1
|
Dissinger A, Rimoldi S, Terova G, Kwasek K. Chronic social isolation affects feeding behavior of juvenile zebrafish (Danio rerio). PLoS One 2024; 19:e0307967. [PMID: 39058733 PMCID: PMC11280532 DOI: 10.1371/journal.pone.0307967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Many organisms exhibit social behaviors and are part of some scheme of social structure. Zebrafish are highly social, shoaling fish and therefore, social isolation may have notable impacts on their physiology and behavior. The objective of this study was to evaluate the effects of social isolation on feed intake, monoaminergic system related gene expression, and intestinal health of juvenile zebrafish fed a high-inclusion soybean meal based diet. At 20 days post-fertilization zebrafish were randomly assigned to chronic isolation (1 fish per 1.5 L tank) or social housing (6 fish per 9 L tank) with 18 tanks per treatment group (n = 18). Dividers were placed between all tanks to prevent visual cues between fish. Zebrafish were fed a commercial fishmeal based diet until 35 days post-fertilization and then fed the experimental high-inclusion soybean meal based diet until 50 days post-fertilization. At the end of the experiment (51 days post-fertilization), the mean total length, weight, and weight gain were not significantly different between treatment groups. Feed intake and feed conversion ratio were significantly higher in chronic isolation fish than in social housing fish. Expression of monoaminergic and appetite-related genes were not significantly different between groups. The chronic isolation group showed higher expression of the inflammatory gene il-1b, however, average intestinal villi width was significantly smaller and average length-to-width ratio was significantly higher in chronic isolation fish, suggesting morphological signs of inflammation were not present at the time of sampling. These results indicate that chronic isolation positively affects feed intake of juvenile zebrafish and suggest that isolation may be useful in promoting feed intake of less-palatable diets such as those based on soybean meal.
Collapse
Affiliation(s)
- Aubrey Dissinger
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Karolina Kwasek
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| |
Collapse
|
2
|
Alnassar N, Hillman C, Fontana BD, Robson SC, Norton WHJ, Parker MO. angptl4 gene expression as a marker of adaptive homeostatic response to social isolation across the lifespan in zebrafish. Neurobiol Aging 2023; 131:209-221. [PMID: 37690345 DOI: 10.1016/j.neurobiolaging.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Social isolation has detrimental health effects, but the underlying mechanisms are unclear. Here, we investigated the impact of 2 weeks of isolation on behavior and gene expression in the central nervous system at different life stages of zebrafish. Results showed that socially deprived young adult zebrafish experienced increased anxiety, accompanied by changes in gene expression. Most gene expression patterns returned to normal within 24 hours of reintroduction to a social environment, except angptl4, which was upregulated after reintroduction, suggesting an adaptive mechanism. Similarly, aging zebrafish displayed heightened anxiety and increased central nervous system expression of angptl4 during isolation, but effects were reversed upon reintroduction to a social group. The findings imply that angptl4 plays a homeostatic role in response to social isolation, which varies across the lifespan. The study emphasizes the importance of social interactions for psychological well-being and highlights the negative consequences of isolation, especially in older individuals. Further research may unravel how social isolation affects angptl4 expression and its developmental and aging effects.
Collapse
Affiliation(s)
- Nancy Alnassar
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guilford, UK
| | | | - Samuel C Robson
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK; School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - William H J Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guilford, UK.
| |
Collapse
|
3
|
Cook A, Beckmann H, Azap R, Ryu S. Acute Stress Modulates Social Approach and Social Maintenance in Adult Zebrafish. eNeuro 2023; 10:ENEURO.0491-22.2023. [PMID: 37620148 PMCID: PMC10493981 DOI: 10.1523/eneuro.0491-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 08/26/2023] Open
Abstract
Stress alters social functioning in a complex manner. An important variable determining the final effects of stress is stressor intensity. However, the precise relationship between stressor intensity and social behavior is not well understood. Here, we investigate the effects of varying acute stressor intensity exposure on social behavior using adult zebrafish. We first establish a novel test using adult zebrafish that allows distinguishing fish's drive to approach a social cue and its ability to engage and maintain social interaction within the same behavioral paradigm. Next, we combined this test with a new method to deliver an acute stress stimulus of varying intensities. Our results show that both social approach and social maintenance are reduced in adult zebrafish on acute stress exposure in an intensity-dependent manner. Interestingly, lower stress intensity reduces social maintenance without affecting the social approach, while a higher stress level is required to alter social approach. These results provide evidence for a direct correlation between acute stressor intensity and social functioning and suggest that distinct steps in social behavior are modulated differentially by the acute stress level.
Collapse
Affiliation(s)
- Alexander Cook
- Institute of Human Genetics, University Medical Center of Johannes Gutenberg University Mainz, 55116, Mainz, Germany
| | - Holger Beckmann
- Institute of Human Genetics, University Medical Center of Johannes Gutenberg University Mainz, 55116, Mainz, Germany
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
| | - Rutkay Azap
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Soojin Ryu
- Institute of Human Genetics, University Medical Center of Johannes Gutenberg University Mainz, 55116, Mainz, Germany
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
| |
Collapse
|
4
|
Kuroda T, Ritchey CM, Podlesnik CA. Selective effects of conspecific movement on social preference in zebrafish (Danio rerio) using real-time 3D tracking and 3D animation. Sci Rep 2023; 13:10502. [PMID: 37380673 DOI: 10.1038/s41598-023-37579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023] Open
Abstract
Zebrafish show social behavior such as shoaling and schooling, which is a result of complex and interdependent interactions among conspecifics. Zebrafish social behavior is interdependent in the sense that one fish's behavior affects both conspecific behavior and, as a result, their own behavior. Previous research examined effects of the interdependent interactions on the preference for social stimulus but lacked clear evidence that specific conspecific movements were reinforcing. The present research examined whether dependency between individual experimental fish's motion and a social-stimulus fish's motions contributes to preference for the social stimulus. In Experiment 1, a 3D animated stimulus fish either chased individual experimental fish or was motionless, serving as dependent and independent motions, respectively. In Experiment 2, the stimulus fish either chased experimental fish, moved away, or moved independently of the experimental fish. In both experiments, experimental fish spent more time near the stimulus fish showing dependent and interactive movements, indicating preference for dependent motion over independent motion, and chasing over other motions. Implications of these results are discussed including a potential role of operant conditioning in the preference for social stimuli.
Collapse
Affiliation(s)
- Toshikazu Kuroda
- Huckle Co., Ltd., 2-51 Shiroki, Chikusa, Nagoya, Aichi, 464-0846, Japan.
- Aichi Bunkyo University, 5969-3 Okusa, Komaki, Aichi, 485-8565, Japan.
- Department of Dynamic Brain Imaging, Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai Seika-cho, Kyoto, 619-0288, Japan.
| | | | - Christopher A Podlesnik
- Department of Psychology, University of Florida, 945 Center Dr., P.O. Box 112250, Gainesville, FL, 32611, USA
| |
Collapse
|
5
|
Acute Administration of Ethanol and of a D1-Receptor Antagonist Affects the Behavior and Neurochemistry of Adult Zebrafish. Biomedicines 2022; 10:biomedicines10112878. [DOI: 10.3390/biomedicines10112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Alcohol abuse represents major societal problems, an unmet medical need resulting from our incomplete understanding of the mechanisms underlying alcohol’s actions in the brain. To uncover these mechanisms, animal models have been proposed. Here, we explore the effects of acute alcohol administration in zebrafish, a promising animal model in alcohol research. One mechanism via which alcohol may influence behavior is the dopaminergic neurotransmitter system. As a proof-of-concept analysis, we study how D1 dopamine-receptor antagonism may alter the effects of acute alcohol on the behavior of adult zebrafish and on whole brain levels of neurochemicals. We conduct these analyses using a quasi-inbred strain, AB, and a genetically heterogeneous population SFWT. Our results uncover significant alcohol x D1-R antagonist interaction and main effects of these factors in shoaling, but only additive effects of these factors in measures of exploratory behavior. We also find interacting and main effects of alcohol and the D1-R antagonist on dopamine and DOPAC levels, but only alcohol effects on serotonin. We also uncover several strain dependent effects. These results demonstrate that acute alcohol may act through dopaminergic mechanisms for some but not all behavioral phenotypes, a novel discovery, and also suggest that strain differences may, in the future, help us identify molecular mechanisms underlying acute alcohol effects.
