also discussed briefly. Finally, we present data using preclinical neuroinflammation models that produce depression-like behaviors in experimental animals to identify neuroinflammatory mechanisms which may aid in novel neuroimmune target identification for the development of exciting pharmacological interventions in mood disorders.
Collapse
Affiliation(s)
| | - Noel C Derecki
- Neuroscience, Janssen Research and Development, LLC, San Diego, CA, 92121, USA
| | - Timothy W Lovenberg
- Neuroscience, Janssen Research and Development, LLC, San Diego, CA, 92121, USA
| | - Wayne C Drevets
- Neuroscience, Janssen Research and Development, LLC, Titusville, NJ, 08560, USA
| |
Collapse
|
44
|
Kurosawa N, Shimizu K, Seki K. The development of depression-like behavior is consolidated by IL-6-induced activation of locus coeruleus neurons and IL-1β-induced elevated leptin levels in mice. Psychopharmacology (Berl) 2016; 233:1725-37. [PMID: 26385227 DOI: 10.1007/s00213-015-4084-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/10/2015] [Indexed: 12/17/2022]
Abstract
RATIONALE Many studies have supported the cytokine hypothesis as the underlying pathophysiology of depressive disorder. OBJECTIVES We previously reported that lipopolysaccharide (LPS)-induced depression-like behavior is abrogated by the α1-adrenoceptor antagonist prazosin. Since cytokines are involved in LPS effects on the brain, we investigated the effects of cytokines on noradrenergic neurons in the locus coeruleus (LC) and whether central α1-adrenoceptors can cause the development of depression-like behavior. METHODS Adult male CD1 mice were treated with LPS (1 mg/kg, i.p.) or saline and sacrificed 2 h later for immunofluorescence studies of c-fos and tyrosine hydroxylase (TH) expression in LC neurons. Serum cytokines were measured using enzyme-linked immunosorbent assay (ELISA). Another group of mice were implanted with intracerebroventricular (i.c.v.) cannulae and given artificial cerebrospinal fluid (CSF) (control), interleukin (IL)-1β (0.5 μg), IL-6 (1 μg), or tumor necrosis factor (TNF)-α (1 μg), and sacrificed 2 h later for c-fos and TH immunofluorescence analysis. Serum samples were analyzed for leptin levels. In addition, tail suspension test (TST), forced swimming test (FST), and sucrose preference (SP) test were conducted in a separate group of mice treated i.c.v. with cytokines, recombinant mouse leptin (5 μg) or phenylephrine (40 μg). These effects were countered by i.c.v. administration of prazosin and a leptin antagonist. RESULTS LPS increased c-fos expression in TH-positive neurons. Central administration of IL-6 and IL-1β increased c-fos immunoreactivity and serum leptin levels. Phenylephrine, an α1-adrenoceptor agonist, given i.c.v., increased the immobility time during FST and decreased SP, but had no effect on TST. Central leptin administration increased immobility time during FST but did not affect TST or SP. The combination of phenylephrine and leptin increased immobility time during FST and TST, and decreased SP. Induction of depression-like behavior by co-administration of IL-1β and IL-6 was prevented by pretreatment with prazosin alone. CONCLUSION These results suggest that IL-6-dependent LC neuronal activation induced depression-like behavior and IL-1β-induced increase in leptin levels enhanced α1-adrenoceptor-mediated depression-like behavior.
Collapse
Affiliation(s)
- Natsuki Kurosawa
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Koh Shimizu
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Kenjiro Seki
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan.
| |
Collapse
|
45
|
Denzler K, Moore J, Harrington H, Morrill K, Huynh T, Jacobs B, Waters R, Langland J. Characterization of the Physiological Response following In Vivo Administration of Astragalus membranaceus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:6861078. [PMID: 27190535 PMCID: PMC4844899 DOI: 10.1155/2016/6861078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/30/2016] [Indexed: 11/17/2022]
Abstract
The botanical, Astragalus membranaceus, is a therapeutic in traditional Chinese medicine. Limited literature exists on the overall in vivo effects of A. membranaceus on the human body. This study evaluates the physiological responses to A. membranaceus by measuring leukocyte, platelet, and cytokine responses as well as body temperature and blood pressure in healthy individuals after the in vivo administration of A. membranaceus. A dose-dependent increase in monocytes, neutrophils, and lymphocytes was measured 8-12 hours after administration and an increase in the number of circulating platelets was seen as early as 4 hours. A dynamic change in the levels of circulating cytokines was observed, especially in interferon-γ and tumor necrosis factor-α, IL-13, IL-6, and soluble IL-2R. Subjective symptoms reported by participants were similar to those typically experienced in viral type immune responses and included fatigue, malaise, and headache. Systolic and diastolic blood pressure were reduced within 4 hours after administration, while body temperature mildly increased within 8 hours after administration. In general, all responses returned to baseline values by 24 hours. Collectively, these results support the role of A. membranaceus in priming for a potential immune response as well as its effect on blood flow and wound healing.
