1
|
Asogwa CN, Zhao C, Polzin BJ, Maksimoski AN, Heimovics SA, Riters LV. Distinct patterns of activity within columns of the periaqueductal gray are associated with functionally distinct birdsongs. Ann N Y Acad Sci 2023; 1530:161-181. [PMID: 37800392 PMCID: PMC10841217 DOI: 10.1111/nyas.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Male songbirds produce female-directed songs in spring that convey a state of sexual motivation. Many songbirds also sing in fall flocks in affiliative/gregarious contexts in which song is linked to an intrinsic positive affective state. The periaqueductal gray (PAG) in mammals, which is organized into functional columns, integrates information from multiple brain regions and relays this information to vocal motor areas so that an animal emits a vocal signal reflective of its affective state. Here, we test the hypothesis that distinct columns in the songbird PAG play roles in the distinct affective states communicated by sexually motivated and gregarious song. We quantified the numbers of immediate early gene ZENK-positive cells in 16 PAG subregions in male European starlings (Sturnus vulgaris) after singing gregarious or sexually motivated song. Results suggest that distinct PAG columns in songbirds context-specifically regulate song, agonistic, and courtship behaviors. A second exploratory, functional tract-tracing study also demonstrated that inputs to the PAG from specific subregions of the medial preoptic nucleus may contribute to gregarious song and behaviors indicative of social dominance. Together, findings suggest that conserved PAG columns and inputs from the preoptic nucleus may play a role in context-specific vocal and other social behaviors.
Collapse
Affiliation(s)
- Chinweike N. Asogwa
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Brandon J. Polzin
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Alyse N. Maksimoski
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Sarah A. Heimovics
- Department of Biology, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Volitional control of vocalizations in corvid songbirds. PLoS Biol 2019; 17:e3000375. [PMID: 31454343 PMCID: PMC6711494 DOI: 10.1371/journal.pbio.3000375] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Songbirds are renowned for their acoustically elaborate songs. However, it is unclear whether songbirds can cognitively control their vocal output. Here, we show that crows, songbirds of the corvid family, can be trained to exert control over their vocalizations. In a detection task, three male carrion crows rapidly learned to emit vocalizations in response to a visual cue with no inherent meaning (go trials) and to withhold vocalizations in response to another cue (catch trials). Two of these crows were then trained on a go/nogo task, with the cue colors reversed, in addition to being rewarded for withholding vocalizations to yet another cue (nogo trials). Vocalizations in response to the detection of the go cue were temporally precise and highly reliable in all three crows. Crows also quickly learned to withhold vocal output in nogo trials, showing that vocalizations were not produced by an anticipation of a food reward in correct trials. The results demonstrate that corvids can volitionally control the release and onset of their vocalizations, suggesting that songbird vocalizations are under cognitive control and can be decoupled from affective states. Songbirds are renowned for their acoustically elaborate songs, but it is unclear whether they have cognitive control over their vocal output. Using operant conditioning, this study shows that carrion crows, songbirds of the corvid family, can exert control over their vocalizations.
Collapse
|
3
|
Ondrasek NR, Freeman SM, Bales KL, Calisi RM. Nonapeptide Receptor Distributions in Promising Avian Models for the Neuroecology of Flocking. Front Neurosci 2018; 12:713. [PMID: 30386202 PMCID: PMC6198083 DOI: 10.3389/fnins.2018.00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022] Open
Abstract
Collective behaviors, including flocking and group vocalizing, are readily observable across a diversity of free-living avian populations, yet we know little about how neural and ecological factors interactively regulate these behaviors. Because of their involvement in mediating a variety of social behaviors, including avian flocking, nonapeptides are likely mediators of collective behaviors. To advance the neuroecological study of collective behaviors in birds, we sought to map the neuroanatomical distributions of nonapeptide receptors in three promising avian models that are found across a diversity of environments and widely ranging ecological conditions: European starlings, house sparrows, and rock doves. We performed receptor autoradiography using the commercially available nonapeptide receptor radioligands, 125I-ornithine vasotocin analog and 125I-linear vasopressin antagonist, on brain tissue sections from wild-caught individuals from each species. Because there is known pharmacological cross-reactivity between nonapeptide receptor subtypes, we also performed a novel, competitive-binding experiment to examine the composition of receptor populations. We detected binding in numerous regions throughout the brains of each species, with several similarities and differences worth noting. Specifically, we report that all three species exhibit binding in the lateral septum, a key brain area known to regulate avian flocking. In addition, sparrows and starlings show dense binding in the dorsal arcopallium, an area that has received scant attention in the study of social grouping. Furthermore, our competitive binding results suggest that receptor populations in sparrows and starlings differ in the lateral septum versus the dorsal arcopallium. By providing the first comprehensive maps of nonapeptide receptors in European starlings, house sparrows, and rock doves, our work supports the future use of these species as avian models for neuroecological studies of collective behaviors in wild birds.