Collapse
|
6
|
Santos D, Luzio A, Félix L, Cabecinha E, Bellas J, Monteiro SM. Microplastics and copper induce apoptosis, alter neurocircuits, and cause behavioral changes in zebrafish (Danio rerio) brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113926. [PMID: 35930835 DOI: 10.1016/j.ecoenv.2022.113926] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The knowledge regarding the neurological and behavioral toxic effects associated with microplastics (MPs) and heavy metals exposure is still scarce. The present study aimed to evaluate the potential chronic (30 days) toxic effects of MPs (2 mg/L) and copper (Cu, 25 µg/L), alone or combined, in the zebrafish (Danio rerio) brain antioxidant system, cell proliferation/death, cholinergic-, serotonergic- and dopaminergic pathways and, consequently, in locomotor, anxiety, and social behaviors. Our findings showed that MPs and Cu exposure modulated the antioxidant system of zebrafish brain, with superoxide dismutase (SOD) and glutathione reductase (GR) having higher activity in the Cu25 +MPs group, but glutathione peroxidase (GPx) being inhibited in MPs, Cu25 and Cu25 +MPs. Moreover, an increase in acetylcholinesterase (AChE) activity was observed in all exposed groups. When considering neurogenesis genes, a downregulation of proliferating cell nuclear antigen (pcna) was noticed in zebrafish exposed to the mixture treatment, while for dopaminergic system-related genes (th and slc6a3) an upregulation was observed in MPs, Cu25 and Cu25 +MPs groups. An increase in apoptosis-related genes expression (casp8, casp9 and casp3) was observed in the MPs exposed group. Changes in zebrafish behavior, particularly in mean speed, total distance moved, inactivity in the aquaria, and social/shoaling behavior was also observed in the MPs and Cu exposed groups. Overall, our results highlight the multiplicity of toxic effects of MPs, alone or combined with Cu, in zebrafish brain, namely apoptosis and alterations in adult neurogenesis, neurocircuits and, consequently, behavior.
Collapse
Affiliation(s)
- Dércia Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Quinta de Prados, Vila Real 5000-801, Portugal; University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal.
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Quinta de Prados, Vila Real 5000-801, Portugal; University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Quinta de Prados, Vila Real 5000-801, Portugal; University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal
| | - Edna Cabecinha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Quinta de Prados, Vila Real 5000-801, Portugal; University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, Vigo 36390, Spain
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Quinta de Prados, Vila Real 5000-801, Portugal; University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal
| |
Collapse
|
7
|
Wang J, Zheng F, Yin L, Shi S, Hu B, Qu H, Zheng L. Dopamine Level Affects Social Interaction and Color Preference Possibly Through Intestinal Microbiota in Zebrafish. Zebrafish 2022; 19:81-93. [PMID: 35704897 DOI: 10.1089/zeb.2021.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Accumulating researches suggest that the microbiota reside in the gastrointestinal system can influence neurodevelopment of brain and programming of behaviors. However, the mechanism underlining the relationship between shoals' behaviors and intestinal microbiota remain controversial and the roles of responsible neurotransmitters are still unclear. Here we show that shoaling behavior affected the color preference of shoals, indicating that shoals tended to choose a favorable color environment that benefited social contact. Meanwhile, administration of the selective D1-R antagonist, SCH23390, could disrupt the social interaction that led to the deficits of color preference in shoals. More importantly, the altered microbiota caused by an antibiotic oxytetracycline (OTC) exposure decreased the sociability and weakened shoals' preference for all color combinations. When given a supplementation of Lactobacillus rhamnosus GG after OTC exposure, fish maintained the same capability of social cohesion and color preference as normal fish. Our results support a role for dopamine in shaping the color preference in shoals. Our findings show that dopamine level of brain could mediate both social recognition and color preference, and offer a possibility that the production of dopamine is coordinated through gut microbiota.
Collapse
Affiliation(s)
- Ju Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Feng Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lifen Yin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shengnan Shi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Bing Hu
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, China.,Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
8
|
Video playback versus live stimuli to assess quantity discrimination in angelfish (Pterophyllum scalare). Behav Res Methods 2021; 54:2433-2444. [PMID: 34918227 PMCID: PMC9579089 DOI: 10.3758/s13428-021-01738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Video playback is a widely used technique for presentation of visual stimuli in animal behavior research. In the analysis of behavioral responses to social cues, presentation of video recordings of live conspecifics represents a consistently reproducible stimulus. However, video-recordings do not interact with the experimental subject, and thus this stimulus may be inferior in the social context. Here, we evaluated how angelfish (Pterophyllum scalare) respond to a video playback of conspecifics versus a live shoal of conspecifics. Using binary choice tests, subjects were presented different stimuli. Time spent close to one versus the other stimulus was considered an index of preference. We found angelfish to prefer a live shoal of conspecifics to an empty tank, and also the video playback of a shoal of conspecifics to a blank screen, although the level of preference in the latter was lower than in the former. These results indicate that video-playback of live conspecifics may be appropriate in angelfish, thus allowing manipulation of specific cues that angelfish may use in quantity discrimination. However, when we directly contrasted a live and a video recorded shoal, both having the same number of members, experimental fish preferred the live shoal. When the choice consisted of a live shoal of four conspecifics versus a video playback of a shoal of nine conspecifics no clear preference emerged. These results imply that video-playback has disadvantages in quantity discrimination studies with angelfish. Exploring procedural and/or technological parameters will verify the suitability of video-recording-based stimulus presentation for future use in angelfish.
Collapse
|
9
|
Sánchez JAA, Barros DM, de Los Angeles Bistoni M, Ballesteros ML, Roggio MA, Martins CDGM. Glyphosate-based herbicides affect behavioural patterns of the livebearer Jenynsia multidentata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29958-29970. [PMID: 33576960 DOI: 10.1007/s11356-020-11958-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Roundup® is one of the most widely marketed glyphosate-based herbicides in the world. There are many different formulations of this brand that differ from each other in glyphosate concentration, salts and adjuvants, including surfactants, which are labelled as "inert" compounds. Several studies have shown that these formulations are highly toxic to fish, even compared with pure glyphosate. However, mechanisms underlying this toxicity are not fully understood. In this context, this study evaluated the effects of exposure to Roundup Original® (RO), Roundup Transorb® (RT), and Roundup WG® (RWG) on the behavioural patterns of the livebearer Jenynsia multidentata. This fish naturally inhabits agricultural areas in southern Brazil and Argentina where glyphosate is used extensively. In the experiment, animals were exposed to the herbicides for 96 h, at the environmentally relevant concentration of 0.5 mg/L of glyphosate. Swimming performance, anxiety, aggressiveness, long-term memory and male sexual activity were recorded. The formulation RWG negatively affected swimming performance, thigmotaxia and long-term memory consolidation. Conversely, RT reduced the sexual performance of males. These results confirm that Roundup® formulations are extremely harmful and also that they have different targets of toxicity, affecting behaviours that are essential for fish survival.