Collapse
Affiliation(s)
- Karen Denzler
- Southwest College of Naturopathic Medicine, Tempe, AZ 85282, USA
- Arizona State University, Biodesign Institute, Tempe, AZ 85287, USA
| | - Jessica Moore
- Southwest College of Naturopathic Medicine, Tempe, AZ 85282, USA
| | - Heather Harrington
- Southwest College of Naturopathic Medicine, Tempe, AZ 85282, USA
- Arizona State University, Biodesign Institute, Tempe, AZ 85287, USA
| | - Kira Morrill
- Southwest College of Naturopathic Medicine, Tempe, AZ 85282, USA
| | - Trung Huynh
- Arizona State University, Biodesign Institute, Tempe, AZ 85287, USA
| | - Bertram Jacobs
- Arizona State University, Biodesign Institute, Tempe, AZ 85287, USA
| | - Robert Waters
- Southwest College of Naturopathic Medicine, Tempe, AZ 85282, USA
- Arizona State University, Biodesign Institute, Tempe, AZ 85287, USA
| | - Jeffrey Langland
- Southwest College of Naturopathic Medicine, Tempe, AZ 85282, USA
- Arizona State University, Biodesign Institute, Tempe, AZ 85287, USA
| |
Collapse
|
46
|
Lu J, Shao RH, Hu L, Tu Y, Guo JY. Potential antiinflammatory effects of acupuncture in a chronic stress model of depression in rats. Neurosci Lett 2016; 618:31-38. [PMID: 26921452 DOI: 10.1016/j.neulet.2016.02.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/18/2015] [Accepted: 02/22/2016] [Indexed: 02/05/2023]
Abstract
Accumulating evidence indicates that inflammation may contribute to the pathophysiology of depression. Acupuncture in traditional Chinese medicine has been considered an effective treatment for depression. However, whether the mechanisms that underlie the antidepressant effect of acupuncture are related to its antiinflammatory properties remains unclear. In the present study, rats were exposed to chronic unpredictable mild stress (CUMS) for 28 days to induce depressive-like behavior. Body weight, sucrose preference, and locomotor activity in the open field were measured. After the behavioral tests, reverse transcription polymerase chain reaction was used to determine the mRNA expression of proinflammatory cytokines (interleukin-1β [IL-1β], interleukin-6 [IL-6], and tumor necrosis factor-α [TNF-α]), and enzyme-linked immunosorbent assay was used to detect cytokine concentrations. CUMS rats exhibited decrease in body weight, sucrose preference, and locomotor activity in the open field test. Chronic acupuncture and fluoxetine treatment reversed CUMS-induced depressive-like behavior. Compared with control rats, the mRNA and protein expression of IL-1β, IL-6, and TNF-α in the hippocampus and prefrontal cortex and cytokine concentrations in serum significantly increased in CUMS rats. Acupuncture and fluoxetine treatment significantly decreased the levels of proinflammatory cytokines in the hippocampus, prefrontal cortex, and serum. These results suggest that acupuncture has antidepressant-like effects, and its mechanism of action appears to involve the inhibition of proinflammatory cytokines.