Collapse
Affiliation(s)
- Naomi R Ondrasek
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Sara M Freeman
- Department of Psychology, University of California, Davis, Davis, CA, United States.,California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Karen L Bales
- Department of Psychology, University of California, Davis, Davis, CA, United States.,California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Spool JA, Jay MD, Riters LV. Nest box exploration may stimulate breeding physiology and alter mRNA expression in the medial preoptic area of female European starlings. ACTA ACUST UNITED AC 2018; 221:jeb.174441. [PMID: 29695491 DOI: 10.1242/jeb.174441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Environmental resources are proposed to fine-tune the timing of breeding, yet how they may do so remains unclear. In female European starlings (Sturnus vulgaris), nest cavities are limited resources that are necessary for breeding. Females that explore nest cavities, compared with those that do not, readily perform sexually motivated behaviors. We assigned female starlings to aviaries with: (1) no nest boxes, (2) nest boxes, or (3) nest boxes, plants, flowing water, insects and berries to test the hypothesis that environmental resources alter neural systems to stimulate mating behavior. Compared with other females, females that were housed with and explored nest boxes had higher estradiol, higher preproenkephalin (PENK) mRNA and lower levels of D1 and D2 dopamine receptor mRNA in the medial preoptic area (mPOA); a region in which opioids and dopamine modify female sexual behaviors and sexual motivation. Additionally, in the mPOA, PENK and tyrosine hydroxylase mRNA positively predicted, whereas estrogen receptor beta mRNA negatively predicted, nest box exploration. In the ventromedial hypothalamus (a region in which estradiol acts to stimulate sexual behavior), estrogen receptor alpha mRNA was highest in females that had access to but did not explore nest cavities. It is likely that seasonal increases in estradiol modify mRNA in the mPOA to facilitate nest cavity exploration. It is also possible that nest cavity exploration further alters gene expression in the mPOA, functioning to coordinate mating with resource availability. Thus, nest cavity exploration may be a form of self-stimulation that alters neural systems to fine-tune sexual behavior.
Collapse
Affiliation(s)
- Jeremy A Spool
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Melannie D Jay
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
5
|
Spool JA, Riters LV. Associations Between Environmental Resources and the "Wanting" and "Liking" of Male Song in Female Songbirds. Integr Comp Biol 2017; 57:835-845. [PMID: 28985327 PMCID: PMC5886317 DOI: 10.1093/icb/icx117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reproductive success requires animals to adjust social and sexual behaviors in response to changes in environmental resources. In many species, males produce courtship signals to attract females; however, not all females are attracted by these signals. One possible explanation for this is that environmental resources alter neural mechanisms underlying motivation and reward in females so that male courtship is attractive when conditions are most favorable for an individual to breed. Here, we first introduce resource-dependent breeding behaviors of female songbirds. We then review studies that show associations between neural systems underlying motivation and reward, female responses to male courtship stimuli, and environmental resources necessary for breeding success (e.g., in female starlings, a nest cavity). Overall, we review evidence supporting the working hypotheses that (1) dopamine underlies sexually-motivated female responses to male courtship stimuli (i.e., song), (2) opioids underlie reward induced in females by hearing male courtship song, and (3) these systems are possibly modified by resources such that male courtship song is only attractive and rewarding to females with access to limited environmental resources essential for breeding success.