Collapse
Affiliation(s)
- Jessica Andrea Albañil Sánchez
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Daniela Marti Barros
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Maria de Los Angeles Bistoni
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Córdoba - UNC, Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
| | - Maria Laura Ballesteros
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Córdoba - UNC, Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
| | - María Angelina Roggio
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Córdoba - UNC, Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
| | - Camila De Gaspar Martinez Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
10
|
Audira G, Siregar P, Chen KHC, Roldan MJM, Huang JC, Lai HT, Hsiao CD. Interspecies Behavioral Variability of Medaka Fish Assessed by Comparative Phenomics. Int J Mol Sci 2021; 22:ijms22115686. [PMID: 34073632 PMCID: PMC8197923 DOI: 10.3390/ijms22115686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, medaka has been used as a model organism in various research fields. However, even though it possesses several advantages over zebrafish, fewer studies were done in medaka compared to zebrafish, especially with regard to its behavior. Thus, to provide more information regarding its behavior and to demonstrate the behavioral differences between several species of medaka, we compared the behavioral performance and biomarker expression in the brain between four medaka fishes, Oryzias latipes, Oryzias dancena, Oryzias woworae, and Oryzias sinensis. We found that each medaka species explicitly exhibited different behaviors to each other, which might be related to the different basal levels of several biomarkers. Furthermore, by phenomics and genomic-based clustering, the differences between these medaka fishes were further investigated. Here, the phenomic-based clustering was based on the behavior results, while the genomic-based clustering was based on the sequence of the nd2 gene. As we expected, both clusterings showed some resemblances to each other in terms of the interspecies relationship between medaka and zebrafish. However, this similarity was not displayed by both clusterings in the medaka interspecies comparisons. Therefore, these results suggest a re-interpretation of several prior studies in comparative biology. We hope that these results contribute to the growing database of medaka fish phenotypes and provide one of the foundations for future phenomics studies of medaka fish.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Marri Jmelou M. Roldan
- Faculty of Pharmacy and The Graduate School, University of Santo Tomas, Manila 1008, Philippines;
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| | - Hong-Thih Lai
- Department of Aquatic Biosciences, National Chiayi University, 300 University Rd., Chiayi 600, Taiwan
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| |
Collapse
|
11
|
Serikuly N, Alpyshov ET, Wang D, Wang J, Yang L, Hu G, Yan D, Demin KA, Kolesnikova TO, Galstyan D, Amstislavskaya TG, Babashev AM, Mor MS, Efimova EV, Gainetdinov RR, Strekalova T, de Abreu MS, Song C, Kalueff AV. Effects of acute and chronic arecoline in adult zebrafish: Anxiolytic-like activity, elevated brain monoamines and the potential role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:109977. [PMID: 32454162 DOI: 10.1016/j.pnpbp.2020.109977] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/11/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
Arecoline is a naturally occurring psychoactive alkaloid with partial agonism at nicotinic and muscarinic acetylcholine receptors. Arecoline consumption is widespread, making it the fourth (after alcohol, nicotine and caffeine) most used substance by humans. However, the mechanisms of acute and chronic action of arecoline in-vivo remain poorly understood. Animal models are a valuable tool for CNS disease modeling and drug screening. Complementing rodent studies, the zebrafish (Danio rerio) emerges as a promising novel model organism for neuroscience research. Here, we assessed the effects of acute and chronic arecoline on adult zebrafish behavior and physiology. Overall, acute and chronic arecoline treatments produced overt anxiolytic-like behavior (without affecting general locomotor activity and whole-body cortisol levels), with similar effects also caused by areca nut water extracts. Acute arecoline at 10 mg/L disrupted shoaling, increased social preference, elevated brain norepinephrine and serotonin levels and reduced serotonin turnover. Acute arecoline also upregulated early protooncogenes c-fos and c-jun in the brain, whereas chronic treatment with 1 mg/L elevated brain expression of microglia-specific biomarker genes egr2 and ym1 (thus, implicating microglial mechanisms in potential effects of long-term arecoline use). Finally, acute 2-h discontinuation of chronic arecoline treatment evoked withdrawal-like anxiogenic behavior in zebrafish. In general, these findings support high sensitivity of zebrafish screens to arecoline and related compounds, and reinforce the growing utility of zebrafish for probing molecular mechanisms of CNS drugs. Our study also suggests that novel anxiolytic drugs can eventually be developed based on arecoline-like molecules, whose integrative mechanisms of CNS action may involve monoaminergic and neuro-immune modulation.
Collapse
Affiliation(s)
- Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | - DongMei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - JingTao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - GuoJun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongNi Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia
| | | | | | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana Strekalova
- Laboratory of Psychiatric Neurobiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Cai Song
- Guangdong Ocean University, Zhanjiang, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
12
|
Lai YH, Audira G, Liang ST, Siregar P, Suryanto ME, Lin HC, Villalobos O, Villaflores OB, Hao E, Lim KH, Hsiao CD. Duplicated dnmt3aa and dnmt3ab DNA Methyltransferase Genes Play Essential and Non-Overlapped Functions on Modulating Behavioral Control in Zebrafish. Genes (Basel) 2020; 11:genes11111322. [PMID: 33171840 PMCID: PMC7695179 DOI: 10.3390/genes11111322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
DNA methylation plays several roles in regulating neuronal proliferation, differentiation, and physiological functions. The major de novo methyltransferase, DNMT3, controls the DNA methylation pattern in neurons according to environmental stimulations and behavioral regulations. Previous studies demonstrated that knockout of Dnmt3 induced mouse anxiety; however, controversial results showed that activation of Dnmt3 causes anxiolytic behavior. Thus, an alternative animal model to clarify Dnmt3 on modulating behavior is crucial. Therefore, we aimed to establish a zebrafish (Danio rerio) model to clarify the function of dnmt3 on fish behavior by behavioral endpoint analyses. We evaluated the behaviors of the wild type, dnmt3aa, and dnmt3ab knockout (KO) fish by the novel tank, mirror biting, predator avoidance, social interaction, shoaling, circadian rhythm locomotor activity, color preference, and short-term memory tests. The results indicated that the dnmt3aa KO fish possessed abnormal exploratory behaviors and less fear response to the predator. On the other hand, dnmt3ab KO fish displayed less aggression, fear response to the predator, and interests to interact with their conspecifics, loosen shoaling formation, and dysregulated color preference index ranking. Furthermore, both knockout fishes showed higher locomotion activity during the night cycle, which is a sign of anxiety. However, changes in some neurotransmitter levels were observed in the mutant fishes. Lastly, whole-genome DNA methylation sequencing demonstrates a potential network of Dnmt3a proteins that is responsive to behavioral alterations. To sum up, the results suggested that the dnmt3aa KO or dnmt3ab KO fish display anxiety symptoms, which supported the idea that Dnmt3 modulates the function involved in emotional control, social interaction, and cognition.
Collapse
Affiliation(s)
- Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
| | - Michael Edbert Suryanto
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
| | - Huan-Chau Lin
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Number 92, Section 2, Chungshan North Road, Taipei 10449, Taiwan;
| | - Omar Villalobos
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines;
| | - Oliver B. Villaflores
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines;
| | - Erwei Hao
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
- Correspondence: (E.H.); (K.-H.L.); (C.-D.H.)
| | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Number 92, Section 2, Chungshan North Road, Taipei 10449, Taiwan;
- Department of Medicine, MacKay Medical College, Sanzhi Dist., New Taipei City 252, Taiwan
- Correspondence: (E.H.); (K.-H.L.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (E.H.); (K.-H.L.); (C.-D.H.)
| |
Collapse
|
13
|
Facciol A, Gerlai R. Zebrafish Shoaling, Its Behavioral and Neurobiological Mechanisms, and Its Alteration by Embryonic Alcohol Exposure: A Review. Front Behav Neurosci 2020; 14:572175. [PMID: 33100980 PMCID: PMC7546311 DOI: 10.3389/fnbeh.2020.572175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Social cognition and social behaviors are complex phenomena that involve numerous brain areas and underlying neurobiological mechanisms. Embryonic alcohol exposure may lead to the development of Fetal Alcohol Spectrum Disorder (FASD), a disorder that manifests with varying symptoms including abnormal social behavior and other cognitive deficits. Animal models have been utilized to mimic aspects of the disease and to study potential underlying mechanisms. The zebrafish is a relative newcomer in this field but has been suggested as an optimal compromise between system complexity and practical simplicity for modeling FASD. Importantly, due to external fertilization and development of the embryo outside the mother and subsequent lack of parental care, this species allows precise control of the timing and dose of alcohol delivery during embryonic development. Furthermore, the zebrafish is a highly social species and thus may be particularly appropriate for the analysis of embryonic alcohol-induced alterations in this context. Here, we provide a succinct review focusing on shoaling, a prominent form of social behavior, in zebrafish. We summarize what is known about its behavioral mechanisms and underlying neurobiological processes, and how it is altered by exposure to ethanol during embryonic development. Lastly, we briefly consider possible future directions of research that would help us better understand the relationship between the behavioral expression and molecular basis of embryonic ethanol-induced social deficits in fish and humans.
Collapse
Affiliation(s)
- Amanda Facciol
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
14
|
Tunbak H, Vazquez-Prada M, Ryan TM, Kampff AR, Dreosti E. Whole-brain mapping of socially isolated zebrafish reveals that lonely fish are not loners. eLife 2020; 9:55863. [PMID: 32366356 PMCID: PMC7282805 DOI: 10.7554/elife.55863] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The zebrafish was used to assess the impact of social isolation on behaviour and brain function. As in humans and other social species, early social deprivation reduced social preference in juvenile zebrafish. Whole-brain functional maps of anti-social isolated (lonely) fish were distinct from anti-social (loner) fish found in the normal population. These isolation-induced activity changes revealed profound disruption of neural activity in brain areas linked to social behaviour, social cue processing, and anxiety/stress. Several of the affected regions are modulated by serotonin, and we found that social preference in isolated fish could be rescued by acutely reducing serotonin levels. Socialising is good for people’s mental health and wellbeing. The connections and relationships that we form can make us more resilient and healthier. Researchers also know that prolonged periods of social isolation, and feeling lonely, can be detrimental to our health, especially in early childhood. The paradox is that loneliness often results in an even lower desire for social contact, leading to further isolation. But not everyone craves social contact. Some people prefer to be alone and feel more comfortable avoiding social interaction. Zebrafish display the same social preferences. This, along with their transparent brains, makes them a useful model to study the links between social behaviour and brain activity. Like humans, zebrafish are social animals, with most fish taking a strong liking to social interactions by the time they are a few weeks old. A small number of ‘loner’ fish, however, prefer to avoid interacting with their siblings or tank mates. And so, if loneliness quells the desire for more social contact, the question becomes, does isolation turn otherwise social fish into loners? Here, Tunbak et al. use zebrafish to study how social isolation changes brain activity and behaviour. Social fish were isolated from others in the tank for a few days. These so-called ‘lonely fish’ were then allowed back in contact with the other fish. This revealed that, after isolation, previously social fish did avoid interacting with others. With this experimental set-up, Tunbak et al. also compared the brains of lonely and loner fish. When fish that prefer social interaction were deprived of social contact, they had increased activity in areas of the brain related to stress and anxiety. These lonely fish became anxious and very sensitive to stimuli; and their brain activity suggested that social interaction became overwhelming rather than rewarding. Positively, the lonely fish quickly recovered their normal, social behaviour when given a drug that reduces anxiety. This work provides a glimpse into how human behaviour could be affected by lengthy periods in isolation. These results suggest that humans could feel anxious upon returning to normal life after spending a long time alone. Moreover, the findings show the impact that social interaction and isolation can have on the young, developing brain.