Collapse
Affiliation(s)
- Jun Lu
- College of Acupuncture-Moxibustion and Tui Na, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Run-Hui Shao
- College of Acupuncture-Moxibustion and Tui Na, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Hu
- Tangshan Feng-Run Hospital of TCM, Tangshan 064000, China
| | - Ya Tu
- College of Acupuncture-Moxibustion and Tui Na, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian-You Guo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
47
|
Bay-Richter C, Janelidze S, Sauro A, Bucala R, Lipton J, Deierborg T, Brundin L. Behavioural and neurobiological consequences of macrophage migration inhibitory factor gene deletion in mice. J Neuroinflammation 2015; 12:163. [PMID: 26338025 PMCID: PMC4558780 DOI: 10.1186/s12974-015-0387-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 08/24/2015] [Indexed: 01/15/2023] Open
Abstract
Background Evidence from clinical studies and animal models show that inflammation can lead to the development of depression. Macrophage migration inhibitory factor (MIF) is an important multifunctional cytokine that is synthesized by several cell types in the brain. MIF can increase production of other cytokines, activates cyclooxygenase (COX)-2 and can counter-regulate anti-inflammatory effects of glucocorticoids. Increased plasma levels of MIF are associated with hypothalamic–pituitary–adrenal (HPA) axis dysregulation and depressive symptoms in patients. In contrast, MIF knockout (KO) mice have been found to exhibit increased depressive-like behaviour. The exact role for MIF in depression is therefore still controversial. To further understand the role of MIF in depression, we studied depressive-like behaviour in congenic male and female MIF KO mice and wild-type (WT) littermates and the associated neurobiological mechanisms underlying the behavioural outcome. Methods MIF KO and WT mice were tested for spontaneous locomotor activity in the open-field test, anhedonia-like behaviour in the sucrose preference test (SPT), as well as behavioural despair in the forced swim test (FST) and tail suspension test (TST). Brain and serum levels of cytokines, the enzymes COX-2 and indoleamine-2,3-dioxygenase (IDO) and the glucocorticoid hormone corticosterone were measured by RT-qPCR and/or high-sensitivity electrochemiluminescence-based multiplex immunoassays. Monoamines and metabolites were examined using HPLC. Results We found that MIF KO mice of both sexes displayed decreased depressive-like behaviour as measured in the FST. In the TST, a similar, but non-significant, trend was also found. IFN-γ levels were decreased, and dopamine metabolism increased in MIF KO mice. Decreased brain IFN-γ levels predicted higher striatal dopamine levels, and high dopamine levels in turn were associated with reduced depressive-like behaviour. In the SPT, there was a sex-specific discrepancy, where male MIF KO mice showed reduced anhedonia-like behaviour whereas female KO mice displayed increased anhedonia-like behaviour. Our results suggest that this relates to the increased corticosterone levels detected in female, but not male, MIF KO mice. Conclusions Our findings support that MIF is involved in the generation of depressive-like symptoms, potentially by the effects of IFN-γ on dopamine metabolism. Our data further suggests a sex-specific regulation of the involved mechanisms.
Collapse
Affiliation(s)
- Cecilie Bay-Richter
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark.
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Analise Sauro
- Department of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA.
| | - Richard Bucala
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - Jack Lipton
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA.
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, BMC, Lund University, Lund, Sweden.
| | - Lena Brundin
- Department of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA. .,Laboratory of Behavioral Medicine, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
48
|
Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, Suridjan I, Kennedy JL, Rekkas PV, Houle S, Meyer JH. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 2015; 72:268-75. [PMID: 25629589 PMCID: PMC4836849 DOI: 10.1001/jamapsychiatry.2014.2427] [Citation(s) in RCA: 624] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IMPORTANCE The neuroinflammatory hypothesis of major depressive disorder is supported by several main findings. First, in humans and animals, activation of the immune system causes sickness behaviors that present during a major depressive episode (MDE), such as low mood, anhedonia, anorexia, and weight loss. Second, peripheral markers of inflammation are frequently reported in major depressive disorder. Third, neuroinflammatory illnesses are associated with high rates of MDEs. However, a fundamental limitation of the neuroinflammatory hypothesis is a paucity of evidence of brain inflammation during MDE. Translocator protein density measured by distribution volume (TSPO VT) is increased in activated microglia, an important aspect of neuroinflammation. OBJECTIVE To determine whether TSPO VT is elevated in the prefrontal cortex, anterior cingulate cortex (ACC), and insula in patients with MDE secondary to major depressive disorder. DESIGN, SETTING, AND PARTICIPANTS Case-control study in a tertiary care psychiatric hospital from May 1, 2010, through February 1, 2014. Twenty patients with MDE secondary to major depressive disorder and 20 healthy control participants underwent positron emission tomography with fluorine F 18-labeled N-(2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide ([18F]FEPPA). Patients with MDE were medication free for at least 6 weeks. All participants were otherwise healthy and nonsmokers. MAIN OUTCOMES AND MEASURES Values of TSPO VT in the prefrontal cortex, ACC, and insula. RESULTS In MDE, TSPO VT was significantly elevated in all brain regions examined (multivariate analysis of variance, F15,23 = 4.5 [P = .001]). The magnitude of TSPO VT elevation was 26% in the prefrontal cortex (mean [SD] TSPO VT, 12.5 [3.6] in patients with MDE and 10.0 [2.4] in controls), 32% in the ACC (mean [SD] TSPO VT, 12.3 [3.5] in patients with MDE and 9.3 [2.2] in controls), and 33% in the insula (mean [SD] TSPO VT, 12.9 [3.7] in patients with MDE and 9.7 [2.3] in controls). In MDE, greater TSPO VT in the ACC correlated with greater depression severity (r = 0.63 [P = .005]). CONCLUSIONS AND RELEVANCE This finding provides the most compelling evidence to date of brain inflammation, and more specifically microglial activation, in MDE. This finding is important for improving treatment because it implies that therapeutics that reduce microglial activation should be promising for MDE. The correlation between higher ACC TSPO VT and the severity of MDE is consistent with the concept that neuroinflammation in specific regions may contribute to sickness behaviors that overlap with the symptoms of MDE.