Collapse
Affiliation(s)
- Jeremy A. Spool
- Department of Integrative Biology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin – Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Rensel MA, Ellis JMS, Harvey B, Schlinger BA. Sex, estradiol, and spatial memory in a food-caching corvid. Horm Behav 2015; 75:45-54. [PMID: 26232613 PMCID: PMC4648678 DOI: 10.1016/j.yhbeh.2015.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 01/13/2023]
Abstract
Estrogens significantly impact spatial memory function in mammalian species. Songbirds express the estrogen synthetic enzyme aromatase at relatively high levels in the hippocampus and there is evidence from zebra finches that estrogens facilitate performance on spatial learning and/or memory tasks. It is unknown, however, whether estrogens influence hippocampal function in songbirds that naturally exhibit memory-intensive behaviors, such as cache recovery observed in many corvid species. To address this question, we examined the impact of estradiol on spatial memory in non-breeding Western scrub-jays, a species that routinely participates in food caching and retrieval in nature and in captivity. We also asked if there were sex differences in performance or responses to estradiol. Utilizing a combination of an aromatase inhibitor, fadrozole, with estradiol implants, we found that while overall cache recovery rates were unaffected by estradiol, several other indices of spatial memory, including searching efficiency and efficiency to retrieve the first item, were impaired in the presence of estradiol. In addition, males and females differed in some performance measures, although these differences appeared to be a consequence of the nature of the task as neither sex consistently out-performed the other. Overall, our data suggest that a sustained estradiol elevation in a food-caching bird impairs some, but not all, aspects of spatial memory on an innate behavioral task, at times in a sex-specific manner.
Collapse
Affiliation(s)
- Michelle A Rensel
- Department of Integrative Biology and Physiology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA.
| | - Jesse M S Ellis
- Department of Integrative Biology and Physiology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA
| | - Brigit Harvey
- Department of Integrative Biology and Physiology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA; Laboratory of Neuroendocrinology, Brain Research Institute, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
De Groof G, George I, Touj S, Stacho M, Jonckers E, Cousillas H, Hausberger M, Güntürkün O, Van der Linden A. A three-dimensional digital atlas of the starling brain. Brain Struct Funct 2015; 221:1899-909. [PMID: 25690327 DOI: 10.1007/s00429-015-1011-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/10/2015] [Indexed: 12/31/2022]
Abstract
Because of their sophisticated vocal behaviour, their social nature, their high plasticity and their robustness, starlings have become an important model species that is widely used in studies of neuroethology of song production and perception. Since magnetic resonance imaging (MRI) represents an increasingly relevant tool for comparative neuroscience, a 3D MRI-based atlas of the starling brain becomes essential. Using multiple imaging protocols we delineated several sensory systems as well as the song control system. This starling brain atlas can easily be used to determine the stereotactic location of identified neural structures at any angle of the head. Additionally, the atlas is useful to find the optimal angle of sectioning for slice experiments, stereotactic injections and electrophysiological recordings. The starling brain atlas is freely available for the scientific community.
Collapse
Affiliation(s)
- Geert De Groof
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Isabelle George
- UMR6552-Ethologie Animale Et Humaine, Université Rennes 1-CNRS, Rennes, France
| | - Sara Touj
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Wilrijk, Belgium.,UMR6552-Ethologie Animale Et Humaine, Université Rennes 1-CNRS, Rennes, France
| | - Martin Stacho
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Hugo Cousillas
- UMR6552-Ethologie Animale Et Humaine, Université Rennes 1-CNRS, Rennes, France
| | - Martine Hausberger
- UMR6552-Ethologie Animale Et Humaine, Université Rennes 1-CNRS, Rennes, France
| | - Onur Güntürkün
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|