Collapse
Affiliation(s)
- Hande Tunbak
- The Wolfson Institute for Biomedical Research, University Street, University College London, London, United Kingdom
| | - Mireya Vazquez-Prada
- The Wolfson Institute for Biomedical Research, University Street, University College London, London, United Kingdom
| | - Thomas Michael Ryan
- The Wolfson Institute for Biomedical Research, University Street, University College London, London, United Kingdom
| | - Adam Raymond Kampff
- Sainsbury Wellcome Centre, Howland Street, University College London, London, United Kingdom
| | - Elena Dreosti
- The Wolfson Institute for Biomedical Research, University Street, University College London, London, United Kingdom
| |
Collapse
|
15
|
Facciol A, Bailleul C, Nguyen S, Chatterjee D, Gerlai R. Developmental stage-dependent deficits induced by embryonic ethanol exposure in zebrafish: A neurochemical analysis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109859. [PMID: 31917146 DOI: 10.1016/j.pnpbp.2020.109859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
FASD results from the developing fetus being exposed to alcohol, and is characterized by morphological, behavioural and cognitive deficits. However, the expression, severity and age of onset of these symptoms has been found to show variation. This variation may partly be due to the developmental stage at which alcohol reached the developing fetus. Previously, alcohol was shown to lead to significant concentration dependent behavioural as well as neurochemical changes detected in adult zebrafish when this substance was administered at 24 h post-fertilization (hpf) for 2 h. This alcohol exposure method arguably mimicked the milder, and more prevalent, forms of human FASD. However, whether the observed changes depended upon the developmental stage, i.e., the timing, of alcohol exposure has not been systematically analyzed. Here, we employ the same alcohol dosing regimen, where zebrafish eggs are immersed into 0% or 1% (vol/vol) alcohol for 2 h, but we perform the immersion at 5, 10, 16, 24, 36, or 48 hpf. We previously developed a sensitive HPLC method to quantify neurochemicals, and found levels of dopamine, serotonin and their metabolites DOPAC and 5-HIAA to be affected by embryonic alcohol treatment. Here, using the same method, we compare whole-brain levels of these neurochemicals in the embryonic alcohol exposed and control zebrafish at their age of 30 days post-fertilization (dpf). Consistent with previous reports, we found significant reduction of levels of dopamine, serotonin and their metabolites in the fish exposed to alcohol at 24 hpf. However, we also found significant dependency on the developmental stage at which alcohol was administered with particularly robust impairments when the exposure was at the early or middle of the developmental periods probed. Our results now demonstrate that one can detect functional abnormalities in the zebrafish brain induced by embryonic alcohol as early as 30 dpf and that the neurochemical deficits are dependent upon the developmental stage at which alcohol is administered.
Collapse
Affiliation(s)
- Amanda Facciol
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Celine Bailleul
- Department of Biology, University of Toronto Mississauga, Canada
| | - Samuel Nguyen
- Department of Biology, University of Toronto Mississauga, Canada
| | | | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
16
|
Nanoplastics Cause Neurobehavioral Impairments, Reproductive and Oxidative Damages, and Biomarker Responses in Zebrafish: Throwing up Alarms of Wide Spread Health Risk of Exposure. Int J Mol Sci 2020; 21:ijms21041410. [PMID: 32093039 PMCID: PMC7073134 DOI: 10.3390/ijms21041410] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
Plastic pollution is a growing global emergency and it could serve as a geological indicator of the Anthropocene era. Microplastics are potentially more hazardous than macroplastics, as the former can permeate biological membranes. The toxicity of microplastic exposure on humans and aquatic organisms has been documented, but the toxicity and behavioral changes of nanoplastics (NPs) in mammals are scarce. In spite of their small size, nanoplastics have an enormous surface area, which bears the potential to bind even bigger amounts of toxic compounds in comparison to microplastics. Here, we used polystyrene nanoplastics (PS-NPs) (diameter size at ~70 nm) to investigate the neurobehavioral alterations, tissue distribution, accumulation, and specific health risk of nanoplastics in adult zebrafish. The results demonstrated that PS-NPs accumulated in gonads, intestine, liver, and brain with a tissue distribution pattern that was greatly dependent on the size and shape of the NPs particle. Importantly, an analysis of multiple behavior endpoints and different biochemical biomarkers evidenced that PS-NPs exposure induced disturbance of lipid and energy metabolism as well as oxidative stress and tissue accumulation. Pronounced behavior alterations in their locomotion activity, aggressiveness, shoal formation, and predator avoidance behavior were exhibited by the high concentration of the PS-NPs group, along with the dysregulated circadian rhythm locomotion activity after its chronic exposure. Moreover, several important neurotransmitter biomarkers for neurotoxicity investigation were significantly altered after one week of PS-NPs exposure and these significant changes may indicate the potential toxicity from PS-NPs exposure. In addition, after ~1-month incubation, the fluorescence spectroscopy results revealed the accumulation and distribution of PS-NPs across zebrafish tissues, especially in gonads, which would possibly further affect fish reproductive function. Overall, our results provided new evidence for the adverse consequences of PS-NPs-induced behavioral dysregulation and changes at the molecular level that eventually reduce the survival fitness of zebrafish in the ecosystem.
Collapse
|
17
|
van Staden C, de Brouwer G, Botha TL, Finger-Baier K, Brand SJ, Wolmarans D. Dopaminergic and serotonergic modulation of social reward appraisal in zebrafish (Danio rerio) under circumstances of motivational conflict: Towards a screening test for anti-compulsive drug action. Behav Brain Res 2020; 379:112393. [PMID: 31785362 DOI: 10.1016/j.bbr.2019.112393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/04/2023]
Abstract
Cognitive flexibility, shown to be impaired in patients presenting with compulsions, is dependent on balanced dopaminergic and serotonergic interaction. Towards the development of a zebrafish (Danio rerio) screening test for anti-compulsive drug action, we manipulated social reward appraisal under different contexts by means of dopaminergic (apomorphine) and serotonergic (escitalopram) intervention. Seven groups of zebrafish (n = 6 per group) were exposed for 24 days (1 h per day) to either control (normal tank water), apomorphine (50 or 100 μg/L), escitalopram (500 or 1000 μg/L) or a combination (A100/E500 or A100/E1000 μg/L). Contextual reward appraisal was assessed over three phases i.e. Phase 1 (contingency association), Phase 2 (dissociative testing), and Phase 3 (re-associative testing). We demonstrate that 1) sight of social conspecifics is an inadequate motivational reinforcer under circumstances of motivational conflict, 2) dopaminergic and serotonergic intervention lessens the importance of an aversive stimulus, increasing the motivational valence of social reward, 3) while serotoninergic intervention maintains reward directed behavior, high-dose dopaminergic intervention bolsters cue-directed responses and 4) high-dose escitalopram reversed apomorphine-induced behavioral inflexibility. The results reported here are supportive of current dopamine-serotonin opponency theories and confirm the zebrafish as a potentially useful species in which to investigate compulsive-like behaviors.