Collapse
Affiliation(s)
- Elaine Setiawan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada2Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada2Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada3Department of Psychiatry, University of Toronto, T
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada2Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada3Department of Psychiatry, University of Toronto, T
| | - Pablo M Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada2Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Laura Miler
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada2Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson
| | - Ivonne Suridjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada2Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada4Institute of Medical Science, University of Toront
| | - James L Kennedy
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada2Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada3Department of Psychiatry, University of Toronto, T
| | - P Vivien Rekkas
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada2Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada2Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada3Department of Psychiatry, University of Toronto, T
| | - Jeffrey H Meyer
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada2Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada3Department of Psychiatry, University of Toronto, T
| |
Collapse
|
49
|
Expression of inflammatory markers in a genetic rodent model of depression. Behav Brain Res 2015; 281:348-57. [DOI: 10.1016/j.bbr.2014.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/20/2014] [Accepted: 09/15/2014] [Indexed: 12/11/2022]
|
50
|
Farzi A, Reichmann F, Meinitzer A, Mayerhofer R, Jain P, Hassan AM, Fröhlich EE, Wagner K, Painsipp E, Rinner B, Holzer P. Synergistic effects of NOD1 or NOD2 and TLR4 activation on mouse sickness behavior in relation to immune and brain activity markers. Brain Behav Immun 2015; 44:106-20. [PMID: 25218901 PMCID: PMC4295938 DOI: 10.1016/j.bbi.2014.08.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/29/2014] [Accepted: 08/30/2014] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptors (TLRs) and nuclear-binding domain (NOD)-like receptors (NLRs) are sensors of bacterial cell wall components to trigger an immune response. The TLR4 agonist lipopolysaccharide (LPS) is a strong immune activator leading to sickness and depressed mood. NOD agonists are less active but can prime immune cells to augment LPS-induced cytokine production. Since the impact of NOD and TLR co-activation in vivo has been little studied, the effects of the NOD1 agonist FK565 and the NOD2 agonist muramyl dipeptide (MDP), alone and in combination with LPS, on immune activation, brain function and sickness behavior were investigated in male C57BL/6N mice. Intraperitoneal injection of FK565 (0.001 or 0.003mg/kg) or MDP (1 or 3mg/kg) 4h before LPS (0.1 or 0.83mg/kg) significantly aggravated and prolonged the LPS-evoked sickness behavior as deduced from a decrease in locomotion, exploration, food intake and temperature. When given alone, FK565 and MDP had only minor effects. The exacerbation of sickness behavior induced by FK565 or MDP in combination with LPS was paralleled by enhanced plasma protein and cerebral mRNA levels of proinflammatory cytokines (IFN-γ, IL-1β, IL-6, TNF-α) as well as enhanced plasma levels of kynurenine. Immunohistochemical visualization of c-Fos in the brain revealed that NOD2 synergism with TLR4 resulted in increased activation of cerebral nuclei relevant to sickness. These data show that NOD1 or NOD2 synergizes with TLR4 in exacerbating the immune, sickness and brain responses to peripheral immune stimulation. Our findings demonstrate that the known interactions of NLRs and TLRs at the immune cell level extend to interactions affecting brain function and behavior.
Collapse
Affiliation(s)
- Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Raphaela Mayerhofer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Piyush Jain
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Ahmed M. Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Esther E. Fröhlich
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Karin Wagner
- Core Facility Molecular Biology, Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24/1, 8010 Graz, Austria
| | - Evelin Painsipp
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Beate Rinner
- Core Facility Flow Cytometry, Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24/1, 8010 Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| |
Collapse
|