Collapse
Affiliation(s)
- C van Staden
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - G de Brouwer
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - T L Botha
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - K Finger-Baier
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - S J Brand
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - D Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
18
|
Fernandes Y, Rampersad M, Jones EM, Eberhart JK. Social deficits following embryonic ethanol exposure arise in post-larval zebrafish. Addict Biol 2019; 24:898-907. [PMID: 30178621 PMCID: PMC6629526 DOI: 10.1111/adb.12649] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Prenatal alcohol exposure is the leading cause of birth defects, collectively termed fetal alcohol spectrum disorders (FASD). In the United States and Canada, 1 in 100 children will be born with FASD. Some of the most commonly debilitating defects of FASD are in social behavior. Zebrafish are highly social animals, and embryonic ethanol exposure from 24 to 26 hours post-fertilization disrupts this social (shoaling) response in adult zebrafish. Recent findings have suggested that social behaviors are present in zebrafish larvae as young as 3 weeks, but how they relate to adult shoaling is unclear. We tested the same ethanol-exposed zebrafish for social impairments at 3 weeks then again at 16 weeks. At both ages, live conspecifics were used to elicit a social response. We did not find alcohol-induced differences in behavior in 3-week-old fish when they were able to see conspecifics. We do find evidence that control zebrafish are able to use nonvisual stimuli to detect conspecifics, and this behavior is disrupted in the alcohol-exposed fish. As adults, these fish displayed a significant decrease in social behavior when conspecifics are visible. This surprising finding demonstrates that the adult and larval social behaviors are, at least partly, separable. Future work will investigate the nature of these nonvisual cues and how the neurocircuitry differs between the larval and adult social behaviors.
Collapse
|
19
|
Velkey AJ, Boles J, Betts TK, Kay H, Henenlotter R, Wiens KM. High fidelity: Assessing zebrafish (Danio rerio) responses to social stimuli across several levels of realism. Behav Processes 2019; 164:100-108. [PMID: 31022508 DOI: 10.1016/j.beproc.2019.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/14/2019] [Accepted: 04/19/2019] [Indexed: 10/27/2022]
Abstract
Behavioral assays of zebrafish shoaling have recently been employed to investigate social behavior in zebrafish models of psychiatric disease. Many studies have developed simulated models of conspecifics to serve as alternatives to live shoals in order to examine specific cues that contribute to shoaling behavior. However, no studies have investigated the extent to which zebrafish prefer one stimulus over another when given the choice between two conspecific alternatives (live or simulated). In the present study, we employed a new, four-quadrant choice preference task that allowed zebrafish to swim freely between a live shoal and a motorized mobile shoal, a live shoal and playback of a video-recorded shoal, or a motorized mobile shoal and playback of a video-recorded shoal. Behavior tracking software was used to track subjects' movements in upper and lower quadrants on either side of the test arena. Subjects spent more time near the live shoal, especially in the lower quadrant, and exhibited different swim patterns in response to each simulated conspecific alternative, suggesting that zebrafish prefer a live shoal over models of lower fidelity.
Collapse
Affiliation(s)
- Andrew J Velkey
- Neuroscience Program, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA, USA
| | - Jake Boles
- Neuroscience Program, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA, USA
| | - Taylor K Betts
- Neuroscience Program, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA, USA
| | - Heather Kay
- Neuroscience Program, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA, USA
| | - Rebecca Henenlotter
- Neuroscience Program, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA, USA
| | - Katie M Wiens
- Neuroscience Program, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA, USA.
| |
Collapse
|
20
|
|
21
|
Argus: An open-source and flexible software application for automated quantification of behavior during social interaction in adult zebrafish. Behav Res Methods 2018; 51:727-746. [PMID: 30105442 DOI: 10.3758/s13428-018-1083-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Zebrafish show great potential for behavioral neuroscience. Promising lines of research, however, require the development and validation of software tools that will allow automated and cost-effective behavioral analysis. Building on our previous work with the RealFishTracker (in-house-developed tracking system), we present Argus, a data extraction and analysis tool built in the open-source R language for behavioral researchers without any expertise in R. Argus includes a new, user-friendly, and efficient graphical user interface, instead of a command-line interface, and offers simplicity and flexibility in measuring complex zebrafish behavior through customizable parameters. In this article, we compare Argus with Noldus EthoVision and Noldus The Observer, to validate this new system. All three software applications were originally designed to quantify the behavior of a single subject. We first also performed an analysis of the movement of individual fish and compared the performance of the three software applications. Next we computed and quantified the behavioral variables that characterize dyadic interactions between zebrafish. We found that Argus and EthoVision extract similar absolute values and patterns of changes in these values for several behavioral measures, including speed, freezing, erratic movement, and interindividual distance. In contrast, the manual coding of behavior in The Observer showed weaker correlations with the two tracking methods (EthoVision and Argus). Thus, Argus is a novel, cost-effective, and customizable method for the analysis of adult zebrafish behavior that may be utilized for the behavioral quantification of both single and dyadic interacting subjects, but further sophistication will be needed for the proper identification of complex motor patterns, measures that a human observers can easily detect.
Collapse
|
22
|
Soares MC, Gerlai R, Maximino C. The integration of sociality, monoamines and stress neuroendocrinology in fish models: applications in the neurosciences. JOURNAL OF FISH BIOLOGY 2018; 93:170-191. [PMID: 30043474 DOI: 10.1111/jfb.13757] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Animal-focused research has been crucial for scientific advancement, but rodents are still taking a starring role. Starting as merely supporting evidence found in rodents, the use of fish models has slowly taken a more central role and expanded its overall contributions in areas such as social sciences, evolution, physiology and recently in translational medical research. In the neurosciences, zebrafish Danio rerio have been widely adopted, contributing to our understanding of the genetic control of brain processes and the effects of pharmacological manipulations. However, discussion continues regarding the paradox of function versus structure, when fishes and mammals are compared and on the potentially evolutionarily conserved nature of behaviour across fish species. From a behavioural standpoint, we explore aversive-stress and social behaviour in selected fish models and refer to the extensive contributions of stress and monoaminergic systems. We suggest that, in spite of marked neuroanatomical differences between fishes and mammals, stress and sociality are conserved at the behavioural and molecular levels. We also suggest that stress and sociality are mediated by monoamines in predictable and non-trivial ways and that monoamines could bridge the relationship between stress and social behaviour. To reconcile the level of divergence with the level of similarity, we need neuroanatomical, pharmacological, behavioural and ecological studies conducted in the laboratory and in nature. These areas need to add to each other to enhance our understanding of fish behaviour and ultimately how this all may lead to better model systems for translational studies.
Collapse
Affiliation(s)
- Marta C Soares
- Centro de Investigação em Biodiversidade e Recursos Genéticos - CIBIO, Universidade do Porto, Vairão, Portugal
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento 'Frederico Guilherme Graeff', Instituto de Estudos em Saúde e Biológicas - IESB, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| |
Collapse
|
23
|
Mahabir S, Chatterjee D, Gerlai R. Short exposure to low concentrations of alcohol during embryonic development has only subtle and strain- dependent effect on the levels of five amino acid neurotransmitters in zebrafish. Neurotoxicol Teratol 2018; 68:91-96. [PMID: 29886245 DOI: 10.1016/j.ntt.2018.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
Abstract
The zebrafish has been successfully employed to model and study the effects of embryonic alcohol exposure. Short exposure to low alcohol concentrations during embryonic development has been shown to significantly disrupt social behavior as well as the dopaminergic and serotoninergic systems in zebrafish. However, analysis of potential effects of embryonic alcohol exposure on other amino acid neurotransmitter systems has not been performed. Here we analyzed neurochemicals obtained from adult AB and TU strain zebrafish that were immersed in 0.00% (control), 0.25%, 0.50%, 0.75% or 1.00% alcohol solution (vol/vol%) at 24 h post-fertilization for 2 h. From whole brain extracts, we quantified glutamate, aspartate, glycine, taurine and GABA levels using high performance liquid chromatography (HPLC). We found embryonic alcohol exposure not to have any significant effect on the levels of glutamate, aspartate, glycine and GABA in both AB and TU zebrafish. AB zebrafish showed a significant elevation of taurine levels, but only in the highest alcohol dose group compared to control. These results, albeit mainly negative, together with prior findings suggest that behavioral abnormalities resulting from embryonic alcohol exposure described before for AB zebrafish may primarily be due to altered dopaminergic and serotoninergic mechanisms. Furthermore, a Principal Component Analysis conducted with all neurochemicals tested in this and in our prior study, found a strain-dependent correlation structure response to embryonic alcohol treatment, confirming that embryonic alcohol effects may be genotype dependent.
Collapse
Affiliation(s)
- Samantha Mahabir
- Department of Cell & Systems Biology, University of Toronto, Canada
| | | | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
24
|
Soares MC, Cardoso SC, Carvalho TDS, Maximino C. Using model fish to study the biological mechanisms of cooperative behaviour: A future for translational research concerning social anxiety disorders? Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:205-215. [PMID: 29154800 DOI: 10.1016/j.pnpbp.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/03/2017] [Accepted: 11/10/2017] [Indexed: 01/05/2023]
Abstract
Human societies demand of its composing members the development of a wide array of social tools and strategies. A notable example is human outstanding ability to cooperate with others, in all its complex forms, depicting the reality of a highly demanding social framework in which humans need to be integrated as to attain physical and mental benefits. Considering the importance of social engagement, it's not entirely unexpected that most psychiatric disorders involve some disruption of normal social behaviour, ranging from an abnormal absence to a significant increase of social functioning. It is however surprising that knowledge on these social anxiety disorders still remains so limited. Here we review the literature focusing on the social and cooperative toolbox of 3 fish model species (cleaner fishes, guppies and zebrafish) which are amenable systems to test for social disorders. We build on current knowledge based on ethological information, arising from studies on cooperative behaviour in cleanerfishes and guppies, while profiting from the advantages of the intense use of zebrafish, to create novel paradigms aiming at the major socio-cognitive modules/dimensions in fish species. This focus may enable the discovery of putative conserved endpoints which are relevant for research into social disorders. We suggest that cross-species, cross-domain, functional and genetic approaches could provide a wider array of information on the neurobiological bases of social and cooperative behaviour, crucial to understanding the neural bases of social disorders and key to finding novel avenues towards treatment.
Collapse
Affiliation(s)
- Marta C Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | - Sónia C Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Tamires Dos Santos Carvalho
- IESB, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Unidade III, Marabá, Brazil
| | - Caio Maximino
- IESB, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Unidade III, Marabá, Brazil
| |
Collapse
|
25
|
Shams S, Rihel J, Ortiz JG, Gerlai R. The zebrafish as a promising tool for modeling human brain disorders: A review based upon an IBNS Symposium. Neurosci Biobehav Rev 2018; 85:176-190. [DOI: 10.1016/j.neubiorev.2017.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/28/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
|
26
|
Saszik SM, Smith CM. The impact of stress on social behavior in adult zebrafish (Danio rerio). Behav Pharmacol 2018; 29:53-59. [DOI: 10.1097/fbp.0000000000000338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Shams S, Amlani S, Buske C, Chatterjee D, Gerlai R. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish. Dev Psychobiol 2018; 60:43-56. [PMID: 29091281 PMCID: PMC5747993 DOI: 10.1002/dev.21581] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022]
Abstract
The zebrafish is a social vertebrate and an excellent translational model for a variety of human disorders. Abnormal social behavior is a hallmark of several human brain disorders. Social behavioral problems can arise as a result of adverse early social environment. Little is known about the effects of early social isolation in adult zebrafish. We compared zebrafish that were isolated for either short (7 days) or long duration (180 days) to socially housed zebrafish, testing their behavior across ontogenesis (ages 10, 30, 60, 90, 120, 180 days), and shoal cohesion and whole-brain monoamines and their metabolites in adulthood. Long social isolation increased locomotion and decreased shoal cohesion and anxiety in the open-field in adult. Additionally, both short and long social isolation reduced dopamine metabolite levels in response to social stimuli. Thus, early social isolation has lasting effects in zebrafish, and may be employed to generate zebrafish models of human neuropsychiatric conditions.
Collapse
Affiliation(s)
- Soaleha Shams
- Department of Cell & Systems Biology, University of Toronto
| | - Shahid Amlani
- Department of Psychology, University of Toronto Mississauga
| | | | - Diptendu Chatterjee
- Department of Nutritional Sciences, University of Toronto
- Department of Psychology, University of Toronto Mississauga
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto
- Department of Psychology, University of Toronto Mississauga
| |
Collapse
|
28
|
Fetal alcohol spectrum disorders: Zebrafish in the analysis of the milder and more prevalent form of the disease. Behav Brain Res 2017; 352:125-132. [PMID: 28988969 DOI: 10.1016/j.bbr.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) represent a large unmet medical need. Exposure of the developing human embryo to alcohol can lead to life-long suffering. Despite the well documented deleterious effects of alcohol on the developing fetus, pregnant women continue to drink alcohol, and FASD remains the leading cause of preventable mental retardation and other behavioral abnormalities. Particularly prevalent are the milder forms of the disease cluster, representing children who do not show obvious physical signs and who may be undiagnosed or misdiagnosed. To develop treatment and diagnostic tools, researchers have turned to animal models. The zebrafish is becoming one of the leading biomedical research organisms that may facilitate discovery of the biological mechanisms underlying this disease and the identification of biomarkers that may be used for diagnosis. Here we review the latest advances of this field, mostly focussing on the discoveries made in our own laboratory and others with zebrafish employed to analyze the effects of moderate to low level of exposure to alcohol. We argue that the zebrafish represents unique advantages, and adding information obtained with this species to the mix of other animal models will significantly increase translational relevance of animal biomedical research for the analysis of human FASD.
Collapse
|
29
|
Hamilton TJ, Tresguerres M, Kline DI. Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish. Biol Lett 2017; 13:rsbl.2017.0183. [PMID: 28724688 DOI: 10.1098/rsbl.2017.0183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/14/2017] [Indexed: 01/11/2023] Open
Abstract
Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish (Stegastes partitus) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D1-receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates.
Collapse
Affiliation(s)
- Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada T5 J 4S2 .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - David I Kline
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| |
Collapse
|
30
|
Gerlai R. Animated images in the analysis of zebrafish behavior. Curr Zool 2017; 63:35-44. [PMID: 29491961 PMCID: PMC5804150 DOI: 10.1093/cz/zow077] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022] Open
Abstract
This invited review is based upon a recent oral paper I presented at the Virtual Reality Symposium of the 34th International Ethological Conference (2015, Cairns, Australia), and as such it describes studies conducted mainly in my own laboratory. It reviews how we utilized visual stimuli for inducing behavioral responses in the zebrafish with a focus on shoaling, group forming behavior. The zebrafish is gaining increasing popularity in neuroscience. With this interest, its behavior is also more frequently studied. One of the many advantages of the zebrafish over traditional laboratory rodents is that this species is diurnal, and it relies heavily upon its visual system. Thus, similarly to our own species, zebrafish respond to visual stimuli in a robust and easily quantifiable manner. For the past decade, we have been exploring how to use such visual stimuli, and have developed numerous paradigms with which we can induce and quantify a variety of behavioral responses, including shoaling. This review summarizes some of these studies, and discusses questions including whether one should use live fish as stimulus, whether and how one could present animated (moving images) of fish, and how one could optimize a range of stimulus presentation parameters to elicit the most robust responses in zebrafish. Although the zebrafish is a relative newcomer in ethology and behavioral neuroscience, and although many of our findings only represent the first steps in this research, our results suggest that the behavioral analysis of the zebrafish will have an important place in biomedical research.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, Rm CCT4004, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
31
|
Fulcher N, Tran S, Shams S, Chatterjee D, Gerlai R. Neurochemical and Behavioral Responses to Unpredictable Chronic Mild Stress Following Developmental Isolation: The Zebrafish as a Model for Major Depression. Zebrafish 2017; 14:23-34. [DOI: 10.1089/zeb.2016.1295] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Niveen Fulcher
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Steven Tran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Soaleha Shams
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Diptendu Chatterjee
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Seguin D, Shams S, Gerlai R. Behavioral Responses to Novelty or to a Predator Stimulus Are Not Altered in Adult Zebrafish by Early Embryonic Alcohol Exposure. Alcohol Clin Exp Res 2016; 40:2667-2675. [PMID: 27790739 DOI: 10.1111/acer.13249] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/21/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) may vary in symptoms and severity. In the milder and more prevalent forms of the disease, behavioral abnormalities may include impaired social behavior, for example, difficulty interpreting social cues. Patients with FASD remain often undiagnosed due to lack of biomarkers, and treatment is unavailable because the mechanisms of the disease are not yet understood. Animal models have been proposed to facilitate addressing these problems. More recently, short exposure of the zebrafish embryo to low concentrations of alcohol was shown to lead to significant and lasting impairment of behavior in response to social stimuli. The impairment may be the result of abnormal social behavior or altered fear/anxiety. The goal of the current study was to investigate the latter. METHODS Here, we employed the alcohol exposure regimen used previously (exposure of 24th hour postfertilization embryos to 0.00, 0.25, 0.50, 0.75, or 1.00% vol/vol alcohol for 2 hours), allowed the fish to reach adulthood, and measured the behavioral responses of these adults to a novel tank (anxiety-related behaviors) as well as to an animated image of a sympatric predator of zebrafish (fear-related behaviors). RESULTS We found behavioral responses of embryonic alcohol-exposed adult fish to remain statistically indistinguishable from those of controls, suggesting unaltered anxiety and fear in the embryonic alcohol-treated fish. CONCLUSIONS Given that motor and perceptual function was previously shown to be also unaltered in the adults after embryonic alcohol exposure, our current results suggest that the impaired response of these fish to social stimuli may be the result of abnormal social behavior.
Collapse
Affiliation(s)
- Diane Seguin
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Soaleha Shams
- Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
33
|
Fernandes YM, Rampersad M, Luchiari AC, Gerlai R. Associative learning in the multichamber tank: A new learning paradigm for zebrafish. Behav Brain Res 2016; 312:279-84. [DOI: 10.1016/j.bbr.2016.06.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/24/2016] [Accepted: 06/20/2016] [Indexed: 12/28/2022]
|
34
|
Moura CDA, Luchiari AC. Time-place learning in the zebrafish (Danio rerio). Behav Processes 2016; 128:64-9. [DOI: 10.1016/j.beproc.2016.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 01/14/2023]
|
35
|
Zimmermann FF, Gaspary KV, Siebel AM, Bonan CD. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish. Behav Brain Res 2016; 311:368-374. [PMID: 27247142 DOI: 10.1016/j.bbr.2016.05.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022]
Abstract
Changes in social behavior occur in several neuropsychiatric disorders such as schizophrenia and autism. The interaction between individuals is an essential aspect and an adaptive response of several species, among them the zebrafish. Oxytocin is a neuroendocrine hormone associated with social behavior. The aim of the present study was to investigate the effects of MK-801, a non-competitive antagonist of glutamate NMDA receptors, on social interaction and aggression in zebrafish. We also examined the modulation of those effects by oxytocin, the oxytocin receptor agonist carbetocin and the oxytocin receptor antagonist L-368,899. Our results showed that MK-801 induced a decrease in the time spent in the segment closest to the conspecific school and in the time spent in the segment nearest to the mirror image, suggesting an effect on social behavior. The treatment with oxytocin after the exposure to MK-801 was able to reestablish the time spent in the segment closest to the conspecific school, as well as the time spent in the segment nearest to the mirror image. In addition, in support of the role of the oxytocin pathway in modulating those responses, we showed that the oxytocin receptor agonist carbetocin reestablished the social and aggressive behavioral deficits induced by MK-801. However, the oxytocin receptor antagonist L-368,899 was not able to reverse the behavioral changes induced by MK-801. This study supports the critical role for NMDA receptors and the oxytocinergic system in the regulation of social behavior and aggression which may be relevant for the mechanisms associated to autism and schizophrenia.
Collapse
Affiliation(s)
- Fernanda Francine Zimmermann
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Karina Vidarte Gaspary
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Anna Maria Siebel
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
36
|
The effect of the number and size of animated conspecific images on shoaling responses of zebrafish. Pharmacol Biochem Behav 2015; 139 Pt B:94-102. [DOI: 10.1016/j.pbb.2015.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/15/2014] [Accepted: 01/19/2015] [Indexed: 12/14/2022]
|
37
|
Shams S, Chatterjee D, Gerlai R. Chronic social isolation affects thigmotaxis and whole-brain serotonin levels in adult zebrafish. Behav Brain Res 2015; 292:283-7. [DOI: 10.1016/j.bbr.2015.05.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/24/2015] [Accepted: 05/29/2015] [Indexed: 12/16/2022]
|
38
|
Fernandes Y, Rampersad M, Gerlai AR. Impairment of social behaviour persists two years after embryonic alcohol exposure in zebrafish: A model of fetal alcohol spectrum disorders. Behav Brain Res 2015; 292:102-108. [PMID: 26097005 DOI: 10.1016/j.bbr.2015.05.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/23/2015] [Accepted: 05/29/2015] [Indexed: 12/19/2022]
Abstract
Zebrafish naturally form social groups called shoals. Previously, we have shown that submerging zebrafish eggs into low concentrations of alcohol (0.00, 0.25, 0.50, 0.75 and 1.00 vol/vol% external bath concentration) during development (24h post-fertilization) for two hours resulted in impaired shoaling response in seven month old young adult zebrafish. Here we investigate whether this embryonic alcohol exposure induced behavioural deficit persists to older age. Zebrafish embryos were exposed either to fresh system water (control) or to 1% alcohol for two hours, 24h after fertilization, and were raised in a high-density tank system. Social behaviour was tested by presenting the experimental fish with a computer animated group of zebrafish images, while automated tracking software measured their behaviour. Control fish were found to respond strongly to animated conspecific images by reducing their distanceand remaining close to the images during image presentation, embryonic alcohol treated fish did not. Our results suggest that the impaired shoaling response of the alcohol exposed fish was not due to altered motor function or visual perception, but likely to a central nervous system alteration affecting social behaviour itself. We found the effects of embryonic alcohol exposure on social behaviour not to diminish with age, a result that demonstrates the deleterious and potentially life-long consequences of exposure to even small amount of alcohol during embryonic development in vertebrates.
Collapse
Affiliation(s)
| | | | - And Robert Gerlai
- Department of Psychology, University of Toronto.,Department of Cell and System Biology, University of Toronto
| |
Collapse
|
39
|
Gerlai R. Embryonic alcohol exposure: Towards the development of a zebrafish model of fetal alcohol spectrum disorders. Dev Psychobiol 2015; 57:787-98. [DOI: 10.1002/dev.21318] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/08/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Robert Gerlai
- Department of Psychology; University of Toronto Mississsauga; 3359 Mississauga Road North Mississauga Ontario L5L 1C6 Canada
| |
Collapse
|
40
|
Maximino C, Gemaque J, Benzecry R, Lima MG, Batista EDJO, Picanço-Diniz DW, Oliveira KRM, Herculano AM. Role of nitric oxide in the behavioral and neurochemical effects of IB-MECA in zebrafish. Psychopharmacology (Berl) 2015; 232:1671-80. [PMID: 25388291 DOI: 10.1007/s00213-014-3799-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/31/2014] [Indexed: 11/29/2022]
Abstract
RATIONALE The adenosine A3 receptor and the nitric oxide (NO) pathway regulate the function and localization of serotonin transporters (SERTs). These transporters regulate extracellular serotonin levels, which are correlated with defensive behavior. OBJECTIVE The purpose of this study was to understand the role of the A3AR on anxiety and arousal models in zebrafish, and whether this role is mediated by the nitrergic modulation of serotonin uptake. METHODS The effects of IB-MECA (0.01 and 0.1 mg/kg) were assessed in a series of behavioral tasks in adult zebrafish, as well as on extracellular serotonin levels in vivo and serotonin uptake in brain homogenates. Finally, the interaction between IB-MECA and drugs blocking voltage-dependent calcium channels (VDCCs), NO synthase, and SERT was analyzed. RESULTS At the lowest dose, IB-MECA decreased bottom dwelling and scototaxis, while at the highest dose, it also decreased shoaling, startle probability, and melanophore responses. These effects were accompanied by an increase in brain extracellular serotonin levels. IB-MECA also concentration-dependently increased serotonin uptake in vitro. The effects of IB-MECA on extracellular 5-HT, scototaxis, and geotaxis were blocked by L-NAME, while only the effects on 5-HT and scototaxis were blocked by verapamil. In vitro, the increase in 5-HT uptake was dependent on VDCCs and NO. Finally, fluoxetine blocked the effect of IB-MECA on scototaxis, but not geotaxis. CONCLUSION These results suggest that the effect of IB-MECA on scototaxis are mediated by a VDCC-NO-SERT pathway. While NO seems to mediate the effects of IB-MECA on geotaxis, neither VDCCs nor SERT seems to be involved in this process.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neurociências e Comportamento, Universidade do Estado do Pará, Departamento de Morfologia e Ciências Fisiológicas, Núcleo Universitário de Marabá, Marabá, PA, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Fernandes Y, Rampersad M, Gerlai R. Embryonic alcohol exposure impairs the dopaminergic system and social behavioral responses in adult zebrafish. Int J Neuropsychopharmacol 2015; 18:pyu089. [PMID: 25568285 PMCID: PMC4438539 DOI: 10.1093/ijnp/pyu089] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/26/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The zebrafish is a powerful neurobehavioral genetics tool with which complex human brain disorders including alcohol abuse and fetal alcohol spectrum disorders may be modeled and investigated. Zebrafish innately form social groups called shoals. Previously, it has been demonstrated that a single bath exposure (24 hours postfertilization) to low doses of alcohol (0, 0.25, 0.50, 0.75, and 1% vol/vol) for a short duration (2 hours) leads to impaired group forming, or shoaling, in adult zebrafish. METHODS In the current study, we immersed zebrafish eggs in a low concentration of alcohol (0.5% or 1% vol/vol) for 2 hours at 24 hours postfertilization and let the fish grow and reach adulthood. In addition to quantifying the behavioral response of the adult fish to an animated shoal, we also measured the amount of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid from whole brain extracts of these fish using high-pressure liquid chromatograph. RESULTS Here we confirm that embryonic alcohol exposure makes adult zebrafish increase their distance from the shoal stimulus in a dose-dependent manner. We also show that the shoal stimulus increases the amount of dopamine and 3,4-dihydroxyphenylacetic acid in the brain of control zebrafish but not in fish previously exposed to alcohol during their embryonic development. CONCLUSIONS We speculate that one of the mechanisms that may explain the embryonic alcohol-induced impaired shoaling response in zebrafish is dysfunction of reward mechanisms subserved by the dopaminergic system.
Collapse
Affiliation(s)
| | | | - Robert Gerlai
- Department of Psychology (Mr Fernandes, Ms Rampersad, and Dr Gerlai), and Department of Cell and System Biology (Dr Gerlai), University of Toronto, Mississauga, Canada.
| |
Collapse
|
43
|
The dorsal striatum and ventral striatum play different roles in the programming of social behaviour. Behav Pharmacol 2015; 26:6-17. [DOI: 10.1097/fbp.0000000000000110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
44
|
Kalueff AV, Echevarria DJ, Stewart AM. Gaining translational momentum: more zebrafish models for neuroscience research. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:1-6. [PMID: 24593944 DOI: 10.1016/j.pnpbp.2014.01.022] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 01/03/2023]
Abstract
Zebrafish (Danio rerio) are rapidly becoming a popular model organism in translational neuroscience and biological psychiatry research. Here we discuss conceptual, practical and other related aspects of using zebrafish in this field ("from tank to bedside"), and critically evaluate both advantages and limitations of zebrafish models of human brain disorders. We emphasize the need to more actively develop zebrafish models for neuroscience research focusing on complex traits.
Collapse
Affiliation(s)
- Allan V Kalueff
- ZENEREI Institute and Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| | - David J Echevarria
- Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Adam Michael Stewart
- ZENEREI Institute and Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| |
Collapse
|
45
|
Subcutaneous dye injection for marking and identification of individual adult zebrafish (Danio rerio) in behavioral studies. Behav Res Methods 2014; 46:619-24. [PMID: 24057277 DOI: 10.3758/s13428-013-0399-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The zebrafish is increasingly utilized in behavioral brain research, as it offers a useful compromise between system complexity and practical simplicity. However, a potential drawback of this species in behavioral research is that individuals are difficult to distinguish. Here we describe a simple marking procedure, subcutaneous injection of color dyes, that may alleviate this problem. The procedure allowed us to successfully mark zebrafish and distinguish them for a period of more than 30 days, which is sufficiently long for most behavioral paradigms developed for this species. In addition, we also provide data suggesting that the injection-based marking does not significantly alter social interaction, as defined by the frequency of agonistic behaviors within shoals.
Collapse
|
46
|
Qin M, Wong A, Seguin D, Gerlai R. Induction of social behavior in zebrafish: live versus computer animated fish as stimuli. Zebrafish 2014; 11:185-97. [PMID: 24575942 PMCID: PMC4050712 DOI: 10.1089/zeb.2013.0969] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The zebrafish offers an excellent compromise between system complexity and practical simplicity and has been suggested as a translational research tool for the analysis of human brain disorders associated with abnormalities of social behavior. Unlike laboratory rodents zebrafish are diurnal, thus visual cues may be easily utilized in the analysis of their behavior and brain function. Visual cues, including the sight of conspecifics, have been employed to induce social behavior in zebrafish. However, the method of presentation of these cues and the question of whether computer animated images versus live stimulus fish have differential effects have not been systematically analyzed. Here, we compare the effects of five stimulus presentation types: live conspecifics in the experimental tank or outside the tank, playback of video-recorded live conspecifics, computer animated images of conspecifics presented by two software applications, the previously employed General Fish Animator, and a new application Zebrafish Presenter. We report that all stimuli were equally effective and induced a robust social response (shoaling) manifesting as reduced distance between stimulus and experimental fish. We conclude that presentation of live stimulus fish, or 3D images, is not required and 2D computer animated images are sufficient to induce robust and consistent social behavioral responses in zebrafish.
Collapse
Affiliation(s)
- Meiying Qin
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Computer Science, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Albert Wong
- Department of Computer Science, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Diane Seguin
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and System Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Ladu F, Butail S, Macrí S, Porfiri M. Sociality Modulates the Effects of Ethanol in Zebra Fish. Alcohol Clin Exp Res 2014; 38:2096-104. [DOI: 10.1111/acer.12432] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/28/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Fabrizio Ladu
- Department of Mechanical and Aerospace Engineering ; New York University Polytechnic School of Engineering; Brooklyn New York
| | - Sachit Butail
- Department of Mechanical and Aerospace Engineering ; New York University Polytechnic School of Engineering; Brooklyn New York
| | - Simone Macrí
- Section of Behavioural Neuroscience ; Department of Cell Biology and Neuroscience; Istituto Superiore di Sanità; Rome Italy
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering ; New York University Polytechnic School of Engineering; Brooklyn New York
| |
Collapse
|
48
|
Gerlai R. Social behavior of zebrafish: from synthetic images to biological mechanisms of shoaling. J Neurosci Methods 2014; 234:59-65. [PMID: 24793400 DOI: 10.1016/j.jneumeth.2014.04.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/20/2014] [Accepted: 04/24/2014] [Indexed: 11/16/2022]
Abstract
The zebrafish strikes a good balance between system complexity and practical simplicity and as a result it is becoming increasingly frequently utilized in biomedical research as a translational tool. Numerous human brain disorders are associated with abnormal social behavior and the zebrafish has been suggested for modeling such disorders. To start this line of research, however, one may need to first thoroughly examine the laboratory organism, zebrafish, and its features, social behavior in this case. Proper methods need be developed to induce and quantify social behavior. These paradigms may be able to open a window to the brain and facilitate the understanding of the biological mechanisms of social behavior and its abnormalities. This review is based on an oral paper presented at the last Measuring Behavior Conference, and as such it is mainly focused on research conducted in my own laboratory. Tracing the temporal progression of our own work, it discusses questions including what shoaling is, how it can be induced and measured and how it can be utilized in the modeling of certain human brain disorders, for example, alcohol induced abnormalities.
Collapse
Affiliation(s)
- Robert Gerlai
- University of Toronto Mississauga, Department of Psychology, Canada.
| |
Collapse
|
49
|
Gerlai R. Fish in behavior research: unique tools with a great promise! J Neurosci Methods 2014; 234:54-8. [PMID: 24768578 DOI: 10.1016/j.jneumeth.2014.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 11/24/2022]
Abstract
Fish represent the most diverse class of vertebrates on Earth and also an unprecedented, but as of yet still largely untapped, resource for comparative analyses that can illuminate answers to questions about both how organisms work and how they evolved. The current review is a general discussion of some of the basic principles of why adding new species such as fish to the short list of biomedical model organisms (mainly the house mouse and the rat) has merit. In addition to the general points, it also reviews some questions about a newcomer, the zebrafish, which is rapidly gaining popularity in brain and behavior research. It discusses some examples demonstrating the advantages and disadvantages of the zebrafish mainly in the context of biomedical research. It is followed by other articles that further elaborate on these questions.
Collapse
Affiliation(s)
- Robert Gerlai
- University of Toronto Mississauga, Department of Psychology, Canada.
| |
Collapse
|
50
|
Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 2014; 35:63-75. [PMID: 24412421 DOI: 10.1016/j.tips.2013.12.002] [Citation(s) in RCA: 717] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/27/2022]
Abstract
The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics and neuropharmacology. Both larval and adult zebrafish are currently used to increase our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. Here we review the developing utility of zebrafish in the analysis of complex brain disorders (including, e.g., depression, autism, psychoses, drug abuse, and cognitive deficits), also covering zebrafish applications towards the goal of modeling major human neuropsychiatric and drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-induced conditions are a rapidly emerging critical field in translational neuroscience and pharmacology research.
Collapse
Affiliation(s)
- Allan V Kalueff
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| | - Adam Michael Stewart
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|